説明

トナー及び二成分現像剤

水系媒体中において少なくとも、樹脂粒子を分散させた樹脂粒子分散液と、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合凝集し、加熱処理により凝集会合粒子を形成することにより得られるトナーであって、前記凝集会合粒子が、平均粒子径1μmよりも大きく凝集したワックスが樹脂中に内包した状態で存在しているカプセル構造をした第一の粒子と、樹脂とワックスが混在分散した状態で形成されている第二の粒子とを含む。これにより、オイルを塗布せずとも、高いOHP透光性を維持しながらオフセット性を防止するオイルレス定着を実現でき、キャリアへのトナー成分のスペントもなく長寿命化を図ることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は複写機、レーザプリンタ、普通紙FAX、カラーPPC、カラーレーザプリンタやカラーFAX及びこれらの複合機に用いられるトナー及び二成分現像剤に関する。
【背景技術】
【0002】
近年、電子写真装置はオフィスユースの目的からパーソナルユースへと移行しつつあり、小型化、高速化、高画質化、メンテナンスフリーなどを実現する技術が求められている。そのため転写残の廃トナーをクリーニングせずに現像において廃トナーを回収するクリーナーレスプロセスや、カラー画像の高速出力を可能とするタンデムカラープロセス、また定着時にオフセット防止のための定着オイルを使用せずとも高光沢性、高透光性を有する鮮明なカラー画像と非オフセット性を両立させるオイルレス定着が良メンテナンス性、低オゾン排気などの条件とともに要求されている。そしてこれらの機能は同時に両立させる必要があり、プロセスのみならずトナーの特性向上が重要なファクターである。
【0003】
カラープリンタでは、定着プロセスにおいては、カラー画像ではカラートナーを溶融混色させ透光性を上げる必要がある。トナーの溶融不良が起こるとトナー画像表面又は内部に於いて光の散乱が生じて、トナー色素本来の色調が損なわれると共に、重なった部分では下層まで光が入射せず、色再現性が低下する。従って、トナーには完全溶融特性を有し、色調を妨げないような透光性を有することが必要条件である。OHP用紙での光透過性がカラーでのプレゼンテーション機会の増加で、その必要はより大きくなっている。
【0004】
カラー画像を得る際に、定着ローラ表面にトナーが付着してオフセットが生じるため定着ローラに多量のオイル等を塗布しなければならず、取扱や、機器の構成が複雑になる。そのため機器の小型化、メンテフリー化、低コスト化のために、後述する定着時にオイルを使用しないオイルレス定着の実現が要求される。これを可能とするため、シャープメルト特性を有する結着樹脂中にワックス等の離型剤を添加する構成が実用化されつつある。
【0005】
しかしこのようなトナーの構成での課題は、トナーの凝集性が強い特質を有するため、転写時のトナー像乱れ、転写不良の傾向がより顕著に生じ、転写と定着の両立が困難となる。また二成分現像として使用する際に、粒子間の衝突、摩擦、又は粒子と現像器との衝突、摩擦等の機械的な衝突、摩擦による発熱により、キャリア表面にトナーの低融点成分が付着するスペントが生じ易く、キャリアの帯電能力を低下させ現像剤の長寿命化の妨げとなる。
【0006】
下記特許文献1には、正帯電型トナ−に対し、被覆層のシリコ−ン樹脂にフッ素置換アルキル基を導入したキャリアが提案されている。さらには、下記特許文献2では、高速プロセスにおいて、現像能力が高く、それが長期において劣化しないものとして、導電性カ−ボンと架橋型フッ素変性シリコ−ン樹脂を含有するコ−ティングキャリアが提案されている。シリコ−ン樹脂の優れた帯電特性を生かすとともにフッ素置換アルキル基によって、滑り性・剥離性・撥水性等の特徴を付与し、摩耗・はがれ・クラック等が発生しにくい上、スペント化も防止できるとしているが、摩耗・はがれ・クラック等についても満足の行くものではない上に、正帯電性を有するトナーにおいては適正な帯電量が得られるものの、負帯電性を有するトナーを用いた場合、帯電量が低過ぎ、逆帯電性トナー(正帯電性を有するトナ−)が多量に発生し、カブリやトナー飛散等の悪化が生じ、使用に耐えるものではなかった。
【0007】
またトナーにおいて、種々の構成が提案されている。周知のように電子写真方法に使用される静電荷現像用のトナ−は一般的に結着樹脂である樹脂成分、顔料もしくは染料からなる着色成分及び可塑剤、電荷制御剤、更に必要に応じて離型剤などの添加成分によって構成されている。樹脂成分として天然又は合成樹脂が単独あるいは適時混合して使用される。そして、上記添加剤を適当な割合で予備混合し、熱溶融によって加熱混練し、気流式衝突板方式により微粉砕し、微粉分級されてトナー母体が完成する。また化学重合的な方法によりトナー母体が作成される方法もある。その後このトナー母体に例えば疎水性シリカなどの外添剤を外添処理してトナーが完成する。一成分現像では、トナーのみで構成されるが、トナーと磁性粒子からなるキャリアと混合することによって二成分現像剤が得られる。
【0008】
従来の混練粉砕法における粉砕・分級では、小粒径化といっても経済的、性能的に現実に提供できる粒子径は約8μm程度までである。現在、種々の方法による小粒径トナーを製造する方法が検討されている。またトナーの溶融混練時に低軟化点の樹脂中にワックス等の離型剤を配合してオイルレス定着を実現させる方法が検討されている。しかし配合できるワックス量には限界があり、添加量を多くするに従ってトナーの流動性の低下、転写時の中抜けの増大、感光体への融着や、従来のキャリアに対するトナー成分のスペントの増加等の弊害が生じてくる。
【0009】
そのために、混練粉砕法とは異なる種々の重合法を用いたトナーの製造方法が検討されている。
【0010】
下記特許文献3では、極性を有する分散剤中に樹脂粒子を分散させてなる樹脂粒子分散液と、極性を有する分散剤中に着色剤粒子を分散させてなる着色剤粒子分散液とを少なくとも混合して混合液を調製する混合液調製工程、前記混合液中において含まれる分散剤の極性が同極性とすることで、帯電性及び発色性に優れた信頼性の高い静電荷像現像用トナーを容易にかつ簡便に製造し得ることが開示されている。
【0011】
下記特許文献4では、該離型剤が、炭素数が12〜30の高級アルコール及び炭素数12〜30の高級脂肪酸の少なくとも一方からなるエステルを少なくとも1種含み、かつ、該樹脂粒子が、分子量が異なる少なくとも2種の樹脂粒子を含むことで、定着性、発色性、透明性、混色性等に優れることが開示されている。
【0012】
離型剤としては、ポリエチレン、ポリプロピレン、ポリブテン等の低分子量ポリオレフィン類;シリコーン類、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等のような脂肪酸アミド類;カルナウバワックス、ライスワックス、キャンデリラワックス、木ロウ、ホホバ油等のような植物系ワックス;ミツロウのごとき動物系ワックス;モンタンワックス、オゾケライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等のような鉱物系、石油系のワックス、及びそれらの変性物が開示されている。
【0013】
しかし、離型剤を添加してその分散性が悪化すると、定着時に溶融したトナー画像において色濁りが生じ易い傾向にある。それと共に顔料の分散性も悪化し、トナーの発色性が不十分になってしまう。また次の工程において凝集体表面にさらに樹脂微粒子を付着融合する際にその離型剤等の分散性低下が樹脂微粒子の付着を不安定なものとなってしまう。また一度樹脂と凝集した離型剤が分離して水系中に遊離する。離型剤の分散は使用するワックス等の極性、融点等の熱特性が混合凝集時の凝集に与える影響は大きい。
【0014】
また定着時にオイルを使用しないオイルレス定着を実現するため、特定のワックスを多量に添加する構成となる。そして融点、軟化点、粘弾性が異なる樹脂と凝集させ、加熱により融合する際に均一な状態を保持したまま融合することが困難となる。特に一定の酸価、官能基を有する離型剤を使用することで、オイルレス定着と、現像時のカブリの低減や、転写効率との両立を図ることが可能となるが、逆に製造時の水系中での樹脂微粒子、顔料微粒子との均一な混合凝集が妨げられ、水系中で凝集にかかわらない浮遊した離型剤の存在、また顔料においても浮遊顔料の存在を増大させる傾向にある。
【0015】
またホモジナイザー等の乳化分散機では離型剤等の到達粒径は数百ナノメータが限界である。またトナーをより小粒径化して均一な粒度分布を形成するめには、離型剤自体も微細な粒径の分散体を形成すること必要がある。しかしその分散体の粒度分布が重要なファクターとなり、単に微細化するだけでは樹脂分散体、顔料分散体と混合凝集する際に粗大粒子は混合凝集せずに浮遊したまま別個に存在し、また小さい粒子は溶融時に攪拌軸や壁面に付着しやすく、生産性の低下を生じる。
【特許文献1】特許第2801507号公報
【特許文献2】特開2002−23429号公報
【特許文献3】特開平10−198070号公報
【特許文献4】特開平10−301332号公報
【発明の開示】
【0016】
本発明は、シャープな粒度分布を有する小粒径のトナーを、分級工程不要で作成することを目的とする。本発明の別の目的は、定着ローラにオイルを使用しないオイルレス定着において、トナー中にワックスを使用して低温定着と、高温オフセット性と貯蔵安定性の両立を実現することである。本発明のさらに別の目的は、ワックスを含有したトナーと組合せた使用においてもスペント化による劣化も生じない高い耐久性のある長寿命の二成分現像剤を提供することにある。本発明の別の目的は、転写時の中抜けや、飛び散りを防止し、高転写効率が得られる画像形成装置を提供することである。また、上記した課題に対し、総合的に満足するできるトナー及び二成分現像剤を提供することを目的とする。
【0017】
上記課題に鑑み本発明は、水系媒体中において少なくとも、樹脂粒子を分散せしめた樹脂粒子分散液と、着色剤粒子を分散せしめた着色剤粒子分散液及びワックス粒子を分散せしめたワックス粒子分散液とを混合凝集し、加熱処理により凝集会合粒子を形成することにより得られるトナーであって、前記凝集会合粒子が、平均粒子径1μmよりも大きく凝集したワックスが樹脂中に内包した状態で存在しているカプセル構造をした第一の粒子と、樹脂とワックスが混在分散した状態で形成されている第二の粒子とを含むことを特徴とする。
【0018】
本発明の二成分現像剤は、水系媒体中において少なくとも、樹脂粒子を分散せしめた樹脂粒子分散液と、着色剤粒子を分散せしめた着色剤粒子分散液及びワックス粒子を分散せしめたワックス粒子分散液とを混合凝集し、加熱処理により凝集会合粒子を形成することにより得られるトナー母体、外添剤及びキャリアとを含む二成分現像剤であって、前記トナー母体が、平均粒子径1μmよりも大きく凝集したワックスが樹脂中に内包した状態で存在しているカプセル構造をした第一の粒子と、樹脂とワックスが混在分散した状態で形成されている第二の粒子を含み、前記外添剤が、平均粒子径が6nm〜150nmである無機微粉末をトナー母体100重量部に対し1.0〜6重量部処理する構成であり、前記キャリアが、少なくともコア材の表面がアミノシランカップリング剤を含むフッ素変性シリコーン樹脂により被覆された磁性粒子を含むキャリアとからなることを特徴とする。
【図面の簡単な説明】
【0019】
【図1】図1は本発明の一実施例で使用した画像形成装置の構成を示す断面図。
【図2】図2は本発明の一実施例で使用した定着ユニットの構成を示す断面図。
【図3】図3は本発明の一実施例で使用した攪拌分散装置の概略図。
【図4】図4は本発明の一実施例で使用した攪拌分散装置の上から見た図。
【図5】図5は本発明の一実施例で使用した攪拌分散装置の概略図。
【図6】図6は本発明の一実施例で使用した攪拌分散装置の上から見た図。
【図7】図7は本発明の一実施例で得られた融合粒子のTEM(透過型電子顕微鏡)による断面像を表す図。
【図8】図8は本発明の一実施例で得られた融合粒子のTEM(透過型電子顕微鏡)による断面像を表す図。
【図9】図9は本発明の一実施例で得られた融合粒子のTEM(透過型電子顕微鏡)による断面像を表す図。
【図10】図10は本発明の一実施例で得られた融合粒子のTEM(透過型電子顕微鏡)による断面像を表す図。
【図11】図11は本発明の比較例の融合粒子のTEM(透過型電子顕微鏡)による断面像を表す図。
【0020】
1:感光体,2:帯電ローラ,3:レーザ信号光,4:現像ローラ,5:ブレード,10:第1転写ローラ,12:転写ベルト,14:第2転写ローラ,13:駆動テンションローラ,17:転写ベルトユニット,18B,18C,18M,18Y:像形成ユニット,18:像形成ユニット群,201:定着ローラ,202:加圧ローラ,203:定着ベルト,205:インダクションヒータ部
【発明を実施するための最良の形態】
【0021】
本発明は、樹脂粒子を分散させた樹脂粒子分散液と、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを水系中で混合凝集し、加熱して生成されるトナー母体であって、水系中で凝集にかかわらない浮遊したワックスの存在、また顔料においても浮遊顔料の存在を少なくし、小粒径でかつ均一で狭い範囲でシャープな粒度分布を有する小粒径のトナーを、分級工程不要で作成することができる。また、オイルを塗布せずとも、オフセット性を防止して低温定着で、オイルレス定着を実現できる。また、ワックス等のワックスを含有したトナーと組合せた使用においてもスペント化による劣化も生じない耐久性のある二成分現像剤を実現できる。また複数の感光体及び現像部を有する像形成ステーションを並べて配置し、転写体に順次各色のトナーを連続して転写プロセスを実行するタンデムカラープロセスにおいて、転写時の中抜けや逆転写を防止し、高転写効率を得ることが出来る。
【0022】
本発明は、オイルレス定着で高光沢性、高透光性を有し、優れた帯電特性及び環境依存性、クリーニング性、転写性を有し、かつシャープな粒度分布を有する小粒子径の静電荷像現像用トナー、二成分現像剤を提供し、かつ、トナーの飛散、かぶり等の無い高画質で信頼性の高いカラー画像の形成を可能にする画像形成を提供することについて鋭意検討した。
【0023】
(1)重合方法
【0024】
樹脂粒子分散液の調製は、ビニル系単量体をイオン性界面活性剤中で乳化重合やシード重合等することにより、ビニル系単量体の単独重合体又は共重合体(ビニル系樹脂)の樹脂粒子をイオン性界面活性剤に分散させてなる分散液が調製される。その手段としては、例えば、高速回転型乳化装置、高圧乳化装置、コロイド型乳化装置、メディアを有するボールミル、サンドミル、ダイノミルなどのそれ自体公知の分散装置が挙げられる。
【0025】
樹脂粒子における樹脂が、前記ビニル系単量体の単独重合体又は共重合体以外の樹脂である場合には、該樹脂が、水への溶解度が比較的低い油性溶剤に溶解するのであれば、該樹脂を該油性溶剤に溶解させ、この溶液を、ホモジナイザー等の分散機を用いてイオン性界面活性剤や高分子電解質と共に水中に微粒子分散し、その後、加熱又は減圧して該油性溶剤を蒸散させることにより、ビニル系樹脂以外の樹脂製の樹脂粒子をイオン性界面活性剤に分散させてなる分散液が調製される。
【0026】
重合開始剤としては、2,2’−アゾビスー(2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサンー1−カルボニトリル)、2,2’−アゾビスー4−メトキシー2,4−ジメチルバレロニトリル、アゾビスイソブチロニトリル等のアゾ系又はジアゾ系重合開始剤が使用できる。
【0027】
着色剤粒子分散液は、極性を有する界面活性剤を添加した水中に着色剤粒子を添加し、前記した分散の手段を用いて分散させることにより調製される。
【0028】
本形態のトナーにはワックスを添加する。本形態のトナーは水系媒体中で樹脂粒子を分散させた樹脂粒子分散液と、着色剤粒子を分散させた着色剤粒子分散液及びワックスの粒子分散液とを水系中で混合凝集し、加熱して凝集会合粒子を生成することによりトナー母体を得る。
【0029】
この凝集会合粒子が、少なくとも、平均粒子径1μmよりも大きく凝集したワックスが樹脂中に内包した状態で存在しているカプセル構造をした第一の粒子と、樹脂とワックスが混在分散した状態で形成されている第二の粒子とを含むことが好ましい。
【0030】
また、凝集会合粒子が分散した分散液に、シェル用樹脂粒子を分散させたシェル用樹脂粒子分散液を混合し、加熱処理して前記凝集会合粒子に融合させて融合粒子を生成することにより得られるトナーであって、融合粒子は凝集会合粒子の外殻に、厚さ0.1μm以上のシェル用樹脂粒子で覆われ、かつ平均粒子径1μmよりも大きく凝集したワックスが樹脂中に内包した状態で存在しているカプセル構造をした第一の粒子と、樹脂とワックスが混在分散した状態で形成されている第二の粒子とを含むことが好ましい。そして、その凝集会合粒子うち、第二の粒子の存在割合が50個数%以上存在する構成であることが好ましい。さらには第二の粒子の存在割合が50個数%以上、かつ80個数%以下で含む構成であることがより好ましい。
【0031】
粒子のTEM(透過型電子顕微鏡)による断面像を図7,8,9,10、11に示す。TEMはHitachi、H−800、加速電圧100kvで、試料には試料内部の相分離構造を明確にする目的でルテニウム酸(0.2%水溶液)による染色処理を行った後(5分間)、室温硬化型のエポキシ樹脂中に包埋し、超薄切法により試料断面をTEM観察した。図7,8において、501が樹脂とワックスが混在分散した状態で形成されている第二の粒子、502が、ワックスが樹脂中に内包した状態で存在しているカプセル構造をした第一の粒子である。図9,10において、輪郭が不鮮明な樹脂とワックスと着色剤が混在分散している状態が見える(以下混在分散状態ということもある)。その外には均一に見える箇所がシェル用樹脂が融合している状態が観察される。501が樹脂とワックスが混在分散した状態で形成されている第二の粒子で、504が樹脂とワックスが混在分散した状態の層であり、503が融合したシェル用樹脂層である。
【0032】
図11において、502がワックスが樹脂中に内包した状態で存在しているカプセル構造をした第一の粒子で、中央部に白く集まった506が樹脂中に内包したワックスであり、505が、樹脂と着色剤とが集まった層で、503が融合したシェル用樹脂層である。図の最外殻に見える黒く薄い膜はTEM観察時に界面を見やすくするための染色処理であってトナーとは関係はない。
【0033】
図7、図8において、第一の粒子と、第二の粒子を混在した融合粒子を示している。図7では大半の粒子は混在分散状態になった第二の粒子であり、図8では、6割程度の粒子は混在分散状態になった第二の粒子である。図9は図7の一部を拡大したものである。
【0034】
存在割合はTEM観察像において、トナーの体積平均粒子径の±1μmの大きさの粒子を100個選択したもので特定した。
【0035】
凝集会合粒子として、樹脂とワックスを混在分散状態とした第ニの粒子の存在を半分以上とすることが好ましい。これにより、軟化点を低下させ、ワックス量を少なくしても、低温でのコールドオフセットの防止、定着強度の補強等の低温定着性を改善することに効果が得られることにある。さらにシェル樹脂粒子を凝集会合粒子に融合させることにより、貯蔵安定性をもより改善する効果が得られる。50個数%よりも少ないと低温定着性の改善効果と、貯蔵安定性の改善効果が得にくくなってしまう。
【0036】
第一の粒子のワックスを内包したカプセル構造とすることで、耐高温オフセット防止、定着時の紙の分離性に対して効果を引き出せることが出来る。しかしその割合が多すぎると、貯蔵安定性試験において、内部で溶融が生じて外殻に硬い樹脂層を設けていても熱凝集により固まってしまいやすく、貯蔵安定性に課題がある。また低温定着には有利に働かない。
【0037】
第二の粒子のカプセル化したワックスの大きさは1μm以上に凝集すると、貯蔵安定性を悪化させる傾向にある。従って、第二の粒子の存在割合は50個数%よりも少ないことが好ましい。更に好ましくは、耐高温オフセット防止、定着時の紙の分離性に対する効果をより強く発揮させるために、20個数%よりも多く含ませることも好ましい。
【0038】
1μm以下、好ましくは0.5μm以下までの大きさで混在分散状態となることで低温定着性の改善効果と、貯蔵安定性の改善効果が得られる。
【0039】
融合粒子は凝集会合粒子の外殻に、厚さ0.1μm以上のシェル用樹脂粒子で覆われることが好ましい。これによりトナーの耐久性が向上する。高温オフセット性を改善できる効果が得られる。
【0040】
この混在分散状態は、ワックスの融点、組成、樹脂のTg、軟化点、組成、凝集条件により形成することが出来る。
【0041】
トナー母体の作成は、水系媒体中において、前述した樹脂粒子を分散させた樹脂粒子分散液と、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合し、水系媒体のpHを一定の条件下に調整し、無機塩の存在下、水系媒体の温度を前記ワックスの融点(DSC法による吸熱ピーク温度Tmw)以上に加熱して凝集会合させることでトナー母体を生成する。このとき加熱温度はTmw+15℃よりも高くならないように温度を調整する。また、樹脂のTgはワックスの融点よりも10℃以上低くなる材料の組み合わせとすることが好ましい。より好ましくは20℃以上低くなる材料の組み合わせとすることが好ましい。さらに好ましくは30℃以上低くなる材料の組み合わせとすることが好ましい。
【0042】
具体的には、水系媒体の加熱温度はワックスの融点Tmw〜Tmw+15℃の範囲内にし、水系媒体を1N NaOHによりpHを8以上に調整することにある。好ましくはpHは8〜13である。pHが13よりも大きくなると、粒子が凝集せず、均一な粒径分布の凝集粒子が形成できない。8よりも小さいと進みすぎ粒子が巨大化してしまう。水系媒体の温度がTmwより小さいと、凝集が均一に進まず粒子の形成が進まない。Tmw+15℃よりも大きくなると、逆に凝集が進みすぎ粒子が巨大化してしまう。また混在分散状態となりずらい。
【0043】
その後さらに、水系媒体の温度を5℃以上昇温して、一定時間(1時間から5時間)水系媒体を加熱することで、より粒度分布をシャープに絞れたワックスを樹脂で取り込んだ混在分散状態となった凝集会合したトナー母体が生成できる。
【0044】
このとき、水系媒体の温度を5℃以上昇温する前に、前記混合分散液のpHを6以下に調整することも好ましい。5℃以上昇温による熱刺激を与えることで粒子表面の均質性を高められ、次のシェル用樹脂の付着融合を安定にできる。pHを6以下に調整することで、二次凝集を抑制して、熱刺激を与えることでより粒度分布をシャープに絞れた粒子を形成することが出来る。これらの条件による製造により、樹脂とワックスが混在分散した第二の粒子が50個数%以上存在する凝集会合粒子を生成することが可能となる。
【0045】
それに対して、樹脂のTgとワックスの融点の関係、水系媒体の処理温度、pH調整値により、ワックスが樹脂中に内包した状態で存在している第一の粒子の存在確率を高くすることが可能となる。
【0046】
具体的には樹脂のTgをワックスの融点よりも低く、かつ20℃以上低くならない材料の組み合わせとすることが好ましい。より好ましくは、ワックスの融点よりも5℃以上低く、かつ15℃以上低くならない材料の組み合わせとすることが好ましく、さらに好ましくは、ワックスの融点よりも5℃以上低く、かつ10℃以上低くならない材料の組み合わせとすることが好ましい。
【0047】
又は、水系媒体の温度はTmw(ワックスの融点)よりも15℃以上高い温度で処理することが好ましい。このとき水系媒体のpHを11以上に調整することが好ましい。水系の温度を高くしていることから、pH調整を行わないと凝集が進みすぎ粒子が粗大化するからである。
【0048】
このように別々に生成した第一の粒子と、前記した第ニの粒子と一定割合により混合する構成も可能である。
【0049】
また、凝集会合させた凝集会合粒子が分散した分散液と、シェル用樹脂粒子を分散させたシェル用樹脂粒子分散液とを混合して凝集会合粒子表面にシェル用樹脂粒子を付着融合させてトナー母体を作成することも好ましい。このとき得られるトナー母体の体積平均粒径は3〜7μm、変動係数25以下である。
【0050】
このとき凝集会合粒子が分散した分散液と、シェル用樹脂粒子を分散させたシェル用樹脂粒子分散液とを混合した後、水溶性無機塩を添加し、水系媒体の温度を70〜90℃の条件で0.5〜2時間程度加熱して、樹脂粒子を凝集会合粒子表面に付着させる。さらに1NHClにより、pHを6以下に下げ、水系媒体の温度を80℃以上、好ましくは90℃以上の条件で1〜8時間融合処理を行う方法が好ましい。pHを6以下に下げることにより二次凝集を防止しながら付着したシェル樹脂の融合処理を行え、より均一な粒度分布を有する小粒径粒子の作成が可能となる。
【0051】
また、凝集会合粒子が分散した分散液と、シェル用樹脂粒子を分散させたシェル用樹脂粒子分散液とを混合する前に、凝集会合粒子が分散した分散液のpHを8以上に調整する方法も好ましい。好ましくはpHは8〜13である。pHが13よりも大きくなると、シェル樹脂粒子が会合粒子に付着しづらく、均一な粒径分布の凝集粒子が形成できない。8よりも小さいと付着が進みすぎ粒子が巨大化してしまう。
【0052】
pHを8以上に調整した後、凝集会合させた凝集会合粒子が分散した分散液と、シェル用樹脂粒子を分散させたシェル用樹脂粒子分散液とを混合した後、水溶性無機塩を添加し、水系媒体の温度を70〜90℃の条件で0.5〜2時間程度加熱して、樹脂粒子を凝集会合粒子表面に付着させる。さらに1NHClにより、pHを6以下に下げ、水系媒体の温度を80℃以上、好ましくは90℃以上の条件で1〜8時間融合処理を行う方法が好ましい。
【0053】
凝集会合粒子に付着融合した融合粒子のシェル樹脂の厚さは0.1μm以上であることが好ましい。より好ましくは0.1〜3μm、さらにより好ましくは0.5〜3μm、さらにより好ましくは1〜3μmである。0.1μmより小さいと、シェル樹脂の付着状態が不良で、水分の影響、シェル樹脂自体の強度が不足する。3μmより大きくなると定着性、光沢性を低下させる。
【0054】
無機塩としては、アルカリ金属塩及びアルカリ土類金属塩を挙げることができる。アルカリ金属としては、リチウム、カリウム、ナトリウム等が挙げられ、アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウムなどが挙げられる。これらのうち、カリウム、ナトリウム、マグネシウム、カルシウム、バリウムが好ましい。前記アルカリ金属又はアルカリ土類金属の対イオン(塩を構成する陰イオン)としては、塩化物イオン、臭化物イオン、ヨウ化物イオン、炭酸イオン、硫酸イオン等が挙げられる。
【0055】
水に無限溶解する有機溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコール、グリセリン、アセトン等が挙げられる。これらのうち、メタノール、エタノール、1−プロパノール、2−プロパノールなどの炭素数が3以下のアルコールが好ましく、特に2−プロパノールが好ましい。
【0056】
その後、任意の洗浄工程、固液分離工程、及び乾燥工程を経て、トナーを得ることができる。この洗浄工程においては、帯電性を向上させる観点より、十分にイオン交換水による置換洗浄を行うのが好ましい。前記固液分離工程における分離方法としては、特に制限はなく、生産性の観点から、吸引濾過法や加圧濾過法などの公知のろ過方法が好ましく挙げられる。前記乾燥工程における乾燥方法としては、特に制限はなく、生産性の観点から、フラッシュジェット乾燥方法、流動乾燥方法、及び振動型流動乾燥方法などの公知の乾燥方法が好ましく挙げられる。
【0057】
極性を有する分散剤としては、極性界面活性剤を含有する水系媒体などが挙げられる。水系媒体としては、蒸留水、イオン交換水等の水、アルコール類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。前記極性を有する分散剤における前記極性界面活性剤の含有量としては、一概に規定することはできず、目的に応じて適宜選択することができる。
【0058】
極性界面活性剤としては、例えば、硫酸エステル塩系、スルホン酸塩系、リン酸エステル系、せっけん系等のアニオン界面活性剤、アミン塩型、4級アンモニウム塩型等のカチオン界面活性剤などが挙げられる。
【0059】
前記アニオン界面活性剤の具体例としては、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウムなどが挙げられる。前記カチオン界面活性剤の具体例としては、アルキルベンゼンジメチルアンモニウムクロライド、アルキルトリメチルアンモニウムクロライド、ジステアリルアンモニウムクロライドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
【0060】
また本発明においては、これらの極性界面活性剤と、非極性界面活性剤とを併用することできる。前記非極性界面活性剤としては、例えば、ポリエチレングリコール系、アルキルフェノールエチレンオキサイド付加物系、多価アルコール系等の非イオン系界面活性剤などが挙げられる。
【0061】
この低融点のワックスを混合凝集時に脱離浮遊させず、均一に混在分散状態とするためには、ワックスの分散粒度分布、ワックスの組成、ワックスの溶融特性の要因が大きい。
【0062】
樹脂粒子にスチレンアクリル系の共重合体を使用に対してはポリプロピレンやポリエチレン等のビニル系のワックスよりも、エステル系ワックスの使用により、混合凝集時に脱離浮遊させずに混在分散状態とできる。遊離ワックスの影響を排除でき、OPCや転写ベルトへのフィルミング、キャリアスペントを防止でき、かつ転写時の中抜け、逆転写を効果的に防ぐことが可能となる。
【0063】
ワックス粒子分散液は、極性を有する界面活性剤を添加した水系媒体中にワックスをイオン交換水中で加熱し、溶融させ分散させることにより調製される。
【0064】
このときワックスの分散粒子径は小粒径側から積算したときの体積粒径積算分布において16%径(PR16)が20〜200nm、50%径(PR50)が40〜300nm、84%径(PR84)が400nm以下、PR84/PR16が1.2〜2.0の大きさにまで乳化分散させる。200nm以下の粒子が65体積%以上、500nmを越える粒子が10体積%以下であることが好ましい。
【0065】
好ましくは、小粒径側から積算したときの体積粒径積算分における16%径(PR16)が20〜100nm、50%径(PR50)が40〜160nm、84%径(PR84)が260nm以下、PR84/PR16が1.2〜1.8である。150nm以下の粒子が65体積%以上、400nmを越える粒子が10体積%以下であることが好ましい。
【0066】
さらに好ましくは、小粒径側から積算したときの体積粒径積算分における16%径(PR16)が20〜60nm、50%径(PR50)が40〜120nm、84%径(PR84)が220nm以下、PR84/PR16が1.2〜1.8である。130nm以下の粒子が65体積%以上、300nmを越える粒子が10体積%以下であることが好ましい。
【0067】
樹脂粒子分散液と着色剤粒子分散液及びワックス粒子分散液とを混合凝集して凝集体粒子を形成するとき、50%径(PR50)が20〜200nmと微細分散とすることにより、ワックスが樹脂粒子間に取り込まれやすくワックス自体同士での凝集を防止でき、分散が均一に行える。樹脂粒子に取り込まれ水中に浮遊する粒子をなくすことができる。混在分散状態となりやすい。
【0068】
PR16が160nmより大きく、50%径(PR50)が200nmより大きく、PR84が300nmよりも大きく、PR84/PR16が2.0よりも大きく、200nm以下の粒子が65体積%より多く、500nmを越える粒子が10体積%より多くなると、ワックスが樹脂粒子間に取り込まれにくくワックス自体同士のみでの凝集が多発する。樹脂粒子に取り込まれず、水中に浮遊する粒子が増大する傾向にある。さらに樹脂を付着融合させる際にトナー母体表面に露出遊離するワックス量が多くなり、感光体へのフィルミング、キャリアへのスペントの増加、現像でのハンドリング性が低下し、また現像メモリーが発生しやすくなる。
【0069】
PR16が20nmより小さく、50%径(PR50)が40nmより小さく、PR84/PR16が1.2よりも小さくしようとすると、分散状態を維持しづらく、放置時にワックスの再凝集が発生し、粒度分布の放置安定性が良くない。また分散時に負荷が大きくなり、発熱が大きくなり、生産性が低下してしまう。
【0070】
またワックス粒子分散液中に分散させたワックス粒子の小粒径側から積算したときの体積粒径積算分における50%径(PR50)が、溶融凝集体粒子を形成する際の樹脂粒子の50%径(PR50)よりも小さくすることで、ワックスが樹脂粒子間に取り込まれやすくワックス自体同士での凝集を防止でき、分散が均一に行える。樹脂粒子に取り込まれ水中に浮遊する粒子をなくすことができる。凝集体粒子を水系中で加熱して溶融した凝集会合粒子を得る際に、混在分散状態とできやすい。より好ましくは、樹脂粒子の50%径(PR50)よりも20%以上小さくすることである。
【0071】
ワックスの融点以上の温度に保持された分散剤を添加した媒体中に、前記ワックスをワックス濃度40wt%以下で溶融させたワックス溶融液を、固定体と一定のギャップを介して高速回転する回転体により生じる高せん断力作用により乳化分散させることにより、ワックス粒子を微細に分散できる。
【0072】
図3に示す一定容量の槽内に槽壁に、0.1mm〜10mm程度のギャップを設けて、回転体を30m/s以上、好ましくは40m/s以上、より好ましくは50m/s以上の高速で回転することにより、水系に強力なずりせん断力が作用し、微細な粒径の乳化分散体が得られる。処理時間は30s〜5min程度の処理で分散体が形成できる。
【0073】
また図4に示すような固定した固定体に対し、1〜100μm程度のギャップを設けて30m/s以上、好ましくは40m/s以上、より好ましくは50m/s以上で回転する回転体との強いせん断力作用を付加することにより微細な分散体を作成することができる。
【0074】
高圧ホモジナイザーのような高圧式の分散機よりも微細な粒子の粒度分布をより狭小化シャープに形成できる。また長時間の放置でも分散体を形成した微粒子が再凝集することなく、安定した分散状態を保つことができ、粒度分布の放置安定性が向上する。
【0075】
ワックスの融点が高い場合は、高圧状態で加熱することにより溶融した液を作成する。またワックスを油性溶剤に溶解させる。この溶液を図3,4に示した分散機を用いて界面活性剤や高分子電解質と共に水中に微粒子分散し、その後、加熱又は減圧して該油性溶剤を蒸散させることにより得られることも出来る。
【0076】
粒度測定は堀場製作所レーザ回折粒度測定器(LA920)、島津製作所レーザ回折粒度測定器(SALD2100)などを用いて測定することができる。
【0077】
(2)ワックス
【0078】
本実施形態のトナーに添加するワックスとしてエステル系ワックスが好適に使用される。またそのワックスとしてはヨウ素価が25以下、けん化価が30〜300からなる構成のワックスが好ましい。トナー多層転写時にトナーの電荷作用による反発が緩和され、転写効率の低下、転写時の文字の中抜け、逆転写を抑えることができる。また後述するキャリアと組合せた使用によりキャリアへのスペントの発生を抑制でき現像剤の長寿命化を可能とできる。また現像器内でのハンドリング性が向上し、現像の奥側と、手前側で画像の均一性が向上する。また現像メモリー発生を低減できる。混在分散状態となりやすい。ヨウ素価が25より大きいと、水系中での混合凝集性が悪化して均一分散性が低下し色濁りが生じてしまう。浮遊物が増大し、これがトナーに残留してしまうと、感光体等のフィルミングを生じさせる。一次転写でのトナー多層転写時にトナーの電荷作用による反発が緩和されにくくなる。環境依存性が大きく、また長期連続使用時に材料の帯電性の変化が大きくなり画像の安定性を阻害する。また現像メモリーも発生しやすくなる。けん化価が30より小さくなると、不けん化物、炭化水素の存在が増加し、感光体フィルミング、帯電性の悪化を生じる。フィルミングや連続使用時の帯電性の低下を招く。300より大きくなると混合凝集時の樹脂とのワックス分散性が悪化する。トナーの電荷作用による反発が緩和されにくくなる。またカブリやトナー飛散の増大を招く。
【0079】
そのワックスの220℃における加熱減量は8重量%以下であることが好ましい。加熱減量が8重量%より大きくなると、トナーのガラス転移点を低下させトナーの貯蔵安定性を損なう。現像特性に悪影響を与え、カブリや感光体フィルミングを生じさせる。乳化分散粒子生成時の粒度分布がブロードになってしまう。
【0080】
ゲル浸透クロマトグラフィー(GPC)における分子量特性、数平均分子量が100〜5000、重量平均分子量が200〜10000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.01〜8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.02〜10、分子量5×10〜1×10の領域に少なくとも一つの分子量極大ピークを有していることが好ましい。より好ましくは数平均分子量が500〜4500、重量平均分子量が600〜9000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.01〜7、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.02〜9、さらに好ましくは数平均分子量が700〜4000、重量平均分子量が800〜8000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.01〜6、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.02〜8である。
【0081】
数平均分子量が100より小さく、重量平均分子量が200より小さく、分子量極大ピークが5×10よりも小さい範囲に位置しているとなると保存安定性が悪化する。また現像器内でのハンドリング性が低下し、トナー濃度の均一性保持を阻害する。トナーの感光体フィルミングを生じてしまう。乳化分散粒子生成時の粒度分布がブロードになってしまう。
【0082】
数平均分子量が5000より大きく、重量平均分子量が10000より大きく、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が8より大きく、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が10より大きく、分子量極大ピークが1×10の領域よりも大きい範囲に位置していると、耐オフセット性能が弱くなる。乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。混在分散状態となりにくくなる。
【0083】
DSC法による吸熱ピーク温度(融点Tmw)が50〜100℃のものが好ましい。好ましくは55〜95℃、さらに好ましくは、65〜85℃のものである。50℃よりも低いと、トナーの貯蔵安定性が悪化する。100℃よりも高いと乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。混在分散状態となりにくくなる。
【0084】
さらに融点以上の温度での10℃変化時の容積増加率が2〜30%の材料が好ましい。固体から液体に変わるとき急激に膨張することで定着時の熱で溶融したとき、トナー相互の接着性がより強化され、より定着性が向上し、また定着ローラとの離型性も良くなり耐オフセット性も向上する。
【0085】
添加量としては、結着樹脂100重量部に対して2〜90重量部添加が好ましい。好ましくは結着樹脂100重量部に対して5〜80重量部、より好ましくは10〜50重量部、さらに好ましくは15〜20重量部添加が好ましい。2重量部以下であると、定着性向上の効果が得られず、90重量部以上では貯蔵安定性に難点がある。
【0086】
ワックスとしては、メドウフォーム油、カルナウバワックス誘導体、ホホバ油、木ロウ、ミツロウ、オゾケライト、カルナウバワックス、キャンデリアワックス、セレシンワックス、ライスワックス等の材料が好ましく、またこれらの誘導体も好適に使用される。そして一種類又は二種類以上組み合わせての使用も可能である。特にDSC法による融点が76〜90℃であるカルナウバワックス、66〜80℃であるキャンデリラワックス、64〜78℃である水添ホホバ油、64〜78℃である水添メドウフォーム油又は74〜90℃であるライスワックスからなる群より選ばれた少なくとも1種又は2種以上のワックスもより好ましい。
【0087】
ケン化価は、試料の1gをけん化するのに要する水酸化カリウムKOHのミリグラム数をいう。酸価とエステル価の和にあたる。ケン化価値を測定するには約0.5Nの水酸化カリウムのアルコール溶液中で試料をケン化した後、0.5Nの塩酸で過剰の水酸化カリウムを滴定する。
【0088】
ヨウ素価は試料にハロゲンを作用させたときに、吸収されるハロゲンの量をヨウ素に換算し、試料100gに対するg数で表したものをいう。脂肪100gに吸収されるヨウ素のグラム数であり、この値が大きいほど試料中の脂肪酸の不飽和度が高いことを示す。試料のクロロホルム又は四塩化炭素溶液にヨウ素と塩化水銀(II)のアルコール溶液又は塩化ヨウ素の氷酢酸溶液を加えて、放置後反応しないで残ったヨウ素をチオ硫酸ナトリウム標準液で滴定して吸収ヨウ素量を算出する。
【0089】
加熱減量の測定は試料セルの重量を0.1mgまで精秤(W1mg)し、これに試料10〜15mgを入れ、0.1mgまで精秤する(W2mg)。試料セルを示差熱天秤にセットし、秤量感度を5mgにして測定開始する。測定後、チャートにより試料温度が220℃になった時点での重量減を0.1mgまで読み取る(W3mg)。装置は、真空理工製TGD−3000、昇温速度は10℃/min、最高温度は220℃、保持時間は1minで、加熱減量(%)=W3/(W2−W1)×100、で求められる。
【0090】
また、炭素数4〜30の長鎖アルキルアルコールと不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られるワックス、又は長鎖アルキルアミンと不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られワックス、又は長鎖フルオロアルキルアルコールと不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られるワックスも好適に使用できる。
【0091】
このワックスのGPCにおける分子量分布において、重量平均分子量が1000〜6000、Z平均分子量が1500〜9000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.1〜3.8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.5〜6.5、1×10〜3×10の領域に少なくとも一つの分子量極大ピークを有し、酸価1〜80mgKOH/g、融点50〜120℃、25℃における針入度が4以下であることが好ましい。
【0092】
より好ましくは重量平均分子量が1000〜5000、Z平均分子量が1700〜8000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.1〜2.8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.5〜4.5、1×10〜1×10の領域に少なくとも一つの分子量極大ピークを有し、酸価10〜70mgKOH/g、融点60〜110℃が好ましく、更に好ましくは重量平均分子量が1000〜2500、Z平均分子量が1900〜3000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.2〜1.8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.7〜2.5、1×10〜3×10の領域に少なくとも一つの分子量極大ピークを有し、酸価35〜50mgKOH/g、融点65〜95℃である。
【0093】
オイルレス定着における非オフセット性と高光沢性、OHPの高透光性を発現でき、高温保存性を低下させることがない。薄紙に3層のカラートナーが形成された画像において、定着ローラやベルトとの紙の分離性向上に特に効果がある。
【0094】
また混合凝集により樹脂顔料との均一凝集が可能となり、浮遊物の存在をなくし、色濁りを抑えられる。またその後の樹脂をさらに付着融合する際にワックスの遊離が発生しにくい。混在分散状態となりやすい。
【0095】
また定着ローラにフッ素系やシリコーン系部材を使用しても、ハーフトーン画像のオフセットを防止できる。
【0096】
後述したキャリアと組合せた使用により、オイルレス定着と共にスペントの発生を抑制でき現像剤の長寿命化が図られ、また現像器内での均一性が保持でき、現像メモリーの発生も抑制できる。さらには連続使用時の帯電安定性が得られ、定着性と現像安定性との両立が可能となる。
【0097】
ここで、ワックスの長鎖アルキルの炭素数が4より小さいと離型作用が弱くなり分離性、高温非オフセット性が低下する。長鎖アルキルの炭素数が30より大きいと樹脂との混合凝集性が悪くなり、分散性が低下する。酸価が1mgKOH/gより小さいとトナーの長期使用時の帯電量低下を招く。酸価が80mgKOH/gより大きいと耐湿性が低下し、高湿下でのかぶりが増大する。高いと乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。混在分散状態としにくくなる。
【0098】
融点が50℃より小さいとトナーの貯蔵安定性が低下する。融点が120℃より大きいと離型作用が弱くなり非オフセット温度幅が狭くなる。高いと乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。
【0099】
25℃における針入度が4より大きいと強靭性が低下し、長期使用中に感光体フィルミングを生じる。
【0100】
重量平均分子量が1000よりも小さく、Z平均分子量が1500より小さく、重量平均分子量/数平均分子量が1.1よりも小さく、Z平均分子量/数平均分子量が1.5よりも小さく、分子量極大ピークが1×10よりも小さい範囲に位置していると、トナーの保存性が低下、感光体や中間転写体にフィルミングを発生する。また現像器内でのハンドリング性が低下し、トナー濃度の均一性を低下させる。また現像メモリーを生じ易くなる。高速回転による高せん断力作用時の乳化分散粒子生成時の生成粒子の粒度分布がブロ−ドになってしまう。
【0101】
重量平均分子量が6000よりも大きく、Z平均分子量が9000よりも大きく、重量平均分子量/数平均分子量が3.8よりも大きく、Z平均分子量/数平均分子量が6.5よりも大きく、分子量極大ピークが3×10の領域よりも大きい範囲に位置していると、離型作用が弱くなり定着オフセット性が低下する。乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。混在分散状態としにくくなる。
【0102】
アルコールとしてはオクタノール、ドデカノール、ステアリルアルコール、ノナコサノール、ペンタデカノール等の長鎖のアルキル鎖を持つものが使用できる。またアミン類としてN−メチルヘキシルアミン、ノニルアミン、ステアリルアミン、ノナデシルアミン等が好適に使用できる。フルオロアルキルアルコールとしては、1−メトキシ−(パーフルオロー2−メチル−1−プロペン)、ヘキサフルオロアセトン、3−パーフルオロオクチルー1,2−エポキシプロパン等が好適に使用できる。不飽和多価カルボン酸又はその無水物としては、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸等が一種又は二種以上使用できる。なかでもマレイン酸、無水マレイン酸がより好ましい。不飽和炭化水素系ワックスとしては、エチレン、プロピレン、α−オレフィン等が好適に使用できる。
【0103】
不飽和多価カルボン酸又はその無水物をアルコール又はアミンを用いて重合させ、次にこれをジクルミパーオキサイドやターシャリーブチルパーオキシイソプロピルモノカルボネート等の存在下で合成炭化水素系ワックスに付加させることにより得ることができる。
【0104】
添加量としては、結着樹脂100重量部に対して2〜90重量部添加が好ましい。好ましくは結着樹脂100重量部に対して5〜50重量部、より好ましくは10〜30重量部、さらに好ましくは15〜20重量部添加が好ましい。1重量部以下であると、定着性向上の効果が得られず、90重量部以上では貯蔵安定性に難点がある。
【0105】
また、本形態のトナーに添加するワックスとして、ヒドロキシステアリン酸の誘導体、グリセリン脂肪酸エステル、グリコール脂肪酸エステル、ソルビタン脂肪酸エステル等の多価アルコール脂肪酸エステル等の材料も好ましく、一種類又は二種類以上組合せての使用も有効である。オイルレス定着と共に現像剤の長寿命化が図られ、また現像器内での均一性が保持でき、現像メモリーの発生も抑制できる。
【0106】
ヒドロキシステアリン酸の誘導体としては、12−ヒドロキシステアリン酸メチル、12−ヒドロキシステアリン酸ブチル、プロピレングリコールモノ12−ヒドロキシステアラート、グリセリンモノ12−ヒドロキシステアラート、エチレングリコールモノ12−ヒドロキシステアラート等が好適な材料である。オイルレス定着における紙の巻付き防止効果と、フィルミング防止効果がある。
【0107】
グリセリン脂肪酸エステルとしてはグリセリンモノステアラート、グリセリントリステアラート、グリセリンステアラート、グリセリンモノパルミタート、グリセリントリパルミタート等が好適な材料である。オイルレス定着における低温時のコールドオフセット性緩和と、転写性低下防止効果がある。
【0108】
グリコール脂肪酸エステルとしては、プロピレングリコールモノパルミタート、プロピレングリコールモノステアラート等のプロピレングリコール脂肪酸エステル、エチレングリコールモノステアラート、エチレングリコールモノパルミタート等のエチレングリコール脂肪酸エステルが好適な材料である。オイルレス定着性とともに、現像での滑りを良くしキャリアスペント防止の効果がある。
【0109】
ソルビタン脂肪酸エステルとしては、ソルビタンモノパルミタート、ソルビタンモノステアラート、ソルビタントリパルミタート、ソルビタントリステアラートが好適な材料である。さらには、ペンタエリスリトールのステアリン酸エステル、アジピン酸とステアリン酸又はオレイン酸の混合エステル類等の材料が好ましく、一種類又は二種類以上組み合わせての使用も可能である。オイルレス定着における紙の巻付き防止効果と、フィルミング防止効果がある。
【0110】
またポリエチレン、ポリプロピレン、ポリブテン等の低分子量ポリオレフィン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等のようなワックスも使用可能である。
【0111】
また、融点の異なる2種類以上のワックスを併用使用することにより、ワックスの融点の差及び配合比により第一の粒子と第二の粒子を生成することが可能となる。
【0112】
例えばポリエチレン、ポリプロピレン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等の融点が高めのワックスと、ヒドロキシステアリン酸の誘導体、グリセリン脂肪酸エステル、グリコール脂肪酸エステル、ソルビタン脂肪酸エステル等の多価アルコール脂肪酸エステル等の前記したワックスよりも融点が低めのワックスとを混合して使用する構成が好ましい。配合比率において、ポリエチレン、ポリプロピレン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等の配合割合を50wt%以上とすることで、樹脂とワックスが混在分散した状態で形成されている第二の粒子の形成を進めることが出来、50個数%以上の生成が可能となる。
【0113】
あるいは、ポリエチレン、ポリプロピレン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等のワックスと、前記したワックスよりも融点が低いヨウ素価が25以下、けん化価が30〜300からなる構成のワックスとを混合して使用する構成も好ましい。配合比率において、ポリエチレン、ポリプロピレン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等の配合割合を50wt%以上とすることで、樹脂とワックスが混在分散した状態で形成されている第二の粒子の形成を進めることが出来、50個数%以上の生成が可能となる。
【0114】
あるいは、ヒドロキシステアリン酸の誘導体、グリセリン脂肪酸エステル、グリコール脂肪酸エステル、ソルビタン脂肪酸エステル等の多価アルコール脂肪酸エステル等のワックスと、これらのワックスよりも融点が低いヨウ素価が25以下、けん化価が30〜300からなる構成のワックスを混合して使用する構成が好ましい。配合比率において、ヒドロキシステアリン酸の誘導体、グリセリン脂肪酸エステル、グリコール脂肪酸エステル、ソルビタン脂肪酸エステル等の多価アルコール脂肪酸エステル等のワックスの配合割合を50wt%以上にすることで、樹脂とワックスが混在分散した状態で形成されている第二の粒子の形成を進めることが出来、50個数%以上の生成が可能となる。
【0115】
あるいは、ヨウ素価が25以下、けん化価が30〜300からなる構成のワックスと、炭素数4〜30の長鎖アルキルアルコールと不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られるワックスとを混合して使用する構成も好ましい。同様にこの不飽和炭化水素系ワックスからなるワックスの配合割合を50wt%以上にすることで、樹脂とワックスが混在分散した状態で形成されている第二の粒子の形成を進めることが出来、50個数%以上の生成が可能となる。
【0116】
樹脂とワックスとの分子組成の違いによる効果、融点の差による効果が表れているものと思われる。
【0117】
(3)樹脂
【0118】
本実施形態のトナーの樹脂微粒子に例えば、熱可塑性結着樹脂が挙げられる。具体的には、スチレン、パラクロロスチレン、α−メチルスチレン等のスチレン類;アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸ラウリル、アクリル酸2−エチルヘキシル等アクリル系単量体;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸ラウリル、メタクリル酸2−エチルヘキシル等のメタクリル系単量体;さらにアクリル酸、メタクリル酸、スチレンスルフォン酸ナトリウム等のエチレン性不飽和酸単量体;さらにアクリロニトリル、メタクリロニトリル等のビニルニトリル類;ビニルメチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;ビニルメチルケトン、ビニルエチルケトン、ビニルイソプロペニルケトン等のビニルケトン類;エチレン、プロピレン、ブタジエンなどのオレフィン類などの単量体などの単独重合体、それらの単量体を2種以上組み合せた共重合体、又はそれらの混合物、さらには、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、セルロース樹脂、ポリエーテル樹脂等、非ビニル縮合系樹脂、又は、それらと前記ビニル系樹脂との混合物、これらの共存下でビニル系単量体を重合して得られるグラフト重合体等を挙げることができる。
【0119】
これらの樹脂の中でもビニル系樹脂が特に好ましい。ビニル系樹脂の場合、イオン性界面活性剤などを用いて乳化重合やシード重合により樹脂粒子分散液を容易に調製することができる点で有利である。前記ビニル系モノマーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸、ケイ皮酸、フマル酸、ビニルスルフォン酸、エチレンイミン、ビニルピリジン、ビニルアミンなどのビニル系高分子酸やビニル系高分子塩基の原料となるモノマーが挙げられる。本発明においては、前記樹脂粒子が、前記ビニル系モノマーをモノマー成分として含有するのが好ましい。本発明においては、これらのビニル系モノマーの中でも、ビニル系樹脂の形成反応の容易性等の点でビニル系高分子酸がより好ましく、具体的にはアクリル酸、メタクリル酸、マレイン酸、ケイ皮酸、フマル酸などのカルボキシル基を解離基として有する解離性ビニル系モノマーが、重合度やガラス転移点の制御の点で特に好ましい。
【0120】
樹脂粒子分散液における前記樹脂粒子の含有量としては、通常5〜50重量%であり、好ましくは10〜30重量%である。樹脂、ワックス及びトナーの分子量は、数種の単分散ポリスチレンを標準サンプルとするゲル浸透クロマトグラフィー(GPC)によって測定された値である。
【0121】
装置は、東ソー社製HPLC8120シリーズ、カラムはTSKgel superHM−H H4000/H3000/H2000(7.8mm径、150mm×3)、溶離液THF(テトラヒドロフラン)、流量0.6ml/min、試料濃度0.1%、注入量20μL、検出器RI、測定温度40℃、測定前処理は試料をTHFに溶解後0.45μmのフィルターでろ過しシリカ等の添加剤を除去した樹脂成分を測定する。測定条件は、対象試料の分子量分布が、数種の単分散ポリスチレン標準試料により得られる検量線における分子量の対数とカウント数が直線となる範囲内に包含される条件である。
【0122】
また炭素数4〜30の長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られるワックスの測定は、装置はWATERS製GPC−150C、カラムはShodexHT−806M(8.0mmI.D.−30cm×2)、溶離液はo−ジクロロベンゼン、流量は1.0mL/min、試料濃度は0.3%、注入量は200μL、検出器はRI、測定温度は130℃、測定前処理は試料を溶媒に溶解後0.5μmの金属焼結フィルターでろ過処理した。測定条件は、対象試料の分子量分布が、数種の単分散ポリスチレン標準試料により得られる検量線における分子量の対数とカウント数が直線となる範囲内に包含される条件である。
【0123】
また、結着樹脂の軟化点は、島津製作所の定荷重押出し形細管式レオメータフローテスタ(CFT500)により、1cmの試料を昇温速度6℃/分で加熱しながらプランジャーにより約9.8×10N/mの荷重を与え、直径1mm、長さ1mmのダイから押し出して、このプランジャーのピストンストロークと温度との関係における昇温温度特性との関係から、ピストンストロークが立上り始める温度が流出開始温度(Tfb)、曲線の最低値と流出終了点の差の1/2を求め、それと曲線の最低値を加えた点の位置における温度を1/2法における溶融温度(軟化点Tm)となる。
【0124】
また樹脂のガラス転移点は示差走査熱量計(島津製作所DSC−50)を用い、100℃まで昇温し、その温度にて3分間放置した後、降温速度10℃/minで室温まで冷却したサンプルを、昇温速度10℃/minで昇温して熱履歴を測定した際に、ガラス転移点以下のベースラインの延長線とピークの立上り部分からピークの頂点までの間での最大傾斜を示す接線との交点の温度を言う。
【0125】
ワックスのDSCによる吸熱ピークの融点は、示差走査熱量計(島津製作所DSC−50)を用い、5℃/minで200℃まで昇温し、5分間保温10℃まで急冷後、15分間放置後5℃/minで昇温させ、吸熱(融解)ピークから求めた。セルに投入するサンプル量は10mg±2mgとした。
【0126】
(4)電荷制御剤
【0127】
電荷制御剤としては、アクリルスルホン酸系の重合体で、スチレン系モノマーと極性基としてスルホン酸基を有するアクリル酸系モノマーとのビニル共重合体が好ましい。特にはアクリルアミド−2−メチルプロパンスルホン酸との共重合体が好ましい特性を発揮できる。後述するキャリアと組合せて使用することにより、現像器内でのハンドリング性を向上し、トナー濃度の均一性が向上する。さらに現像メモリーの発生を抑制できる。また、好ましい材料としてはサリチル酸誘導体の金属塩が用いられる。
【0128】
この構成により、定着時での帯電作用による画像乱れを防止できる。これはワックスのもつ酸価を有する官能基と金属塩の帯電極性の効果と思われる。また連続使用時での帯電量の低下を防止できる。
【0129】
これらは乳化重合時の樹脂モノマー(例えばスチレンモノマーが適当)に溶融させ、モノマーを乳化重合させることで、CCAが添加された樹脂微粒子分散体を作成することができる。
【0130】
添加量は樹脂100重量部に対し、0.1〜5重量部が好ましい。より好ましくは0.1〜2重量部、さらに好ましくは0.5〜1.5重量部である。0.1重量部よりも少ないと、帯電作用効果が無くなる。5重部よりも多くなると分散が均一化しない。カラー画像での色濁りが目立ってくる。
【0131】
(5)顔料
【0132】
また、本実施形態に使用される着色剤としては、カーボンブラック、鉄黒、グラファイト、ニグロシン、アゾ染料の金属錯体、C.I.ピグメント・イエロー1,3,74,97,98等のアセト酢酸アリールアミド系モノアゾ黄色顔料、C.I.ピグメント・イエロー12,13,14,17等のアセト酢酸アリールアミド系ジスアゾ黄色顔料、C.I.ソルベントイエロー19,77,79、C.I.ディスパース・イエロー164が配合され、特に好ましくはC.I.ピグメント・イエロー93,180,185のベンズイミダゾロン系顔料が好適である。
【0133】
C.I.ピグメント・レッド48,49:1,53:1,57,57:1,81,122,5等の赤色顔料、C.I.ソルベント・レッド49,52,58,8等の赤色染料、C.I.ピグネント・ブルー15:3等のフタロシアニン及びその誘導体の青色染顔料が1種又は2種類以上で配合される。添加量は結着樹脂100重量部に対し、3〜8重量部が好ましい。
【0134】
各粒子のメジアン径としては、通常1μm以下であり、0.01〜1μmであるのが好ましい。前記メジアン径が1μmを超えると、最終的に得られる静電荷像現像用トナーの粒径分布が広くなったり、遊離粒子が発生し、性能や信頼性の低下を招き易い。一方、前記メジアン径が前記範囲内にあると前記欠点がない上、トナー間の偏在が減少し、トナー中の分散が良好となり、性能や信頼性のバラツキが小さくなる点で有利である。なお、前記メジアン径は、例えば堀場製作所レーザ回折粒度測定器(LA920)などを用いて測定することができる。
【0135】
(6)外添剤
【0136】
また本実施形態では外添剤として、シリカ、アルミナ、酸化チタン、ジルコニア、マグネシア、フェライト、マグネタイト等の金属酸化物微粉末、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム等のチタン酸塩、ジルコン酸バリウム、ジルコン酸カルシウム、ジルコン酸ストロンチウム等のジルコン酸塩あるいはこれらの混合物が用いられる。外添剤は必要に応じて疎水化処理される。
【0137】
シリカに処理されるシリコーンオイル系の材料としては、(化1)に示されるものが好ましい。
【0138】
【化1】

【0139】
例えばジメチルシリコーンオイル、メチルハイドロジェンシリコーンオイル、メチルフェニルシリコーンオイル、環状ジメチルシリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、カルビノール変性シリコーンオイル、メタクリル変性シリコーンオイル、メルカプト変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、アルキル変性シリコーンオイル、フッ素変性シリコーンオイル、アミノ変性シリコーンオイル、クロルフェニル変成シリコーンオイルのうちの少なくとも1種類以上で処理されるシリカが好適に使用される。例えば東レダウコーニングシリコーン社のSH200、SH510、SF230、SH203、BY16−823、BY16−855B等が挙げられる。処理は無機微粉末とシリコーンオイル等の材料とをヘンシェルミキサ等の混合機により混合する方法や、シリカへシリコーンオイル系の材料を噴霧する方法、溶剤にシリコーンオイル系の材料を溶解或いは分散させた後、シリカ微粉末と混合した後、溶剤を除去して作成する方法等がある。無機微粉末100重量部に対して、シリコーンオイル系の材料は1〜20重量部配合されるのが好ましい。
【0140】
シランカップリング剤としては、ジメチルジクロロシラン、トリメチルクロルシラン、アリルジメチルクロルシラン、ヘキサメチルジシラザン、アリルフェニルジクロルシラン、ベンジルメチルクロルシラン、ビニルトリエトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ジビニルクロルシラン、ジメチルビニルクロルシラン等がある。シランカップリング剤処理は、微粉体を攪拌等によりクラウド状としたものに気化したシランカップリング剤を反応させる乾式処理又は、微粉体を溶媒中に分散させたシランカップリング剤を滴下反応させる湿式法等により処理される。
【0141】
またシランカップリング処理した後にシリコーンオイル系の材料を処理することも好ましい。
【0142】
正極帯電性を有する無機微粉末はアミノシランや(化2)に示されるアミノ変性シリコーンオイル、エポキシ変性シリコーンオイルで処理される。
【0143】
【化2】

【0144】
また、疎水性処理を高めるため、ヘキサメチルジシラザンやジメチルジクロロシラン、他のシリコーンオイルによる処理の併用も好ましい。例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、アルキル変性シリコーンオイルのうちの少なくとも1種類以上で処理することが好ましい。
【0145】
また、脂肪酸エステル、脂肪酸アミド、脂肪酸金属塩により無機微粉末の表面を処理することも好ましい。いずれか1種又は2種以上を表面処理したシリカ又は酸化チタン微粉末がより好ましい。
【0146】
脂肪酸、脂肪酸金属塩としては、カプリル酸、カプリン酸、ウンデシル酸、ラウリル酸、ミスチリン酸、パリミチン酸、ステアリン酸、ベヘン酸、モンタン酸、ラクセル酸、オレイン酸、エルカ酸、ソルビン酸、リノール酸等が挙げられる。中でも炭素数14〜20の脂肪酸が好ましい。
【0147】
また脂肪酸金属塩を構成する金属としては、アルミニウム、亜鉛、カルシウム、マグネシウム、リチウム、ナトリウム、鉛、バリウムが挙げられ、中でもアルミニウム、亜鉛、ナトリウムが好ましい。特に好ましくはジステアリン酸アルミニウム(Al(OH)(C1735COO))、又はモノステアリン酸アルミニウム(Al(OH)(C1735COO))、等のジ脂肪酸アルミニウム、モノ脂肪酸アルミニウムが好ましい。OH基を有することが過帯電を防止し、転写不良を抑えることができる。また処理時にシリカ等の無機微粉末との処理性が向上するものと考えられる。
【0148】
また、小粒径トナーのハンドリング性を向上でき、現像、転写において高画質化と転写性向上の両立を図ることができる。現像においては潜像をより忠実に再現できる。そして転写の際のトナー粒子の転写率を悪化させることなく転写できる。またタンデム転写においても再転写を防止でき、中抜けの発生の抑制が可能となる。さらには現像量を少なくしても高画像濃度を得ることができる。また後述するキャリアと組合せた使用により、耐スペント性をより向上でき、現像器内でのハンドリング性を向上させトナー濃度の均一性を上げることが出きる。また現像メモリー発生を抑制できる。
【0149】
平均粒子径6nm〜200nmである無機微粉末をトナー母体粒子100重量部に対し1.0〜6重量部外添処理する構成が好ましい。平均粒子径6nmよりも小さいと、シリカ浮遊や感光体へのフィルミングが生じ易い。転写時の逆転写の発生を抑さえ切れない。200nmよりも大きくなると、トナーの流動性が悪化する。1.0重量部よりも少ないとトナーの流動性が悪化する。転写時の逆転写の発生を抑さえ切れない。6重量部よりも多いとシリカ浮遊や感光体へのフィルミングが生じ易い。高温オフセット性を悪化される。
【0150】
さらには、平均粒子径が6nm〜20nmである無機微粉末をトナー母体粒子100重量部に対し0.5〜2.5重量部と、20nm〜200nmである無機微粉末をトナー母体粒子100重量部に対し0.5〜3.5重量部とを少なくとも外添処理する構成が好ましい。この構成により機能分離したシリカの使用で、現像でのハンドリング性、転写時の逆転写、中抜け、飛散りに対しよりマージンが取れる。またキャリアへのスペントを防止できる。
【0151】
さらには、平均粒子径が6nm〜20nmの無機微粉末の強熱減量が1.5〜25wt%、平均粒子径が20nm〜200nmの強熱減量が0.5〜23wt%であることが好ましい。
【0152】
シリカの強熱減量を特定することにより、転写時の逆転写、中抜け、飛散りに対しよりマージンが取れる。また先述したキャリアやワックスと組合せた使用により、耐スペント性をより向上でき、現像器内でのハンドリング性を向上させトナー濃度の均一性を上げることが出きる。また現像メモリー発生を抑制できる。
【0153】
平均粒子径が6nm〜20nmの強熱減量が1.5wt%よりも少ないと、逆転写、中抜けに対する転写マージンが狭くなる。25wt%よりも多くなると、表面処理がムラになり、帯電のバラツキが生じる。好ましくは強熱減量が1.5〜20wt%、より好ましくは5〜19wt%である。
【0154】
平均粒子径が20nm〜200nmの強熱減量が0.5wt%よりも少ないと、逆転写、中抜けに対する転写マージンが狭くなる。23wt%よりも多くなると、表面処理がムラになり、帯電のバラツキが生じる。好ましくは強熱減量が1.5〜18wt%、より好ましくは5〜16wt%である。
【0155】
さらには、平均粒子径6nm〜200nm、強熱減量が0.5〜25wt%である正帯電性無機微粉末をさらにトナー母体粒子100重量部に対し0.5〜1.5重量部とを少なくとも外添処理する構成も好ましい。
【0156】
正帯電性無機微粉末を添加する効果は、トナーが長期連続使用の際に過帯電になることを抑え、より現像剤寿命を延ばすことが可能となる。さらには過帯電による転写時の飛散りを抑える効果も得られる。またキャリアへのスペントを防止できる。0.5重量部よりも少ないとその効果が得にくい。1.5重量部よりも多くなると、現像でのかぶりが増大する。強熱減量は好ましくは1.5〜20wt%、より好ましくは5〜19wt%である。
【0157】
乾燥減量(%)は、予め乾燥、放冷、精秤した容器に試料約1gを取り、精秤する。熱風乾燥器(105℃±1℃)で2時間乾燥する。デシケータ中で30分間放冷後その重量を精秤し、次式より算出する。
【0158】
乾燥減量(%)=乾燥による減量(g)/試料量(g)×100
【0159】
強熱減量は、予め乾燥、放冷、精秤した磁性ルツボに試料約1gを取り、精秤する。500℃に設定した電気炉中で2時間強熱する。デシケータ中で1時間放冷後その重量を精秤し次式より算出する。
【0160】
強熱減量(%)=強熱による減量(g)/試料量(g)×100
【0161】
また処理された無機微粉末の水分吸着量が1wt%以下であることが好ましい。好ましくは0.5wt%以下、より好ましくは0.1wt%以下、さらに好ましくは0.05wt%以下である。1wt%より多いと、帯電性の低下、耐久時の感光体へのフィルミングを生じる。水分吸着量の測定は、水吸着装置については、連続蒸気吸着装置(BELSORP18:日本ベル株式会社)にて測定した。
【0162】
疎水化度の測定は、250mlのビーカー中に装入した蒸留水50mlに試験すべき生成物0.2gを秤取する。先端に、液体中に浸威しているビュレットからメタノールを無機微粉末の総量がぬれるまで滴下する。その際不断に電磁攪拌機でゆっくりと攪拌する。完全に濡らすために必須なメタノール量a(ml)から次式により疎水化度が算出される。
【0163】
疎水化度=(a/(50+a))×100(%)
【0164】
(7)トナーの粉体物性
【0165】
本実施形態では、結着樹脂、着色剤及びワックスを含む少なくとも結着樹脂、着色剤及びワックスを含むトナー母体粒子の体積平均粒径が3〜7μm、好ましくは3〜6.5μm、より好ましくは3〜4.5μmであり、個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有量が5〜65個数%含有し、体積分布における6.35〜10.1μmの粒径を有するトナ−母体粒子が5〜35体積%で含有する粒度分布とする構成である。体積平均粒径における変動係数は25以下である。
【0166】
より好ましくは個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有量が15〜65個数%含有し、体積分布における6.35〜10.1μmの粒径を有するトナ−母体粒子が5〜25体積%で含有する粒度分布とする構成である。体積平均粒径における変動係数は20以下である。
【0167】
さらに好ましくは個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有量が25〜65個数%含有し、体積分布における6.35〜10.1μmの粒径を有するトナ−母体粒子が5〜15体積%で含有する粒度分布とする構成である。体積平均粒径における変動係数は18以下である。
【0168】
高解像度画質、さらにはタンデム転写における逆転写の防止、中抜けを防止し、オイルレス定着との両立を図ることを可能とできる。
【0169】
体積平均粒径が7μmより大きいと画質と転写の両立が図れない。体積平均粒径が3μmより小さいと現像でのトナー粒子のハンドリグ性が困難となる。個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有量が5個数%よりも少なくなると、画質と転写の両立が図れない。65個数%よりも多く含有すると現像でのトナー母体粒子のハンドリグ性が困難となる。6.35〜10.1μmの粒径を有するトナ−母体粒子が35体積%よりも多く含有すると、画質と転写の両立が図れない。5体積%よりも少ないとトナー生産性の低下とコストアップになる。
【0170】
トナー母体粒子の体積粒径分布の変動係数が10〜25%、個数粒径分布の変動係数が10〜28%であることが好ましい。より好ましくは、体積粒径分布の変動係数が10〜20%、個数粒径分布の変動係数が10〜23%、さらに好ましくは、体積粒径分布の変動係数が10〜15%、個数粒径分布の変動係数が10〜18%である。
【0171】
変動係数とはトナーの粒径における標準偏差を平均粒径で割ったものである。コールターカウンタ(コールター社)を使用して測定した粒子径をもとにしたものである。標準偏差は、n個の粒子系の測定を行なった時の、各測定値の平均値からの差の2乗を(n−1)で割った値の平方根であらわされる。
【0172】
つまり変動係数とは粒度分布の広がり具合を表わしたもので、体積粒径分布の変動係数が10%未満、又は個数粒径分布の変動係数が10%未満となると、生産的に困難であり、コストアップの要因となる。体積粒径分布の変動係数が25%より大、又は個数粒径分布の変動係数が28%より大きくなると、粒度分布がブロードとなるとトナーの凝集性が強くなり、感光体へのフィルミング、転写不良、クリーナーレスプロセスでの残留トナーの回収が困難となる。
【0173】
トナー中の微粉はトナーの流動性、画質、貯蔵安定性、感光体や現像ローラ、転写体へのフィルミング、経時特性、転写性、特にタンデム方式での多層転写性に影響する。さらにはオイルレス定着での非オフセット性、光沢性、透光性に影響する。オイルレス定着実現のためにワックス等のワックスを配合したトナーにおいて、タンデム転写性との両立において微粉量が影響する。
【0174】
微粉量が過大、すなわち2.52〜4μmの粒径を有するトナー母体粒子の含有量が65個数%よりも多く含有すると、感光体、現像ローラ、転写体へのフィルミングが発生する。さらに微粉は熱ローラとの付着性も大きいためオフセットしやすい傾向にある。またタンデム方式において、トナーの凝集が強くなりやすく、多層転写時に2色目の転写不良を生じ易くなる。逆に微粉量が少なくなると、画質の低下を招き、適当な範囲が必要となる。
【0175】
粒度分布測定は、コールターカウンタTA−II型(コールターカウンタ社)を用い、個数分布、体積分布を出力するインターフェイス(日科機製)及びパーソナルコンピュータを接続して測定する。電解液は濃度1%となるよう界面活性剤(ラウリル硫酸ナトリウム)を加えたもの50ml程度に被測定トナーを2mg程度加え、試料を懸濁した電解液は超音波分散器で約3分間分散処理を行い、コールターカウンタTA−II型にてアパーチャー70μmのアパーチャーを用いた。70μmのアパーチャー系では、粒度分布測定範囲は1.26μm〜50.8μmであるが、2.0μm未満の領域は外来ノイズ等の影響で測定精度や測定の再現性が低いため実用的ではない。よって測定領域を2.0μm〜50.8μmとした。
【0176】
また、静嵩密度と動嵩密度から算出されるのが圧縮度で、トナー流動性の指標の一つである。トナーの流動性はトナーの粒度分布、トナー粒子形状、外添剤、ワックスの種類や量に影響される。トナーの粒度分布が狭く微粉が少ない場合、トナーの表面に凹凸が少なく形状が球形に近い場合、外添剤の添加量が多い場合、外添剤の粒径が小さい場合は、圧縮度が小さくなりトナーの流動性は高くなる。圧縮度は5〜40%が好ましい。より好ましくは、10〜30%である。オイルレス定着と、タンデム方式多層転写との両立を図ることが可能となる。5%より小さいと、定着性が低下し、特に透光性が悪化しやすい。現像ロ−ラからトナー飛散が多くなりやすい。40%よりも大きい転写性が低下し、タンデム方式での中抜け、転写不良を生じる。
【0177】
(8)キャリア
【0178】
本実施形態の樹脂被覆キャリアは、キャリア芯材に、アミノシランカップリング剤を含有したフッ素変性シリコーン系樹脂からなる被覆樹脂層を有するキャリアが好適に使用される。
【0179】
キャリア芯材には、鉄粉系キャリア芯材、フェライト系キャリア芯材、マグネタイト系キャリア芯材、また磁性体を樹脂中に分散した樹脂分散型キャリア芯材等がある。
【0180】
ここでフェライト系キャリア芯材の例としては、一般的に下記式で表される。
【0181】
(MO)(Fe
【0182】
式中、Mは、Cu,Zn,Fe,Mg,Mn,Ca,Li,Ti,Ni,Sn,Sr,Al,Ba,Co,Mo等から選ばれる少なくとも1種を含有する。またX,Yは重量モル比を示し、かつ条件X+Y=100を満たす。
【0183】
フェライト系キャリア芯材は、Feを主原料に、Mは、Cu,Zn,Fe,Mg,Mn,Ca,Li,Ti,Ni,Sn,Sr,Al,Ba,Co,Mo等から選ばれる少なくとも1種の酸化物を混合して原料に用いる。
【0184】
フェライト系キャリア芯材の製造方法の例としては、まず上記各酸化物等の原料を適量配合し、湿式ボールミルで10時間粉砕、混合し、乾燥させた後、950℃で4時間保持する。これを湿式ボ−ルミルで24時間粉砕し、さらに結着剤としてポリビニルアルコール、消泡剤、分散剤等を加え、原料粒子径が5μm以下のスラリ−とする。このスラリーを造粒乾燥し、造粒物を得て、酸素濃度をコントロールしながら1300℃で6時間保持した後、粉砕し、さらに所望の粒度分布に分級して得る。
【0185】
本発明の樹脂被覆層に用いる樹脂としては、フッ素変性シリコーン系樹脂が必須である。そのフッ素変性シリコーン系樹脂としては、パーフロロアルキル基含有の有機ケイ素化合物とポリオルガノシロキサンとの反応から得られる架橋性フッ素変性シリコ−ン樹脂が好ましい。ポリオルガノシロキサンとパーフロロアルキル基含有の有機ケイ素化合物との配合比は、ポリオルガノシロキサン100重量部に対して、パーフロロアルキル基含有の有機ケイ素化合物が3重量部以上20重量部以下であることが好ましい。
【0186】
ポリオルガノシロキサンは下記(化3)及び(化4)から選ばれる少なくとも一つの繰り返し単位を示すものが好ましい。
【0187】
【化3】

【0188】
【化4】

【0189】
パーフロロアルキル基含有の有機ケイ素化合物の例としては、CFCHCHSi(OCH,CCHCHSi(CH)(OCH,C17CHCHSi(OCH,C17CHCHSi(OC,(CF)CF(CFCHCHSi(OCH等が挙げられるが、特にトリフロロプロピル基を有するものが好ましい。
【0190】
また、本形態においては、アミノシランカップリング剤を被覆樹脂層に含有させる。このアミノシランカップリング剤としては公知のものでよく、例えばγ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、オクタデシルメチル〔3−(トリメトキシシリル)プロピル〕アンモニウムクロライド(上からSH6020,SZ6023,AY43−021:共に東レダウコーニングシリコーン社製)、KBM602,KBM603,KBE903,KBM573(信越シリコーン社製)等が挙げられるが、特には、1級アミンのものが好ましい。メチル基、エチル基、フェニル基等で置換された2級又は3級のアミンでは極性が弱く、トナーとの帯電立ち上がり特性に対して効果が少ない。また、アミノ基の部分が、アミノメチル基、アミノエチル基、アミノフェニル基になると、シランカップリング剤の最先端は、1級アミンであるが、シランから伸びる直鎖の有機基中のアミノ基は、トナーとの帯電立ち上がり特性に寄与せず、逆に高湿時に水分の影響を受けるため、最先端のアミノ基により初期のトナーとの帯電付与能力は有するものの、耐刷時に帯電付与能力が下がり、最終的には寿命が短いものとなる。
【0191】
そこでこのようなアミノシランカップリング剤とフッ素変性シリコ−ン樹脂を併用して用いることにより、トナーに対して、シャ−プな帯電量分布を確保したまま、負帯電性を付与でき、かつ補給されたトナーに対し、早い帯電立ち上がり性を有し、トナー消費量を低減させることができる。さらに、アミノシランカップリング剤が架橋剤の如き効果を発現し、ベ−ス樹脂であるフッ素変性シリコ−ン樹脂層の架橋度を向上させ、被膜樹脂硬度をさらに向上させ、長期使用での摩耗・剥離等が低減でき、耐スペント性を向上させ、帯電付与能力の低下が抑えられて帯電の安定化が図られ、耐久性が向上する。
【0192】
さらに前述したトナーの構成において、低融点のワックスを一定量以上添加したトナー表面は略樹脂のみであるため、帯電性がやや不安定な面がある。例えば帯電性が弱く、また帯電立ち上がり性が遅くなるケ−スが想定され、カブリ、全面ベタ画像の均一性が低下し、また転写時に文字飛び、中抜けが発生しやすくなるが、トナーと本キャリアを組合せて使用することにより、上記課題が改善され、現像器内でのハンドリング性が向上し、画像上において現像の奥側と手前側での濃度の均一性が向上する。またベタ画像採取後に履歴が残るいわゆる現像メモリーも低減できる。
【0193】
アミノシランカップリング剤の使用割合としては、樹脂に対して、5〜40重量%、好ましくは10〜30重量%である。5重量%未満であるとアミノシランカップリング剤の効果がなく、40重量%を越えると樹脂被覆層の架橋度が高くなり過ぎ、チャ−ジアップ現象を引き起こし易くなり、現像性不足等の画像欠陥の発生原因となることがある。
【0194】
また、帯電安定化のため,チャージアップを防止するため、樹脂被覆層には導電性微粒子を含有することも可能である。導電性微粒子としては、オイルファーネスカーボンやアセチレンブラックのカーボンブラック、酸化チタン、酸化亜鉛などの半導電性酸化物、酸化チタン、酸化亜鉛、硫酸バリウム、ホウ酸アルミニウム、チタン酸カリウム等の粉末表面を酸化スズやカーボンブラック、金属で被覆したもの等が挙げられ、その固有抵抗が1010Ω・cm以下のものが好ましい。導電性微粒子を用いる場合の含有量は1〜15重量%が好ましい。導電性微粒子は、樹脂被覆層に対し、ある程度の含有量であれば、フィラ−効果により樹脂被覆層の硬度の向上をもたらすが、15重量%を越えると、逆に樹脂被覆層の形成を阻害し、密着性・硬度の低下の原因となる。さらには、フルカラ−現像剤における導電性微粒子の過剰の含有量は、紙面上に転写・定着されたトナ−の色汚れの原因となる。
【0195】
本発明に用いるキャリアの平均粒径は20〜70μmが好ましい。キャリアの平均粒径が20μm未満では、キャリア粒子の分布において微粒子の存在率が高くなり、それらのキャリア粒子はキャリア1粒子当たりの磁化が低くなるため、キャリアが感光体に現像されやすくなる。また、キャリアの平均粒子が70μmを超えると、キャリア粒子の比表面積が小さくなり、トナ−保持力が弱くなるため、トナー飛散が発生する。また、ベタ部分の多いフルカラーでは、特にベタ部の再現が悪く好ましくない。
【0196】
キャリア芯材上に被覆層を形成する方法には、特に制限はなく、公知の被覆方法、例えば、キャリア芯材である粉末を、被膜層形成用溶液中に浸漬する浸漬法、被膜層形成用溶液をキャリア芯材の表面に噴霧するスプレー法、キャリア芯材を流動エアーにより浮遊させた状態で被膜層形成用溶液を噴霧する流動床法、ニーダーコーター中でキャリア芯材と被膜層形成用溶液を混合し、溶剤を除去するニーダーコーター法等の湿式被覆方法の他、粉末状の樹脂とキャリア芯材とを高速混合し、その摩擦熱を利用することで樹脂粉末をキャリア芯材表面に融着被覆する乾式被覆方法等が挙げられ、いずれも適用することができるが、本発明におけるアミノシランカップリング剤を含有するフッ素変性シリコ−ン系樹脂の被覆においては、湿式被覆方法が特に好ましく用いられる。
【0197】
被膜層形成用塗布液に使用する溶剤は、前記コート樹脂を溶解するものであれば特に限定されるものではなく、用いられるコート樹脂に適合するように選択することができる。一般的には、例えば、トルエン、キシレン等の芳香族炭化水素類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン、ジオキサンなどのエーテル類が使用できる。
【0198】
樹脂被覆量はキャリア芯材に対し、0.2〜6.0重量%が好ましく、より好ましくは0.5〜5.0重量%、さらに好ましくは0.6〜4.0重量%、0.7〜3重量%である。樹脂の被覆量が0.2重量%未満になると、キャリア表面に均一な被覆を形成することができずキャリア芯材の特性の影響を大きく受けてしまい、本発明のフッ素変性シリコ−ン樹脂とアミノシランカップリング剤の効果を充分に発揮できない。6.0重量%を超えると被覆層が厚くなり過ぎ、キャリア粒子同士の造粒が発生し、均一なキャリア粒子が得られない傾向にある。
【0199】
このようにして、キャリア芯材表面にアミノシランカップリング剤を含有するフッ素変性シリコ−ン樹脂を被覆した後には、焼き付け処理を施すことが好ましい。焼き付け処理を施す手段としては、特に制限はなく、外部加熱方式又は内部加熱方式のいずれでもよく、例えば、固定式又は流動式電気炉、ロ−タリ−キルン式電気炉、バ−ナ−炉でもよく、もしくはマイクロ波による焼き付けでもよい。ただし、焼き付け処理の温度に関しては、樹脂被覆層の耐スペント性を向上さるというフッ素シリコ−ンの効果を効率よく発現させるために、200〜350℃の高温で処理することが好ましく、より好ましくは、220〜280℃である。処理時間は1.5〜2.5時間が好ましい。処理温度が低いと被膜樹脂自体の硬度が低下する。処理温度が高すぎると帯電低下が生じる。
【0200】
(9)二成分現像
【0201】
感光体と現像ローラ間には直流バイアスと共に交流バイアスを印加する。そのときの周波数が1〜10kHz、交流バイアスが1.0〜2.5kV(p−p)であり、かつ感光体と現像ローラ間の周速度比が1:1.2〜1:2であることが好ましい。
【0202】
より好ましくは周波数が3.5〜8kHz、交流バイアスが1.2〜2.0kV(p−p)であり、かつ感光体と現像ローラ間の周速度比が1:1.5〜1:1.8である。
【0203】
更に好ましくは周波数が5.5〜7kHz、交流バイアスが1.5〜2.0kV(p−p)であり、かつ感光体と現像ローラ間の周速度比が1:1.6〜1:1.8である。
【0204】
この現像プロセス構成と本形態のトナー又は二成分現像剤の使用により、ドットを忠実に再現でき、現像γ特性をねかせる特性とできる。高画質画像とオイルレス定着性を両立できる。また高抵抗キャリアでも低湿下でのチャージアップを防止でき、連続使用においても高画像濃度を得ることができる。
【0205】
トナー表面が略樹脂主体であっても、本キャリア組成と交流バイアスとの併用により、キャリアとの付着力を低減でき画像濃度を維持できると共にカブリを低減でき、ドットをも忠実に再現できるものと思われる。
【0206】
周波数が1kHzより小さいと、ドット再現性が悪化し、中間調再現性が悪化する。周波数が10kHzより大きくなると、現像領域での追随ができず、効果が現れない。この周波数の領域では高抵抗キャリアを使用した二成分現像において、現像ローラと感光体間よりもキャリアとトナー間での往復作用に働き、トナーをキャリアから微少に遊離させる効果があり、これによりドット再現性、中間調再現性が良好に行われ、かつ高画像濃度を出すことが可能になる。
【0207】
交流バイアスが1.0kV(p−p)より小さくなると、チャージアップの抑制の効果が得られず、交流バイアスが2.5kV(p−p)より大きくなるとカブリが増大する。感光体と現像ローラ間の周速度比が1:1.2より小さいと(現像ローラが遅くなる)画像濃度が得にくい。感光体と現像ローラ間の周速度比が1:2より大きくなると(現像ローラ速度が上がる)とトナー飛散が多くなる。
【0208】
(10)タンデムカラープロセス
【0209】
また、高速にカラー画像を形成するために、本形態では、感光体と帯電手段とトナー担持体を含むトナー像形成ステーションを複数個有し、像担持体上に形成した静電潜像を顕像化したトナー像を、前記像担持体に無端状の転写体を当接させて前記転写体に転写させる一次転写プロセスが順次連続して実行して、前記転写体に多層の転写トナー画像を形成し、その後前記転写体に形成した多層のトナー像を、一括して紙やOHP等の転写媒体に一括転写させる二次転写プロセスが実行されるよう構成された転写プロセスにおいて、第1の一次転写位置から第2の一次転写位置までの距離をd1(mm)、感光体の周速度をv(mm/s)とした場合、d1/v≦0.65となる転写位置構成を取る構成で、マシンの小型化と印字速度の両立を図るものである。毎分20枚(A4)以上処理でき、かつマシンがSOHO用途として使用できる大きさの小型化を実現するためには、複数のトナー像形成ステーション間を短く、かつプロセス速度を高める構成が必須である。その小型化と印字速度の両立のためには上記値が0.65以下とする構成がミニマムと考えられる。
【0210】
しかし、このトナー像形成ステーション間を短い構成をとるとき、例えば1色目のイエロートナーが一次転写された後、次の2色目のマゼンタトナーが一次転写されるまでの時間が極めて短く、転写体の帯電緩和又は転写されたトナーの電荷緩和が殆ど生じず、イエロートナーの上にマゼンタトナーを転写する際に、マゼンタトナーがイエロートナーの電荷作用により反発され、転写効率の低下、転写時の文字の中抜けという問題が生じる。さらに第3色目のシアントナーの一次転写の時、前のイエロー、マゼンタトナーの上に転写される際にシアントナーの飛び散り、転写不良、転写中抜けが顕著に発生する。さらに繰り返し使用しているうちに特定粒径のトナーが選択的に現像され、トナー粒子個々の流動性が大きく異なると摩擦帯電する機会が異なるため、帯電量のバラツキが生じ、より転写性の劣化を招いてしまう。
【0211】
そこで、本形態のトナー又は二成分現像剤を使用することにより、帯電分布が安定化しトナーの過帯電を抑えると共に、流動性変動を抑えることができる。そのため定着特性を犠牲にすることなく、転写効率の低下、転写時の文字の中抜け、逆転写を防止することができる。
【0212】
(11)オイルレスカラー定着
【0213】
本実施形態では、トナーを定着する手段にオイルを使用しないオイルレス定着構成の定着プロセスを具備する電子写真装置に好適に使用される。その加熱手段としては電磁誘導加熱がウオームアップ時間の短縮、省エネの観点から好ましい構成である。磁場発生手段と、電磁誘導により発生する発熱層及び離型層を少なくとも有する回転加熱部材と、該回転加熱部材と一定のニップを形成している回転加圧部材とを少なくとも有する加熱加圧手段を使用して、回転加熱部材と回転加圧部材間にトナーが転写された複写紙等の転写媒体を通過させ、定着させる構成である。その特徴として回転加熱部材のウオームアップ時間が従来のハロゲンランプを使用している場合に比べて、非常に早い立ち上がり性を示す。そのため回転加圧部材が十分に昇温していない状態で複写の動作に入るため、低温定着と広範囲な耐オフセット性が要求される。
【0214】
構成としては、加熱部材と定着部材を分離した定着ベルトを使用した構成も好ましく使用される。そのベルトとしては耐熱性と変形自在性とを有するニッケル電鋳ベルトやポリイミドベルトの耐熱ベルトが好適に用いられる。離形性を向上するために表面層としてシリコーンゴム、フッ素ゴム、フッ素樹脂を用いる構成である。
【0215】
これらの定着においてはこれまでは離型オイルを塗布してオフセットを防止してきた。オイルを使用せずに離型性を有するトナーにより、離型オイルを塗布する必要はなくなった。しかし離型オイルを塗布しないと帯電しやすく、未定着のトナー像が加熱部材又は定着部材と近接すると帯電の影響により、トナー飛びが生じる場合がある。特に低温低湿下において発生しやすい。
【0216】
そこで、本形態のトナーの使用により、オイルを使用せずとも低温定着と広範囲な耐オフセット性を実現でき、カラー高透光性を得ることができる。またトナーの過帯電性を抑制でき加熱部材又は定着部材との帯電作用によるトナーの飛びを抑えられる。
【実施例】
【0217】
次に、実施例により本発明を更に詳細に説明する。ただし本発明はこれに限定されるものではない。
【0218】
(実施例1)
【0219】
(1)キャリア製造例1
【0220】
MnO換算で39.7mol%、MgO換算で9.9mol%、Fe換算で49.6mol%及びSrO換算で0.8mol%湿式ボールミルで、10時間粉砕し、混合し、乾燥させた後、950℃で4時間保持し、仮焼成を行った。これを湿式ボールミルで24時間粉砕し、次いでスプレードライヤにより造粒し、乾燥し、電気炉にて、酸素濃度2%雰囲気の中で1270℃で6時間保持し、本焼成を行った。その後、解砕し、さらに分級して平均粒径50μm、印加磁場が3000エルステットの時の飽和磁化が65emu/gであるフェライト粒子の芯材を得た。
【0221】
次に、(化5)で示されるR、Rがメチル基、すなわち(CHSiO2/2単位が15.4mol%、(化6)で示されるRがメチル基、すなわちCHSiO3/2単位が84.6mol%であるポリオルガノシロキサン250gと、CFCHCHSi(OCH21gとを反応させフッ素変性シリコーン樹脂を得た。さらにそのフッ素変性シリコーン樹脂を固形分換算で100gとアミノシランカップリング剤(γ−アミノプロピルトリエトキシシラン)10gとを秤量し、300ccのトルエン溶剤に溶解させた。
【0222】
【化5】

【0223】
【化6】

【0224】
前記フェライト粒子10kgに対し、液浸乾燥式被覆装置を用い、上記被覆樹脂溶液を20分間攪拌することによりコーティングを行った。その後260℃で1時間焼き付けを行い、キャリアA1を得た。
【0225】
(2)キャリア製造例2
【0226】
CFCHCHSi(OCHをC17CHCHSi(OCHに変更した以外は、製造例1と同様の工程でコア材を製造し、コーティングを行い、キャリアA2を得た。
【0227】
(3)キャリア製造例3
【0228】
導電性カーボン(ケッチェンブラックインタ−ナショナル社製 EC)を樹脂固形分に対し5wt%をパールミルにて分散した以外は、製造例1と同様の工程でコア材を製造し、コーティングを行い、キャリアA3を得た。
【0229】
(4)キャリア製造例4
【0230】
アミノシランカップリング剤の添加量を30gに変更した以外は、製造例3と同様の工程でコア材を製造し、コーティングを行い、キャリアA4を得た。
【0231】
(5)キャリア製造例5
【0232】
アミノシランカップリング剤の添加量を50gに変更した以外は、製造例3と同様の工程でコア材を製造し、コーティングを行い、キャリアb1を得た。
【0233】
(6)キャリア製造例6
【0234】
被覆樹脂をストレートシリコーン(東レ・ダウコーニング社製 SR−2411)を固形分換算で100g、を秤量し、300ccのトルエン溶剤に溶解させた。
前記フェライト粒子10kgに対し、液浸乾燥式被覆装置を用い、上記被覆樹脂溶液を20分間攪拌することによりコーティングを行った。その後210℃で1時間焼き付けを行い、キャリアb2を得た。
【0235】
(7)キャリア製造例7
【0236】
被覆樹脂をパーフルオロオクチルエチルアクリレート/メタクリレート共重合体を固形分換算で100gを秤量し、300ccのトルエン溶剤に溶解させた。
前記フェライト粒子10kgに対し、液浸乾燥式被覆装置を用い、上記被覆樹脂溶液を20分間攪拌することによりコーティングを行った。その後200℃で1時間焼き付けを行い、キャリアb3を得た。
【0237】
(8)キャリア製造例8
【0238】
被覆樹脂をアクリル変性シリコーン樹脂(信越化学社製 KR−9706)を固形分換算で100gを秤量し、300ccのトルエン溶剤に溶解させた。
前記フェライト粒子10kgに対し、液浸乾燥式被覆装置を用い、上記被覆樹脂溶液を20分間攪拌することによりコーティングを行った。その後210℃で1時間焼き付けを行い、キャリアb4を得た。
【0239】
(実施例2)
【0240】
樹脂分散体の作成
【0241】
表1に使用した樹脂の特性を示す。Mnは数平均分子量、Mwは重量平均分子量,MzはZ平均分子量、Mpは分子量のピーク値、Tm(℃)は軟化点,Tg(℃)はガラス転移点を示す。スチレン、n−ブチルアクリレート、アクリル酸は配合量(g)を示す。
【0242】
【表1】

【0243】
(1)樹脂粒子分散液RL1の調製
【0244】
スチレン96gと、n−ブチルアクリレート24gと、アクリル酸3.6gとからなるモノマー液を、イオン交換水200g中にアニオン性界面活性剤(第1工業製薬社製:ネオゲンRK)3g、ドデカンチオール6g、四臭化炭素1.2gを用いて分散し、これに過硫酸カリウム1.2gを加えて、70℃で6時間乳化重合を行い、Mnが3900、Mwが10900、Mzが37800、Mpが8100、Tmが115℃、Tgが43℃、中位径が0.12μmの樹脂粒子が分散した樹脂粒子分散液RL1を調製した。
【0245】
(2)樹脂粒子分散液RL2の調製
【0246】
スチレン204gと、n−ブチルアクリレート36gと、アクリル酸3.6gとからなるモノマー液を、イオン交換水400g中にアニオン性界面活性剤(第1工業製薬社製:ネオゲンRK)6g、ドデカンチオール6g、四臭化炭素1.2gを用いて分散し、これに過硫酸カリウム1.2gを加えて、70℃で5時間乳化重合を行い、Mnが6600、Mwが60300、Mzが259000、Mpが8100、Tmが128℃、Tgが55℃、中位径が0.18μmの樹脂粒子が分散した樹脂粒子分散液RL2を調製した。
【0247】
(3)樹脂粒子分散液RL3の調製
【0248】
スチレン204gと、n−ブチルアクリレート36gと、アクリル酸3.6gとからなるモノマー液を、イオン交換水400g中にアニオン性界面活性剤(第1工業製薬社製:ネオゲンRK)6g、ドデカンチオール12g、四臭化炭素2.4gを用いて分散し、これに過硫酸カリウム1.2gを加えて、70℃で5時間乳化重合を行い、Mnが2600、Mwが18300、Mzが96200、Mpが2700、Tmが109℃、Tgが45℃、中位径が0.18μmの樹脂粒子が分散した、樹脂粒子分散液RL3を調製した。
【0249】
(4)樹脂粒子分散液RH4の調製
【0250】
スチレン102gと、n−ブチルアクリレート18gと、アクリル酸1.8gとからなるモノマー液を、イオン交換水200g中にアニオン性界面活性剤(第1工業製薬社製:ネオゲンRK)3g、ドデカンチオール0g、四臭化炭素0gを用いて分散し、これに過硫酸カリウム1.2gを加えて、70℃で5時間乳化重合を行い、Mnが43300、Mwが262000、Mzが577000、Mpが182000、Tmが197℃、Tgが77℃、中位径が0.12μmの樹脂粒子が分散した、樹脂粒子分散液RH4を調製した。
【0251】
(5)樹脂粒子分散液RH5の調製
【0252】
サリチル酸アルミニウム金属錯体(オリエント化学社製:E88)を4g溶融したスチレン102gと、n−ブチルアクリレート18gと、アクリル酸1.8gとからなるモノマー液を、イオン交換水200g中にアニオン性界面活性剤(第1工業製薬社製:ネオゲンRK)3g、ドデカンチオール0g、四臭化炭素0gを用いて分散し、これに過硫酸カリウム1.2gを加えて、70℃で5時間乳化重合を行い、Mnが41000、Mwが242000、Mzが575000、Mpが154000、Tmが193℃、Tgが76℃、中位径が0.22μmの樹脂粒子が分散した、樹脂粒子分散液RH5を調製した。
【0253】
(実施例3)
【0254】
顔料分散体の作成
【0255】
表2に使用した顔料を示す。
【0256】
【表2】

【0257】
(1)着色剤粒子分散液PM1の調製
【0258】
マゼンタ顔料20g(大日本インキ社製KETRED309)、アニオン性界面活性剤2g(第一工業製薬社製ネオゲンR)、イオン交換水78gを混合し、超音波分散機を用いて発振周波数30kHzで20分間分散を行って、中位径が0.12μmの着色剤粒子が分散した着色剤粒子分散液PM1を調製した。
【0259】
(2)着色剤粒子分散液PC1の調製
【0260】
シアン顔料20g(大日本インキ社製KETBLUE111)、アニオン性界面活性剤2g(第一工業製薬社製ネオゲンR)、イオン交換水78gを混合し、超音波分散機を用いて発振周波数30kHzで20分間分散を行って、中位径が0.12μmの着色剤粒子が分散した着色剤粒子分散液PC1を調製した。
【0261】
(3)着色剤粒子分散液PY1の調製
【0262】
イエロ顔料20g(クラリアント社製Y180)、アニオン性界面活性剤2g(第一工業製薬社製ネオゲンR)、イオン交換水78gを混合し、超音波分散機を用いて発振周波数30kHzで20分間分散を行って、中位径が0.12μmの着色剤粒子が分散した着色剤粒子分散液PY1を調製した。
【0263】
(4)着色剤粒子分散液PB1の調製
【0264】
ブラック顔料20g(三菱化学社製MA100S)、アニオン性界面活性剤2g(第一工業製薬社製ネオゲンR)、イオン交換水78gを混合し、超音波分散機を用いて発振周波数30kHzで20分間分散を行って、中位径が0.12μmの着色剤粒子が分散した着色剤粒子分散液PB1を調製した。
【0265】
(実施例4)
【0266】
ワックス分散体の作成
【0267】
表3、表4、表5、表6に使用したワックスの特性を示す。
【0268】
【表3】

【0269】
【表4】

【0270】
【表5】

【0271】
【表6】

【0272】
(1)ワックス粒子分散液WA1の調製
【0273】
図3に攪拌分散装置の概略図、図4に上から見た図を示す。801が外槽でその内部に冷却水を808から注入し、807から排出されるようにしている。802は被処理液がせき止める堰板で中央部に穴があけられており、ここから処理された液が順次805を通じて外部に取り出す。803が高速で回転する回転体でシャフト806に固定され、高速に回転できる。回転体の側面には、1〜5mm程度の穴があけられており、被処理液の移動を可能とする。槽は120mlで、被処理液はその2分の1程度投入する。回転体の速度は50m/sで回転させた。回転体の径は52mm、槽の内径は56mmである。804は連続処理の場合の原料注入口である。バッチ式のときは封印している。
【0274】
イオン交換水68gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−1)28gとを仕込み、回転体の速度は20m/sで5min、その後回転速度を50m/sに上げ、5min処理した。槽内の液温度は92℃に上昇した。その熱でワックスが溶融し、強いせん断力により微細なワックス粒子分散液WA1が形成された。
【0275】
(2)ワックス粒子分散液wa2の調製
【0276】
(1)と同様の条件で、イオン交換水68gと、アニオン界面活性剤(三洋化成工業社製scf)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565c)1g、ワックス(w−2)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を45m/sに上げ、5min処理し、ワックス粒子分散液wa2が形成された。
【0277】
(3)ワックス粒子分散液wa3の調製
【0278】
(1)と同様の条件で、イオン交換水68gと、アニオン界面活性剤(三洋化成工業社製scf)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565c)1g、ワックス(w−2)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を50m/sに上げ、4min処理し、ワックス粒子分散液wa3が形成された。
【0279】
(4)ワックス粒子分散液wa4の調製
【0280】
図5に攪拌分散装置の概略図、図6に上から見た図を示す。850は原料投入口、852は固定体でフローティング構造としている。851のばねにより押し付けられ、回転体853の高速回転力との押し上げ力とにより約1μm〜10μm狭ギャップを形成している。854はモータ(図示せず)につながるシャフトである。850から投入された原料は固定体と回転体とのギャップ間で強いせん断力を受け、液中で微細粒子に分散される。その処理された原料液は856から排出される。図6に上から見た図を示す。排出される原料液855は放射状に飛ばされ、それを密閉した容器に回収される。回転体の外径は100mmである。
【0281】
原料液はあらかじめ加熱された水媒体中にワックスと界面活性剤をプレ分散させておき、それを投入口850から投入して、瞬時に微細化処理される。供給量は1kg/時間、回転体の速度は100m/sで回転させた。
【0282】
イオン交換水68mlと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−3)28gとを仕込み、回転体の速度は100m/s、供給量は1kg/時間で処理し、ワックス粒子分散液WA4が形成された。
【0283】
(5)ワックス粒子分散液WA5の調製
【0284】
(1)と同様の条件で、イオン交換水68gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−4)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を40m/sに上げ、4min処理し、ワックス粒子分散液WA5が形成された。
【0285】
(6)ワックス粒子分散液WA6の調製
【0286】
(4)と同様の条件で、回転体の速度を90m/sで回転させ、イオン交換水68gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−1)28gとを仕込み、ワックス粒子分散液WA6が形成された。
【0287】
(7)ワックス粒子分散液WA7の調製
【0288】
(1)と同様の条件で、イオン交換水68gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−4)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を40m/sに上げ、4min処理し、ワックス粒子分散液WA5が形成された。
【0289】
(8)ワックス粒子分散液WA8の調製
【0290】
(1)と同様の条件で、イオン交換水68gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−5)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を50m/sに上げ、2min処理し、ワックス粒子分散液WA8が形成された。
【0291】
(9)ワックス粒子分散液WA9の調製
【0292】
(1)と同様の条件で、イオン交換水68gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−6)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を50m/sに上げ、2min処理し、ワックス粒子分散液WA9が形成された。
【0293】
(10)ワックス粒子分散液wa10の調製
【0294】
イオン交換水68mlと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、パラフィンワックス(日本精鑞社製HNP−10、融点75℃)28gとを仕込み、(1)と同様の条件で、回転体の速度を20m/sとして、5min処理し、ワックス粒子分散液wa10が形成された。
【0295】
(11)ワックス粒子分散液wa11の調製
【0296】
イオン交換水68mlと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、フィッシャートロプッシュワックス(日本精鑞社製FT0070、融点72℃)28gとを仕込み、(1)と同様の条件で、回転体の速度を25m/sとして、5min処理し、ワックス粒子分散液wa11が形成された。
【0297】
(12)ワックス粒子分散液wa12の調製
【0298】
イオン交換水68mlと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、炭化水素系ワックス(日本精鑞社製LUVAX2191、融点83℃)28gとを仕込み、ホモジナイザーにて30min処理し、ワックス粒子分散液wa12が形成された。
【0299】
(実施例5)
【0300】
トナー母体の作成
【0301】
作成したトナーの組成を表7に示す。表中、ワックス分散体において、括弧書き数字は2種のワックス分散体の配合%を示す。
【0302】
【表7】

【0303】
(1)トナー母体M1の作成
【0304】
温度計、冷却管のある4つ口フラスコ2000mlに、樹脂粒子分散液RL2を204g、20wt%濃度の着色剤粒子分散液PM1を20g、30wt%濃度のワックス粒子分散液WA1を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
【0305】
得られた混合粒子分散液に1N NaOHを投入し、pHを9とし、その後30%濃度の硫酸マグネシウム水溶液を200g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を76℃に昇温し、5時間処理して凝集会合粒子を得た。そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることによりトナー母体M1を得た。コールターカウンター(コールター社製:マルチサイザー2)にて観察すると体積平均粒径3.5μm、変動係数22.8であった。樹脂とワックスが混在分散した状態で形成されている第二の粒子の存在割合は58個数%であった。
【0306】
このときpHを13よりも高い値にすると凝集が進まず、樹脂、ワックス粒子が遊離したまま存在し、粒子形成が進まなかった。pHを7.5とすると体積平均粒子径が12.5μm、変動係数26.5と巨大化した。このときの第二の粒子の存在割合は32個数%であった。
【0307】
本発明のワックスとの組み合わせでより好ましくはpH値は8〜12である。さらに好ましくはpH値は9〜12である。さらに好ましくはpH値は11〜12である。
【0308】
加熱温度を65℃とすると凝集が進まず、樹脂、ワックス粒子が遊離したまま存在し、粒子形成が進まなかった。加熱温度を85℃とすると体積平均粒子径が14.5μm、変動係数20.5と巨大化した。このときの第二の粒子の存在割合は28個数%であった。
【0309】
(2)トナー母体M2の作成
【0310】
温度計、冷却管のある4つ口フラスコ2000mlに、樹脂粒子分散液RL1を204g、20wt%濃度の着色剤粒子分散液PM1を20g、30wt%濃度のワックス粒子分散液WA2を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
【0311】
得られた粒子分散液に1N NaOHを投入し、pHを9とし、その後30%濃度の硫酸マグネシウム水溶液を200g添加し、10min攪拌した。その後5℃/minの速度で22℃から86℃まで昇温し、その後86℃で2時間加熱した。その後1NHClを添加し、pHを5.8とし、温度を93℃に昇温し、2時間処理して体積平均粒径4.2μm、変動係数19.1の凝集会合粒子を得た。このときの第二の粒子の存在割合は62個数%であった。
【0312】
その後水温を60℃とし、20wt%濃度のシェル用樹脂粒子分散液RH4を43g添加し、30%濃度の硫酸マグネシウム水溶液を43g添加した。そして水温を90℃の条件で0.5時間、さらに90℃の条件で2時間加熱した。その後1NHClを添加し、pHを5.0とし、90℃の条件で5時間加熱した。そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより体積平均粒径5.4μm、変動係数20.4のトナー母体M2を得た。
【0313】
(3)トナー母体M3の作成
【0314】
温度計、冷却管をある4つ口フラスコ2000mlに、樹脂粒子分散液RL2を204g、20wt%濃度の着色剤粒子分散液PM1を20g、30wt%濃度のワックス粒子分散液WA3を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
【0315】
得られた混合粒子分散液に1N NaOHを投入し、pHを9とし、その後30%濃度の硫酸マグネシウム水溶液を200g添加し、10min攪拌した。その後5℃/minの速度で22℃から75℃まで昇温し、その後75℃で2時間加熱した。その後1NHClを添加し、pHを5.8とし、温度を82℃に昇温し、3時間処理して凝集会合粒子を得た。そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることによりトナー母体M3を得た。体積平均粒径3.6μm、変動係数15.6と、M1よりも粒度分布がシャープになった。このときの第二の粒子の存在割合は82個数%であった。
【0316】
(4)トナー母体M4の作成
【0317】
温度計、冷却管をある4つ口フラスコ2000mlに、樹脂粒子分散液RL3を204g、20wt%濃度の着色剤粒子分散液PM1を20g、30wt%濃度のワックス粒子分散液WA4を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
【0318】
得られた粒子分散液に1N NaOHを投入し、pHを10.5とし、その後30%濃度の硫酸マグネシウム水溶液を200g添加し、10min攪拌した。その後5℃/minの速度で22℃から74℃まで昇温し、その後74℃で2時間加熱した。その後1NHClを添加し、pHを5.8とし、温度を80℃に昇温し、2時間処理して体積平均粒径4.1μm、変動係数14.1の凝集会合粒子を得た。このときの第二の粒子の存在割合は80個数%であった。
【0319】
その後水温を60℃とし、pHを8.3とし、シェル用樹脂粒子分散液RH4を43g添加し、30%濃度の硫酸マグネシウム水溶液を43g添加した。そして水温を75℃の条件で0.5時間、さらに90℃の条件で2時間加熱した。その後1NHClを添加し、pHを5.0とし、95℃の条件で5時間加熱した。そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより体積平均粒径5.9μm、変動係数14.5のトナー母体M4を得た。
【0320】
(5)トナー母体M5の作成
【0321】
温度計、冷却管をある4つ口フラスコ2000mlに、樹脂粒子分散液RL2を204g、20wt%濃度の着色剤粒子分散液PM1を20g、30wt%濃度のワックス粒子分散液WA5を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
【0322】
得られた混合粒子分散液に1N NaOHを投入し、pHを9とし、その後30%濃度の硫酸マグネシウム水溶液を200g添加し、10min攪拌した。その後5℃/minの速度で22℃から93℃まで昇温し、その後93℃で2時間加熱した。その後1NHClを添加し、pHを5.8とし、フラスコ槽内を加圧状態とし、温度を98℃に昇温し、2時間処理して凝集会合粒子を得た。冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることによりトナー母体M5を得た。体積平均粒径4.5μm、変動係数14.3であった。第二の粒子の存在割合は83個数%であった。
【0323】
(6)トナー母体M6の作成
【0324】
温度計、冷却管をある4つ口フラスコ2000mlに、樹脂粒子分散液RL1を204g、20wt%濃度の着色剤粒子分散液PM1を20g、30wt%濃度のワックス粒子分散液WA6を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
【0325】
得られた粒子分散液に1N NaOHを投入し、pHを10とし、その後30%濃度の硫酸マグネシウム水溶液を200g添加し、10min攪拌した。その後5℃/minの速度で22℃から74℃まで昇温し、その後74℃で2時間加熱した。その後温度を80℃に昇温し、2時間処理して体積平均粒径5.1μm、変動係数22.4の凝集会合粒子を得た。第二の粒子の存在割合は54個数%であった。
【0326】
その後水温を60℃とし、pHを8.3とし、20wt%濃度のシェル用樹脂粒子分散液RH5を43g添加し、30%濃度の硫酸マグネシウム水溶液を43g添加した。そして水温を75℃の条件で0.5時間、さらに90℃の条件で2時間加熱した。その後1NHClを添加し、pHを5.0とし、95℃の条件で5時間加熱した。そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより体積平均粒径6.1μm、変動係数22.1のトナー母体M6を得た。
【0327】
(7)トナー母体M7の作成
【0328】
温度計、冷却管をある4つ口フラスコ2000mlに、樹脂粒子分散液RL3を204g、20wt%濃度の着色剤粒子分散液PM1を20g、30wt%濃度のワックス粒子分散液WA7を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
【0329】
得られた粒子分散液に1N NaOHを投入し、pHを10とし、その後30%濃度の硫酸マグネシウム水溶液を200g添加し、10min攪拌した。その後5℃/minの速度で22℃から74℃まで昇温し、その後74℃で2時間加熱した。その後1NHClを添加し、pHを5.8とし、フラスコ槽内を加圧し、温度を98℃に昇温し、3時間処理して体積平均粒径4.6μm、変動係数15.2の凝集会合粒子を得た。第二の粒子の存在割合は78個数%であった。
【0330】
その後水温を60℃とし、pHを8.3とし、20wt%濃度のシェル用樹脂粒子分散液RH5を43g添加し、30%濃度の硫酸マグネシウム水溶液を43g添加した。そして水温を75℃の条件で0.5時間、さらに90℃の条件で2時間加熱した。その後1NHClを添加し、pHを5.0とし、95℃の条件で5時間加熱した。そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより体積平均粒径5.4μm、変動係数14.8のトナー母体M7を得た。
【0331】
(8)トナー母体M8の作成
【0332】
温度計、冷却管をある4つ口フラスコ2000mlに、樹脂粒子分散液RL1を204g、20wt%濃度の着色剤粒子分散液PM1を20g、30wt%濃度のワックス粒子分散液WA1を20g、30wt%濃度のワックス粒子分散液WA8を30g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
【0333】
得られた粒子分散液に1N NaOHを投入し、pHを11.2とし、その後30%濃度の硫酸マグネシウム水溶液を200g添加し、10min攪拌した。その後5℃/minの速度で22℃から75℃まで昇温し、その後75℃で1時間加熱した。その後温度を90℃に昇温し、3時間処理して体積平均粒径3.8μm、変動係数20.4の凝集会合粒子を得た。第二の粒子の存在割合は60個数%であった。
【0334】
その後水温を60℃とし、pHを8.0とし、20wt%濃度のシェル用樹脂粒子分散液RH5を43g添加し、30%濃度の硫酸マグネシウム水溶液を43g添加した。そして水温を75℃の条件で0.5時間、さらに90℃の条件で3時間加熱した。その後1N HClを添加し、pHを5.0とし、95℃の条件で2時間加熱した。そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより体積平均粒径4.8μm、変動係数18.9のトナー母体M8を得た。
【0335】
(9)トナー母体M9の作成
【0336】
温度計、冷却管をある4つ口フラスコ2000mlに、樹脂粒子分散液RL2を204g、20wt%濃度の着色剤粒子分散液PM1を20g、30wt%濃度のワックス粒子分散液WA1を15g、30wt%濃度のワックス粒子分散液WA9を35g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
【0337】
得られた粒子分散液に1N NaOHを投入し、pHを11.9とし、その後30%濃度の硫酸マグネシウム水溶液を200g添加し、10min攪拌した。その後5℃/minの速度で22℃から75℃まで昇温し、その後75℃で1時間加熱した。その後温度を95℃に昇温し、3時間処理して体積平均粒径3.9μm、変動係数19.4の凝集会合粒子を得た。第二の粒子の存在割合は72個数%であった。
【0338】
その後水温を60℃とし、pHを8.0とし、20wt%濃度のシェル用樹脂粒子分散液RH5を43g添加し、30%濃度の硫酸マグネシウム水溶液を43g添加した。そして水温を75℃の条件で0.5時間、さらに90℃の条件で3時間加熱した。その後1N HClを添加し、pHを5.0とし、95℃の条件で2時間加熱した。そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより体積平均粒径5.2μm、変動係数17.8のトナー母体M9を得た。
【0339】
(10)トナー母体M10の作成
【0340】
温度計、冷却管をある4つ口フラスコ2000mlに、樹脂粒子分散液RL3を204g、20wt%濃度の着色剤粒子分散液PM1を20g、30wt%濃度のワックス粒子分散液WA2を10g、30wt%濃度のワックス粒子分散液WA9を40g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
【0341】
得られた粒子分散液に1N NaOHを投入し、pHを11.4とし、その後30%濃度の硫酸マグネシウム水溶液を200g添加し、10min攪拌した。その後5℃/minの速度で22℃から75℃まで昇温し、その後75℃で1時間加熱した。その後温度を95℃に昇温し、4時間処理して体積平均粒径4.1μm、変動係数18.9の凝集会合粒子を得た。第二の粒子の存在割合は78個数%であった。
【0342】
その後水温を60℃とし、pHを8.0とし、20wt%濃度のシェル用樹脂粒子分散液RH5を43g添加し、30%濃度の硫酸マグネシウム水溶液を43g添加した。そして水温を75℃の条件で0.5時間、さらに90℃の条件で3時間加熱した。その後1N HClを添加し、pHを5.0とし、95℃の条件で2時間加熱した。そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより体積平均粒径5.5μm、変動係数16.8のトナー母体M10を得た。
【0343】
(11)トナー母体M11の作成
【0344】
温度計、冷却管をある4つ口フラスコ2000mlに、樹脂粒子分散液RL2を204g、20wt%濃度の着色剤粒子分散液PM1を20g、30wt%濃度のワックス粒子分散液WA8を25g、30wt%濃度のワックス粒子分散液WA9を25g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
【0345】
得られた粒子分散液に1N NaOHを投入し、pHを11.0とし、その後30%濃度の硫酸マグネシウム水溶液を200g添加し、10min攪拌した。その後5℃/minの速度で22℃から75℃まで昇温し、その後75℃で1時間加熱した。その後温度を97℃に昇温し、3時間処理して体積平均粒径4.4μm、変動係数21.9の凝集会合粒子を得た。第二の粒子の存在割合は52個数%であった。
【0346】
その後水温を60℃とし、pHを8.0とし、20wt%濃度のシェル用樹脂粒子分散液RH5を43g添加し、30%濃度の硫酸マグネシウム水溶液を43g添加した。そして水温を75℃の条件で0.5時間、さらに90℃の条件で3時間加熱した。その後1N HClを添加し、pHを5.0とし、95℃の条件で2時間加熱した。そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより体積平均粒径5.9μm、変動係数19.7のトナー母体M11を得た。
【0347】
(12)トナー母体m12の作成
【0348】
温度計、冷却管をある4つ口フラスコ2000mlに、樹脂粒子分散液RL2を204g、20wt%濃度の着色剤粒子分散液PM1を20g、30wt%濃度のワックス粒子分散液wa10を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
【0349】
得られた混合粒子分散液に1N NaOHを投入し、pHを7.5とし、その後30%濃度の硫酸マグネシウム水溶液を200g添加し、10min攪拌した。その後5℃/minの速度で22℃から92℃まで昇温し、その後92℃で2時間加熱した。その後温度を95℃に昇温し、5時間処理して凝集会合粒子を得た。そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることによりトナー母体m12を得た。コールターカウンター(コールター社製:マルチサイザー2)にて観察すると体積平均粒径14.5μm、変動係数28.8であった。樹脂とワックスが混在分散した状態で形成されている第二の粒子の存在割合は42個数%であった。
【0350】
(13)トナー母体m13の作成
【0351】
温度計、冷却管をある4つ口フラスコ2000mlに、樹脂粒子分散液RL3を204g、20wt%濃度の着色剤粒子分散液PM1を20g、30wt%濃度のワックス粒子分散液wa11を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
【0352】
得られた混合粒子分散液に1N NaOHを投入し、pHを7.5とし、その後30%濃度の硫酸マグネシウム水溶液を200g添加し、10min攪拌した。その後5℃/minの速度で22℃から96℃まで昇温し、その後96℃で6時間加熱処理して凝集会合粒子を得た。そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることによりトナー母体m13を得た。体積平均粒径13.9μm、変動係数29.9とブロードな粒度分布となった。第二の粒子の存在割合は38個数%であった。
【0353】
(14)トナー母体m14の作成
【0354】
温度計、冷却管をある4つ口フラスコ2000mlに、樹脂粒子分散RL2を204g、20wt%濃度の着色剤粒子分散液PM1を20g、30wt%濃度のワックス粒子分散液wa12を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
【0355】
得られた混合粒子分散液に1N NaOHを投入し、pHを8とし、その後30%濃度の硫酸マグネシウム水溶液を200g添加し、10min攪拌した。その後5℃/minの速度で22℃から95℃まで昇温し、その後95℃で3時間加熱処理して凝集会合粒子を得た。そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることによりトナー母体m14を得た。体積平均粒径13.6μm、変動係数32.1と非常にブロードな粒度分布となった。第二の粒子の存在割合は42個数%であった。
【0356】
(15)トナー母体m15の作成
【0357】
pHを13、温度を75℃とした以外は(10)のトナー母体m14と同じ条件で行った。体積平均粒径2.1μm、変動係数42.8とブロードな粒度分布となった。また浮遊したワックスの粒子が多く存在し、粒子としての体をなしにくいものであった。
【0358】
表8に本実施例で使用する外添剤を示す。その帯電量はノンコートのフェライトキャリアとの摩擦帯電のブローオフ法により測定したものである。25℃45RH%の環境下で、100mlのポリエチレン容器にキャリア50gとシリカ等0.1gを混合し、縦回転にて100min−1の速度で5分、30分間攪拌した後、0.3g採取し、窒素ガス1.96×10(Pa)で1分間ブローした。
【0359】
負帯電性では5分値が−100〜−800μC/gで、30分の値が−50〜−600μC/gであることが好ましい。高い帯電量のシリカでは少量の添加量で機能を発揮できる。
【0360】
【表8】

【0361】
表9に本実施例に本実施例で使用したトナー材料組成を示す。他の黒トナー、シアントナー、イエロートナーは顔料にPB1,PC1,PY1を使用して、他の組成はマゼンタトナー組成と同様とした。
【0362】
【表9】

【0363】
外添剤はトナー母体100重量部に対する配合量(重量部)を示している。外添処理はFM20Bにおいて、攪拌羽根Z0S0型、回転数2000min−1、処理時間5min、投入量1kgで行った。
【0364】
図1は本実施例で使用したフルカラー画像形成用の画像形成装置の構成を示す断面図である。図1において、カラー電子写真プリンタの外装筐は省略している。
【0365】
転写ベルトユニット17は、転写ベルト12、弾性体よりなる第1色(イエロー)転写ローラ10Y、第2色(マゼンタ)転写ローラ10M、第3色(シアン)転写ローラ10C、第4色(ブラック)転写ローラ10K、アルミローラよりなる駆動ローラ11、弾性体よりなる第2転写ローラ14、第2転写従動ローラ13、転写ベルト12上に残ったトナー像をクリーニングするベルトクリーナブレード16、クリーナブレードに対向する位置にローラ15を設けている。
【0366】
このとき、第1色(Y)転写位置から第2色(M)転写位置までの距離は70mm(第2色(M)転写位置から第3色(C)転写位置、第3色(C)転写位置から第4色(K)転写位置も同様距離)、感光体の周速度は125mm/sである。
【0367】
転写ベルト12は、絶縁性ポリカーボネート樹脂中に導電性のフィラーを混練して押出機にてフィルム化して用いる。本実施例では、絶縁性樹脂としてポリカーボネート樹脂(たとえば三菱ガス化学製,ユーピロンZ300)95重量部に、導電性カーボン(たとえばケッチェンブラック)5重量部を加えてフィルム化したものを用いた。また、表面にフッ素樹脂をコートし、厚みは約100μm、体積抵抗は10〜1012Ω・cm、表面抵抗は10〜1012Ω/□である。ドット再現性を向上させるためもある。転写ベルト12の長期使用による弛みや,電荷の蓄積を有効に防止できるようにするためであり、また、表面をフッ素樹脂でコートしているのは、長期使用による転写ベルト表面へのトナーフィルミングを有効に防止できるようにするためである。体積抵抗が10Ω・cmよりも小さいと、再転写が生じ易く、1012Ω・cmよりも大きいと転写効率が悪化する。
【0368】
第1転写ローラは外径8mmのカーボン導電性の発泡ウレタンローラで、抵抗値は10〜10Ωである。第1転写動作時には、第1転写ローラ10は、転写ベルト12を介して感光体1に1.0〜9.8(N)の押圧力で圧接され、感光体上のトナーがベルト上に転写される。抵抗値が10Ωよりも小さいと、再転写が生じ易い。10Ωよりも大きいと転写不良が生じ易くなる。1.0(N)よりも小さいと転写不良を生じ、9.8(N)よりも大きいと転写文字抜けが生じる。
【0369】
第2転写ローラ14は外径10mmのカーボン導電性の発泡ウレタンローラで、抵抗値は10〜10Ωである。第2転写ローラ14は、転写ベルト12及び紙、OHP等の転写媒体19とを介して転写ローラ13に圧接される。この転写ローラ13は転写ベルト12に従動回転可能に構成している。第2次転写での第2転写ローラ14と対向転写ローラ13とは5.0〜21.8(N)の押圧力で圧接され、紙等の記録材上19に転写ベルトからトナーが転写される。抵抗値が10Ωよりも小さいと、再転写が生じ易い。10Ωよりもおおきと転写不良が生じ易くなる。5.0(N)よりも小さいと転写不良となり、21.8(N)よりも大きいと負荷が大きくなり、ジッタが出やすくなる。
【0370】
イエロー(Y)、マゼンタ(M)、シアン(C)、黒(B)の各色用の4組の像形成ユニット18Y、18M、18C、18Kが、図のように直列状に配置されている。
【0371】
各像形成ユニット18Y、18M、18C、18K、中に入れた現像剤を除きそれぞれ同じ構成部材よりなるので、説明を簡略化するためY用の像形成ユニット18Yについて説明し、他色用のユニットの説明については省略する。
【0372】
像形成ユニットは以下のように構成されている。1は感光体、3は画素レーザ信号光、4は内部に1200ガウスの磁力を有する磁石を有するアルミよりなる外径10mmの現像ロ−ラで、感光体とギャップ0.3mmで対向し、矢印の方向に回転する。6は攪拌ローラで現像器内のトナーとキャリアを攪拌し、現像ローラへ供給する。キャリアとトナーの配合比を透磁率センサーにより読み取り(図示せず)、トナーホッパー(図示せず)から適時供給される構成である。5は金属製の磁性ブレードで現像ローラ上に現像剤の磁気ブラシ層を規制する。現像剤量は150g投入している。ギャップは0.4mmとした。電源は、省略しているが、現像ローラ4には−500Vの直流と、1.5kV(p−p)、周波数6kHzの交流電圧が印可される。感光体と現像ローラ間の周速度比は1:1.6とした。またトナーとキャリアの混合比は93:7とし、現像器中の現像剤量は150gで行った。
【0373】
2はエピクロルヒドリンゴムよりなる外径10mmの帯電ローラで直流バイアス−1.2kVが印加される。感光体1表面を−600Vに帯電する。8はクリーナ、9は廃トナーボックス、7は現像剤である。
【0374】
紙搬送は転写ユニット17の下方から搬送され、転写ベルト12と第2転写ローラ14との圧接されたニップ部に紙給送ローラ(図示せず)により紙19が送られてくるように、紙搬送路が形成されている。
【0375】
転写ベルト12上のトナーは第2転写ローラ14に印加された+1000Vにより紙19に転写され、定着ローラ201、加圧ローラ202、定着ベルト203、加熱媒体ローラ204、インダクションヒータ部205から構成される定着部に搬送され、ここで定着される。
【0376】
図2にその定着プロセス図を示す。定着ローラ201とヒートローラ204との間にベルト203がかけられている。定着ローラ201と加圧ローラ202との間に所定の加重がかけられており、ベルト203と加圧ローラ202との間でニップが形成される。ヒートローラ204の外部周面にはフェライトコア206、とコイル207よりなるインダクションヒータ部205が設けられ、外面には温度センサー208が配置されている。
【0377】
ベルトは30μmのNiを基体としてその上にシリコーンゴムを150μm、さらにその上にPFAチューブ30μmの重ねあわせた構成である。
【0378】
加圧ローラ202は加圧バネ209により定着ローラ201に押しつけられている。トナー210を有する記録材19は、案内板211に沿って動く。
【0379】
定着部材としての定着ローラ201は、長さが250mm、外径が14mm、厚さ1mmのアルミニウム製中空ローラ芯金213の表面に、JIS規格によるゴム硬度(JIS−A)が20度のシリコーンゴムからなる厚さ3mmの弾性層214を設けている。この上にシリコーンゴム層215が3mmの厚みで形成され外径が約20mmとなっている。図示しない駆動モータから駆動力を受けて125mm/sで回転する。
【0380】
ヒートローラ204は肉厚1mm、外径20mmの中空パイプからなっている。定着ベルト表面温度はサーミスタを用いて表面温度170度に制御した。
【0381】
加圧部材としての加圧ローラ202は、長さが250mm、外径20mmである。これは外径16mm、厚さ1mmのアルミニウムからなる中空ローラ芯金216の表面にJIS規格によるゴム硬度(JIS−A)が55度のシリコーンゴムからなる厚さ2mmの弾性層217を設けている。この加圧ローラ202は、回転可能に設置されており、片側147Nのバネ加重のバネ209によって定着ローラ201との間で幅5.0mmのニップ幅を形成している。
【0382】
以下、動作について説明する。フルカラーモードではY,M,C,Kのすべての第一転写ローラ10が押し上げられ、転写ベルト12を介して像形成ユニットの感光体1を押圧している。この時第一転写ローラには+800Vの直流バイアスが印可される。画像信号がレーザ光3から送られ、帯電ローラ2により表面が帯電された感光体1に入射し、静電潜像が形成される。感光体1と接触し回転する現像ローラ4上のトナーが感光体1に形成された静電潜像を顕像化する。
【0383】
このとき像形成ユニット18Yの像形成の速度(感光体の周速に等しい125mm/s)と転写ベルト12の移動速度は感光体速度が転写ベルト速度よりも0.5〜1.5%遅くなるように設定されている。
【0384】
像形成工程により、Yの信号光3Yが像形成ユニット18Yに入力され、Yトナーによる像形成が行われる。像形成と同時に第1転写ローラ10Yの作用で、Yトナー像が感光体1Yから転写ベルト12に転写される。このとき第1転写ローラ10Yには+800Vの直流電圧を印加した。
【0385】
第1色(Y)第一転写と第2色(M)第一転写間のタイムラグを持たせて、Mの信号光3Mが像形成ユニット18Mに入力され、Mトナーによる像形成が行われ、像形成と同時に第1転写ローラ10Mの作用で、Mトナー像が感光体1Mから転写ベルト12に転写される。このとき第一色(Y)トナーが形成されている上にMトナーが転写される。同様にC(シアン)、K(ブラック)トナーによる像形成が行われ、像形成と同時に第1転写ローラ10C、10Bの作用で、YMCKトナー像が転写ベルト12上に形成される。いわゆるタンデム方式と呼ばれる方式である。
【0386】
転写ベルト12上には4色のトナー像が位置的に合致して重ね合わされカラー像が形成された。最後のBトナー像の転写後、4色のトナー像はタイミングを合わせて給紙カセット(図示せず)から送られる紙19に、第2転写ローラ14の作用で一括転写される。このとき転写ローラ13は接地し、第2転写ローラ14には+1kVの直流電圧を印加した。紙に転写されたトナー像は定着ローラ対201・202により定着された。紙はその後排出ローラ対(図示せず)を経て装置外に排出された。中間転写ベルト12上に残った転写残りのトナーは、クリーニングブレード16の作用で清掃され次の像形成に備えた。
【0387】
表10に図1の電子写真装置により、画像出しを行った結果を示す。表11ではトナーが,マゼンタ、シアン、イエローの3色重なったフルカラー画像における文字部での転写不良の状態、及び定着での定着ベルトへの紙の巻付き性を評価した。
【0388】
帯電量はフェライトキャリアとの摩擦帯電のブローオフ法により測定したものである。25℃45%RHの環境下で、耐久性評価のサンプルを0.3g採取し、窒素ガス1.96×10(Pa)で1分間ブローした。
【0389】
【表10】

【0390】
【表11】

【0391】
現像剤を用いて画像出しを行ったところ、横線の乱れやトナーの飛び散り、文字の中抜けなどがなくベタ黒画像が均一で、16本/mmの画線をも再現した極めて高解像度高画質の画像が得られ、画像濃度1.3以上の高濃度の画像が得られた。また、非画像部の地かぶりも発生していなかった。更に、A4用紙10万枚の長期耐久テストにおいても、流動性、画像濃度とも変化が少なく安定した特性を示した。また現像時の全面ベタ画像を取ったときの均一性も良好であった。現像メモリーも発生していない。連続使用時においても、縦筋の異常画像は発生しなかった。キャリアへのトナー成分のスペントもほとんど生じていない。キャリア抵抗の変化、帯電量の低下も少なく、カブリの発生はない。トナー急速補給時の帯電立ち上がり性も良好であり、高湿環境下でかぶりが増大する現象はみられなかった。また長期使用時、高い飽和帯電量が得られ長期間維持できた。低温低湿下での帯電量の変動はほとんど生じていない。また転写においても中抜けは実用上問題ないレベルであり、転写効率は95%程度を示した。また、感光体、転写ベルトへのトナーのフィルミングも実用上問題ないレベルであった。転写ベルトのクリーニング不良も未発生であった。また定着時のトナーの乱れやトナー飛びもほとんど生じていない。また3色の重なったフルカラー画像においても、転写不良は発生せず、定着時において、定着ベルトへの紙の巻付きは発生しなかった。
【0392】
cm1、cm2、cm3ではトナー、現像剤はプロセス速度100mm/s、感光体間の距離が70mmでは転写時の文字の飛び散り、転写文字中抜け、逆転写性は許容できるレベルで、全面ベタ画像均一性は良好であったが、プロセス速度が125mm/sに上げた時や、感光体間の距離を60mmとしたときには全面ベタ画像均一性がやや悪化した。
【0393】
cm4、cm5,cm6では帯電上昇が発生し、画像濃度が低下し、またカブリも目立った。また二成分現像で全面ベタ画像をとり続けてトナーを急速に補給したときに、帯電低下が生じ、かぶりが増大した。高湿環境下でその現象が特に悪化した。転写時の文字の飛び散り、転写文字中抜け、逆転写が発生し、実用上許容できないレベルであった。また感光体のフィルミングやカブリも多く発生した。またキャリアへのスペントが多く、キャリア抵抗の変化が大きく、帯電量の低下、カブリの増大する傾向が見られた。高温高湿下での帯電量の低下によるカブリの増大、低温低湿下での帯電量の増大による画像濃度の低下が見られた。転写効率は60〜70%程度まで低下した転写ベルトのフィルミングや、クリーニング不良も発生した。現像時の全面ベタ画像を取ったときに後半部にかすれが生じた。連続使用時に現像ブレードにワックスが融着し、縦筋の異常画像が発生した。3色重ねの画像出力時には定着ベルトへの紙の巻付きが発生した。定着時にトナー飛びが発生した。
【0394】
次に付着量1.2mg/cmのベタ画像をプロセス速度125mm/s、オイルを塗布しないベルトを用いた定着装置にて、OHP透過率(定着温度160℃)、高温でのオフセット性、低温での定着性を評価した。低温定着性はコールドオフセットを生じない最低の温度を示す。OHP透過率は、分光光度計U−3200(日立製作所)で、700nmの光の透過率を測定した。貯蔵安定性は50℃24時間の放置後の結果を示す。
【0395】
定着ニップ部でOHPのジャムは発生しなかった。普通紙の全面ベタグリーン画像では、オフセットは20万枚では全く発生しなかった。シリコーン又はフッ素系の定着ベルトでオイルを塗布せずともベルトの表面劣化現象はみられない。OHP透光性が80%以上を示しており、またオイルを使用しない定着ローラにおいて非オフセット温度幅も広い範囲で得られた。また50℃24時間の貯蔵安定性においても凝集はほとんど見られなかった(○レベル)。しかしtm12、tm13、tm14のトナーは貯蔵安定性テストで固まりが生じ、低音定着性が悪く、高温オフセット性が悪化した。
【産業上の利用可能性】
【0396】
本発明は、感光体を使用した電子写真方式以外でも、ダイレクトに紙にトナーを付着させて印写する方式等にも有用である。

【特許請求の範囲】
【請求項1】
水系媒体中において少なくとも、樹脂粒子を分散させた樹脂粒子分散液と、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合凝集し、加熱処理により凝集会合粒子を形成することにより得られるトナーであって、
前記凝集会合粒子が、平均粒子径1μmよりも大きく凝集したワックスが樹脂中に内包した状態で存在しているカプセル構造をした第一の粒子と、
樹脂とワックスが混在分散した状態で形成されている第二の粒子とを含むことを特徴とするトナー。
【請求項2】
前記凝集会合粒子を形成した後、分散液に、さらにシェル用樹脂粒子を分散させたシェル用樹脂粒子分散液を混合し、加熱処理して前記凝集会合粒子に融合させて融合粒子を生成することにより形成され、
前記融合粒子は、前記樹脂粒子、前記着色剤粒子及び前記ワックス粒子が凝集会合した凝集会合粒子の外殻に、厚さ0.1μm以上のシェル用樹脂粒子で覆われている請求項1に記載のトナー。
【請求項3】
前記混在分散した状態で形成されている第二の粒子の存在割合が50個数%以上である請求項1に記載のトナー。
【請求項4】
前記混在分散した状態で形成されている第二の粒子の存在割合が50個数%以上、かつ80個数%以下である請求項1に記載のトナー。
【請求項5】
ワックス粒子分散液中に分散させたワックス粒子の体積粒径分布において小粒径側から積算したときの体積粒径積算分布において16%径(PR16)が20〜200nm、50%径(PR50)が40〜300nm、84%径(PR84)が400nm以下である請求項1に記載のトナー。
【請求項6】
平均粒子径が6nm〜200nmである無機微粉末をトナー母体100重量部に対し1.0〜6重量部をさらに外添処理する請求項1に記載のトナー。
【請求項7】
平均粒子径が6nm〜20nm、強熱減量が1.5〜25wt%である無機微粉末をトナー母体100重量部に対し0.5〜2.5重量部、平均粒子径が20nm〜200nm、強熱減量が0.5〜23wt%である無機微粉末をトナー母体100重量部に対し0.5〜3.5重量部をさらに外添処理する請求項1に記載のトナー。
【請求項8】
水系媒体中において少なくとも、樹脂粒子を分散させた樹脂粒子分散液と、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合凝集し、加熱処理により凝集会合粒子を形成することにより得られるトナー母体、外添剤及びキャリアとを含むニ成分現像剤であって、
前記トナー母体が、平均粒子径1μmよりも大きく凝集したワックスが樹脂中に内包した状態で存在しているカプセル構造をした第一の粒子と、樹脂とワックスが混在分散した状態で形成されている第二の粒子を含み、
前記外添剤が、平均粒子径が6nm〜150nmである無機微粉末をトナー母体100重量部に対し1.0〜6重量部の範囲で添加され、
前記キャリアが、少なくともコア材の表面がアミノシランカップリング剤を含むフッ素変性シリコーン樹脂により被覆された磁性粒子を含むキャリアとからなることを特徴とする二成分現像剤。
【請求項9】
前記凝集会合粒子を形成した後、分散液に、さらにシェル用樹脂粒子を分散させたシェル用樹脂粒子分散液を混合し、加熱処理して前記凝集会合粒子に融合させて融合粒子を生成することにより形成され、
前記融合粒子は、前記樹脂粒子、前記着色剤粒子及び前記ワックス粒子が凝集会合した凝集会合粒子の外殻に、厚さ0.1μm以上のシェル用樹脂粒子で覆われている請求項8に記載の二成分現像剤。
【請求項10】
前記混在分散した状態で形成されている第二の粒子の存在割合が50個数%以上である請求項8に記載の二成分現像剤。
【請求項11】
前記混在分散した状態で形成されている第二の粒子の存在割合が50個数%以上、かつ80個数%以下である請求項8に記載の二成分現像剤。
【請求項12】
ワックス粒子分散液中に分散させたワックス粒子の体積粒径分布において小粒径側から積算したときの体積粒径積算分布において16%径(PR16)が20〜200nm、50%径(PR50)が40〜300nm、84%径(PR84)が400nm以下である請求項8に記載の二成分現像剤。
【請求項13】
平均粒子径が6nm〜150nmである無機微粉末をトナー母体100重量部に対し1.0〜6重量部をさらに外添処理する請求項8に記載の二成分現像剤。
【請求項14】
平均粒子径が6nm〜20nm、強熱減量が3〜15wt%、乾燥減量が0.01〜1.5wt%である無機微粉末をトナー母体100重量部に対し0.6〜2.5重量部、平均粒子径が20nm〜150nm、強熱減量が3〜15wt%、乾燥減量が0.01〜1.5wt%である無機微粉末をトナー母体100重量部に対し1.0〜3.5重量部をさらに外添処理する請求項8に記載の二成分現像剤。
【請求項15】
キャリアの被覆樹脂に、アミノシランカップリング剤が被覆樹脂100重量部中5〜40重量部含有されている請求項8に記載の二成分現像剤。
【請求項16】
被覆樹脂層に導電性微粉末が被覆樹脂100重量部に対して1〜15重量部含有されている請求項8に記載の二成分現像剤。
【請求項17】
前記被覆樹脂層に、アミノシランカップリング剤が被覆樹脂100重量部に対して5〜40重量部含有されている請求項8に記載の二成分現像剤。
【請求項18】
前記被覆樹脂がキャリアコア材100重量部に対して0.1〜5.0重量部である請求項8に記載の二成分現像剤。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【国際公開番号】WO2005/050328
【国際公開日】平成17年6月2日(2005.6.2)
【発行日】平成19年12月6日(2007.12.6)
【国際特許分類】
【出願番号】特願2005−515572(P2005−515572)
【国際出願番号】PCT/JP2004/016261
【国際出願日】平成16年11月2日(2004.11.2)
【出願人】(000005821)松下電器産業株式会社 (73,050)
【Fターム(参考)】