説明

フラックスの充填方法

【課題】フープの腔部にフラックスを連続的かつ均一に充填できるフラックスの充填方法を提供することを目的とする。
【解決手段】フラックス入り溶接ワイヤの連続製造工程において、成型途上フープ100aの腔部にフラックス6を連続的に充填する際、フラックスの供給をベルトフィーダー10にて行い、フラック供給筒16内のフラックス層1が、自由落下せずに連続してベルトフィーダー10に堆積しつつ流下するようにするとともに、供給筒16下端とベルトフィーダー10表面との隙間から、堆積したフラックス層2を切り出して搬送し、搬送されたフラックス3層を、ベルトフィーダー10の終端から、所定の案内板14に向けて層状4に流下させ、この層状4に流下したフラックスが、自由落下せずに、案内板14上を層状5に滑落して、走行する成型途上フープ100aの上向き開口部114に対して連続的に供給されるようにする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、フラックス入り (フラックスコアード) 溶接ワイヤの製造において、この製造工程中に、走行する素材の帯鋼(以下、フープあるいは鋼帯、鋼製フープとも言う)の腔部に、フラックスを連続的に充填する方法に関するものである。
【背景技術】
【0002】
全自動若しくは半自動溶接用のアーク溶接ワイヤには、管状の外皮帯鋼内にフラックスを充填したフラックス入りワイヤ(フラックスコアードワイヤ、FCWとも言う)が汎用されている。このFCWには、本発明が対象とするフープに合わせ目(以下シームとも言う)を有するタイプと、この合わせ目のないシームレスタイプのものがある。後者のシームレスタイプのものは製造コストが高くなるため、シームを有するFCWの方が汎用されている。このシームを有するFCWは、後述する図4(b)で示す通り、合わせ目を溶接等で接合せずに閉じている状態の溶接ワイヤを言う。以下、このシームを有するフラックス入りワイヤ(以下、FCWとも言う)
【0003】
このフラックス入りワイヤは、一般的に、炭酸ガスシールドアーク溶接、MIG溶接等の溶接施工方法で用いられ、0.8〜1.6mmφの細径の伸線ワイヤが汎用される。
【0004】
このような細径のフラックス入りワイヤの一般的な製造方法としては、詳細は後述する図4(a)、(b)に示すように、コイル状のフープ(帯鋼)100を巻き戻してU字状の帯鋼(管)100aに成型する工程、この走行するU字状のフープ100aに前記成型途中でフラックス106を充填する工程、このフラックス106を充填した管状成型ワイヤ100bを更に伸線してコイル状の製品フラックス入りワイヤに巻き取る工程、の各工程を同一のラインにて記載順に連続して行なうものである。これらの工程は、例えば特許文献1、2などに開示されている。
【0005】
ここで、前記走行するU字状のフープ(鞘管)100aに、その成型途中でフラックス106を充填する従来の一般的な方法は、図5に示す通りである。
【0006】
図5において、フラックス106は、走行するU字状のフープ100aの上向き開口部114に対して、このフープ100aの上方位置および走行方向に対する横方向(直角方向)から、ベルトフィーダー10にて連続的に供給される。ベルトフィーダー10はU字状のフープ100aの上方位置を終端として回動する。このベルトフィーダー10の上流側でかつ上方側には、図示しないフラックス供給用ホッパーから、フラックスがベルトフィーダー10の表面である、走行するベルト11の表面に向けて流下、堆積される。
【0007】
ベルト11上に堆積し、フープ100aに向けて、搬送されたフラックス層106aは、ベルトフィーダー終端(ベルト11の終端)11aから、前記走行するフープの上向き開口部114に向かって自由流下する。そして、図4(b)に示すCのフープ100aのように、フープ(帯鋼)腔部にフラックス106を連続的に所定量充填していく。
【0008】
この際に、フラックスをフープ100aの長手方向に亙って均一に投入しなければならない。このために、フラックスの供給装置の改善、フラックス供給の制御方法などが従来から提案されている。これらの例として特許文献3、4などがある。特許文献3は、ベルト式のフラックス供給装置において、フラックス落下地点側のローラ直径が6mm以下、かつ、ベルトの全厚みが1mm以下であり、ベルトの材質がポリテトラフルオロエチレンかまたはそれがコーティングされていることを特徴とする。
【0009】
また、特許文献4は、フラックス投入位置よりライン上流側に設定した帯鋼の質量測定点において質量および走行速度を求めておき、フラックス投入量調整所要時間と帯鋼が前記測定点から、フラックス投入点に至るまでの所用時間に基づいて、帯鋼質量の測定開始からフラックスの投入調整指令発信までの応答時間を制御する。また、これととともに、フラックス性状によって定まる粉体係数をフラックス切り出し装置に入力して、切り出し量を調整している。
【0010】
【特許文献1】特開平10−109190号公報
【特許文献2】特許3959380号公報
【特許文献3】特開平3−52797公報
【特許文献4】特開昭60−145299号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
しかしながらこれら従来のフラックス供給装置、フラックス供給の制御方法を用いても、前記した細径のフラックス入りワイヤの連続製造工程では、フラックス入りワイヤの長手方向におけるフラックス充填率を均一とすることが難しい。前記した細径のフラックス入りワイヤの連続製造工程では、フラックスを充填する工程は別個の独立した工程ではなく、前記した連続する一連の製造工程途中で行われる。しかも、この連続する製造工程上を走行するフープの速度は、生産効率を考慮して比較的速く、また、フラックスが充填されるフープも、前記した通り比較的細径であり、フープの上向き開口部114の幅も狭い。
【0012】
このような条件下で、前記した方法にて、走行する鋼製フープの長手方向に対して、均一にフラックスを連続的に充填していくことは、前記した通り、非常に難しい技術となる。このため、図6に模式的に示すように、図の左右方向の矢印で示すフープ100aの長手方向に不均一に、フラックスが充填されてしまいがちである。この結果、製品になった時の、フラックス入りワイヤ110の、長手方向におけるフラックス充填率(単位長さ当たりのワイヤ全重量に対するフラックスの重量%、フラックス率とも言う)が不均一となりやすい。
【0013】
そして、この不均一性が極端となった場合には、フラックス入りワイヤ110に、フラックスの無い部分や、フラックス充填率が基準値に満たない低い部分が発生することとなる。この傾向や確率は、前記連続する製造工程上のフープの走行速度が速くなるほど、また、フラックスが充填されるフープが細径あるいは小径となるほど高くなる。
【0014】
図7は、前記図6のフープ100aを伸線したフラックス入りワイヤを、断面図(長手方向の縦断面)で模式的に示している。図7から、図の左右方向の矢印で示す、フラックス入りワイヤ110の長手方向におけるフラックス充填率が不均一となった場合、外皮であるフープの肉厚やフラックス入りワイヤ110の径も不均一となっていることが分かる。これは、フラックス充填後のワイヤ(フープ)は、ワイヤ外径側を規制されつつ伸線(線引き)されることから、フープが内径側に膨出しようとする傾向があることに起因する。即ち、充填されたフラックス量が少ない場合には、膨出に障害となるフラックス量が少ないため、外皮であるフープの肉厚が厚くなる。また逆に、フラックス量が多い場合には、外皮であるフープが厚くなろうとしても、フラックスが障害となってそれを果たすことができず、外皮であるフープの肉厚が薄くなる。
【0015】
このような異常乃至非定常部分、即ち、フラックスが少なすぎるか無いような部分、あるいはフラックス入りワイヤの径が不均一な部分は、要求される高い形状精度、あるいは溶接品質にも、大きな悪影響を及ぼす。このため、実際のフラックス入りワイヤの製造工程でも、このような異常乃至非定常部分を検出し、製品として混入しないように排除する必要がある。それゆえ、フラックス入りワイヤ製造のインラインにて、フラックス入りワイヤを走行させながら、電磁誘導現象を利用して、このような異常乃至非定常部分を連続して検出するフラックス充填率測定装置が、例えば特公平4−15904号公報や特許第3553761号公報などで提案されているほどである。
【0016】
したがって、前記した細径のフラックス入りワイヤの連続製造工程では、フープの走行速度を、生産効率を考慮して比較的速くしても、また、フラックスが充填されるフープ(ワイヤ)が比較的細径となっても、フラックス入りワイヤの長手方向におけるフラックス充填率を均一とすることができる、フラックスの充填方法が特に重要となる。
【0017】
本発明は、この様な事情に着目してなされたものであって、その目的は、走行するフープの走行速度が速くても、また細径となっても、フープの腔部にフラックスを連続的かつ均一に充填できる、フラックス入り溶接ワイヤの製造におけるフラックス充填方法を提供しようとするものである。
【課題を解決するための手段】
【0018】
この目的を達成するために、本発明フラックスの充填方法の要旨は、コイル状のフープを巻き戻して管状に成型する工程、走行する前記フープへ前記成型途中でフラックスを充填する工程、このフラックスを充填した管状成型ワイヤを更に伸線してコイル状に巻き取る工程、の各工程を同一のラインにて記載順に連続して行なう、フラックス入り溶接ワイヤの製造工程において、前記フープの腔部に前記フラックスを充填する方法であって、以下のa〜gの要件を有することである。
a.U字状断面に成型されて走行する前記フープの上向き開口部に対して、そのフープの上方位置および走行方向に対する横方向から前記フラックスを連続的に供給する。
b.このフラックスの供給を前記フープの上方位置を終端として回動するベルトフィーダーにて行う。
c.このベルトフィーダーの上流側でかつ上方側に、前記フラックス供給用ホッパーを設け、このホッパー下部に設けた供給筒を介して、前記フラックスをこのベルトフィーダー表面に向けて連続的に流下させる。
d.この供給筒下端を前記ベルトフィーダー表面に近接させて設け、この供給筒内のフラックス層が、自由落下せずに、ベルトフィーダー表面に連続して堆積しつつ流下するようにするとともに、この堆積したフラックス層が前記供給筒下端と前記ベルトフィーダー表面との隙間から切り出され、前記フープに向けて搬送されるようにする。
e.前記供給筒下端と前記ベルトフィーダー表面との隙間が、ベルトフィーダー表面に堆積して前記フープに向けて搬送されるフラックス層の厚みとなり、かつ、この搬送されるフラックス層の幅が前記供給筒の内径とほぼ同じとなるように、前記供給筒内を流下するフラックス量と、前記ベルトフィーダーの搬送速度とを調整する。
f.前記フラックスの案内板を、前記ベルトフィーダー終端の下方側で、このベルトフィーダー終端から流下するフラックスの経路を遮るように、前記走行するフープの上向き開口部に向かって設ける。
g.前記ベルトフィーダー上を搬送されたフラックスを前記ベルトフィーダー終端から前記案内板に向けて層状に流下させ、この層状に流下したフラックスが、自由落下せずに、前記案内板上を層状に滑落して、前記走行するフープの上向き開口部に対して連続的に供給されるようにし、前記フープの腔部に前記フラックスを連続的に所定量充填する。
【0019】
ここで、前記フラックスの充填方法は、1.6mmφ以下の細径フラックス入り溶接ワイヤに適用されることが、特に好ましい。
【発明の効果】
【0020】
本発明によれば、前記した要旨のうち、特に、前記d〜gの特徴的な要件を組み合わせることで、フープの走行速度を比較的速くしても、フラックスが充填されるフープ(ワイヤ)が比較的細径となっても、フラックス入りワイヤの長手方向におけるフラックス充填率を均一とすることができる。
【0021】
このため、細径のフラックス入りワイヤのフラックス充填率を均一とした上で、比較的速い走行速度でのフラックス入りワイヤの連続製造が可能となり、フラックス入りワイヤの品質向上や品質保証と、歩留りや生産効率の向上との両方に多大の効果がある。
【図面の簡単な説明】
【0022】
【図1】本発明フラックスの充填方法の一実施態様を示す斜視図である。
【図2】図1の側面図である。
【図3】本発明フラックスの充填方法の他の実施態様を示す要部側面図である。
【図4】図4(a) はシーム有りフラックス入り溶接ワイヤの連続製造工程を示す説明図、図4(b)は図4(a) の各成型工程におけるフープの断面形状を示す説明図である。
【図5】従来のフラックスの充填方法の実施態様を示す側面図である。
【図6】従来のフラックスの充填方法によるフープ長手方向のフラックス充填状況を示す断面図である。
【図7】従来のフラックスの充填方法による溶接ワイヤ長手方向のフラックス充填状況を示す断面図である。
【発明を実施するための形態】
【0023】
先ず、本発明フラックスの充填方法の実施形態を、図1〜3を用いて、以下に説明する。図1は、後述する図4(a)のフラックス入りワイヤの製造工程の中の、フラックスの充填方法の態様を示す斜視図である。図2はこの図1の側面図である。図3はフラックスの充填方法の他の態様を示す部分側面図である。
【0024】
(前提条件)
本発明は、フラックス入り溶接ワイヤの連続製造工程において、走行する前記フープへ成型途中でフラックスを充填することを前提とするが、このフラックス入り溶接ワイヤの連続製造工程自体の詳細は後述する。したがって、本発明フラックスの充填方法の前提となる前記a〜cの要件から順に説明する。
【0025】
前記a〜cの要件:
図1、2において、100aは、図1の矢印方向(図の左から右)へ走行する、U字状断面に成型された、成型途中のフープである。10はベルトフィーダーであり、フープ100aの上方位置を終端として、この終端側の小径ロール12と、図の右側の始端側の大径ロール13とによって、フープ100aの方向へ向けて、ベルト11を回動させている。このベルトフィーダー10によって、フープ100aの上向き開口部114に対して、このフープ100aの上方位置および走行方向に対する横方向から、フラックス3、4、5を連続的に供給する。
【0026】
ベルトフィーダー10の上流側でかつ上方側には、フラックス供給用ホッパー17を設け、フラックス入り溶接ワイヤの連続製造工程に見合った供給量のフラックスを常時貯留する。そして、このホッパー17の下部に設けた供給筒16を介して、フラックス1を、ベルトフィーダー10(ベルト11)表面に向けて、連続的に流下させる。
【0027】
なお、フープ100aへ供給されるフラックス6(106)の水分を少なくするために、予めオフライン (事前のバッチ処理) でフラックスを乾燥させる、あるいは、フラックス供給用ホッパー17内などで、供給 (内包) 前のフラックスを加熱、乾燥させることが好ましい。溶接ワイヤの水素含有量が高い場合、溶接部には水素に起因する気孔が多量に発生し、溶接欠陥となる。したがって、ソリッドワイヤに比べて、溶接ビード形状や溶接能率性が優れるフラックス入り溶接ワイヤにとって、水素含有量が低いことが重要な品質特性となる。この点で、予めフラックス中の水分量を(500ppm以下)に少なく制御することが好ましい。
【0028】
(特徴的要件)
フラックスのフープへの搬送:
以上のように、フラックス1をベルトフィーダー10(ベルト11)表面に向けて、連続的に流下させるに際して、前記dの要件のように、また、特に図2に示すように、この供給筒16下端をベルトフィーダー10表面に近接させて設ける。これによって、この供給筒16内のフラックス層1が、自由落下せずに、ベルトフィーダー10(ベルト11)表面に、フラックス層2として、連続して堆積しつつ流下する(切り出される)ようにする。そして、これとともに、この堆積したフラックス層2が前記供給筒下端と前記ベルトフィーダー表面との隙間C1から切り出され、厚みtや密度が一定とされたフラックス層3としてフープ100aに向けて搬送されるようにする。
【0029】
言い換えると、ベルトフィーダー10(ベルト11)表面に堆積した、フラックス層2は、順次フープ100aに向けて移動し、供給筒16下端によって仕切られ、これと接触しながら切り出されて、厚みtや密度が一定とされたフラックス層3とされる。そして、この搬送されるフラックス層3の厚みtや密度が均一でなければ、走行するフープ100aへのフラックス供給量が一定とならない。このため、1.6mmφ以下の細径なフラックス入り溶接ワイヤの長手方向におけるフラックス充填率を均一とすることができない。
【0030】
供給筒とベルトフィーダーとの隙間C1:
供給筒16下端とベルトフィーダー10(ベルト11)表面とを近接させる際の互いの隙間(近接させる距離)C1は、搬送されるフラックス層3の厚みtや密度を均一とするために重要である。このC1は、この供給筒16内のフラックス層1が、自由落下せずに、ベルトフィーダー10(ベルト11)表面に連続して堆積しつつ流下できる大きさとする。この隙間C1が大きすぎると、供給筒16内のフラックス層1が自由落下し、堆積したフラックス層2を含め、フープ100aへ向けてベルトフィーダー10(ベルト11)上を搬送されるフラックス層3の厚みtや密度を均一にできない。一方、この隙間C1が小さすぎると、供給筒16内のフラックス層1や堆積したフラックス層2が供給筒16内で目詰まりを起こす可能性がある。
【0031】
このC1は、フープ100aの径や走行速度(フラックス入り溶接ワイヤの連続製造ライン速度)に応じた、フラックス入りワイヤの長手方向におけるフラックス充填率の均一性に影響する、フラックス供給側の種々の条件によって定まる。即ち、ベルトフィーダー10(ベルト11)の走行速度vや、供給筒16内のフラックス高さh1や内径D1によって定まるフラックス充填量(フラックス重量)、そして、搬送されるフラックス層3の厚みt(堆積したフラックス層2の供給筒16下端との接触によって定まる)などの選択によって定まる。また、これらの条件は、前記フラックス入り溶接ワイヤの連続製造工程の仕様や条件によって大きく異なる。ただ、このC1は、後述するフラックス層の厚みtとなるため、フラックス層の厚みtと同じく、10mm以下の範囲の数値から選択される。
【0032】
供給筒16内のフラックス高さh1:
また、前記供給筒16内のフラックス高さh1なども、前記した通り、搬送されるフラックス層3の厚みtや密度に影響する。このため、このフラックス高さh1を一定範囲内にすることが好ましく、このための制御として、供給筒16を透明なプラスチック製として、供給筒16内のフラックスの流動やフラックス高さを外部から見れる状態にすることが好ましい。これによって、光学センサーなどのセンサーを用いるか、目視によって、外部から供給筒16内のフラックス高さh1を監視、調整し、フラックス充填量(フラックス重量)を正確に制御することが可能となる。
【0033】
フラックス層3の厚みt:
前記した、供給筒16下端とベルトフィーダー10(ベルト11)表面とを近接させることによって、この堆積し、移動するフラックス層2が供給筒16下端と接触しながら切り出され、厚みtを有するフラックス層3として、フープ100aに向けて搬送されるようになる。即ち、供給筒16下端がフラックス層3の上部の、余剰な厚み箇所のフラックスをせき止めて、不足する厚み箇所へフラックスを供給する、堰の役割を果たし、厚みtや密度を均一化させる役割を果たす。このため、この隙間(近接距離)C1が、フープ100aに向けて搬送されるフラックス層3の厚みtとなる。また、この搬送されるフラックス層3の幅D2(図1に示す)が、供給筒の内径D1とほぼ同じとなることが保証される。
【0034】
このようにするためには、勿論、この他に、供給筒16のフラックス高さh1や内径D1によって定まる、供給筒16内を流下するフラックス1の量(フラックス充填量、フラックス重量)と、ベルトフィーダー10の搬送速度vとを調整する必要がある。
【0035】
ただ、1.6mmφ以下の細径なフラックス入り溶接ワイヤの連続製造工程において、走行するフープ100aへのフラックス供給量は、そんなに多量となることはなく、自ずと限られる。この点で、ベルトフィーダー10(ベルト11)表面に堆積してフープ100aに向けて搬送される、前記フラックス層の厚みtは10mmの厚みを超えて大きくなる必要は無い。したがって、前記フラックス層の厚みtや前記隙間(近接距離)C1は、この10mm以下の範囲の数値から選択される。
【0036】
フラックスのフープへの供給:
以上のように、ベルトフィーダー10によって搬送されたフラックス層3は、ベルトフィーダー10の終端11aから、その下方側で走行するフープ100aの上向き開口部114に対して、フープ100aの走行方向(図1の矢印で示す)に対する横向きに(横方向から)、連続的に供給される。
【0037】
この際、前記fの要件のように、フラックスの案内板14を設ける。案内板14は、図1、2に示すように、ベルトフィーダー終端11aの下方側で、このベルトフィーダー終端11aから流下するフラックス4の流下経路を遮るように、走行するフープ100aの上向き開口部114に向かって設ける。なお、図2の15は、案内板14に対向してフープ100aを挟んだ反対側に設けた、フラックス飛散防止用の遮蔽板(衝立)である。
【0038】
この案内板14に向けて、前記gの要件のように、搬送されたフラックス層3をベルトフィーダー終端11aから先ず、フラックス層4のように層状に流下させる。このように、案内板14に向けて層状に流下させるためには、ベルトフィーダー終端11aから案内板14のフラックス層4の衝突面までの距離d1と高さh2、案内板14のフラックス層4の衝突面角度θ、そしてベルトフィーダー10(ベルト11)の走行速度(フラックス層3の搬送速度)vを互いにバランスさせて調整する。
【0039】
なお、このようなフラックスの「層状」という表現は、微細なフラックス粒子同士が互いに適当な間隔を有し、フラックスの流動性が良好であることを意味する。即ち、これらフラックスの流れが部分的に滞ったり、偏ったりすることなく、流れの幅方向や流れ方向が均一な厚みや密度で、いわゆるさらさら流れるように流動する、流下する、滑落する状態を言う。
【0040】
ベルトフィーダー10の走行速度(フラックス層3の搬送速度)v:
ベルトフィーダー10の走行速度vは、前記した通り、搬送されるフラックス層3の厚みtや密度の均一性にも影響する。そして、案内板14の衝突面に向けて、フラックス層4のように層状に流下させることや、衝突したフラックスが、自由落下せずに、案内板14上をフラックス層5のように層状に滑落することにも影響する。
【0041】
この走行速度vが速すぎると、前記供給筒16下端とベルトフィーダー10表面との隙間C1の近接化効果が発揮されずに、ベルトフィーダー10上を搬送されるフラックス層3の厚みtや密度を均一にできない。また、案内板14へのフラックスの衝突速度が増して、前記した案内板14に衝突する、あるいは衝突したフラックス層4やフラックス層5などの層状の流下や層状の滑落が困難となる。
【0042】
一方、この走行速度vが遅すぎると、供給筒16内のフラックス層1や堆積したフラックス層3が供給筒16内で目詰まりを起こやすくなる。また、搬送されたフラックス層3の、ベルトフィーダー終端11aでの、フラックスの流動性が悪くなり、ひび割れや塊状化による、均一な層状ではなく、塊状でも脱落(自由落下)現象が生じやすくなる。したがって、前記した、安定的にフラックスの切出し、供給可能な走行速度vは、1.6mmφ以下の細径なフラックス入り溶接ワイヤの連続製造工程においては、前記フラックス層の厚みtや前記隙間(近接距離)C1の10mm以下の範囲の数値に応じて、0.5〜10m/minの範囲の数値から選択される。
【0043】
案内板14上のフラックス層5の層状滑落:
更に、案内板14の衝突面に層状に流下したフラックスが、この衝突面から飛散して、自由落下せずに、案内板14上をフラックス層5のように層状に滑落して、走行するフープ100aの上向き開口部114に対して連続的に供給されるようにする。このためには、前記した通り、ベルトフィーダー終端11aから案内板14のフラックス層4の衝突面までの距離d1と高さh2、案内板14のフラックス層4の衝突面角度θ、そしてベルトフィーダー10(ベルト11)の走行速度(フラックス層3の搬送速度)vを互いにバランスさせて調整する。
【0044】
また、これらのバランスは案内板14とフラックス層4との接触長さにも影響する。フラックス層5のように案内板14上を層状に滑落させるためには、この接触長さを比較的長くすることが好ましい。1.6mmφ以下の細径なフラックス入り溶接ワイヤの連続製造工程においては、案内板14とフラックス層4との接触長さが5mm以上であることが好ましい。
【0045】
この点で、案内板14のフラックス層4の衝突面角度θは、案内板14の衝突面におけるフラックス層4の、前記接触長さを調整するためにも重要となる。案内板14とフラックス層4との接触長さを5mm以上とするためには、衝突面角度θは40〜90度の範囲から選択することが好ましい。但し、案内板14のフラックス層4の衝突面角度θは、図2のθ1のように、案内板14の上側と下側とで同じとしても良く、図3に要部のみを示すように、案内板14の上側をθ2と角度をつけ、下側でほぼ垂直とするあるいは前記θ2よりも角度を大きくするなど、調整しても良い。
【0046】
以上説明したフラックスの安定切り出し、供給の要件は、好ましい要件や数値範囲を含めて、机上の設計だけでなく、実際の、フラックス層1、2の流下、堆積状態、搬送されるフラックス層3の厚みtや密度の均一さ、フラックス層4、5の流動状態などを見ながら、試行しつつ、調整、決定することが必要である。言い換えると、実際に試行して調節しないと、フラックス層6(106)を、走行するフープ100aの腔部に、フープ100aの長手方向に亙って、連続的に所定量、均一充填することができない。
【0047】
フープ100aへのフラックス106 の充填率:
U字状成型フープ100aへのフラックス6(106 )の充填率 (見かけ空隙率: ζ) はフラックスの嵩密度をρ(g/cm3 )、成型工程のE時点でのフラックスが満たすべき内部空間面積をσ(cm2 )、E時点でのフープ走行速度λ(cm/分)、フラックス供給装置105 からのフラックス投入量をκ(g/分)とするとき、ζ(%) =[1−(κρ/σλ]×100で表現される。
【0048】
この見かけ空隙率ζは、好ましくは以下の観点から選択される。フラックスの充填率が多過ぎ、見かけ空隙率ζが小さすぎると、後続の成型工程や伸線工程において、断線が生じやすい。また、比較的遅い伸線速度でFCWに伸線できたとしても、溶接時のFCW送給時に、シーム部分114 からフラックス106 の吹きこぼれが生じやすく、送給性を低下させる。逆に、フラックス106 の充填率が少な過ぎ、見かけ空隙率ζが大きすぎると、伸線加工中にフラックス106 が移動して、ワイヤ長手方向のフラックス率が変動し、溶接品質特性が低下する。従って、好ましい見かけ空隙率ζは5〜10%であり、この範囲であれば、ワイヤ長手方向についてのフラックス充填率の変動が少なく、良好な品質特性のフラックス入り溶接ワイヤを製造することができる。
【0049】
従来のフラックス充填方法:
このような本発明のフラックス充填方法に対して、従来の一般的なフラックス充填方法では、前記図5のように、走行するU字状のフープ100aの上向き開口部114に対して、ベルトフィーダー1の終端11aから、搬送されたフラックス層106aを、自由落下させている。このため、本発明の前記a〜cの前提的な要件は満足しているものの、本発明の前記d〜gの特徴的な要件は満足してい。本発明の前記d〜gの特徴的な要件は、全て満足しなければ、1.6mmφ以下の細径なフラックス入り溶接ワイヤの長手方向におけるフラックス充填率を均一とすることができない意味を持つ。
即ち、従来のフラックス充填方法は、前記dのフラックス層のベルトフィーダー表面への連続的な堆積、流下、あるいは切り出し、前記eのフラックス層の厚みと幅の規定、前記fのフラックスの案内板、前記gのフラックスの案内板への層状流下と案内板上の層状滑落などの、全てか一部の要件を行っていない。このため、前記図6で示したように、図の左右方向の矢印で示すフープ100aの長手方向に、必然的に、不均一にフラックスが充填されてしまう。言い換えると、不連続な波のような状態で長手方向に不均一にフラックスが充填されてしまう。この結果、前記図7で示したように、製品になった時の、フラックス入り溶接ワイヤ110の、長手方向におけるフラックス充填率や外皮であるフープの肉厚あるいは外径が不均一となりやすい。また、外皮であるフープの伸びもフラックスの充填率によって変化し、フラックス入り溶接ワイヤ110の長手方向の伸びなどの機械的な性質が不均一化する。
【0050】
フラックス入りワイヤの連続製造工程:
次ぎに、図4を用いて、本発明の前提となるフラックス入りワイヤの連続製造工程を以下に説明する。図4(a)はフラックス入りワイヤの製造工程の概略を示す、一部を平面図とした説明図である。また、図4(b)は、この図4(a)の各成型工程におけるフープの断面形状を示す説明図である。
【0051】
(洗浄脱脂工程)
図4(a)において、図示しない巻き戻し機により巻き戻されたコイル状のフープ100は、先ず、洗浄脱脂工程102によって予め洗浄脱脂される。広幅の素材鋼板などを、1.6mmφ以下の細径フラックス入り溶接ワイヤ用の、狭幅のフープ100にスリットする際には、フープ100の表面に加工油や汚れが付着する。このようなフープ100表面の加工油や汚れは、少量でも溶接時のアーク不安定や、気孔などの溶接欠陥の原因となる水素源となりうるため、溶接ワイヤ品質上、予めこの洗浄脱脂工程102において除去しておく必要がある。
【0052】
(フープ)
フープの板厚tと幅Wとは、1.6mmφ以下である製品FCWの線径によって定まるが、フープの厚みtに対するフープの幅Wの比t/Wを0.06〜0.12の範囲とすることが好ましい。このt/Wが小さ過ぎると、フープやワイヤがフラックスを充填した状態で、製造工程における成型や伸線の加工に耐える強度を保持できなくなり、断線しやすくなる。また、ワイヤ送給性も低下する。一方、逆に、このt/Wが大き過ぎると、ワイヤ伸線工程における加工度が上がり過ぎる。このため加工熱によるフラックスの酸化や粉化などの化学的あるいは物理的な変質が進むため、水分量が増加したり、断線が多発しやすくなる。
【0053】
(潤滑剤)
図4(a)において、洗浄脱脂後のフープ100は、潤滑剤塗布工程103aにおいて、フープ100のFCW表面 (ワイヤ表面) となる面のみに、非水素系の前記潤滑剤または防錆油を微量塗布される。この後、フープの成型工程、U字状フープから管状ワイヤへの成型工程、伸線工程、の各工程においては、硫黄系の極圧剤を含む伸線潤滑剤を用いる。この伸線潤滑剤としては、公知の、非水素系の潤滑剤としての硫黄系の極圧剤を含む潤滑剤、硫黄系の極圧性固体を成分として水を溶媒とする湿式潤滑剤、硫黄系の極圧性固体が主成分で少量の油分を含有する油式潤滑剤、などを適宜選択して用いる。
【0054】
(成型)
このように潤滑剤が塗布されたフープ100は、図4(b)のAに示す平板状の断面形状から、Bに示すU字状断面のフープ100aへと、成型ローラ列 (群) 104aにて成型される。図4(a)の成型ローラ列 (群) 104aは、2個の成型ローラが直列配置された例を示している。この成型工程に配置される成型ローラの個数は、フープ100の幅や厚み、あるいは硬度などの成型条件に応じて適宜選択される。
【0055】
(フラックス充填)
U字状断面に成型されたフープ100aは、前記図1、2を用いて説明したフラックス供給装置105からフラックス106の供給を受け、図4(b)のCに示すように、フープ1aのU字状空間内に、前記一定の内部充填率 (空隙率) を有した上でフラックス106が充填 (内包) される。
【0056】
このようにフラックス106 が充填されたU字状成型フープ100aは、次いで図4(b)のDに示す管状のワイヤ100bへと、更に成型ローラ列104bにて成型される。この成型ローラ列104bの条件は、前記した成型ローラ列104aと同様である。管状のワイヤ100bは、フープの幅方向の両端が近接し合う空隙部分= シーム114をワイヤ100bの長手方向に渡って有している。このシーム114は、後続する伸線工程によって、ワイヤ100bがワイヤ100c、100dと縮径されても、空隙部分としてなお存在する。具体的には、図4(b)のワイヤ100c(あるいはE)からの引き出し線で拡大して示すバット (突き合わせ) タイプの断面114aであって、フープの幅方向の両端が突き合わされていたとしても、シーム114は存在する。また、他の態様として、同じく図4(b)のワイヤ100c(あるいはE)からの引き出し線で拡大して示す、ラップ (重ね) タイプの断面114bであって、フープの幅方向の両端が重なり合っていったとしても、シーム114は存在する。これは製品FCWでも同様である。
【0057】
(伸線潤滑)
成型された管状ワイヤ100bは、次いで潤滑剤塗布工程103bにおいて、ワイヤ100b表面に、前記潤滑剤を塗布された後に伸線される。この潤滑剤は前記塗布工程103aの潤滑剤と、同じであっても、違っていても良い。ここで、潤滑剤塗布工程は伸線前の103bだけではなく、伸線条件に応じて、伸線工程中に適宜配置して良い。
【0058】
(ローラダイス伸線)
図4(a)のローラダイス伸線工程では、大別して、一次伸線工程と二次伸線工程とに分けられる。この伸線工程によって、ワイヤは、製品径または製品径に近い線径にまで縮径される。ここで、図4(b)のEからFに示す通り、一次伸線によってワイヤはワイヤ100cからワイヤ100dへと縮径される。また、図4(b)のFからGに示す通り、二次伸線によってワイヤはワイヤ100dから製品径のワイヤ100eへと縮径される。
【0059】
この図4(a)の伸線工程は、一次伸線工程と二次伸線工程とを別の工程に分けて行なっている態様を示している。このように、伸線工程を分割するか、一次伸線工程と二次伸線工程とを同じ工程で連続的に製品径まで伸線するかは、フープの設計条件と製品FCWの設計条件、あるいは生産性などによって適宜選択される。また、一本の一次伸線工程(B)に対して、二次伸線工程(C)を複数本設ける、あるいは、複数本の一次伸線工程(B)に対して、一本の二次伸線工程(C)を設けるなども、一次伸線と二次伸線との生産性バランスによって適宜選択される。
【0060】
一次伸線工程は、超硬材料製ローラダイス列(群)201〜206までが多段に(図4の例では6段または6群)配置されている。二次伸線工程は、超硬材料製ローラダイス列(群)401〜405までが多段に(図4の例では5段または5群)配置されている。このローラダイス列多段配置個数も、伸線条件に応じて適宜選択される。
【0061】
図4(a) の一次伸線工程は前記した成型工程とインラインで連続している。そして、一次伸線後のワイヤは、一旦コイル106に巻回される。更に、図4(a) のように、このコイル106を巻き戻して、二次伸線工程が行なわれる。
【0062】
二次伸線工程は、これに続く、前記潤滑剤の物理的な除去手段 (工程)108、塗油手段109とインラインで連続している。あるいは、伸線用潤滑剤塗油工程の前に、孔ダイス501によるスキンパス仕上げ伸線工程を挿入する場合もある。ローラダイスによる伸線以降の、仕上げ伸線工程501、潤滑除去工程115+108、塗油工程109などの工程は、インラインにて( 同一のラインにて連続的に) 行なう。これらの工程を別工程によるオフライン処理とした場合、製品FCW製造工程全体の生産性や生産効率が著しく低下し、ローラダイス群による高速伸線化の利点が大きく損なわれる。
【0063】
二次伸線工程において、塗油された製品FCWは110として巻き取り機に巻き取られる。その上で、更に、図示しない工程で、ワイヤスプールに巻替あるいはペールパックに装填される。図4(a) の伸線工程において、111はキャプスタンであって、各々ローラダイス列の後段に配置されて、伸線されるワイヤを円滑にガイドして、連続的で高速の伸線を保障する。
【0064】
ローラダイス (線引き装置) は、単一の小径孔中にワイヤを通す孔ダイスを用いた伸線に比して、ダイス面における潤滑層に負荷される剪断力は比較的小さく、潤滑被膜切れの問題が発生しにくい。また、伸線の潤滑を水素増加の問題がない非水素系の無機乾式潤滑剤によって行なう場合にも、孔ダイスのような、この潤滑剤の固化、目詰まりの問題が発生しない。このため連続的で高速の伸線を保障できる。
【0065】
ローラダイスや孔ダイスは、高強度で、硬度や剛性が高く、高速の溶接用ワイヤ伸線に適した、WC基硬合金製、TiC基超硬合金製、TiCN基サーメット製などの公知の超硬製(超硬材料製)からなることが好ましい。
【0066】
孔ダイス501は、真円度などの形状精度をより向上させるためのスキンパス仕上げ伸線であり、選択的に施される。この孔ダイス501による仕上げ伸線は、前記管状成型ワイヤから製品径直前のワイヤ径までローラダイスにて伸線されたワイヤが対象となる。この製品径直前のワイヤ径とは、製品ワイヤを1とした場合の面積比で1. 1以内の伸線ワイヤである。
【0067】
ここで、図4(b)のGに示す製品径のワイヤ100eの形状精度(真円度など) は、ワイヤ送給性に影響するとともに、別途、FCW110をワイヤスプール100に巻替あるいはペールパックに装填する際の作業性にも大きく影響する。このため、ローラダイス列によって伸線されたワイヤを、最終的に孔ダイス501によって仕上げ伸線することが好ましい。孔ダイスの伸線速度はローラダイスに比して低速であるものの、このような二次伸線ライン構成であれば、最終的に孔ダイスによって仕上げ伸線しても、伸線工程やFCW製造工程全体の高速性や連続性に対して影響を与えることは無い。孔ダイスによって仕上げ伸線した場合、ローラダイス列によって伸線されたワイヤは製品径に近い線径となり、孔ダイス仕上げ伸線後のワイヤが、最終的な製品径となる。
【0068】
(潤滑剤除去手段)
伸線されたワイヤ100eは、次いで、ワイヤ表面より前記潤滑剤を物理的な除去手段108によって除去される。図4(a) における潤滑剤除去手段108は、前段におけるワイヤを表面研磨および打撃する潤滑剤除去手段(図示せず)と、後段における拭い取りロールによる潤滑剤除去手段108(内部にロールを記載した箱型で図示)とによる、2段階でのインラインでの潤滑剤除去を想定している。前段におけるワイヤを表面研磨および打撃する潤滑剤除去手段は、走行中のワイヤを表面研磨後に、例えば、軽量な小片を走行中のワイヤ上に落下させて、ワイヤを打撃して、潤滑剤をワイヤ表面から除去する手段である。また、後段の拭い取りロールによる潤滑剤除去手段108は、潤滑剤を拭き取るフェルトなどを表面に設けた拭い取り(ワイパー)ロールにより、潤滑剤をワイヤ表面から除去する手段である。この他、インラインでの潤滑剤除去は、洗浄により除去する手段、ワイヤを加振するなどの他の物理的な除去手段、あるいは、これら除去手段の適宜の組み合わせにより行って良い。潤滑剤が除去されず、ワイヤ乃至FCW表面に残留した場合には、溶接の際のアーク安定性を低下させ、溶接欠陥の要因となる。
【0069】
(塗油手段)
表面より潤滑剤が除去されたワイヤ100eは、その後、塗油手段109によって、ワイヤ送給性を向上させる公知の潤滑剤をワイヤ表面に塗油され、図4(b)のWに示すFCW製品とされる。ここで塗油手段109は、高速で搬送 (移動) 中のワイヤ表面に、図4(b)に示すように、少量の潤滑剤113を均一に、かつ短時間で塗油する必要がある。このために、静電塗油などの強制塗油手段を用いることがワイヤのトータル水素管理の観点から好ましいが、潤滑剤を含浸したフェルトなどをワイヤに接触させて塗布する方法が一般的である。
【0070】
以上説明した図4(a)の態様は、フープのU字状成型工程、U字状成型フープへのフラックス充填工程、U字状フープから管状ワイヤへの成型工程、管状成型ワイヤの一次伸線工程までと、二次伸線工程からワイヤ送給用潤滑剤をワイヤ表面に塗油する工程までを、各々全て同一の連続したライン (インライン) にて行なう態様を示した。ただ、FCW製造ラインの生産効率や生産条件に応じて、一次伸線工程と二次伸線工程とを繋げ、これらを全て連続した同じインラインで行なっても良い。あるいは、一次伸線工程までの工程を更に別々に分けて行なってもよい。例えば、図4(a)の、管状ワイヤへの成型工程104bまでと、管状成型ワイヤの一次伸線工程とを別のラインで行なっても良い。なお、本発明において、上記各工程を順にインラインにて行なうとは、ワイヤを搬送しつつ、この搬送ワイヤに対し、連続的に上記各工程を順に行なうことを言う。
【0071】
(仕上げ伸線後のワイヤ表面硬度)
この際、通常の軟鋼板製のフープであれば、仕上げ伸線後のワイヤ(鋼フープ)の表面を、ビッカース硬度で170〜240Hvの範囲の硬度を有するようにすれば、伸線後のFCW表面の仕上がり性が確保され、摩擦係数が低くなるため、FCWのワイヤ供給性が向上する。本発明で使用するWC基超硬合金からなるローラダイスであれば、このようなビッカース硬度範囲が得やすい。ビッカース硬度で170Hv未満では、FCWの腰が弱くなり、ワイヤ供給性が低下する。逆に、ビッカース硬度で240Hvを越えた場合、FCWが折れやすくなり、スプール巻きの始端( 巻き始め側) で折れるとFCWの巻き替えトラブルとなる。
【0072】
本実施態様では、仕上げ伸線を除く、伸線工程の各工程において、一貫して超硬材料製からなるローラダイスで行なっている。しかし、これら高速および連続しての伸線あるいは成型に大きく影響しない部分や工程での、超硬材料製からなるローラダイス以外の、ダイスやロール材料の使用を妨げない。
【実施例1】
【0073】
以下に、本発明の実施例を説明する。前記図4(a) に示したFCW製造工程を用い、市販の軟鋼板製のフープを用い、Fe−Crとジルコンサンドを主成分として含有する成分のフラックス、硫黄系極圧剤として二流化モリブデンを含む前記潤滑剤を各々用いて、1.2mmφの製品径のFCWを製造した。この際、フープの幅W:12mm、厚みt:0.96mm、厚みtと幅Wとの比t/Wを0.08として、FCWを製造した。
【0074】
この際、U字状成型フープ100aへのフラックス充填は、前記図1、2に示したフラックス供給装置(図4(a) の105に該当)により、前記した好ましい条件で行った。即ち、フラックス供給筒16の下端をベルトフィーダー10(ベルト11)表面に、1mmの隙間C1だけ近接させて設け、この供給筒16内のフラックス層1が、自由落下せずに、ベルトフィーダー10(ベルト11)表面に、連続して堆積しつつ流下するようにした。
【0075】
そして、これとともに、この堆積したフラックス層2が供給筒16下端によって仕切られ、フラックス層の厚みtが1mmで、この厚みtや密度が均一なフラックス層3となって、フープ100aに向けて搬送されるようにした。この際、供給筒16のフラックス高さh2や内径D1、供給筒16内を流下するフラックス1の量、ベルトフィーダー10の搬送速度vなども調整した。
【0076】
この搬送されたフラックス層3を、ベルトフィーダー10の終端11aから、その下方側で走行するフープ100aの上向き開口部114に対して、フラックスの案内板14を介して、フープ100aの走行方向に対する横向きに連続的に供給した。この際、搬送されたフラックス層3を、案内板14に向けて、フラックス層4のように層状に流下させるため、ベルトフィーダー終端11aから案内板14のフラックス層4の衝突面までの距離d1と高さh2、案内板14のフラックス層4の衝突面角度θ、そしてベルトフィーダー10の走行速度vを互いにバランスさせて調整した。また、更に、案内板14に層状に流下したフラックスが、自由落下せずに、案内板14上をフラックス層5のように層状に滑落して、開口部114に対して連続的に供給されるようにするため、前記距離d1と高さh2、前記衝突面角度θ、そしてベルトフィーダー10の走行速度vを、更に互いにバランスさせるべく調整した。
【0077】
即ち、予め設定された前記距離d1と高さh2に応じて、衝突面角度θは50〜80度の範囲で、走行速度vは5〜10m/minの範囲で、案内板14とフラックス層4との接触長さが5mm以上となるように調整した。これらは、実際に、試行を繰り返しながら、フラックス層3、4、5の各層が前記した均一な層状となるように調整した。また、連続製造したフラックス入り溶接ワイヤのフラックス6(106)の充填率 (見かけ空隙率: ζ) は7%とした。
【0078】
以上の条件下で、1.2mmφの製品径のフラックス入り溶接ワイヤを連続的に製造した結果、異常乃至非定常部分、即ち、フラックスが少なすぎるか無いような部分、あるいはフラックス入りワイヤの径が不均一な部分は出なかった。この異常乃至非定常部分の検出は、図4(a)の一次伸線後のワイヤ100d(図4(b)のF)に対して、巻き取る前段でインラインにて、フラックス入りワイヤを走行させながら、電磁誘導現象を利用した前記特許第3553761号公報に開示された測定検出装置により行った。
【0079】
また。安定して伸線可能な最高の一次伸線速度は300m/min、二次伸線速度は1000m/minが得られた。巻き取り後のFCWの形状精度 (真円度) は、東京精密社製のRONDCOM30B 真円度計にて順次測定した結果、真円度が±5μm未満のばらつきであった。したがって、本発明によれば、フープが高速走行しても、また細径となっても、ワイヤ長手方向に亙るフラックス充填率の変動が少なく均一で、真円度も高いフラックス入り溶接ワイヤを製造することができることが分かる。
【0080】
また、これらFCWのワイヤ供給性を評価した結果、ワイヤ供給が途切れずに円滑に行なえて良好であり、軟鋼板(1mmt)同士の突き合わせ溶接時の溶接性について評価した結果も、一貫してアークが安定しており、溶接部に溶接欠陥も生じておらず、継手部の靱性も良好であった。このワイヤ供給性については、汎用ワイヤ供給機を用い、汎用炭酸ガスシールド溶接機へのワイヤ供給性を評価した。また、溶接性評価については、炭酸ガスシールド溶接し、溶接条件は、溶接電流: 300A、溶接電圧:32V、溶接速度:30cm/min. 、炭酸ガスシールドガス25L/min. とした。したがって、本発明によれば、伸線速度を早くできるとともに、良好な品質特性のフラックス入り溶接ワイヤを製造することができることが分かる。
【0081】
以上の結果から、走行するフープの走行速度が速くても、また細径となっても、フープの腔部にフラックスを連続的かつ均一に充填できる、本発明の、フラックス入り溶接ワイヤの連続製造工程におけるフラックスの充填方法の意義が分かる。
【産業上の利用可能性】
【0082】
本発明によれば、走行するフープの走行速度が速くても、また細径となっても、フープの腔部にフラックスを連続的かつ均一に充填できるフラックスの充填方法を提供できる。このため、高い生産効率と品質保証とが求められる、フラックス入り溶接ワイヤの連続製造工程に適用されて好適である。
【符号の説明】
【0083】
1、2、3、4、5、6:フラックス層、10:ベルトフィーダー、11:ベルト,12:小径ロール、13:大径ロール、14:案内板、15:遮蔽板、16:フラックス供給筒、17:フラックス供給用ホッパー、100:フープ、102:洗浄脱脂工程、103a、103b:潤滑剤塗布工程、104a、104b:成型ローラ列 (群) 、105:フラックス供給装置、106:フラックス、107:伸線ワイヤ、108:潤滑剤除去手段、109:塗油手段、110:FCW、111:キャプスタン、113:ワイヤ送給用潤滑剤、114:シーム、115:潤滑剤除去手段、501:孔ダイス、201〜206:ローラダイス列 (群) 、401〜405:ローラダイス列 (群)

【特許請求の範囲】
【請求項1】
コイル状のフープを巻き戻して管状に成型する工程、走行する前記フープへ前記成型途中でフラックスを充填する工程、このフラックスを充填した管状成型ワイヤを更に伸線してコイル状に巻き取る工程、の各工程を同一のラインにて記載順に連続して行なう、フラックス入り溶接ワイヤの製造工程において、前記フープの腔部に前記フラックスを充填する方法であって、以下のa〜gの要件を有することを特徴とするフラックスの充填方法。
a.U字状断面に成型されて走行する前記フープの上向き開口部に対して、そのフープの上方位置および走行方向に対する横方向から前記フラックスを連続的に供給する。
b.このフラックスの供給を前記フープの上方位置を終端として回動するベルトフィーダーにて行う。
c.このベルトフィーダーの上流側でかつ上方側に、前記フラックス供給用ホッパーを設け、このホッパー下部に設けた供給筒を介して、前記フラックスをこのベルトフィーダー表面に向けて連続的に流下させる。
d.この供給筒下端を前記ベルトフィーダー表面に近接させて設け、この供給筒内のフラックス層が、自由落下せずに、ベルトフィーダー表面に連続して堆積しつつ流下するようにするとともに、この堆積したフラックス層が前記供給筒下端と前記ベルトフィーダー表面との隙間から切り出され、前記フープに向けて搬送されるようにする。
e.前記供給筒下端と前記ベルトフィーダー表面との隙間が、ベルトフィーダー表面に堆積して前記フープに向けて搬送されるフラックス層の厚みとなり、かつ、この搬送されるフラックス層の幅が前記供給筒の内径とほぼ同じとなるように、前記供給筒内を流下するフラックス量と、前記ベルトフィーダーの搬送速度とを調整する。
f.前記フラックスの案内板を、前記ベルトフィーダー終端の下方側で、このベルトフィーダー終端から流下するフラックスの経路を遮るように、前記走行するフープの上向き開口部に向かって設ける。
g.前記ベルトフィーダー上を搬送されたフラックスを前記ベルトフィーダー終端から前記案内板に向けて層状に流下させ、この層状に流下したフラックスが、自由落下せずに、前記案内板上を層状に滑落して、前記走行するフープの上向き開口部に対して連続的に供給されるようにし、前記フープの腔部に前記フラックスを連続的に所定量充填する。
【請求項2】
前記フラックス入り溶接ワイヤが1.6mmφ以下の細径である、請求項1に記載のフラックスの充填方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2010−194596(P2010−194596A)
【公開日】平成22年9月9日(2010.9.9)
【国際特許分類】
【出願番号】特願2009−44278(P2009−44278)
【出願日】平成21年2月26日(2009.2.26)
【出願人】(000001199)株式会社神戸製鋼所 (5,860)
【Fターム(参考)】