説明

フライホイール発電機

【課題】大気中でも効率よく出力の得られるフライホイール発電機を提供すること。
【解決手段】フライホイール11に設けられた回転用永久磁石18の回転軌跡の外側の対向位置に、フライホイール11に設けられたカム28により移動し、回転用永久磁石18に対して同極性となるように永久磁石31を配置したトルク補助ユニット30を設ける。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、フライホイールの回転運動エネルギーを利用したフライホイール発電機に関する。
【背景技術】
【0002】
従来から、フライホイール発電機は、発電機の回転子が備えるフライホイールに電力を運動エネルギーとして蓄えて、その運動エネルギーを電力として放出するものとして知られている。つまり、フライホイール発電機は、電気エネルギーを慣性モーメントの大きな物体の回転エネルギーに変換して、電力の出し入れを行うエネルギー貯蔵方式である。このフライホイール発電機は、一般に、パルス的な大電力を必要とする負荷に電力を供給する場合に活用されていることが多い。
【0003】
例えば、磁場によるプラズマ閉じ込めを行う核融合装置においては、数秒という短時間で数十万kWという電力を供給する場合もあり、電力系統から直接にこのようなパルス電力をとることは電力系統に与える動揺が大きすぎて好ましくない。そこで、このような分野にフライホイール発電機が用いられる。フライホイール発電機は、数分間の時間をかけて発電機の回転数を上昇させ、フライホイールに運動エネルギーを蓄え、負荷への供給電力を得る際に回転子の運動エネルギーを放出して回転数を低下させるというサイクルで運転される。
【0004】
従来のフライホイール発電機では、通常、駆動のための電動機を発電機に直結している。また、発電機の出力は電力系統から独立しており、電力の負荷への供給に伴って回転数を変化させるため周波数も回転数に同期して変化する。
【0005】
図6は、このような従来のフライホイール発電機装置の制御装置の構成図である。フライホイール発電機51は、駆動用の電動機52により駆動されて運動エネルギーがフライホイール発電機51に蓄積される。電動機52は電力系統の受電端母線53から遮断器54aを介して接続され、セリビウス装置55により回転数検出手段56からの回転数に基づいて制御される。セリビウス装置55は電動機52を二次励磁制御を行うものであり、二次側で発生する二次電力の一部を遮断器54bを介して受電端母線53に回生する。
【0006】
フライホイール発電機51から負荷57への電力供給に当たって、フライホイール発電機51は励磁装置58により励磁されて発電し、負荷57に電力供給して回転数を低下する。励磁装置58には受電端母線53から遮断器54cを介して励磁電源が供給されることが開示されている。(例えば特許文献1を参照)
フライホイール発電機の構造面では、従来のフライホイール発電機は、通常の突極形発電機にフライホイールを取付け、大気中で通常の軸受を用いて運転するものの他に、密閉容器内に、浮上用マグネットとこの浮上用マグネットと対向して位置する高温超電導体から成る浮上用バルクで構成される磁気軸を用い、かつ、密閉容器内での回転子の周囲気圧を0.1atmから0.4atmの間に設定して運転される技術が開示されている。(例えば特許文献2を参照)
【特許文献1】特開2001−258294号公報
【特許文献2】特開平6−303738号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
フライホイール発電機では、フライホイールの重量が大きくなるほどエネルギー貯蔵容量は大きくなるが、逆に軸受部等の機械損が大きくなる。そのため、フライホイール発電機に通常の軸受を用いる場合は、出力の要求が大きい場合には軸受部での機械損も大きくなり、フライホイール発電機としての効率の低下は避けられない。
【0008】
また、軸受の構造を特許文献2に開示されているように、密閉容器内に、浮上用マグネットとこの浮上用マグネットと対向して位置する高温超電導体から成る浮上用バルクで構成される磁気軸を用いるものでは、高温超電導体が十分に作動するためには大掛かりな装置が必要になる。
【0009】
また、上述のように、フライホイール発電機を密閉容器内に収納する方式では、全体の装置が複雑で大型になり、かつ、保守点検の作業や保守点検後の再スタートの際に極めて手間がかかり、あまり好ましくない。
【0010】
本発明は、これらの事情にもとづいてなされたもの、大気中でも効率よく出力の得られるフライホイール発電機を提供することを目的としている。
【課題を解決するための手段】
【0011】
本発明のフライホイール発電機の実施の形態に係る第1の特徴は、起動モータと、この起動モータの出力をベルト伝動によりプーリを介して起動して回転するフライホイール回転軸と、このフライホイール回転軸に係合しているフライホイールと、前記フライホイール回転軸から伝動機構を介して回転駆動される発電機を具備したことであって、
前記フライホイール回転軸には、2本の同心軸が各軸間にそれぞれクラッチを介して直列に連接されており、かつ、前記フライホイールの外周側に等間隔で配置された複数の回転用永久磁石が配置され、また、該回転用永久磁石の回転軌跡の外側の対向位置には、前記フライホイールに設けられたカムにより移動し、前記回転用永久磁石と同極同士とを対向離間して設けた永久磁石を有するトルク補助ユニットが配置されていることである。
【0012】
また、本発明のフライホイール発電機の実施の形態に係る第2の特徴は、前記トルク補助ユニットは、前記回転用永久磁石と同極同士とを対向離間して設けた永久磁石が固定軸を回転中心として回転する構造であることである。
【0013】
また、本発明のフライホイール発電機の実施の形態に係る第3の特徴は、前記トルク補助ユニットは、前記固定軸を回転中心として回転する回転体に120度ごとに固定されて配列されていることである。
【発明の効果】
【0014】
本発明によれば、大気中でも効率よく作動し、それにより高効率の出力の得られるフライホイール発電機を実現することができる。
【発明を実施するための最良の形態】
【0015】
以下、本発明を実施するための最良の形態を図面を参照して説明する。
【0016】
図1は、本発明の1実施形態であるフライホイール発電機の概略構造を示す正面図であり、図3はその平面図である。
【0017】
このフライホイール発電機は、図3に示すように、ほぼ正三角形の頂点において垂直に配置された3本の固定ポール1−1、1−2、1−3に、それぞれ上方から下方に向かって異なる高さの位置に、平面が略正三角形の上段、中断および下段の各アングル構造体2、3、4が固定配置されている。各アングル構造体2、3、4には、略正三角形状の中心位置にそれぞれ上段軸受5、中断軸受6および下段軸受7が配置され、それぞれ、軸受支持ポール5a、6a、7aにより支持されている。
【0018】
フライホイール11は、上段アングル構造体2の上段軸受5と中段アングル構造体3の中段軸受6とにより軸支されたフライホイール回転軸11aにハブ12を介して固定されている。フライホイール回転軸11aは、中段アングル構造体3の中断軸受6を貫通してその下方に延長され、その下端は第1の電磁クラッチ13のクラッチ板13aを介して第1プーリ回転軸14aに連結されている。すなわち、第1の電磁クラッチ13の開閉駆動に伴なってフライホイール回転軸11aと第1プーリ回転軸14aとは、動力が伝達あるいは遮断される。なお、第1プーリ14は張架された伝動ベルト15を介して中段アングル構造体3の下面側に固体されている起動モータ16に結合され、起動モータ16の回転動力が伝達されている。起動モータ16は、例えば、インバータが使用された2.2KWの2極モータで、回転数は3,400rpmある。
【0019】
フライホイール11の構造は、図1に示されるように、平行に離間して設けられた2枚の円板11bが、等角度(例えば、20度)に配置された複数(例えば、8本のように偶数本)の支持板17により固定された回転体である。これらの、支持板17は重量の重い金属、例えば、鉄で形成されている。それにより、フライホイール11の遠心力や慣性力を増加させるためのウエイトとしても作用している。また、2枚の円板11bを固定支持している支持板17のうち、円板11bの中心に対して120度の角度位置にある3枚の支持板17には、その高さ方向に5個の回転用永久磁石18がほぼ等間隔に固定されている。
【0020】
また、回転用永久磁石18が設けられた各支持板17の下端部近傍の円板11bには、円板11bの外周から突起するカム28が設けられている。このカム28は、フライホイール11の回転に伴って、後述するトルク補助ユニット30に固定されたカムフォロア42を駆動するためのものである。
【0021】
フライホイール11の支持板17に固定されている回転用永久磁石18は、図2の部分拡大平面図に示すように、平面形状は長方形であるが、長辺18aがフライホイール11の円板11bの接線方向に対して傾斜して配置されている。
【0022】
この傾斜は、フライホイール11の円板11bの回転方向(矢印A)に先端に位置する短辺18bが後端に位置する短辺18cよりも円板11bの半径方向の内側に配置されるように傾けられる。この場合、永久磁石18の円板11bの外周側に位置する頂点18dは円板11bの外周縁部に配置される。頂点18dを通る円板11bの半径方向に対する永久磁石18の長辺18aの角度は、実験の結果から67.5度に設定されている。従って、支持板17の回転用永久磁石18を取り付ける面を、円板11bの半径方向に対して67.5度の角度に傾けて固定することにより、回転用永久磁石18を前述した角度で設置することができる。
【0023】
また、フライホイール11の支持板17に固定されている回転用永久磁石18が、フライホイール11の回転に伴って回転する軌跡(円周状)の外側には、図3に平面図を示したように、軌跡に沿って、等間隔(等角度)で16個のトルク補助ユニット30が設けられている。
【0024】
次に、フライホイール11と、このフライホイール11の回転力のトルクを補助するトルク補助ユニット30の関係について説明する。
【0025】
図1に示したように、フライホイール11の回転に伴い、フライホイール11の支持板17に固定された回転用永久磁石18も回転する。この回転用永久磁石18の回転する軌跡の外側には、この軌跡に近接する円周上に、16個のトルク補助ユニット30が等間隔に配置されている。各トルク補助ユニット30は、回転用永久磁石18に対して固定永久磁石31の同極を対向させることによって、反発力によりフライホイール11の回転トルクを補助している。
【0026】
図4は、トルク補助ユニット30を一部切開して示す斜視図である。このトルク補助ユニット30は、一側面が開放された箱状のハウジング32を備えている。このハウジング32の上板33に設けられたラジアル軸受けである上軸受36と下板34に設けられた下軸受(不図示)との間には、回転軸35が垂直に軸支されている。上軸受36はハウジング32の上部に設けられた支持板36aにより固定されている。また、回転軸35の上軸受36の直下および下軸受の直上には上回転板37および下回転板38とが固定されている。上回転板37と下回転板38との間には、回転軸35を中心としてその周囲の上回転板37下面および下回転板38上面に、120度ごとに3本の垂直方向に延長されたマグネットホルダ39が設けられている。各マグネットホルダ39には、フライホイール11の支持板17に固定された5個の回転用永久磁石18と対向する位置にそれぞれ5個の平面形状が長方形の永久磁石31が固定されている。また、下回転板38の下面の3本のマグネットホルダ39に対応する位置には、それぞれ、コロ状のカムフォロア42が固定されている。これらの上回転板37、下回転板38およびマグネットホルダ39は、回転軸35とともに回転するため、これらを以下ではトルク補助ユニット30の補助ユニット回転体41という。
【0027】
図5は、トルク補助ユニット30によるフライホイール11の回転トルク補助動作を説明するための、一部拡大平面図である。トルク補助ユニット30のマグネットホルダ39に固定された永久磁石31は、その長方形の平面形状の長辺31aと、カムフォロア42の中心を通る円板状の下回転板38の法線aとの交差角をαとすると、α=22.5度の傾斜で配置されている。ここで、カムフォロア42は、永久磁石31の、下回転板38の周縁部に位置する頂点31dに対応する位置に回転可能に設置されている。この傾斜角αは実験よると30度以下が好ましく、良好な傾斜角αの中心値は、90度−67.5度=22.5度程度であることを確認している。
【0028】
また、図4に示したように、下回転板38のハブ38aには、回転軸35と同軸に、一方向回転クラッチ43が設けられている。この一方向回転クラッチ43によって、補助ユニット30の回転軸35は回転方向が一方向に規制されている。
【0029】
図5に部分拡大動作説明図を示したように、上述の構造により、フライホイール11が矢印B方向に回転すると、フライホイール11に設けられているカム28が、トルク補助ユニット30のカムフォロア42に接触して、カムフォロア42を押しながら回転する。カムフォロア42はカム28により押されるため、カムフォロア42を保持している下回転板38が矢印B´方向に回転し、下回転板38と一体構造の補助ユニット回転体41も回転軸35を回転中心として回転する。
【0030】
この補助ユニット回転体41の回転により、マグネットホルダ39に固定されている永久磁石31も回転する。その際、永久磁石31はフライホイール11の回転用永久磁石18と同極であるので、回転用永久磁石18に対し、反発力によるトルクを付与しながら回転する。永久磁石31は、トルク補助ユニット30のカムフォロア42が、カム28に接触を開始する位置からこれを開放する位置まで回転して停止する。
【0031】
なお、図4に示したように、この永久磁石31の停止位置は、回転軸35に対して一方向クラッチ43が設けられているので、後戻りすることは無く停止する。これによって、回転用永久磁石18がトルク補助ユニット30の永久磁石31に接近する際の反発力によるトルクの減少を防止することができる。この停止位置で、次のトルク補助ユニット30が、フライホイール11に設けられているカム28と所定位置で干渉する位置に設定される。
【0032】
この動作が連続的に繰り返されることにより、フライホイール11には、常に、永久磁石31の反発力が回転永久磁石18に与えられる。それにより、フライホイール11には、トルク補助ユニット30からの回転力が継続的に付勢される。
【0033】
また、図1に示したように、第1プーリ回転軸14aは、第1プーリ14の下方に延長され、その下端にはディスクブレーキとして作動するブレーキディスク21が固定されている。第1プーリ回転軸14aは、ブレーキディスク21の更に下方に延長され、その下端には第2の電磁クラッチ22が設けられている。第2の電磁クラッチ22の他方の回転板には一端が下段軸受7に軸支された第2プーリ回転軸23aが固定されている。この第2プーリ回転軸23aには第2プーリ23が固定されている。第2プーリ23は伝動ベルト25を介して、発電機26の回転軸に固定された発電機プーリ27に結合しており、発電機プーリ27の回転に伴なって回転する。発電機26は、例えば、定格が7.5KWで30Hzで600rpmである。
【0034】
次に、これらの構成によるフライホイール11発機の発電の動作について説明する。なお、各部については図1乃至図3を援用している。
【0035】
(ステップ1)・・・起動ステップ
第1の電磁クラッチ13を閉じ、第2の電磁クラッチ22を開いた状態にする。この状態で起動モータ16を回転させると、起動モータ16の回転力は、伝動ベルトを介して第1プーリ14に伝達され、第1プーリ回転軸14aを回転させる。その際、第1クラッチ13が閉じているので、第1プーリ回転軸14aとフライホイール回転軸11aとは連結されている。従って、第1プーリ回転軸14aの回転はフライホイール回転軸11aに伝動されて、フライホイール回転軸11aを回転させ、このフライホイール回転軸11aに固定されているフライホイール11を起動して回転させる。
【0036】
(ステップ2)・・・フライホイール11の回転ステップ
フライホイール11が起動回転した後に、第1の電磁クラッチ13を開いた状態にして第1プーリ14との結合から開放する。すなわち、図5に示したように、フライホイール11が矢印B方向に回転すると、フライホイール11に設けられているカム28が、トルク補助ユニット30のカムフォロア42に接触し、カムフォロア42を押しながら回転する。カムフォロア42はカム28により押されるため、カムフォロア42を保持している下回転板38が矢印B´方向に回転し、下回転板38と一体構造の補助ユニット回転体41も、回転軸35を回転中心として回転する。
【0037】
この補助ユニット回転体41の回転により、マグネットホルダ39に固定されている永久磁石31も回転する。その際、永久磁石31はフライホイール11の回転用永久磁石18と同極であるので、回転用永久磁石18に対し、反発力による回転力を付与しながら回転する。永久磁石31は、カム28がカムフォロア42と接触する位置からこれを開放する位置まで回転して停止する。
【0038】
一方、フライホイール11は慣性により回転を継続する。
【0039】
(ステップ3)・・・発電ステップ
フライホイール11が所定の回転数に達した時点で、第1の電磁クラッチ13と第2の電磁クラッチ22の双方を閉状態にする。2つのクラッチ13、22の作用により、フライホイール回転軸11a、第1プーリ回転軸14aおよび第2プーリ回転軸23aとは互いに結合して回転する。この回転により、フライホイール11の回転は、フライホイール回転軸11aと第1プーリ回転軸14aを経由して第2プーリ回転軸23aに伝達され第2プーリ回転軸23aを回転させる。第2プーリ回転軸23aの回転は、第2プーリ23を回転させ、更に、伝動ベルト25を介して発電機プーリ27を回転させる。発電機プーリ27は発電機26の回転軸に固定されているので、回転軸を介して発電機26を回転させて発電する。
【0040】
また、停止が必要な場合は、ディスクブレーキ21を動作させて停止させることができる。
【0041】
上述の各ステップにより、発電機26にはフライホイール11側からから、トルク補助ユニット30を作動させることにより、発電機26の定格以上のトルクが付与される。したがって、発電機26は発電出力を増加させることができる。
【0042】
なお、本発明は上記実施形態のそのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
【図面の簡単な説明】
【0043】
【図1】本発明のフライホイール発電機の実施の形態を示す構成説明図。
【図2】本発明のフライホイール発電機のフライホイールにおける回転永久磁石の配置状態を示す部分拡大平面図。
【図3】本発明のフライホイール発電機におけるトルク補助ユニットの配置を示す平面図。
【図4】本発明のフライホイール発電機におけるトルク補助ユニットの一部切開斜視図。
【図5】本発明のフライホイール発電機におけるトルク補助ユニットの部分拡大図。
【図6】従来のフライホイール発電機装置の制御装置の構成図。
【符号の説明】
【0044】
1…フライホイール発電機、2…上段アングル構造体、3…中段アングル構造体、4…下段アングル構造体、5…上段軸受、6…中段軸受、7…下段軸受、8…固定ポール、11…フライホイール、13…第1電磁クラッチ、14…第1プーリ、15…伝動ベルト、16…起動モータ、17…支持板、18…回転用永久磁石、19…電磁石、21…ブレーキディスク、22…第2電磁クラッチ、23…第2プーリ、26…発電機、28…カム、30…トルク補助ユニット、31…永久磁石、32…ハウジング、33…上板、34…下板、35…固定軸、36…上軸受、37…上回転板、38…下回転板、39…マグネットホルダ、41…補助ユニット回転体、42…カムフォロア、43…一方向回転クラッチ。

【特許請求の範囲】
【請求項1】
起動モータと、この起動モータの出力をベルト伝動によりプーリを介して起動して回転するフライホイール回転軸と、このフライホイール回転軸に係合しているフライホイールと、前記フライホイール回転軸から伝動機構を介して回転駆動される発電機を具備したフライホイール発電機であって、
前記フライホイール回転軸には、2本の同心軸が各軸間にそれぞれクラッチを介して直列に連接されており、かつ、前記フライホイールの外周側に等間隔で配置された複数の回転用永久磁石が配置され、また、該回転用永久磁石の回転軌跡の外側の対向位置には、前記フライホイールに設けられたカムにより移動し、前記回転用永久磁石と同極同士とを対向離間して設けた永久磁石を有するトルク補助ユニットが配置されていることを特徴とするフライホイール発電機。
【請求項2】
前記トルク補助ユニットは、前記回転用永久磁石と同極同士とを対向離間して設けた永久磁石が固定軸を回転中心として回転する構造であることを特徴とする請求項1記載のフライホイール発電機。
【請求項3】
前記トルク補助ユニットは、前記固定軸を回転中心として回転する回転体に120度ごとに固定されて配列されていることを特徴とする請求項2記載のフライホイール発電機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2008−187758(P2008−187758A)
【公開日】平成20年8月14日(2008.8.14)
【国際特許分類】
【出願番号】特願2007−16370(P2007−16370)
【出願日】平成19年1月26日(2007.1.26)
【出願人】(503465487)株式会社ブイエスディー (7)
【出願人】(507028941)株式会社フジミプラント (5)
【Fターム(参考)】