説明

タイミングオフセットを有する送信機を用いた位置特定

【課題】GPS技術に代わって(またはともに)ワイヤレスネットワーク中で位置または場所情報を決定するシステムおよび方法において、より正確に距離測定を行う。
【解決手段】タイミングオフセット情報が、複数の送信機と1つの受信機との間で通信される。このような情報によって、ネットワーク全体にわたったタイミング差に対処するように正確な位置または場所の決定を行うことができる。別の実施形態では、受信機における潜在的なタイミング差に対処するために、送信機からの送信を前進または遅延させる送信機位相調整を行う。さらに別の観点では、位置場所決定を容易にするために、タイミングオフセット通信および/または送信機位相調整の組み合わせをワイヤレスネットワークにおいて使用する。

【発明の詳細な説明】
【米国特許法119条による優先権の主張】
【0001】
本出願は、“タイミングオフセットを有する送信機を用いた位置特定”と題された2005年9月27日に出願された米国仮出願第60/721,505号の利益を主張し、この米国特許出願は本願の譲受人に譲渡され、参照により明確にここに組み込まれている。
【0002】
I.分野
本技術は、一般的に、通信システムおよび方法に関する。さらに詳細に説明すると、ネットワーク内のタイミングオフセットまたは送信機位相調整技術を使用することによって、ワイヤレスネットワークにしたがって位置場所を決定するシステムおよび方法に関する。
【0003】
II.背景
優位を占めるワイヤレスシステムを有する1つの技術は、コード分割多元接続(CDMA)デジタルワイヤレス技術である。CDMAに加えて、無線インターフェイス仕様は、ワイヤレスプロバイダの産業先導グループによって開発されているFLO(フォワードリンクオンリー)技術(登録商標)を規定する。一般的に、FLOは、コーディングおよびシステム設計において利用可能かつ使用され、最も進んでいるワイヤレス技術の最も効果的な機能に影響を及ぼし、最高品質の性能を一貫して達成している。1つの目的は、FLOをグローバル的に採用される標準規格とすることである。
【0004】
移動体マルチメディアの1つのケースにおいてFLO技術は設計されてきた。そして、FLO技術は、セルラハンドセット上での使用に典型的に適している性能特性を示している。リアルタイムコンテンツストリーミングおよび他のデータサービス双方の高品質の受信を常に実現するために、コーディングおよびインターリービングする際に最新で進歩したものを使用する。FLO技術は、消費電力を損なわずに、強固な移動性能および高容量を提供することができる。また、配備する必要がある送信機の数を劇的に減らすことによって、技術はマルチメディアコンテンツを配信するネットワークコストを減少させる。さらに、FLO技術ベースのマルチメディアのマルチキャスティングは、ワイヤレスオペレータのセルラネットワークデータおよび音声サービスを補足し、3Gネットワーク上で使用される同じセルラハンドセットにコンテンツを配信する。
【0005】
FLOワイヤレスシステムは、非リアルタイムサービスに加えて、移動体ユーザに対して、リアルタイムオーディオおよびビデオ信号をブロードキャストするように設計されている。所定の地理的エリア中のワイドカバレージを保証するために、各FLO送信は、高くて高出力の電力送信機を使用して実行される。さらに、所定のマーケットにおける人口のかなりの部分にFLO信号が確実に到達するように、大半の市場において3〜4つの送信機を配備することが一般的である。FLO送信機カバレージのために、例えば、三角測量技術に基づいて、位置場所を決定することが可能である。従来の位置決定技術では、距離範囲測定のために、衛星ベースのGPS信号を利用する。しかしながら、衛星ベースの信号に伴う問題は、例えば、衛星に対する見通線が見られない屋内環境における信号の利用可能性の欠如である。
【概要】
【0006】
以下では、いくつかの観点の実施形態の基本的な理解を提供するために、さまざまな実施形態の簡略化した概要を示している。この概要は、多彩な概略ではない。重要な/不可欠なエレメントを識別することや、ここで開示した実施形態の範囲を詳細に述べることに向けられていない。この唯一の目的は、後に示す詳細な説明の前置きとして、いくつかの概念を簡単な形態で示すことである。
【0007】
従来のグローバルポジショニングシステム(GPS)技術に代わって(または、ともに)、ワイヤレスネットワーク全体にわたって、位置または場所の情報を決定するシステムおよび方法を提供する。1つの実施形態では、ブロードキャストネットワークにおける位置場所は、送信機間のタイミング差に対処する複数の送信機を使用して決定される。多くの位置場所アルゴリズムは、例えば、距離範囲測定に使用される信号を発する送信機が、GPSのような共通中央クロックを使用して、時間的に整列されると仮定している。しかしながら、ネットワーク全体にわたる信号の受信および品質を向上させるために、送信機のうちのいくつかの送信機からの送信を中央クロックに関して前進/遅延させることが、あるブロードキャストシステムにおいていくつかの利点となる。このようなケースでは、位置場所アルゴリズムは、送信機のタイミングオフセット情報を利用し、結果的に、従来の位置場所コンポーネントよりも、より正確に距離範囲測定を行うことになる。したがって、いくつかの実施形態では、この付加的な情報を受信機で使用するとともに、オーバーヘッドパラメータ情報(例えば、タイミングオフセット情報)を送信し、結果的に正確な距離範囲測定とすることができる。
【0008】
別の実施形態では、受信機でのタイミングオフセットに対処する必要性を軽減するために、信号送信タイミングを各送信機において前進または遅延させることができる。送信される信号のタイミングにおいて送信機を調整することによって、オフセット計算を減らしつつも、正確な位置情報を各送信機で決定することができる。その理由は、中央クロックからのタイミング不整合は送信機ですでに対処されているからである。正しく認識できるように、正確な位置場所決定を容易にするために、いくつかのシステムは、受信機に通信されるタイミングオフセット、および/または送信機におけるタイミング調整を組み合わせたものを含むことができる。
【0009】
先述の関連した目的の達成のために、詳細な説明および添付した図面とともに、ある実例的な実施形態をここに記述する。これらの観点は、実施形態が実施されてもよいさまざまな方法を示しており、これらすべてを網羅するように意図されている。
【図面の簡単な説明】
【0010】
【図1】図1は、ワイヤレスネットワークポジショニングシステムを図示している概略ブロック図である。
【図2】図2は、位置場所決定のためのタイミングオフセット情報を使用する例示的なシステムである。
【図3】図3は、タイミングオフセット情報を送信するための例示的な技術を図示している。
【図4】図4は、ワイヤレスポジショニングシステム中でタイミング情報を調整するための例示的なシステムを図示している。
【図5】図5は、ワイヤレスポジショニングシステムの例示的なネットワーク層を図示している図である。
【図6】図6は、ワイヤレスポジショニングシステムの例示的なデータ構造および信号を図示している図である。
【図7】図7は、ワイヤレスポジショニングシステムの例示的なタイミングプロセスを図示している。
【図8】図8は、ワイヤレスシステム用の例示的なユーザデバイスを図示している図である。
【図9】図9は、ワイヤレスシステム用の例示的な基地局を図示している図である。
【図10】図10は、ワイヤレスシステム用の例示的な送信機を図示している図である。
【詳細な説明】
【0011】
ワイヤレスネットワークにおける位置場所情報を決定するシステムおよび方法を提供する。1つの実施形態では、タイミングオフセット情報は、複数の送信機と1つ以上の受信機との間で通信される。このような情報によって、ネットワーク全体にわたるタイミング差に対処する、正確な位置または場所の決定を行うことができる。別の実施形態では、送信機と共通クロックとの間の潜在的なタイミング差に対処するために、送信機からの送信を前進または遅延させる送信機位相調整が行われる。この方法において、受信機ではさらにタイミング調整をせずに位置場所の決定を行うことができる。さらなる別の観点では、位置場所の計算または決定を容易にするように、ワイヤレスネットワークにおいてタイミングオフセット通信および/または送信機位相調整の組み合わせを用いることができる。
【0012】
タイミングオフセットは、送信機クロックと共通クロック源との間のタイミングにおける不整合であると考えることができ、これは、共通クロック同期信号と比較されたオフセットで送信されている、送信機における同期シンボルになることに留意すべきである。例えば、フォワードリンクオンリー(FLO)信号のケースでは、一般的に、送信機におけるスーパフレーム境界が、GPSからの1PPS信号に同期されることが予測される。しかしながら、タイミング不整合のために、または場合によっては意図的なネットワーク最適化の目的のために、実際、スーパフレーム境界は、GPSからの1PPS信号に対して、より早いかもしれず、あるいは遅延されるかもしれない。このことを送信機におけるタイミングオフセットと呼ぶ。
【0013】
送信機における位相調整に伴って、送信機波形は、実質的に、送信機におけるタイミングオフセットに関係なく、受信機によって認識される伝播遅延を調整するために修正される。このケースでは、たとえ送信機のクロック(したがって送信)が共通クロック源に正確に同期化されたとしても、送信機波形が修正されて、結果的に、受信機における伝播遅延測定が歪む可能性がある。例えば、OFDMシグナリングを使用しているFLOのケースでは、スーパフレーム境界をGPSからの1PPSと同期させることができる。しかしながら、送信機は、OFDMシンボルバッファの巡回シフトを使用することによって、送信位相を調整することができる。OFDMシンボルに対するサイクリック・プレフィックスは、巡回的にシフトされたOFDMシンボルに基づいて形成することができる。このような信号修正に伴って、受信機によって認識される遅延は、選択された送信位相(すなわち、OFDMシンボル上の巡回シフトの量)によって変わる。このことを送信機における位相調整と呼ぶ。
【0014】
本出願において使用されているような、用語「コンポーネント」、「ネットワーク」、「システム」およびこれらに類似するものは、コンピュータ関連エンティティ、ハードウェア、ハードウェアとソフトウェアとを組み合わせたもの、ソフトウェア、または実行中のソフトウェアのいずれかを参照することに向けられている。例えば、コンポーネントは、プロセッサ上で実行するプロセス、プロセッサ、オブジェクト、実行ファイル、実行のスレッド、プログラムおよび/またはコンピュータであってもよいが、これらに限定されるものではない。実例によって、通信デバイス上で実行しているアプリケーションおよびデバイスの双方がコンポーネントであってもよい。1つ以上のコンポーネントは、実行のプロセスおよび/またはスレッド内に存在していてもよく、コンポーネントは、1つのコンピュータ上でローカライズおよび/または2つ以上のコンピュータ間に分散されてもよい。さらに、これらのコンポーネントは、記憶されたさまざまなデータ構造を有するさまざまなコンピュータ読取可能な媒体から実行することができる。コンポーネントは、1つ以上のデータパケット(例えば、ローカルシステム中で、分散システム中で、および/またはインターネットのようなワイヤまたはワイヤレスネットワークによって、別のコンポーネントと対話する1つのコンポーネントからのデータ)を有する信号にしたがうようなローカルおよび/またはリモートプロセスによって通信してもよい。
【0015】
図1は、ワイヤレスネットワークポジショニングシステム100を図示している。システム100は1つ以上の送信機110を含み、送信機110は、ワイヤレスネットワーク全体にわたって1つ以上の受信機120と通信する。受信機120は、携帯電話機、コンピュータ、パーソナルアシスタント、ハンドヘルドまたはラップトップデバイス等のような、何らかのタイプの通信デバイスを実質的に含むことができる。システム100では、受信機120の位置または場所を決定することを容易にする1つ以上の位置場所コンポーネント130が使用されている。一般的に、ここで記述するさまざまな実施形態において、送信機110と受信機120との間のタイミング同期情報を調整して、受信機での正確な位置場所決定を容易にすることが必要であるかもしれない。1つのケースでは、タイミングオフセットコンポーネント140は、送信機110と受信機120との間で通信し、位置場所決定コンポーネントまたはアルゴリズムにおいて対処すべき、ワイヤレスネットワークにおけるタイミング差または調整を示すことができる。別のケースでは、位相調整コンポーネント150を送信機110で使用して、信号を前進または遅延させ、これはシステム100で生じるかもしれないタイミング不整合または差を補償する効果がある。他の実施形態では、タイミングオフセットコンポーネント140および/または位相調整コンポーネント150のさまざまな組み合わせを同時に使用して、ワイヤレスネットワークポジショニングシステム100中での位置場所決定を容易にすることができる。図示したように、1つ以上のパイロットシンボル154を遅延測定のために提供することが可能である。
【0016】
一般的に、従来の位置場所技術は、衛星ベースのGPS信号の距離範囲測定に利用される。しかしながら、衛星ベースの信号が有する1つの問題は、衛星に対する見通線が得られない屋内環境でのように信号の利用可能性が欠如することである。一方、フォワードリンクオンリー(FLO)送信の高出力の性質によって、GPS信号が利用不可能である屋内環境においてFLO波形を利用することが容易になる。したがって、複数の送信機からFLO信号が利用可能であるとき、FLO信号からなされる測定値に基づいて位置特定する代替物が存在する。以下の説明では、FLO受信機は少なくとも3つの異なった(他の構成も可能な)FLO送信機からの信号にアクセスすることができるが、これらのFLO送信機は、同じ情報内容を送信してもよいし、送信しなくてもよいことを仮定する。
【0017】
一般的に、FLOネットワークは、単一周波数ネットワーク(SFN)動作モードに対して配備され、そこでは送信機は共通クロック源に同期される。例えば、GPSからの1PPS信号からクロック源を取り出すことができる。FLO波形は、直交周波数分割多重化(OFDM)シグナリングに基づいている。そして、例えば、チャネルの遅延拡散が約135usよりも小さいという想定のもとで、FLO波形を設計することができる。複数の送信機110が受信機120に対して可視的であるときに、受信機によって認識される遅延拡散は、さまざまな送信機からの、受信機の相対位置の関数である。いくつかのケースでは、受信機120は、送信機110のうちの1つの近くにあり、また他の1つの送信機から遠く離れているので、結果的に、大きな遅延拡散となる可能性がある。結果的に生じる遅延拡散が135us(または他の基準)の設計仕様を超える場合、システム性能上に重大なペナルティをこうむる可能性がある。しかしながら、中央クロックからの同期化パルスに対してスーパフレーム境界を遅延または前進させることによって、ネットワークでのさまざまなポイントの受信機120によって認識される遅延拡散を制御することが可能である。したがって、最適化されたFLOネットワーク配置では、固定されたタイミングオフセットが異なる送信機110間で存在するとの仮定を現実的なものとすることができる。
【0018】
FLOネットワークのSFN配置では、中央クロックに対して固定されたタイミングオフセットで動作するように送信機110を(したがって、互いに)調整して、受信機120において見られる遅延拡散が、したがってシステム性能が最適化されるだろう。対処されない場合、送信機における相対的なタイミングオフセットは、位置特定に対する距離範囲測定に悪影響を及ぼす可能性がある。しかしながら、移動ベースの位置特定およびネットワークベースの位置特定では、距離範囲計算を修正することによって送信機タイミングオフセットに対処することができる。これは、移動ベースの位置特定システム中で受信機120に対して送信機タイミングオフセット情報をFLOネットワークに提供させることや、送信タイミングおよび位相信号を調整することや、または信号調整とタイミングオフセットとを組み合わせたものを含むことができる。
【0019】
図2は、位置決定のためにタイミングオフセットを使用する例示的なシステム200を図示している。この例では、210における送信機A、BおよびCは、FLO信号を搬送する3つの異なるFLO送信機とすることができ、FLO信号は、ある所定の時点で、受信機220の受信範囲内に存在する。さらに、da、dbおよびdcは、共通クロック源240に対する各送信機のタイミングオフセット230を指す。ここでは、正オフセットが、中央クロック240に対して送信を前進させることを指す一方で、負オフセットは、中央クロックに対して送信を遅延させることを指す。位相および周波数において、受信機クロックを共通クロック源240と同期させることを仮定することができる。
【0020】
一般的に利用可能である無線FLOインターフェイス仕様によって、(ポジショニングパイロットチャネルとして知られている)送信機に特有なシンボルをそれぞれの送信機210が挿入することができる。受信機220が送信機210のそれぞれからの伝播遅延を推定できるように、これらのシンボルを設計することができる。弱いエネルギーとともに長い遅延拡散も有するチャネルでも依然として受信機220において検出することができるように、ポジショニングパイロットチャネルは、実質的に、それぞれの送信機に特有な1組のパイロットトーンであり、高処理利得で設計されている。送信機210から受信機220への著しい分散のない見通線伝播のケースでは、一般的に、ポジショニングパイロットによって得られるチャネル推定は、単一パスからなる。送信機210から受信機220の距離は、チャネル推定の際に、チャネルパスの場所に基づいて決定される。
【0021】
システム例200における、送信機Aからのポジショニングパイロットチャネルの基づくチャネル推定では、τaを、単一パス(または、複数のパスのケースでは、最初に到達するパス)の場所とする。同様に、送信機BおよびCからのそれぞれのチャネル推定では、τbおよびτcを、最初に到達するパスの遅延とする。3つの送信機210とともに受信機220におけるクロックが周波数とともに位相で同期されている場合、チャネル推定によって測定された伝播遅延によって乗算された光の速度(c)として、送信機からの受信機の距離が計算される。しかしながら、送信機210におけるタイミングオフセットの存在で、受信機220において測定された遅延は、送信機と受信機との間のタイミングオフセット230によって訂正されるべきである。したがって、送信機Aからの受信機の距離は、
【数1】

【0022】
によって与えられ、ここで、cは、光の速度である。
【0023】
同様に、
【数2】

【0024】
である。3つの既知の場所からの受信機220の相対的な距離が決定される(このケースでは、既知の場所がFLO送信機である)とき、受信機の場所は、よく知られている方法である三角測量によって得ることができる。三角測量の方法は、それぞれ半径Sa、Sb、Scを有する3つの送信機A、BおよびCの周りに描かれた円の単一の交差点を実質的に決定することである。したがって、送信機210における相対的なタイミングオフセットのケースにおいて、タイミングオフセット値230に受信機220が気付いて、位置または場所を正確に決定すると有用であることが明らかである。
【0025】
図3は、タイミング情報を通信する例示的な方法300を図示している。正しく認識できるように、タイミングオフセット情報300を受信機に送信するためのいくつかの実行可能な技術がある。GPSクロックまたは他の共通クロックのような共通中央クロックに対する、送信機のそれぞれのタイミングオフセットに受信機が気付いたら十分であることに留意すべきである。
【0026】
310において、1つの実行可能な送信メカニズムでは、オーバーヘッドシンボルを使用して、タイミングオフセットについての情報を送信機がブロードキャストする。例えば、FLOシステムにおいて、所定のローカルエリア中のすべての送信機からのタイミング情報を、ローカルエリアOIS(オーバーヘッド情報シンボル)フィールド中に含むことができる。そして、ローカルエリアOISフィールドは、所定のローカルエリアに特有であるが、所定のワイドエリア中の異なるローカルエリア全体にわたって変化する。このようなアプローチの1つの効果は、送信機タイミング情報がローカライズされることである。その送信機からポジショニングパイロットチャネルを受信することができない送信機についての、受信機間のタイミングオフセット情報には利点は提供されないことに留意すべきである。一方で、ローカルOISフィールドは、ポジショニングパイロットチャネルよりも、カバレージの境界でいっそう干渉され易いかもしれない。結果として、受信機は、ポジショニングパイロットチャネルのデコーディングに成功することができるものの、ローカルOISチャネルからタイミング情報を得ることはできないかもしれない。このアプローチの1つの変形は、ワイドエリアOISにおいてタイミング情報を含むことであり、さらに幅広い地理的エリア(そしてしたがって有効帯域幅)にわたって送信機タイミングをブロードキャストするという犠牲をはらう、カバレージのエッジ問題を取り除く。
【0027】
320において、タイミング情報を送信する別の実行可能な技術は、送信機タイミング情報をポジショニングパイロットチャネル(PPC)に埋め込むことである。このケースでは、受信機は、送信機からのPPCを使用して、所定の送信機からのチャネルを最初に推定し、そしてPPCに埋め込まれたタイミング情報をデコードすることができる。PPCの検出確率が、シンボルに埋め込まれた追加的な情報の存在下で影響されにくくするこのケースでは、PPCの処理利得を十分に増加させなければならないかもしれない。
【0028】
330において、タイミング情報を送信する第3の実行可能な技術は、非リアルタイムMLC(メディアFLO論理チャネル)として送信機の暦を定期的にブロードキャストして、受信機がこの特定の情報MLCをデコードすることを容易にすることである。340において、別の魅力的な技術は、図4に関して以下で説明するようにタイミングオフセットを考慮に入れることによりPPCシンボルに対する送信機波形を修正することによって、送信機におけるタイミングオフセット情報を軽減させる。
【0029】
図4は、ワイヤレスポジショニングシステムにおいてタイミング情報を調整する例示的なシステム400を図示している。この例では、2つの送信機AおよびBを410で示している。システムにおいて可能性あるタイミング差に対処するために、420において、送信機410からの信号を前進または遅延させることができる。したがって、受信機430は、先に記述したように中央クロックからのオフセットを決定する必要なく、位置場所を決定することができるかもしれない。受信機430によって認識されるような有効チャネル遅延拡散を調整するために、420において送信機タイミングを前進または遅延させる概念がFLOシステムに取り入れられる。1つのケースにおいて、OFDMシステムでは、OFDM信号によって使用されるサイクリック・プレフィックスよりもチャネルの遅延拡散が小さい場合、送信信号とのチャネルの線形畳み込みを巡回畳み込みとして取り扱うことができる。
【0030】
この例において、タイミングオフセットdaおよびdbを有する410における送信機AおよびBについて考える。τ’aを、送信機Aと受信機430との間の距離に基づく見通線伝播成分によって認識される実際の遅延とする。同様に、τ’bを、送信機Bから受信機430への見通線成分によって認識される実際の遅延とする。(送信機のそれぞれから1つの見通線成分を仮定して)遅延拡散τ’b−τ’aがサイクリック・プレフィックスを超えたときに、追加的な遅延daおよびdbが送信機において導入されることに留意すべきである。送信機における遅延daおよびdbにより、受信機で受信される信号は、
【数3】

【0031】
によって与えられる。
【0032】
ここで、ha(n)およびxa(n)は、送信機Aに対するチャネルおよび信号であり、*は線形畳み込み演算を表し、w(n)は受信機で追加されるノイズである。ワイドエリアネットワークにおけるトラフィックチャネルのケースでは、xa(n)およびxb(n)は、一般的に同一(すなわちx(n))である。
【0033】
線形畳み込みのプロパティを使用すると、上記の数式を、
【数4】

【0034】
として記すことができる。
【0035】
認識されるチャネル遅延拡散は
【数5】

【0036】
によって与えられるので、送信機においてタイミングオフセットを導入することによって制御することができる。有効な遅延拡散がサイクリック・プレフィックスよりも小さいときに、数式1中の受信信号は、線形畳み込みの代わりに巡回畳み込みとして記すことが可能である。したがって、
【数6】

【0037】
ここでは、
【数7】

【0038】
は、巡回畳み込みを示す。サイクリック・プレフィックスが十分長い場合、結果的に数式3となる数式1におけるdaだけ信号xa(n)を遅延させる演算は、数式3においてdaによるxa(n)の巡回回転によって実現することができる。
【0039】
上記のケースに基づいて、以下では、規則的なトラフィックチャネルに対するパイロットポジショニングチャネルについて提案する。規則的なトラフィックチャネル中、使用されるサイクリック・プレフィックスは、一般的に、短い(FLOのケースでは512チップである)ので、チャネルの有効な遅延拡散を調整するために、数式3で説明した巡回シフト技術を使用することができない。したがって、各送信機からの送信は、サイクリック・プレフィックス要求を満たすために物理的に遅延される(この例では、送信機AおよびBはdaおよびdbだけ)であろう。一方、ポジショニングパイロットチャネルについては、遠く離れた弱い送信機からの遅延の推定を可能にするように、(チップはデータパケットにエンコードされたビットを指す、FLO中の2500チップのオーダーの)ロングサイクリック・プレフィックスが使用されてもよい。さらに、トラフィックチャネルに対して送信機により導入された遅延daおよびdbは、ポジショニングパイロットチャネルで行われる遅延観察に影響を与えるので、先に説明したように、このオーバーヘッド情報が受信機において必要になる。
【0040】
パイロットポジショニングチャネルに対するロングサイクリック・プレフィックスの利用可能性を想定すると、送信機は、ポジショニング信号の巡回シフトによって、実際の物理遅延daおよびdbの影響を取り消すことができる。xa,p(n)が送信機Aからの、タイミング遅延daを有する意図されたポジショニング信号である場合、送信機は、
【数8】

【0041】
によって与えられる巡回的にシフトされたバージョンを送り出すことができる。同様に、送信機Bからの信号を巡回的にシフトさせる。ロングサイクリック・プレフィックスの存在のために、数式3は、依然として有効であり、したがって、
【数9】

【0042】
であるので、送信機遅延情報を受信機に送り出す必要性を軽減する。この技術は、ネットワークプランニングの一部分として導入された遅延とともに、例えば、フィルタ、ケーブルおよび他のこのようなコンポーネントが原因で生じるかもしれない、他のタイミング遅延から結果的に生じる送信機タイミングオフセットに対処するために使用することができる。
【0043】
別の実施形態に関して、上記の説明において、移動体受信機で距離範囲測定が計算されていることを仮定してもよい。しかしながら、タイミング情報をオフラインで利用できるネットワーク中で計算を行うことが可能である。このケースでは、受信機は、送信機タイミングオフセットを考慮せずに、擬似距離範囲S’a、S’b、およびS’cを測定することができ、ここでは、例えば、
【数10】

【0044】
である。受信機が、擬似距離範囲S’aをネットワークに中継すると、ネットワークにおいて暦全体が利用可能になるので、タイミングオフセットによるさらなる訂正をネットワークにおいて容易に実行することができる
上記の説明では、受信機クロックは共通クロックに厳密に同期され、共通クロックと送信機クロックとの間の不整合は、タイミングオフセットまたは送信機における位相調整のために存在することを仮定している。しかしながら、このことは特別なケースであると考えることができ、受信機クロックは、共通クロックに同期させる必要がないことに留意すべきである。受信機クロックが共通クロックに同期されなかったとき、各送信機からの遅延測定は、共通のバイアス期間も含むことができる。これは、共通クロックと受信機クロックとの間の不整合の量である。共通バイアスは、ここでは、受信機の空間座標に加えて計算される必要がある別の未知数である。空間座標とともにクロックバイアスにおける未知数、追加的な送信機からの測定値の助けを借りて、すべて解くことができる。特に、空間座標とともに受信機における共通クロックバイアスの双方を解くためには、例えば、(共通クロック源に対して利用可能なタイミングオフセット情報を有し、受信機が地球の表面上にあることを前提としている)4つの異なる送信機からの測定値を持つことで十分である。受信機における共通クロックバイアスを欠いた(すなわち、受信機クロックが共通クロックに同期されている)状態で、例えば、3つの異なる送信機からの遅延測定値を持つことで十分である。
【0045】
図5は、ワイヤレスポジショニングシステム向けの例示的なネットワーク層500を図示している。フォワードリンクオンリー(FLO)無線インターフェイスプロトコル基準モデルを図5において示している。一般的に、FLO無線インターフェイス仕様は、層1(物理層)と層2(データリンク層)とを有するOSI6に対応するプロトコルおよびサービスをカバーしている。データリンク層は、2つのサブ層、すなわちメディアアクセス(MAC)サブ層とストリームサブ層とにさらに細分化される。上位層には、制御情報のコンテンツとフォーマッティング化とともに、マルチメディアコンテンツの圧縮と、マルチメディアに対するアクセス制御とを含めることができる。
【0046】
FLO無線インターフェイス仕様は、一般的に、さまざまなアプリケーションおよびサービスのサポートにおける設計の柔軟性を実現するために、上位層を特定しない。状況を提供するためにこれらの層が示されている。ストリーム層は、上位層パケットをそれぞれの論理チャネルのストリームに結合する、1つの論理チャネルへの3つまでの上位層フローの多重を含み、パケット化と残留のエラー取り扱い機能とを提供する。メディアアクセス制御(MAC)層の機能は、物理層へのアクセス制御を含み、論理チャネルと物理チャネルとの間でマッピングを実行し、物理チャネルによる送信のために論理チャネルを多重化し、移動体デバイスで論理チャネルを多重分離化し、および/またはサービス品質(QOS)要求を強制する。物理層の機能は、フォワードリンクに対するチャネル構造を提供することと、周波数、変調およびエンコーディングの要求を規定することとを含む。
【0047】
一般的に、FLO技術は、直交周波数分割多重化(OFDM)に利用される。また、これは、デジタルオーディオブロードキャスティング(DAB)7、衛星デジタルビデオブロードキャスティング(DAB−T)8、および衛星統合サービスデジタルブロードキャスティング(ISDB−T)9にも利用される。一般的に、OFDM技術は、高スペクトル効率を実現する一方で、広いセルSFNにおける可動性要求を効果的に満たすことができる。さらに、OFDMは、適切な長さのサイクリック・プレフィックス、すなわち、直交性を容易にして搬送波間干渉を軽減するために、(データシンボルの最後の部分のコピーである)シンボルの前に追加されるガードインターバルによって、複数の送信機からの長い遅延を取り扱うことができる。この間隔の長さが最大チャネル遅延より大きい限り、前のシンボルの反射は取り除かれて、直交性が保たれる。
【0048】
図6に進むと、FLO物理層600が図示されている。FLO物理層は、(4096副搬送波のトランスフォームサイズを発生させる)4Kモードを使用し、かなり広いSFNセルに有用な十分に長いガードインターバルを保持しながら、8Kモードと比較して優れた移動体性能を提供する。最適化されたパイロットおよびインターリーバ構造設計によって、迅速なチャネル捕捉を実現することができる。FLO無線インターフェイスに組み込まれているインターリーブスキームは、時間ダイバーシティを容易にする。パイロット構造およびインターリーバ設計は、長い捕捉時間でユーザを困らせないようにチャネル利用を最適化する。600において図示されているように、一般的に、FLO送信される信号は、スーパフレームに組織化される。それぞれのスーパフレームは、4つのフレームのデータからなり、TDM(時間分割多重化)パイロットと、オーバーヘッド情報シンボル(OIS)と、ワイドエリアおよびローカルエリアデータを含むフレームとを含む。TDMパイロットは、OISの迅速な捕捉を可能にするために提供される。OISは、スーパフレームにおけるそれぞれのメディアサービスに対するデータの場所を記述する。
【0049】
一般的に、割り振られた帯域幅のMHzあたり200のOFDMシンボル(6MHzで1200シンボル)からなり、それぞれのシンボルは、7つのインタレースアクティブ副搬送波を含む。それぞれのインタレースは、周波数的に均一に分散されるので、利用可能な帯域幅内で完全な周波数ダイバーシティを実現することができる。これらのインタレースは、使用される実際のインタレース数および持続期間の点で変化する論理チャネルに割り当てられる。これは、任意の所定のデータ源によって実現される時間ダイバーシティにおいて柔軟性を提供する。時間ダイバーシティを向上させるために、より低いデータレートチャネルに対してより少ないインタレースを割り当てることができるが、無線のオン時間を最小にして消費電力を減少させるために、より高いデータレートチャネルは、より多くのインタレースを利用する。
【0050】
低および高データレートチャネルの双方に対する捕捉時間は、一般的に同じである。したがって、捕捉時間を損なわずに、周波数および時間ダイバーシティを維持することができる。FLO論理チャネルは、リアルタイム(ライブストリーミング)コンテンツを可変レートで搬送して、可変レートコデック(一体になった圧縮器および復元器)によって実行可能な統計的多重化利得を得るのに使用されることが多い。それぞれの論理チャネルは、異なるコーディングレートおよび変調を持ち、異なるアプリケーションに対する、さまざまな信頼性およびサービス品質に関する要求をサポートする。FLO多重化スキームによって、関心がある単一論理チャネルのコンテンツをデバイス受信機が復調して電力消費を最小にできるようになる。ビデオおよび関係するオーディオを異なるチャネル上で送ることができるように、移動体デバイスは複数の論理チャネルを同時に復調することができる。
【0051】
エラー訂正およびコーディング技術も使用することができる。一般的に、FLOは、ターボインナコード13とリードソロモン(RS)アウタコード14とを組み込んでいる。一般的に、ターボコードパケットは、巡回冗長検査(CRC)を含む。正しく受信されたデータに対して計算する必要がないRSコードは良好な信号状態のもとで、結果的に、追加的な電力節約となる。別の観点は、FLO無線インターフェイスは、5、6、7および8MHzの周波数帯域幅をサポートするように設計されていることである。非常に望ましいサービス提供は、単一無線周波数チャネルで実現することができる。
【0052】
図7は、ワイヤレスシステムのための位置および場所プロセス700を図示している。説明の簡略化の目的のために、方法論は一連のまたは多数の行為として示されて記述されているが、ここで示して記述したものと異なる順序でおよび/または他の行為と同時に、いくつかの行為は行われるかもしれないので、ここで記述したプロセスは行為の順序によって限定されないことを理解して正しく認識すべきである。例えば、状態図におけるように、一連の相互関係のある状態またはイベントとして方法論を代替的に提示できることを、当業者は理解して正しく認識するだろう。さらに、図示したすべての行為が、ここで開示した主題の方法論にしたがった方法論を実現するために必要であるとは限らない。
【0053】
710に進むと、さまざまなタイミング訂正が決定される。これは、送信機、受信機および/または中央クロック源間のタイミング差を決定するために計算を行うことを含むことができる。このような差は、クロックとの差を訂正するために受信機で使用されてもよいタイミングオフセットを決定するために使用することができ、また、このような計算は、タイミング差に対処するために、送信機ブロードキャストをどのくらい前進または遅延させるかを決定するために使用することができる。テストデバイスを使用して、潜在的なシステム変更を監視することができ、ここで、オフセットの決定または送信機信号調整を容易にするために、このようなデバイスからフィードバックが受け取られる。720において、潜在的な受信機が位置または場所の計算をどのくらい調整しなければならないかを示すために、データパケットの一部分として、1つ以上の時間オフセットが送信される。代わりに、ワイヤレスネットワーク中における、中央クロックに関するタイミング差に対処するために、730において信号を前進または遅延させることができる。正しく認識できるように、720および730での双方のアプローチを同時に適用することができる。例えば、720において一定の時間オフセットを送信して、環境的または電気的状態の変化する場合に、730において前進または遅延に調整可能な信号を利用することが効果的であるかもしれない。これらの変化を監視することができ、また閉ループメカニズムを使用して、システム送信またはタイミングを自動的に調整することができる。別の観点では、潜在的に検出された変化に対処するために、720において動的に計算されて送信された定数および時間オフセットとして、送信タイミングにおける前進または遅延を適用することができる。
【0054】
740において、訂正または調整された信号、ならびに/あるいは時間オフセットが受信される。先に述べたように、時間オフセットが受信されてもよく、クロックに対して調整された信号が受信されてもよく、また時間オフセットと調整された信号とを組み合わせたものが受信されてもよい。750において、時間オフセット、および/または位相調整された信号が、1つ以上の受信機における位置を決定するために利用される。クロックと基準源との間で生じるかもしれない差に対処する位置場所情報を自動的に計算するために、このような情報を使用することができる。例えば、時間オフセット、または位相調整された信号を屋内で受信して、受信機の位置を決定することができる。
【0055】
図8は、ここで述べた1つ以上の観点にしたがったワイヤレス通信環境で使用されるユーザデバイス800の実例である。ユーザデバイス800は受信機802を具備し、受信機802は、例えば、(示されていない)受信アンテナから信号を受け取り、一般的な動作(例えば、フィルタリング、増幅、ダウンコンバート等)を受信信号に実行し、調整された信号をデジタル化してサンプルを得る。受信機802は、最大可能性(ML)−MMSE受信機またはこれに類するような非線形受信機であってもよい。チャネル推定のために、復調器804は、受信されたパイロットシンボルを復調して、プロセッサ806に提供することができる。前に記述したように、FLO信号を処理するために、FLOチャネルコンポーネント810が設けられている。これは、他のプロセスの中でとりわけデジタルストリーム処理および/またはポジショニング場所計算を含むことができる。プロセッサ806は、受信機802によって受信された情報を解析する、および/または送信機816による送信用の情報を発生させるのに専用のプロセッサとすることができ、ユーザデバイス800の1つ以上のコンポーネントを制御するプロセッサとすることができ、ならびに/あるいは受信機802によって受信された情報を解析し、送信機816による送信用の情報を発生させて、かつユーザデバイス800の1つ以上のコンポーネントを制御するプロセッサとすることができる。
【0056】
また、ユーザデバイス800はメモリ808をさらに具備しており、メモリ808は、プロセッサ806に動作可能に結合されており、ユーザデバイス800に対して計算されたランクに関する情報と、ランク計算プロトコルと、それに関する情報を含むルックアップテーブルと、ここで記述されたようなワイヤレス通信システムにおける非線形受信機でランクを計算するためにリスト球面デコーディングをサポートするための他の何らかの適切な情報とを記憶する。ここで記述したように、ユーザデバイス800が、記憶されたプロトコルおよび/またはアルゴリズムを使用して、非線形受信機においてランク決定を実現することができるように、メモリ808は、さらに、ランク計算や、行列発生等に関係付けられたプロトコルを記憶することができる。
【0057】
ここで記述したデータ記憶(例えば、メモリ)コンポーネントは、揮発性メモリまたは不揮発性メモリのいずれかであってもよく、または揮発性メモリおよび不揮発性メモリの双方を含んでもよいことを正しく認識すべきである。例示のために、そして限定ではなく、実例の方法によって、不揮発性メモリは、リードオンリーメモリ(ROM)、プログラム可能なROM(PROM)、電気的にプログラム可能なROM(EPROM)、電気的に消去可能なROM(EEPROM)、またはフラッシュメモリ(登録商標)を含むことができる。揮発性メモリは、ランダムアクセスメモリ(RAM)を含むことができ、これは外的キャシュメモリとして機能する。例示のために、そして限定ではなく、RAMは、シンクロナスRAM(SRAM)、ダイナミックRAM(DRAM)、シンクロナス型DRAM(SDRAM)、二重データレートSDRAM(DDR SDRAM)、拡張型SDRAM(ESDRAM)、シンクリンクRAM(SLDRAM)およびダイレクトラムバスDRAM(DRRAM)のような多くの形態で利用可能である。本件のシステムおよび方法のメモリ808は、これらの、および他の何らかの適切なタイプのメモリを具備することに向けられているが、これらに限定されていない。ユーザデバイス808は、FLOデータを処理するためのバックグラウンドモニタ814と、シンボル変調器814と、変調された信号を送信する送信機816とをさらに具備する。
【0058】
図9は、例示的なシステム900を図示している。システム900は、複数の受信アンテナ906によって1つ以上のユーザデバイス904から信号を受信する受信機910と、送信アンテナ908によって1つ以上のユーザデバイス904に送信する送信機924とを備えた基地局902を具備する。受信機910は、受信アンテナ906から情報を受け取ることができ、受け取った情報を復調する復調器912と動作可能に関係している。復調されたシンボルは、図8について先に記述したプロセッサに類似しているプロセッサ914によって解析され、プロセッサ914はメモリ916に結合されている。メモリ916は、ユーザランクに関連する情報、それに関連するルックアップテーブル、および/またはここで述べたさまざまな動作および機能を実行することに関連する他の任意の適切な情報を記憶する。プロセッサ914は、さらにFLOチャネルコンポーネント918に結合されており、FLOチャネルコンポーネント918は、1つ以上の各ユーザデバイス904に関係するFLO情報の処理を容易にする。
【0059】
変調器922は、送信アンテナ908を通してのユーザデバイス904への送信機924による送信用信号を多重化することができる。FLOチャネルコンポーネント918は、ユーザデバイス904と通信する所定の送信ストリーム用の更新されたデータストリームに関連する信号に対して情報を付加することができ、そして、新しい最適チャネルが識別されて肯定応答されたことの表示を提供するために、ユーザデバイス904に対してこの情報を送信することができる。この方法において、基地局902は、ユーザデバイス904と対話することができ、ユーザデバイス904は、FLO情報を提供し、ML−MIMO受信機等のような非線形受信機とともに、デコーディングプロトコルを使用する。
【0060】
図10は、例示的なワイヤレス通信システム1000を示している。簡潔にするために、ワイヤレス通信システム1000は、1つの基地局および1つの端末を図示している。しかしながら、システムは1つより多い基地局および/または1つより多い端末を含むことができ、ここでは、追加的な基地局および/または端末は、以下で記述する例示的な基地局および端末に実質的に類似または相違してもよいことを正しく認識すべきである。
【0061】
ここで図10を参照すると、ダウンリンク上では、アクセスポイント1015において、送信(TX)データプロセッサ1010が、トラフィックデータを受け取り、フォーマット化、コード化、インターリーブ、および変調(またはシンボルマッピング)して、変調シンボル(“データシンボル”)を提供する。シンボル変調器1015は、データシンボルおよびパイロットシンボルを受け取って処理し、シンボルのストリームを提供する。シンボル変調器1015は、データおよびパイロットシンボルを多重化して、これらを送信機ユニット(TMTR)1015に提供する。それぞれの送信シンボルは、データシンボル、パイロットシンボル、あるいはゼロの信号値であってもよい。パイロットシンボルは、それぞれのシンボル期間に連続して送られてもよい。パイロットシンボルは、周波数分割多重化(FDM)、直交周波数分割多重化(OFDM)、時間分割多重化(TDM)、周波数分割多重化(FDM)、あるいはコード分割多重化(CDM)であってもよい。
【0062】
TMTR1020は、シンボルのストリームを受け取り、1つ以上のアナログ信号に変換して、アナログ信号をさらに調整(例えば、増幅、フィルタリング、および周波数アップコンバート)して、ワイヤレスチャネルに対して送信するのに適したダウンリンク信号を発生させる。次に、ダウンリンク信号は、アンテナ1025によって端末に送信される。端末1030では、アンテナ1035がダウンリンク信号を受信し、受信信号を受信機ユニット(RCVR)1040に提供する。受信機ユニット1040は、受信信号を調整(例えば、フィルタリング、増幅、および周波数ダウンコンバート)して、調整された信号をデジタル化して、サンプルを取得する。シンボル復調器1045は、受信されたパイロットシンボルを復調して、チャネル推定のためにプロセッサ1050に提供する。シンボル復調器1045は、プロセッサ1050からダウンリンクに対する周波数応答推定をさらに受け取り、受信されたデータシンボル上でデータ復調を実行して(送信されたデータシンボルの推定値である)データシンボル推定を取得し、RXデータプロセッサ1055にデータシンボル推定を提供して、RXデータプロセッサ1055は、データシンボル推定を復調(すなわち、シンボルデマッピング)し、デインターリーブしてデコードし、送信されたトラフィックデータを復元する。シンボル復調器1045およびRXデータプロセッサ1055による処理は、アクセスポイント1005におけるシンボル復調器1015およびTXデータデータプロセッサ1010によるプロセスに対して相補関係にある。
【0063】
アップリンク上では、TXデータプロセッサ1060がトラフィックデータを処理してデータシンボルを提供する。シンボル変調器1065は、データシンボルを受け取ってパイロットシンボルと多重化し、変調を行い、シンボルのストリームを提供する。送信機ユニット1070は、シンボルのストリームを受け取って処理し、アップリンク信号を発生させる。アップリンク信号は、アンテナ1035によってアクセスポイント1005に送信される。
【0064】
アクセスポイント1005では、端末1030からのアップリンク信号が、アンテナ1025によって受信され、受信機ユニット1075によって処理され、サンプルが取得される。シンボル復調器1080は、サンプルを処理し、受信されたパイロットシンボルおよびデータシンボル推定値をアップリンクに提供する。RXデータプロセッサ1085は、データシンボル推定値を処理して、送信機1030によって送信されたトラフィックデータを復元する。プロセッサ1090は、アップリンク上で送信する、それぞれのアクティブ端末に対するチャネル推定を行う。複数の端末が、各割り当てられた組のパイロット副帯域のアップリンク上でパイロットを同時に送信してもよく、ここで、パイロット副帯域の組がインタレースされてもよい。
【0065】
プロセッサ1090および1050は、それぞれ、アクセスポイント1005および端末1030における動作を指示(例えば、制御、調整、管理、等)する。各プロセッサ1090および1050は、プログラムコードおよびデータを記憶する(示されていない)メモリユニットに関係付けることができる。プロセッサ1090および1050は、それぞれ、計算を行い、アップリンクおよびダウンリンクに対する周波数およびインパルス応答推定値を導出することができる。
【0066】
多元接続システム(例えば、FDMA、OFDMA、CDMA、TDMA等)については、複数の端末がアップリンク上で同時に送信することができる。このようなシステムのために、パイロット副帯域が、異なる端末間で共有されてもよい。それぞれの端末に対するパイロット副帯域が動作帯域全体にわたる(おそらく、帯域境界は除く)ケースでは、チャネル推定技術を使用してもよい。このようなパイロット副帯域構成は、それぞれの端末に対して周波数ダイバーシティを得るには望ましい。ここで記述した技術は、さまざまな手段によって実現されてもよい。例えば、これらの技術は、ハードウェア、ソフトウェア、あるいはこれらを組み合わせたもので実現されてもよい。ハードウェア実現のために、1つ以上の特定用途向け集積回路(ASIC)、デジタル信号プロセッサ(DSP)、デジタル信号処理デバイス(DSPD)、プログラム可能ロジックデバイス(PLD)、フィールドプログラム可能ゲートアレイ(FPGA)、プロセッサ、制御装置、マイクロ制御装置、マイクロプロセッサ、ここで記述した機能を実行するように設計されている他の電子ユニット、あるいはこれらを組み合わせたもの内で、チャネル推定のために使用される処理ユニットを実現してもよい。ソフトウェアとともに、ここで記述した機能を実行するモジュール(例えば、手順、関数等)で実現されてもよい。ソフトウェアコードはメモリユニット中に記憶させて、プロセッサ1090および1050によって実行されてもよい。
【0067】
ソフトウェアの実現のために、ここで記述した機能を実行するモジュール(例えば、手順、関数等)により、ここで記述した技術を実現してもよい。ソフトウェアコードはメモリユニット中に記憶させて、プロセッサによって実行してもよい。メモリユニットをプロセッサ内部またはプロセッサの外部で実現してもよく、どちらのケースにおいても、技術的に知られているさまざまな手段によって、プロセッサと通信可能にプロセッサと結合することができる。
【0068】
上記に記述したことは、例示的な実施形態を含む。もちろん、実施形態を記述する目的のために、コンポーネントまたは方法のすべての考えられる組み合わせを記述することは当然不可能であるが、当業者は、さらなる多くの組み合わせ、および置換が可能であることを認識するかもしれない。したがって、これらの実施形態は、特許請求の範囲の精神および範囲内にあるすべてのこのような変更、修正およびバリエーションを含むことを意図しており、さらに、用語「含む」が詳細な説明または特許請求の範囲のいずれかで使用される限り、このような用語は、用語「具備する」が請求項中で移行語として使用されるときに解釈されるように用語「具備する」とある意味、類似して包括的であることが意図されている。

【特許請求の範囲】
【請求項1】
ワイヤレスネットワークにおける位置情報を決定する方法において、
共通クロックと少なくとも1つの他のクロックとの間の時間オフセット情報を決定することと、
時間オフセット情報に部分的に基づいて、少なくとも1つの送信機の位相を調整することと、
時間オフセット情報または調整された送信機の位相に部分的に基づいて、受信機の位置を決定することとを含む方法。
【請求項2】
共通クロックは、グローバルポジショニングシステム信号に基づいている請求項1記載の方法。
【請求項3】
少なくとも1つの受信機に時間オフセット情報を通信することをさらに含む請求項1記載の方法。
【請求項4】
フォワードリンクオンリー(FLO)ネットワーク中でタイミングオフセット情報を送信することと、
フォワードリンクオンリーネットワークにおける送信機タイミングを前進または遅延させて、受信機によって認識されるような有効なチャネル遅延拡散を調整することとをさらに含む請求項3記載の方法。
【請求項5】
FLOネットワークは、単一周波数ネットワーク(SFN)動作モードに対して配備され、そこでは送信機は共通クロックに同期され、または送信信号とのチャネルの線形畳み込みを実行する請求項4記載の方法。
【請求項6】
少なくとも2つのタイミングオフセットを発生させることをさらに含む請求項1記載の方法。
【請求項7】
共通クロックからの同期パルスに対して、信号を遅延または前進させることによって遅延拡散を制御することをさらに含む請求項6記載の方法。
【請求項8】
少なくとも2つの送信機間の固定されたタイミングオフセットを設定することをさらに含む請求項6記載の方法。
【請求項9】
サイクリック・プレフィックス要求を満たすために、共通クロックに対する送信の前進または遅延、あるいは送信機からの送信の遅延を示す正または負のパラメータを送ることをさらに含む請求項6記載の方法。
【請求項10】
ロングサイクリック・プレフィックスを使用して、遠くにある送信機からの遅延の推定を可能にすることをさらに含む請求項9記載の方法。
【請求項11】
三角測量方法によって、3つ以上の既知の場所からの受信機の相対距離を決定することをさらに含む請求項1記載の方法。
【請求項12】
ワイヤレスネットワークシステムにおける位置情報を決定する方法において、
ワイヤレスネットワークシステムにおける共通クロック源を考慮して、受信機と送信機との間の少なくとも1つのタイミングオフセットを決定することと、
時間オフセットを受信機に送信すること、または共通クロック源を考慮して送信機において信号を修正することと、
時間オフセットまたは修正された信号に基づいて、受信機における位置を計算することとを含む方法。
【請求項13】
ローカルエリアオーバーヘッド情報シンボルフィールド、またはワイドエリアオーバーヘッド情報シンボルフィールド中のオーバーヘッドシンボルを使用して、タイミングオフセットをブロードキャストすることをさらに含む請求項12記載の方法。
【請求項14】
タイミングオフセットをポジショニングパイロットチャネル(PPC)に埋め込むことをさらに含む請求項12記載の方法。
【請求項15】
タイミングオフセットを有する送信機の暦をブロードキャストすること、または1つ以上の擬似距離範囲を送信機の暦に中継することをさらに含む請求項13記載の方法。
【請求項16】
ワイヤレスポジショニングシステムにおいて、
ワイヤレスネットワークにおける共通クロックと少なくとも1つの他のクロックとの間のタイミングオフセットを決定する手段と、
ワイヤレスネットワーク中でタイミングオフセットを送信する手段と、
タイミングオフセットに部分的に基づいて、送信機信号位相または送信機信号周波数を変える手段とを具備するシステム。
【請求項17】
タイミングオフセット、送信機信号位相、または送信機信号周波数に少なくとも部分的に基づいて、デバイスに対する場所を決定する手段をさらに具備する請求項16記載のシステム。
【請求項18】
記憶されている機械実行可能な命令を有する機械読取可能な媒体において、
送信機クロックのうちのサブセットに対して共通クロック間のタイミング差を決定することと、
タイミング差を少なくとも1つの受信機に通信することと、
タイミング差に部分的に基づいて、送信機クロックを調整することとを含む機械読取可能な媒体。
【請求項19】
調整された送信機クロックまたは決定されたタイミング差に基づいて、受信機の場所を決定することをさらに含む請求項18記載の機械読取可能な媒体。
【請求項20】
送信機クロックのうちのサブセットによる三角測量技術を使用して、場所を決定することをさらに含む請求項18記載の機械読取可能な媒体。
【請求項21】
送信機、受信機、またはグローバルポジショニングクロック源との間のタイミング差を決定する計算を実行するためのコンポーネントをさらに含む請求項18記載の機械読取可能な媒体。
【請求項22】
タイミング差に対処するために、送信機ブロードキャストをどれくらい前進または遅延させるかを決定するためのコンポーネントをさらに含む請求項21記載の機械読取可能な媒体。
【請求項23】
潜在的なシステム変化を監視するために、1つ以上のテストデバイスを提供することをさらに含み、このデバイスでは、オフセットの決定または送信機信号調整を容易にするために、テストデバイスからフィードバックが受け取られる請求項18記載の機械読取可能な媒体。
【請求項24】
一定時間オフセットを送信して、環境または電子状態が変化したときにタイミングを前進または遅延させる調整可能な信号源を利用するためのコンポーネントをさらに含む請求項18記載の機械読取可能な媒体。
【請求項25】
閉ループメカニズムに基づいて、時間オフセットまたは信号タイミングを変化させることをさらに含む請求項24記載の機械読取可能な媒体。
【請求項26】
記憶されているデータ構造を有する機械読取可能な媒体において、
送信機クロックのうちのサブセットに対する共通クロック間のタイミングオフセットを決定することと、
少なくとも1つのデータフィールド中にタイミングオフセットを記憶させることと、
データフィールド中のタイミングオフセットに部分的に基づいて、少なくとも1つのデバイスに対する送信機信号位相または周波数調整を決定することとを含む機械読取可能な媒体。
【請求項27】
物理層、ストリーム層、メディアアクセス層、および上位層のうちの少なくとも1つを有する層コンポーネントをさらに含み、物理層は、フレームフィールド、パイロットフィールド、オーバーヘッド情報フィールド、ワイドエリアフィールド、およびローカルエリアフィールドのうちの少なくとも1つをさらに含む請求項26記載の機械読取可能な媒体。
【請求項28】
少なくとも1つのワイヤレスデバイスの位置を決定するためのコンポーネントをさらに含む請求項27記載の機械読取可能な媒体。
【請求項29】
ワイヤレス通信装置において、
ワイヤレスネットワークを通して受信した時間オフセットパラメータから時間ベースを決定するためのコンポーネントを含むメモリと、
少なくとも1つの送信機から受信した時間オフセットパラメータに基づいて、信号または位相調整から、少なくとも1つの受信機の位置を決定するプロセッサとを具備する装置。
【請求項30】
フォワードリンクオンリーデータストリーム、時間オフセットパラメータ、または調整された送信機信号をデコードするための1つ以上のコンポーネントをさらに具備する請求項29記載の装置。
【請求項31】
ワイヤレスポジショニングネットワーク中で基地局リソースを動作させる装置において、
1組の送信機に対するタイミングオフセットを決定する手段と、
タイミングオフセットを少なくとも1つの受信機に通信する手段と、
タイミングオフセットから考慮して、1組の送信機に対する信号位相または信号周波数を調整する手段とを具備する装置。
【請求項32】
タイミングオフセットに、または調整された信号位相および信号周波数に基づいて、受信機と連関して、受信機の位置を決定する手段をさらに具備する請求項31記載の装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2011−227089(P2011−227089A)
【公開日】平成23年11月10日(2011.11.10)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−129183(P2011−129183)
【出願日】平成23年6月9日(2011.6.9)
【分割の表示】特願2008−533544(P2008−533544)の分割
【原出願日】平成18年9月26日(2006.9.26)
【出願人】(595020643)クゥアルコム・インコーポレイテッド (7,166)
【氏名又は名称原語表記】QUALCOMM INCORPORATED
【Fターム(参考)】