説明

プラズマ光源システム

【課題】発生するプラズマ光の出力を大幅に高めることができ、かつ熱負荷及び電極消耗を抑えて装置寿命を延ばすことができるプラズマ光源を提供する。
【解決手段】所定の発光点1aでプラズマ光8を周期的に発光する複数のプラズマ光源10と、プラズマ光源の複数の発光点におけるプラズマ光を単一の集光点9に集光する集光装置40とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、EUV放射のためのプラズマ光源システムに関する。
【背景技術】
【0002】
次世代半導体の微細加工のために極端紫外光源を用いるリソグラフィが期待されている。リソグラフィとは回路パターンの描かれたマスクを通して光やビームをシリコン基板上に縮小投影し、レジスト材料を感光させることで電子回路を形成する技術である。光リソグラフィで形成される回路の最小加工寸法は基本的には光源の波長に依存している。従って、次世代の半導体開発には光源の短波長化が必須であり、この光源開発に向けた研究が進められている。
【0003】
次世代リソグラフィ光源として最も有力視されているのが、極端紫外光源(EUV:Extreme Ultra Violet)であり、およそ1〜100nmの波長領域の光を意味する。この領域の光はあらゆる物質に対し吸収率が高く、レンズ等の透過型光学系を利用することができないので、反射型光学系を用いることになる。また極端紫外光領域の光学系は非常に開発が困難で、限られた波長にしか反射特性を示さない。
【0004】
現在、13.5nmに感度を有するMo/Si多層膜反射鏡が開発されており、この波長の光と反射鏡を組み合わせたリソグラフィ技術が開発されれば30nm以下の加工寸法を実現できると予測されている。さらなる微細加工技術の実現のために、波長13.5nmのリソグラフィ光源の開発が急務であり、高エネルギー密度プラズマからの輻射光が注目されている。
【0005】
光源プラズマ生成はレーザー照射方式(LPP:Laser Produced Plasma)とパルスパワー技術によって駆動されるガス放電方式(DPP:Discharge Produced Plasma)に大別できる。DPPは、投入した電力が直接プラズマエネルギーに変換されるので、LPPに比べて変換効率で優位であるうえに、装置が小型で低コストという利点がある。
【0006】
ガス放電方式による高温高密度プラズマからの放射スペクトルは、基本的にはターゲット物質の温度と密度によって決まり、プラズマの原子過程を計算した結果によると、EUV放射領域のプラズマにするにはXe,Snの場合で電子温度、電子密度がそれぞれ数10eV、1018cm−3程度,Liの場合で20eV、1018cm−3程度が最適とされている。
【0007】
なお、上述したプラズマ光源は、非特許文献1,2および特許文献1に開示されている。
【先行技術文献】
【非特許文献】
【0008】
【非特許文献1】佐藤弘人、他、「リソグラフィ用放電プラズマEUV光源」、OQD−08−28
【非特許文献2】Jeroen Jonkers,“High power extreme ultra−violet(EUV) light sources for future lithography”,Plasma Sources Science and Technology, 15(2006) S8−S16
【特許文献】
【0009】
【特許文献1】特開2004−226244号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
EUVリソグラフィ光源には、高い平均出力、微小な光源サイズ、飛散粒子(デブリ)が少ないこと等が要求される。現状では、EUV発光量が要求出力に対して極めて低く、高出力化が大きな課題の一つであるが、一方で高出力化のために入力エネルギーを大きくすると熱負荷によるダメージがプラズマ生成装置や光学系の寿命の低下を招いてしまう。従って、高EUV出力と低い熱負荷の双方を満たすためには、高いエネルギー変換効率が必要不可欠である。
【0011】
プラズマ形成初期には加熱や電離に多くのエネルギーを消費するうえに、EUVを放射するような高温高密度状態のプラズマは一般的に急速に膨張してしまうため、放射持続時間τが極端に短い。従って、変換効率を改善するためには、プラズマをEUV放射のために適した高温高密度状態で長時間(μsecオーダーで)維持することが重要になる。
【0012】
現在の一般的なEUVプラズマ光源の放射時間は100nsec程度であり出力が極端に足りない。産業応用のため高変換効率と高平均出力を両立させる為には1ショットで数μsecのEUV放射時間を達成する必要がある。つまり、高い変換効率を持つプラズマ光源を開発するためには、それぞれのターゲットに適した温度密度状態のプラズマを数μsec(少なくとも1μsec以上)拘束し、安定したEUV放射を達成する必要がある。
【0013】
本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、発生するプラズマ光の出力を大幅に高めることができ、かつ熱負荷及び電極消耗を抑えて装置寿命を延ばすことができるプラズマ光源を提供することにある。
【課題を解決するための手段】
【0014】
本発明によれば、所定の発光点でプラズマ光を周期的に発光する複数のプラズマ光源と、
前記プラズマ光源の複数の発光点におけるプラズマ光を単一の集光点に集光する集光装置と、を備え、
前記集光装置は、前記プラズマ光源の複数の発光点を、単一の中心軸を中心とする同一の円周上に設置する回転体と、
各プラズマ光源の発光時に該プラズマ光源の発光点が同一位置に位置するように、前記回転体を前記中心軸を中心に回転させる回転装置と、
前記同一位置からのプラズマ光を前記集光点に向けて集光する集光ミラーと、を有する、ことを特徴とするプラズマ光源システムが提供される。
【0015】
また、前記各プラズマ光源は、対向配置された1対の同軸状電極と、該同軸状電極内にプラズマ媒体を供給しかつプラズマ発生に適した温度及び圧力に保持する放電環境保持装置と、各同軸状電極に極性を反転させた放電電圧を印加する電圧印加装置と、を備え、1対の同軸状電極間に管状放電を形成してプラズマを軸方向に封じ込めるようになっている。
【発明の効果】
【0016】
上述した本発明の構成によれば、所定の発光点でプラズマ光を周期的に発光する複数のプラズマ光源を備えるので、これを順次動作させることにより、個々の光源の熱負荷を抑制しつつ、発生するプラズマ光の出力を大幅に高めることができる。
【0017】
また、前記プラズマ光源の複数の発光点におけるプラズマ光を単一の集光点に集光する集光装置を備えるので、リソグラフィ用EUV光源として、単一の集光点からプラズマ光を周期的に発光させることができる。
【0018】
また本発明によれば、複数のプラズマ光源を同一円周上に設置し、これらを回転させ、各プラズマ光源が集光ミラーに対向する位置に達したタイミングで、それぞれのプラズマ光源の放電、プラズマ発光を行うことで、単一の集光点から高出力、かつ微小サイズのプラズマ光を周期的に発光させることができる。

【図面の簡単な説明】
【0019】
【図1】本発明と関連するプラズマ光源の実施形態図である。
【図2】図1のプラズマ光源の作動説明図である。
【図3】関連発明によるプラズマ光源システムの第1実施形態図である。
【図4】関連発明によるプラズマ光源システムの第2実施形態図である。
【図5】図4Bの凹面ミラーの第1実施形態図である。
【図6】図4Bの凹面ミラーの第2実施形態図である。
【図7】図4Bの凹面ミラーの第3実施形態図である。
【図8】本発明によるプラズマ光源システムの実施形態図である。
【発明を実施するための形態】
【0020】
以下、本発明の好ましい実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
【0021】
図1は、本発明と関連するプラズマ光源の実施形態図であり、このプラズマ光源10は、1対の同軸状電極11、放電環境保持装置20、及び電圧印加装置30を備える。
1対の同軸状電極11は、対称面1を中心として対向配置されている。各同軸状電極11は、棒状の中心電極12、管状のガイド電極14及びリング状の絶縁体16からなる。
【0022】
棒状の中心電極12は、単一の軸線Z−Z上に延びる導電性の電極である。
管状のガイド電極14は、中心電極12を一定の間隔を隔てて囲み、その間にプラズマ媒体を保有するようになっている。プラズマ媒体は、例えばXe,Sn,Li等のガスである。
リング状の絶縁体16は、中心電極12とガイド電極14の間に位置する中空円筒形状の電気的絶縁体であり、中心電極12とガイド電極14の間を電気的に絶縁する。
【0023】
1対の同軸状電極11は、各中心電極12が同一の軸線Z−Z上に位置し、かつ互いに一定の間隔を隔てて対称に位置する。
【0024】
放電環境保持装置20は、同軸状電極11内にプラズマ媒体を供給し、かつプラズマ発生に適した温度及び圧力に同軸状電極11を保持する。放電環境保持装置20は、例えば、真空チャンバー、温度調節器、真空装置、及びプラズマ媒体供給装置により構成することができる。
【0025】
電圧印加装置30は、各同軸状電極11に極性を反転させた放電電圧を印加する。電圧印加装置30は、この例では、正電圧源32、負電圧源34及びトリガスイッチ36からなる。
正電圧源32は、一方(この例では左側)の同軸状電極11の中心電極12にそのガイド電極14より高い正の放電電圧を印加する。
負電圧源34は、他方(この例では右側)の同軸状電極11の中心電極12にそのガイド電極14より低い負の放電電圧を印加する。
トリガスイッチ36は、正電圧源32と負電圧源34を同時に作動させて、それぞれの同軸状電極11に同時に正負の放電電圧を印加する。
この構成により、本発明のプラズマ光源は、1対の同軸状電極11間に管状放電を形成してプラズマを軸方向に封じ込めるようになっている。
【0026】
図2(A)〜図2(D)は、図1のプラズマ光源の作動説明図である。この図において、図2(A)は面状放電2の発生時、図2(B)は面状放電2の移動中、図2(C)はプラズマ3の形成時、図2(D)はプラズマ閉込め磁場の形成時を示している。
以下、この図を参照して、プラズマ光発生方法を説明する。
【0027】
上記プラズマ光発生方法では、上述した1対の同軸状電極11を対向配置し、放電環境保持装置20により同軸状電極11内にプラズマ媒体を供給しかつプラズマ発生に適した温度及び圧力に保持し、電圧印加装置30により各同軸状電極11に極性を反転させた放電電圧を印加する。
【0028】
図2(A)に示すように、この電圧印加により、1対の同軸状電極11に絶縁体16の表面でそれぞれ面状の放電電流(以下、面状放電2と呼ぶ)が発生する。面状放電2は、2次元的に広がる面状の放電電流であり、以下「電流シート」と呼ぶ。
なおこの際、左側の同軸状電極11の中心電極12は正電圧(+)、ガイド電極14は負電圧(−)に印加され、右側の同軸状電極11の中心電極12は負電圧(−)、そのガイド電極14は正電圧(+)に印加されている。
【0029】
図2(B)に示すように、面状放電2は、自己磁場によって電極から排出される方向(図で中心に向かう方向)に移動する。
【0030】
図2(C)に示すように、面状放電2が1対の同軸状電極11の先端に達すると、1対の面状放電2の間に挟まれたプラズマ媒体6が高密度、高温となり、各同軸状電極11の対向する中間位置(中心電極12の対称面1)に単一のプラズマ3が形成される。
【0031】
さらに、この状態において、対向する1対の中心電極12は、正電圧(+)と負電圧(−)であり、同様に対向する1対のガイド電極14も、正電圧(+)と負電圧(−)であるので、図2(D)に示すように、面状放電2は対向する1対の中心電極12同士、及び対向する1対のガイド電極14の間で放電する管状放電4に繋ぎ換えられる。ここで、管状放電4とは、軸線Z−Zを囲む中空円筒状の放電電流を意味する。
この管状放電4が形成されると、図に符号5で示すプラズマ閉込め磁場(磁気ビン)が形成され、プラズマ3を半径方向及び軸方向に封じ込むことができる。
すなわち、磁気ビン5はプラズマ3の圧力により中央部は大きくその両側が小さくなり、プラズマ3に向かう軸方向の磁気圧勾配が形成され、この磁気圧勾配によりプラズマ3は中間位置に拘束される。さらにプラズマ電流の自己磁場によって中心方向にプラズマ3は圧縮(Zピンチ)され、半径方向にも自己磁場による拘束が働く。
この状態において、プラズマ3の発光エネルギーに相当するエネルギーを電圧印加装置30から供給し続ければ、高いエネルギー変換効率で、プラズマ光8(EUV)を長時間安定して発生させることができる。
【0032】
上述した装置と方法によれば、対向配置された1対の同軸状電極11を備え、1対の同軸状電極11にそれぞれ面状の放電電流(面状放電2)を発生させ、面状放電2により各同軸状電極11の対向する中間位置に単一のプラズマ3を形成し、次いで面状放電2を1対の同軸状電極間の管状放電4に繋ぎ換えてプラズマ3を封じ込めるプラズマ閉込め磁場(磁気ビン5)を形成するので、EUV放射のためのプラズマ光を長時間(μsecオーダーで)安定して発生させることができる。
【0033】
また、従来のキャピラリー放電や真空光電金属プラズマと比較すると、1対の同軸状電極11の対向する中間位置に単一のプラズマ3が形成され、かつエネルギー変換効率を大幅(10倍以上)に改善できるので、プラズマ形成中における各電極の熱負荷が小さくなり、構成機器の熱負荷によるダメージを大幅に低減できる。
【0034】
また、1対の同軸状電極11の対向する中間位置にプラズマ光の発光源であるプラズマ3が形成されるので、発生したプラズマ光の有効な放射立体角を大きくできる。
【0035】
しかし、上述したプラズマ光源により、従来技術と比較してエネルギー変換効率を大幅に改善できるが、そのエネルギー変換効率は依然として低く(例えば10%程度)、光源部に投入する電力1kWに対して発生可能なプラズマ光の出力は0.1kW程度に過ぎない。
そのため、リソグラフィ光源に要求されるプラズマ光の出力(例えば1kW)を達成するために、光源部に投入する電力を大幅に高めると、熱負荷が過大となり、電極の消耗が激しくなり、装置の寿命が短縮する可能性がある。
【0036】
図3(A)と図3(B)は、関連発明によるプラズマ光源システムの第1実施形態図であり、図3(A)は平面図、図3(B)は側面図である。
この図において、関連発明のプラズマ光源システムは、複数(この例では4つ)のプラズマ光源10(この例では、10A,10B,10C,10D)と、集光装置40を備える。
【0037】
複数(4つ)のプラズマ光源10(10A,10B,10C,10D)は、それぞれ、所定の発光点1aでプラズマ光8を周期的に発光する。この周期は1kHz以上、プラズマ光の発光時間は1μsec以上、プラズマ光の出力は0.1kW以上であるのがよい。また、各プラズマ光源10の周期、発光時間および出力はそれぞれ等しいことが好ましい。
また、各プラズマ光源10は、図1に示したように対向配置された1対の同軸状電極11と、同軸状電極11内にプラズマ媒体を供給しかつプラズマ発生に適した温度及び圧力に保持する放電環境保持装置20と、各同軸状電極11に極性を反転させた放電電圧を印加する電圧印加装置30とを備え、1対の同軸状電極11の間に管状放電を形成してプラズマを軸方向に封じ込めるようになっている。
【0038】
集光装置40は、プラズマ光源10の複数の発光点1aにおけるプラズマ光8を単一の集光点9に集光する。
【0039】
この例において、プラズマ光源10の複数の発光点1aは、単一の中心軸7を中心とする同一の円周上に設置されている。円周上の間隔は、好ましくは互いに等しく設定するのがよい。
また、この例において、集光装置40は、単一の反射ミラー42、単一の回転装置44、および複数(この例では4つ)の集光ミラー46(この例では、46A,46B,46C,46D)を有する。
【0040】
反射ミラー42は、前記中心軸上に位置し、プラズマ光源10の各発光点1aからのプラズマ光8を中心軸7上に位置する集光点9に向けて反射するようになっている。反射ミラー42は、凹面ミラーであるのが好ましいが、平面ミラーであってもよい。
【0041】
回転装置44は、各プラズマ光源10の発光時に反射ミラー42がそのプラズマ光源に向くように、中心軸7を中心に反射ミラー42を回転させるようになっている。
【0042】
複数(4つ)の集光ミラー46(46A,46B,46C,46D)は、各発光点1aのプラズマ光8を反射ミラー42に向けて集光する。
また、集光ミラー46と反射ミラー42は、この両者により、各発光点1aにおけるプラズマ光8を単一の集光点9に集光するように、形状が設定されている。
【0043】
なお、プラズマ光源10を構成する放電環境保持装置20と電圧印加装置30は、複数のプラズマ光源10にそれぞれ設けるのが好ましいが、その一部又は全部を共用してもよい。
【0044】
なお、この実施形態において、プラズマ光源10は、4台であるが、2〜3台でも、5台以上でもよい。また、特に、発光間隔を短縮し、高繰返し運転(1〜10kHz)を実現するためには、多いほど好ましく、例えば10以上であるのが好ましい。
例えば、図3における中心軸7を中心とする円の半径をR、回転速度をN、プラズマ光8のパルス幅をτとした場合、放電中のプラズマ移動量Δは、2πR・N・τで表され、Nが100(10ヘッド、1kHz)、τが5μs、Rが5cmの場合、プラズマ移動量Δは、約160μmであり、EUVプラズマ光源に適用可能な微小サイズにできる。
【0045】
上述した関連発明の第1実施形態によれば、複数のプラズマ光源10を同一円周上に設置し、集光ミラー46と反射ミラー42からなる集光系による集光点9を上記円の中心軸線上に作り、円の中心部に設置した反射ミラー42で円中心を通る垂直軸上に集光させる配置とし、さらに、円周上に配置された個々のプラズマ光源10の発光タイミングと同期して、反射ミラー42の反射面がそのプラズマ光源10に対面するように回転させることにより、単一の集光点9から高出力、かつ微小サイズのプラズマ光を周期的に発光させることができる。
【0046】
図4(A)と図4(B)は、関連発明によるプラズマ光源システムの第2実施形態図である。この例において、反射ミラー42は、各発光点1aからのプラズマ光8を中心軸7上に位置する集光点9に向けて集光する凹面ミラー43である。
その他の構成は、第1実施形態と同様である。
【0047】
図5は、図4(B)の凹面ミラー43の第1実施形態図である。
図5において、複数の発光点1aを含む平面と中心軸7との交点を原点Oとし、原点Oと発光点1aを結ぶ線をX軸、原点Oと中心軸7上に位置する集光点9を結ぶ線をY軸、発光点1aと集光点9を結ぶ線を対称軸Cとする。
【0048】
図5において、凹面ミラー43は多層膜ミラーであり、その反射面の形状は、反射面に対する法線に対する入射角と反射角が一致し、かつ対称軸Cに対して線対称に形成されている。
【0049】
上述した関連発明の第2実施形態によれば、単一の凹面ミラー43により各発光点1aからのプラズマ光8を中心軸7上に位置する集光点9に向けて集光することができる。
従って、円周上に配置された個々のプラズマ光源10の発光タイミングと同期して、凹面ミラー43の反射面がそのプラズマ光源10に対面するように回転させることにより、単一の集光点9から高出力、かつ微小サイズのプラズマ光8を周期的に発光させることができる。
【0050】
また、EUV領域のミラーは反射率が低い(例えば70%前後)ため、複数ミラーの構成では、発生したEUV光の利用効率が大きく低下することが知られている。
これに対し、図5の構成では、単一の凹面ミラー43による1回の反射でプラズマ光8を集光点9に集光するので、反射効率を高くでき、発生したEUV光の利用効率を大きくできる。
【0051】
図6は、図4(B)の凹面ミラー43の第2実施形態図である。
図6において、凹面ミラー43は多層膜ミラーであり、その反射面の形状は、反射面に対する法線に対する入射角と反射角が一致し、かつ対称軸Cに対して線対称に形成されている。またこの例では、凹面ミラー43と中心軸7との交点Oと各発光点1aとを結ぶ直線がX軸に対してなす角度φは0度ではなく、例えば10〜45度に設定されている。なお、各発光点1aをY軸の負側に設定し、角度φを負に設定してもよい。
この場合、凹面ミラー43の反射面のX−Y平面上の曲線は、数1の式(1)で表される。ここで、各発光点1aと集光点9のX−Y軸上の位置をS(cosφ、sinφ)とF(Y、0)とする。
その他の構成は、図5と同様である。
この曲線は、点S、Fを2つの焦点とし、点Oを通る楕円弧となる。
ミラー曲面は、X−Y平面上のこの曲線を対称軸Cの周りに一定角度回転して得られる曲面である。
【0052】
【数1】

【0053】
図6の構成により、凹面ミラー43へのプラズマ光8の入射角が45°未満となり、P偏光成分(電界振動が入射面に平行)の反射率が0となる入射角度領域を無くす事ができる。
その他の効果は、図5と同様である。
【0054】
図7は、図4(B)の凹面ミラー43の第3実施形態図である。
図7において、凹面ミラー43は多層膜ミラーであり、その反射面の形状は、反射面に対する法線に対する入射角と反射角が一致し、かつ対称軸Cに対して線対称に形成されている。またこの例では、原点Oから各発光点1aまでの距離(中心軸7を中心とする円の半径R)と集光点9までの距離が等しく設定されている。
この場合、凹面ミラー43の反射面のX−Y軸上の曲線は、数2の式(2)で表される。
その他の構成は、図5と同様である。
【0055】
【数2】

【0056】
図7の構成により、集光点9に光軸対称にプラズマ光8を集光させることができる。またこの場合、集光点9からのプラズマ光8の照射角は、発光点1aからのプラズマ光8の照射角と同一となる。
その他の効果は、図5と同様である。
【0057】
図8(A)と図8(B)は、本発明によるプラズマ光源システムの実施形態図であり、図8(A)は平面図、図8(B)は側面図である。
この図において、本発明のプラズマ光源システムは、複数(この例では4つ)のプラズマ光源10(この例では、10A,10B,10C,10D)と、集光装置40を備える。
【0058】
この例において、集光装置40は、単一の回転体48、単一の回転装置44、および単一の集光ミラー46を有する。
回転体48は、プラズマ光源10の複数(4つ)の発光点1aを、単一の中心軸7を中心とする同一の円周上に設置する。
回転装置44は、各プラズマ光源10の発光時にそのプラズマ光源の発光点1aが同一位置(図で右側の発光点1a)に位置するように、回転体48を中心軸7を中心に回転させる。
【0059】
また集光ミラー46は、前記同一位置(図で右側の発光点1a)からのプラズマ光8を集光点9に向けて集光する。
【0060】
なお、プラズマ光源10を構成する放電環境保持装置20と電圧印加装置30は、複数のプラズマ光源10にそれぞれ設けるのが好ましいが、その一部又は全部を共用してもよい。
その他の構成は、関連発明の第1実施形態と同様である。
【0061】
上述した本発明の実施形態によれば、複数のプラズマ光源10を同一円周上に設置し、これらを回転させ、各プラズマ光源10が集光ミラー46に対向する位置に達したタイミングで、それぞれのプラズマ光源10の放電、プラズマ発光を行うことで、単一の集光点から高出力、かつ微小サイズのプラズマ光を周期的に発光させることができる。
【0062】
上述したように、本発明の構成によれば、所定の発光点1aでプラズマ光8を周期的に発光する複数のプラズマ光源10を備えるので、これを順次動作させることにより、個々の光源の熱負荷を抑制しつつ、発生するプラズマ光の出力を大幅に高めることができる。
【0063】
また、プラズマ光源10の複数の発光点1aにおけるプラズマ光8を単一の集光点9に集光する集光装置40を備えるので、リソグラフィ用EUV光源として、単一の集光点9からプラズマ光を周期的に発光させることができる。
【0064】
なお、本発明は上述した実施形態に限定されず、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
【符号の説明】
【0065】
1 対称面、1a 発光点、
2 面状放電(電流シート)、3 プラズマ、
4 管状放電、5 プラズマ閉込め磁場、
6 プラズマ媒体、7 中心軸、
8 プラズマ光(EUV)、9 集光点、
10(10A,10B,10C,10D) プラズマ光源、
11 同軸状電極、12 中心電極、12a 凹穴、
14 ガイド電極、14a 開口、
16 絶縁体(多孔質セラミック)、
18 プラズマ媒体供給装置、18a リザーバー(ルツボ)、
18b 加熱装置、20 放電環境保持装置、
30 電圧印加装置、32 正電圧源、
34 負電圧源、36 トリガスイッチ、
40 集光装置、42 反射ミラー、43 凹面ミラー、
46(46A,46B,46C,46D) 集光ミラー、
48 回転体


【特許請求の範囲】
【請求項1】
所定の発光点でプラズマ光を周期的に発光する複数のプラズマ光源と、
前記プラズマ光源の複数の発光点におけるプラズマ光を単一の集光点に集光する集光装置と、を備え、
前記集光装置は、前記プラズマ光源の複数の発光点を、単一の中心軸を中心とする同一の円周上に設置する回転体と、
各プラズマ光源の発光時に該プラズマ光源の発光点が同一位置に位置するように、前記回転体を前記中心軸を中心に回転させる回転装置と、
前記同一位置からのプラズマ光を前記集光点に向けて集光する集光ミラーと、を有する、ことを特徴とするプラズマ光源システム。
【請求項2】
前記各プラズマ光源は、対向配置された1対の同軸状電極と、該同軸状電極内にプラズマ媒体を供給しかつプラズマ発生に適した温度及び圧力に保持する放電環境保持装置と、各同軸状電極に極性を反転させた放電電圧を印加する電圧印加装置と、を備え、
1対の同軸状電極間に管状放電を形成してプラズマを軸方向に封じ込める、ことを特徴とする請求項1に記載のプラズマ光源システム。



【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−212942(P2012−212942A)
【公開日】平成24年11月1日(2012.11.1)
【国際特許分類】
【出願番号】特願2012−167068(P2012−167068)
【出願日】平成24年7月27日(2012.7.27)
【分割の表示】特願2011−529878(P2011−529878)の分割
【原出願日】平成22年8月25日(2010.8.25)
【出願人】(000000099)株式会社IHI (5,014)
【Fターム(参考)】