説明

プリプレグおよび繊維強化複合材料

【課題】
優れた成形性を有するプリプレグを提供し、また、それを用いて、機械特性、難燃性に優れた繊維強化複合材料を提供することにある。
【解決手段】
環式ポリアリーレンスルフィドを少なくとも50重量%以上含み、かつ重量平均分子量が10,000未満であるポリアリーレンスルフィドプレポリマーを含有することを特徴とする樹脂組成物を強化繊維に含浸せしめてなるプリプレグであり、かかるプリプレグ中の前記ポリアリーレンスルフィドプレポリマーを含有する樹脂組成物を重合せしめて得られる繊維強化複合材料である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高性能な繊維強化複合材料を得るために有用なプリプレグ、およびそれを用いた航空宇宙用途、一般産業用途に適した繊維強化複合材料、特に、航空機、車両、船舶、電気電子機器向けの積層体に好適に用いることができる繊維強化複合材料に関するものである。
【背景技術】
【0002】
強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、軽量で優れた強度特性を付与できること、繊維配向を制御することで任意の強度設計が可能なことにより、ゴルフシャフト、釣り竿などのスポーツ用途をはじめ、航空機部品、人工衛星部品などの航空宇宙用途、自動車・船舶、電気電子機器筐体、ロボット部品、風車、タンク類、浴槽、ヘルメット等の一般産業用途などに広く用いられている。また、繊維強化複合材料を製造するにあたって、強化繊維にあらかじめマトリックス樹脂を含浸させたプリプレグを中間基材として使用し、プリプレグを積層して積層体とする製造方法は、一般に繊維含有率を高めやすく、取り扱いが比較的容易なことから広く行われている。プリプレグにおいて、強化繊維に含浸させるマトリックス樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂などの熱硬化性の樹脂が、繊維束への含浸の容易さから用いられる場合が多いが、熱硬化性樹脂は、硬化により三次元網目構造の不溶・不融のポリマーとなり、リサイクルが難しく、廃棄の問題がより深刻になる。
【0003】
一方、プリプレグに用いられる熱可塑性マトリックス樹脂は、ポリエチレン、ポリエステル、ポリアミド、ポリカーボネートなど多くの樹脂が使用されるが、航空宇宙用途などの高性能を要求される用途では耐熱性や耐薬品性、機械特性の点において優れるポリエーテルエーテルケトンやポリエーテルイミド、ポリフェニレンスルフィドなどが好適に用いられ、特にポリフェニレンスルフィドなどのポリアリーレンスルフィド類が好適に用いられる。
【0004】
しかし、これらの熱可塑性樹脂プリプレグは、繊維束にマトリックス樹脂を含浸させる製造工程において、熱硬化性樹脂に比較して分子量が高いことから高温・高圧を要し、繊維含有率の高いプリプレグの製造が困難で、また、製造したプリプレグに未含浸が多く、機械特性が十分に得られないなどの問題があった。
【0005】
この問題に対して、ポリアリーレンスルフィド類を分散媒中でスラリー状にしてガラス繊維マットに含浸させやすくしてプリプレグを製造する方法(例えば、特許文献1参照)や、比較的低分子量のポリアリーレンスルフィドをシート状にして繊維基材と共に積層し、プリプレグを介さずに積層体を製造する方法(例えば、特許文献2参照)が知られている。しかし、前者のような方法では分散媒の乾燥に設備と時間を要するだけでなく、分散媒を完全に除去することが困難であり、積層成形時に分散媒の揮発による発生するボイドで機械特性が十分に得られない問題がある。また、後者のような方法では、高温・高圧の成形条件が必要であり、未含浸などの不良により、やはり機械特性が不十分になってしまう問題があった。
【特許文献1】特開平5−39371号公報
【特許文献2】特開平9−25346号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明の目的は、上述した問題点を解決し、優れた成形性を有し機械特性に優れた積層体を製造できるプリプレグを提供し、また、それを用いて、機械特性、難燃性に優れた繊維強化複合材料を提供することにある。
【課題を解決するための手段】
【0007】
本発明は、前述した目的を達成する為に以下の構成を有する。すなわち、環式ポリアリーレンスルフィドを少なくとも50重量%以上含み、かつ重量平均分子量が10,000未満であるポリアリーレンスルフィドプレポリマーを含有することを特徴とする樹脂組成物を強化繊維に含浸せしめてなるプリプレグであり、また、強化繊維の含有率が60〜80重量%である前述のプリプレグである。さらには、前述のプリプレグ中の前記ポリアリーレンスルフィドプレポリマーを含有する樹脂組成物を重合せしめて得られる繊維強化複合材料であり、前述のプリプレグを積層した後、前記ポリアリーレンスルフィドプレポリマーを含有する樹脂組成物を重合せしめて得られる繊維強化複合材料積層体である。
【発明の効果】
【0008】
本発明のプリプレグは、取扱性や成形性に優れると共に繊維含有率を高くでき、機械特性に優れた繊維強化複合材料を与えることができる。また、本発明の繊維強化複合材料は、機械特性のみならず難燃性にも優れる。
【発明を実施するための最良の形態】
【0009】
本発明のプリプレグは、環式ポリアリーレンスルフィドを少なくとも50重量%以上含み、かつ重量平均分子量が10,000未満であるポリアリーレンスルフィドプレポリマーを含有することを特徴とする樹脂組成物を強化繊維に含浸せしめてなるプリプレグである。
【0010】
本発明における環式ポリアリーレンスルフィドとは式、−(Ar−S)−の繰り返し単位を主要構成単位とする環式化合物であり、好ましくは当該繰り返し単位を80重量%以上、より好ましくは90重量%以上、更に好ましくは95重量%以上含有する下記一般式(A)のごとき化合物である。Arとしては前記式(B)〜式(L)などであらわされる単位などがあるが、なかでも式(B)が本発明のプリプレグを用いて得られる繊維強化複合材料の弾性率や耐熱性、難燃性などの特性が優れる点で特に好ましい。
【0011】
【化1】

【0012】
【化2】

【0013】
なお、環式ポリアリーレンスルフィドにおいては前記式(B)〜式(L)などの繰り返し単位をランダムに含んでも良いし、ブロックで含んでも良く、それらの混合物のいずれかであってもよい。これらの代表的なものとして、環式ポリフェニレンスルフィド(前記式(B)、式(C)、式(G)〜式(L))、環式ポリフェニレンスルフィドスルホン(前記式(E))、環式ポリフェニレンスルフィドケトン(前記式(D))、環式ポリフェニレンスルフィドエーテル(前記式(F))これらが含まれる環式ランダム共重合体、環式ブロック共重合体及びそれらの混合物などが挙げられる。特に好ましい環式ポリアリーレンスルフィドとしては、主要構成単位としてp−フェニレンスルフィド単位
【0014】
【化3】

【0015】
を80重量%以上、特に90重量%以上含有する環式ポリフェニレンスルフィド(以下、環式PPSと略すこともある)が挙げられ、この場合、本発明のプリプレグを用いて得られる繊維強化複合材料の弾性率や耐熱性などの特性が優れる点で好ましい。なお、ここでの重量分率は、環式ポリアリーレンスルフィドの重量を基準としたものである。
【0016】
環式ポリアリーレンスルフィドの前記(A)式中の繰り返し数mに特に制限は無いが、2〜50が好ましく、2〜25がより好ましく、3〜20が更に好ましい。mが大きくなると相対的に分子量が上昇するため、mが50以上になるとArの種類によっては環式ポリアリーレンスルフィドの融解温度および、融解時の粘度が高くなり、強化繊維基材への含浸が困難になる場合がある。
【0017】
また、環式ポリアリーレンスルフィドは、単一の繰り返し数を有する単独化合物、異なる繰り返し数を有する環式ポリアリーレンスルフィドの混合物のいずれでも良いが、異なる繰り返し数を有する環式ポリアリーレンスルフィドの混合物の方が単一の繰り返し数を有する単独化合物よりも溶融解温度が低い傾向があり、強化繊維基材へ含浸しやすくなるので好ましい。
【0018】
本発明におけるポリアリーレンスルフィドプレポリマーにおける環式ポリアリーレンスルフィド以外の成分は線状のポリアリーレンスルフィドオリゴマーであることが本発明のプリプレグを用いて得られる繊維強化複合材料の弾性率や耐熱性などの特性が優れる点で特に好ましい。ここで線状のポリアリーレンスルフィドオリゴマーとは、式、−(Ar−S)−の繰り返し単位を主要構成単位とする、好ましくは当該繰り返し単位を80重量%以上、好ましくは90重量%以上、更に好ましくは95重量%以上含有するホモオリゴマーまたはコオリゴマーである。Arとしては前記した式(B)〜式(L)などであらわされる単位などがあるが、なかでも式(B)が特に好ましい。線状のポリアリーレンスルフィドオリゴマーはこれら繰り返し単位を主要構成単位に含む限り、
【0019】
【化4】

【0020】
式(M)〜式(O)などで表される少量の分岐単位または架橋単位を含むことができる。これら分岐単位または架橋単位の共重合量は、−(Ar−S)−の単位1モルに対して0〜1モル%の範囲であることが本発明のプリプレグを用いて得られる繊維強化複合材料の弾性率や耐熱性などの特性が優れるのみならず、強化繊維基材に対する含浸性に優れる傾向にある点で好ましい。また、線状のポリアリーレンスルフィドオリゴマーは上記繰り返し単位を含むランダム共重合体、ブロック共重合体及びそれらの混合物のいずれかであってもよい。
【0021】
これら線状のポリアリーレンスルフィドオリゴマーの代表的なものとして、ポリフェニレンスルフィドオリゴマー、ポリフェニレンスルフィドスルホンオリゴマー、ポリフェニレンスルフィドケトンオリゴマー、ポリフェニレンスルフィドエーテルオリゴマー、これらのランダム共重合体、ブロック共重合体及びそれらの混合物などが挙げられる。特に好ましい線状のポリアリーレンスルフィドオリゴマーとしては、ポリマーの主要構成単位としてp−フェニレンスルフィド単位を80重量%以上、特に90重量%以上含有する線状のポリフェニレンスルフィドオリゴマーが本発明のプリプレグを用いて得られる繊維強化複合材料の弾性率や耐熱性などの特性が優れるのみならず、強化繊維基材に対する含浸性に優れる傾向にある点で好ましい。
【0022】
本発明におけるポリアリーレンスルフィドプレポリマーは、環式ポリアリーレンスルフィドを少なくとも50重量%以上含むものであり、好ましくは70重量%以上、より好ましくは80重量%以上、更に好ましくは90%以上含むものである。また、ポリアリーレンスルフィドプレポリマーに含まれる環式ポリアリーレンスルフィドの上限値には特に制限は無く、100重量%が最も好ましい。通常、ポリアリーレンスルフィドプレポリマーにおける環式ポリアリーレンスルフィドの重量比率が高いほど、繊維強化複合材料の曲げ強度や層間剪断強度のような機械特性が向上する。この理由は定かではないが、環式ポリアリーレンスルフィドの重量比率が高くなると重合後に得られるポリマーの重合度が高くなる傾向にあり、このことと関係があるのではないかと考えている。
【0023】
本発明におけるポリアリーレンスルフィドプレポリマーの分子量の上限値は、重量平均分子量で10,000未満であり、5,000以下が好ましく、3,000以下が更に好ましく、一方、下限値は重量平均分子量で300以上が好ましく、400以上がより好ましく、500以上が更に好ましい。重量平均分子量が10,000以上では樹脂組成物の粘度が高くなるため強化繊維基材に対する含浸性が不十分となり、それに加えて、これを成形して得られる繊維強化複合材料積層体の力学特性のうち特に層間剪断強度が低下する。層間剪断強度が低下する理由は定かではないが、重量平均分子量が大きいと積層成形時の反応が減少するために層間にまたがる高分子鎖が減少し、層間剪断強度が低下するものと考えている。また、重量平均分子量が300以下では、重合後の機械特性などが不十分になる。ポリマーの重合度が十分に向上しないためと考える。
【0024】
本発明におけるポリアリーレンスルフィドプレポリマーを得る方法としては例えば以下の方法が挙げられる。
【0025】
(1)少なくともポリハロゲン化芳香族化合物、スルフィド化剤および有機極性溶媒を含有する混合物を加熱してポリアリーレンスルフィド樹脂を重合することで、80meshふるい(目開き0.125mm)で分離される顆粒状PAS樹脂、重合で生成したPAS成分であって前記顆粒状PAS樹脂以外のPAS成分(ポリアリーレンスルフィドオリゴマーと称する)、有機極性溶媒、水、およびハロゲン化アルカリ金属塩を含む混合物を調製し、ここに含まれるポリアリーレンスルフィドオリゴマーを分離回収し、これを精製操作に処すことでポリアリーレンスルフィドプレポリマーを得る方法。
【0026】
(2)少なくともポリハロゲン化芳香族化合物、スルフィド化剤および有機極性溶媒を含有する混合物を加熱してポリアリーレンスルフィド樹脂を重合して、重合終了後に公知の方法によって有機極性溶媒の除去を行い、ポリアリーレンスルフィド樹脂、水、およびハロゲン化アルカリ金属塩を含む混合物を調製し、これを公知の方法で精製することで得られるポリアリーレンスルフィドプレポリマーを含むポリアリーレンスルフィド樹脂を得て、これを実質的にポリアリーレンスルフィド樹脂は溶解しないがポリアリーレンスルフィドプレポリマーは溶解する溶剤を用いて抽出してポリアリーレンスルフィドプレポリマーを回収する方法。
【0027】
本発明における樹脂組成物は、ポリアリーレンスルフィドプレポリマー以外の成分を含んでもかまわない。ポリアリーレンスルフィドプレポリマー以外の成分としては、特に制限はなく、各種の熱可塑性樹脂のポリマー、オリゴマー、各種の熱硬化性樹脂、無機充填剤、相溶化剤、酸化防止剤、熱安定剤、紫外線吸収剤、難燃剤、着色剤、粘着剤などの各種添加剤を配合しても良い。
【0028】
熱可塑性樹脂の具体例としては、ポリエチレン、ポリアミド、ポリエステル、ポリスチレン、ポリカーボネート、ポリフェニレンオキシド、ポリイミド、ポリアミドイミド、ポリエーテルケトン、ポリビニルホルマール、ポリビニルアセタール、ポリスルホン、ポリエーテルスルホンなどの線状または環式のポリマー、オリゴマーがあげられる。
【0029】
熱硬化性樹脂の具体例としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂などがあげられる。
【0030】
また、プリプレグの積層を容易にするために前記樹脂組成物に粘着付与剤を配合することが好ましい。粘着付与剤としては軟化点150℃以下で分子内に極性基を有する化合物が好適に用いられる。軟化点は、JIS K7206―1999で規定されるビカット軟化点を意味し、軟化点が150℃以下の物は分子量が比較的小さいので流動性が良く、プリプレグ積層時の粘着性が向上し、分子内に極性基を有する物も水素結合などの弱い結合を誘起して、プリプレグ積層時の粘着性が向上するので好ましい。具体的には、エチレン−エチルアクリレート共重合体、エチレン−ビニルアクリレート共重合体、テルペン重合体、テルペンフェノール共重合体、ポリウレタンエラストマー、アクリロニトリルブタジエンゴム(NBR)などが好適に用いられる。
【0031】
本発明のプリプレグは、強化繊維に前述の樹脂組成物を含浸せしめたものである。
【0032】
本発明における強化繊維は、特に限定されないが、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等が使用でき、これらの繊維を2種以上混在させることもできる。これらの中でも、軽量かつ高強度・高弾性率の成形品を得るためには、炭素繊維を用いるのが好ましく、特に引張弾性率で200〜700GPaの炭素繊維を用いることが、好ましい。
【0033】
本発明における強化繊維の形態及び配列は、例えば、一方向に引き揃えたもの、織物(クロス)、編み物、組み紐、トウ、マット等が用いられる。中でも、積層構成によって容易に強度特性を設計可能であることから、一方向に引き揃えられたものを使用するのが好ましく、曲面にも容易に賦形できることから織物が好ましく使用される。
【0034】
本発明における強化繊維のプリプレグ中での重量含有率は、特に限定されるものではないが、環式ポリアリーレンスルフィドを少なくとも50重量%以上含む樹脂組成物を含浸させることで強化繊維のプリプレグ中での重量含有率を高めることができる特徴があり、機械的特性と成形性のバランスから40〜90重量%が好ましく、50〜85重量%がより好ましく、60〜80重量%が特に好ましい。重量含有率が40%未満では曲げ強度などの機械特性が十分でなく、90重量%を超えると強化繊維への樹脂組成物の含浸が困難となる。
【0035】
ここでいう強化繊維の重量含有量はプリプレグから有機溶媒などにより樹脂を溶出し、繊維重量を計量することにより求めることができる。
【0036】
本発明のプリプレグは、樹脂組成物を溶媒に溶解または分散させて低粘度化し、含浸させるウエット法または、加熱により低粘度化し、含浸させるホットメルト法等によって製造できる。
【0037】
ウェット法は、強化繊維を樹脂組成物の溶液または分散液に浸漬した後、引き上げ、オーブン等を用いて溶媒を蒸発せしめ、プリプレグを得る方法である。
【0038】
ホットメルト法は、加熱により低粘度化した樹脂組成物を直接強化繊維に加熱加圧することにより含浸させる方法、または樹脂組成物を離型紙等の上にコーティングした樹脂フィルムを作製しておき、次に強化繊維の両側、又は片側からそのフィルムを重ね、加熱加圧することにより樹脂を含浸させる方法などにより、プリプレグを得る方法である。ホットメルト法では溶剤を使用しないので強化繊維への含浸工程で樹脂粘度をある程度低くする必要があるが、プリプレグ中に残留する溶媒が実質的に皆無となるため好ましい。
【0039】
また、本発明の繊維強化複合材料は、このような方法により製造されたプリプレグを任意の構成で1枚以上積層後、熱及び圧力を付与しながら樹脂を重合させる方法等により製造できる。加熱温度や圧力には特に制限はないが、加熱温度としては、150℃以上、400℃以下が例示でき、好ましくは200℃以上、380℃以下で、圧力は、0.1MPa以上、10MPa以下が例示でき、0.2MPa以上、5MPa以下が好ましい。
【0040】
熱及び圧力を付与する方法としては、任意の構成のプリプレグを型内もしくはプレス板上に設置した後、型もしくはプレス板を閉じて加圧するプレス成形法、任意の構成のプリプレグをオートクレーブ内に投入して加圧・加熱するオートクレーブ成形法、任意の構成のプリプレグをナイロンフィルムなどで包み込み、内部を減圧にして大気圧で加圧しながらオーブン中で加熱するバッギング成形法、任意の構成のプリプレグに張力をかけながらテープを巻き付け、オーブン内で加熱するラッピングテープ法、任意の構成のプリプレグを型内に設置し、同じく型内に設置した中子内に気体や液体などを注入して加圧する内圧成形法等が使用される。
【0041】
上記のようにして得られた、本発明の繊維強化複合材料は、マトリックス樹脂がポリアリーレンスルフィドであり、耐熱性、機械特性、難燃性、耐薬品性などに優れたものとなる。また、マトリックス樹脂が熱可塑性のポリアリーレンスルフィドなので、加熱などにより樹脂を可塑化できるのでリサイクルやリペアが容易な繊維強化複合材料となる。
【実施例】
【0042】
以下、本発明を実施例により、さらに詳細に説明する。
[参考例1]
<ポリフェニレンスルフィドプレポリマー1の調製>
撹拌機付きの150リットルオートクレーブに、47.5%水硫化ナトリウム16.54kg(140モル)、96%水酸化ナトリウム5.92kg(142モル)、N−メチル−2−ピロリドン(以下NMPと略する場合もある)を22.88kg(232モル)、酢酸ナトリウム3.44kg(42モル)、及びイオン交換水21kgを仕込み、常圧で窒素を通じながら約240℃まで約3時間かけて徐々に加熱し、精留塔を介して水30kgおよびNMP550gを留出した後、反応容器を160℃に冷却した。なお、この脱液操作の間に仕込んだイオウ成分1モル当たり0.02モルの硫化水素が系外に飛散した。
【0043】
次に、p−ジクロロベンゼン20.6kg(140.6モル)、NMP18kg(182モル)を加え、反応容器を窒素ガス下に密封した。240rpmで撹拌しながら、0.6℃/分の速度で270℃まで昇温し、この温度で140分保持した。水を2.52kg(105モル)を15分かけて圧入しながら250℃まで1.3℃/分の速度で冷却した。その後220℃まで0.4℃/分の速度で冷却してから、室温近傍まで急冷し、スラリー(A)80kgを得た。このスラリー(A)を52kgのNMPで希釈しスラリー(B)を得た。
80℃に加熱したスラリー(B)132kgをふるい(80mesh、目開き0.175mm)で濾別し、粗PPS樹脂とスラリー(C)を100kg得た。スラリー(C)をロータリーエバポレーターに仕込み、窒素で置換後、減圧下100〜160℃で1.5時間処理した後、真空乾燥機で160℃、1時間処理した。得られた固形物中のNMP量は3重量%であった。
この固形物にイオン交換水120kg(スラリー(C)の1.2倍量)を加えた後、70℃で30分撹拌して再スラリー化した。このスラリーを目開き10〜16μmのガラスフィルターで吸引濾過した。得られた白色ケークにイオン交換水120kgを加えて70℃で30分撹拌して再スラリー化し、同様に吸引濾過後、70℃で5時間真空乾燥してポリフェニレンスルフィドオリゴマー1.2kgを得た。
【0044】
得られたポリフェニレンスルフィドオリゴマーをさらにクロロホルム36kgで3時間ソックスレー抽出した。得られた抽出液からクロロホルムを留去して得られた固体に再度クロロホルム6kgを加え、室温で溶解しスラリー状の混合液を得た。これをメタノール75kgに撹拌しながらゆっくりと滴下し、沈殿物を目開き10〜16μmのガラスフィルターで吸引濾過し、得られた白色ケークを70℃で3時間真空乾燥して白色粉末360gを得た。
【0045】
この白色粉末の重量平均分子量は900であった。この白色粉末の赤外分光分析における吸収スペクトルより、白色粉末はポリフェニレンスルフィドであることが判明した。また、示差走査型熱量計を用いてこの白色粉末の熱的特性を分析した結果(昇温速度40℃/分)、約200〜260℃にブロードな吸熱を示し、ピーク温度は約215℃であることがわかった。
【0046】
また高速液体クロマトグラフィーより成分分割した成分のマススペクトル分析、更にMALDI−TOF−MSによる分子量情報より、この白色粉末は繰り返し単位数4〜11の環式ポリフェニレンスルフィド及び繰り返し単位数2〜11の線状ポリフェニレンスルフィドからなる混合物であり、環式ポリフェニレンスルフィドと線状ポリフェニレンスルフィドの重量比は約9:1のポリフェニレンスルフィドプレポリマーであることがわかった。
[参考例2]
<ポリフェニレンスルフィドプレポリマー2の調製>
撹拌機付きの150リットルオートクレーブに、硫化ナトリウム9水和物1.8kg(7.5モル)、96%水酸化ナトリウム15.6g(0.375モル)、NMP77.7kg(777モル)及びp−ジクロロベンゼン1.13g(7.65モル)を仕込み、反応容器を窒素ガス下に密封した。
【0047】
240rpmで撹拌しながら、室温から200℃まで約2時間かけて加熱後、1.0℃/分の速度で220℃まで昇温し、この温度で10時間保持した。その後室温近傍まで冷却してスラリー(D)を得た。このスラリー(D)80kgを320kgのイオン交換水で希釈し、70℃で30分攪拌したのち、平均ポアサイズ10〜16μmのガラスフィルターを用いて濾過した。得られた固形成分をイオン交換水80kgに分散させて70℃で30分攪拌したのち同様に濾過を行った。ついで固形成分を0.5%酢酸水溶液80kgに分散させて70℃で30分攪拌したのち同様に濾過を行った。得られた固形成分を再度イオン交換水80kgに分散させて70℃で30分攪拌したのち同様に濾過を行った。得られた含水ケークを真空乾燥機70℃で一晩乾燥し、乾燥ケーク600gを得た。
【0048】
このようにして得た乾燥ケーク600gを分取して、テトラヒドロフラン18kgで3時間ソックスレー抽出した。得られた抽出液からテトラヒドロフランを留去した。このようにして得られた固体にアセトン18kgを加えて攪拌後、目開き10〜16μmのガラスフィルターで吸引濾過し白色ケークを得た。これを70℃で3時間真空乾燥して白色粉末150gを得た。この白色粉末の赤外分光分析における吸収スペクトルより、白色粉末はポリフェニレンスルフィドであることが判明した。
【0049】
得られた白色粉末の高速液体クロマトグラフィー分析の結果から、この白色粉末は環式ポリフェニレンスルフィド及び線状ポリフェニレンスルフィドからなる混合物であり、環式ポリフェニレンスルフィドと線状ポリフェニレンスルフィドの重量比は約1:1.5(環式PPS重量/線状PPS重量=0.67)であることがわかった。またこれら分析結果より、得られた白色粉末は環式ポリフェニレンスルフィドを約40重量%、線状ポリフェニレンスルフィドを約60%含むポリフェニレンスルフィドプレポリマーであることが判明した。なお、GPC測定を行った結果、このポリフェニレンスルフィドプレポリマーの重量平均分子量は1500であった。
[参考例3]
<ポリフェニレンスルフィドポリマーの調製>
撹拌機および底に弁の付いた20リットルオートクレーブに、47%水硫化ナトリウム(三協化成)2383g(20.0モル)、96%水酸化ナトリウム831g(19.9モル)、NMP3960g(40.0モル)、およびイオン交換水3000gを仕込み、常圧で窒素を通じながら225℃まで約3時間かけて徐々に加熱し、水4200gおよびNMP80gを留出した後、反応容器を160℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は0.17モルであった。また、仕込みアルカリ金属硫化物1モル当たりの硫化水素の飛散量は0.021モルであった。
次に、p−ジクロロベンゼン(シグマアルドリッチ)2942g(20.0モル)、NMP1515g(15.3モル)を加え、反応容器を窒素ガス下に密封した。その後、400rpmで撹拌しながら、200℃から227℃まで0.8℃/分の速度で昇温し、次いで274℃まで0.6℃/分の速度で昇温し、274℃で50分保持した後、282℃まで昇温した。オートクレーブ底部の抜き出しバルブを開放し、窒素で加圧しながら、内容物を撹拌機付き容器に15分かけてフラッシュし、250℃でしばらく撹拌して大半のNMPを除去し、ポリフェニレンスルフィドと塩類を含む固形物を回収した。
【0050】
得られた固形物およびイオン交換水15120gを撹拌機付きオートクレーブに入れ、70℃で30分洗浄した後、ガラスフィルターで吸引濾過した。次いで70℃に加熱した17280gのイオン交換水をガラスフィルターに注ぎ込み、吸引濾過してケークを得た。得られたケークおよびイオン交換水11880gを、撹拌機付きオートクレーブに仕込み、オートクレーブ内部を窒素で置換した後、192℃まで昇温し、30分保持した。その後オートクレーブを冷却して内容物を取り出した。内容物をガラスフィルターで吸引濾過した後、これに70℃のイオン交換水17280gを注ぎ込み吸引濾過してケークを得た。得られたケークを80℃で熱風乾燥し、さらに120℃で24時間で真空乾燥することにより、乾燥ポリフェニレンスルフィドポリマーを得た。
【0051】
得られたポリフェニレンスルフィドポリマーは重量平均分子量が20000、分散度3.8であり、溶融粘度(測定温度300℃、剪断速度200/sec)は12Pa・sであった。
(1)プリプレグの作製
樹脂組成物を、表1に示した温度で溶融させ、ナイフコーターを使用して表1に示したフィルム化温度で離型紙上に所定の厚みに塗布し、樹脂フィルムを作製した。
【0052】
次に、シート状に一方向に整列させた炭素繊維トレカ(登録商標)T700S−24K(東レ(株)製)に樹脂フィルム2枚を炭素繊維の両面から重ね、表1に示した繊維含浸温度に加熱したロールを用い、表1に示したロール圧力で加圧して樹脂組成物を含浸させ、表1に示した炭素繊維含有率の一方向プリプレグを作製した。
(2)プリプレグの繊維重量含有率の測定
作製したプリプレグを10cm角に切り出し、1−クロロナフタレン100mlで230℃、30分で樹脂組成物を溶解させ、乾燥後、前後の重量比から繊維重量含有率を算出した。測定n数は3とした。
(3)プリプレグの含浸性評価
(1)で作製したプリプレグを10cm角に切り出し、両面にガムテープを貼り付け、ガムテープを引き剥がした際に両側に炭素繊維が付着している部分を未含浸部分と判定し、その面積割合で3段階評価した。表には良好(未含浸部5%未満)を○、やや不良(未含浸部5%以上10%未満)を△、含浸不良(未含浸部10%以上)を×で表した。測定n数は3とした。
(4)繊維強化複合材料積層板の作製
(1)で作製した一方向プリプレグを繊維方向をそろえて、JIS K 7074−1988の曲げ試験方法およびJIS K 7078−1991の層間せん断試験方法の試験片を切り出すために、厚さ2±0.4mmおよび厚さ3±0.4mmに積層した後、プレス成形機を用いて、350℃、3MPaで30分間、加熱加圧して、積層板を得た。
(5)曲げ強度試験
(4)で作製した積層板からJIS K 7074−1988で規定されたサイズに、試験片を繊維軸方向を長辺として切り出し、3点曲げ試験を行い、0°曲げ強度を算出した。
(6)層間剪断強度試験
(4)で作製した積層板からJIS K 7078−1991で規定されたサイズに、試験片を、繊維軸方向を長辺として切り出し、層間剪断試験を行い、層間剪断強度を算出した。
<実施例1〜3、比較例1〜3>
表1に示す配合の樹脂を用いて、前記した方法に従い、プリプレグ、繊維強化複合材料を作製し、各種物性を測定した。
【0053】
表1に示すように、本発明の実施例1〜3のプリプレグは、含浸性に優れる。また、実施例1〜3のプリプレグを使用した繊維強化複合材料は、強度、弾性率に優れ、特に層間剪断強度が非常に優れている。
【0054】
一方、表1に示すように、環式ポリフェニレンスルフィド含有比率が本発明の範囲外のポリフェニレンスルフィドプレポリマー2を用いた比較例1のプリプレグは、含浸性には問題はないものの、繊維強化複合材料の曲げ強度、層間剪断弾性率が低い。また、本発明のポリフェニレンスルフィドプレポリマー1を使用せず、ポリフェニレンスルフィドポリマーを用いた比較例2では、プリプレグ製造条件が、高温、高圧の条件にもかかわらず、プリプレグの含浸性が悪い。また、曲げ強度も低く、特に層間剪断強度は非常に低い。さらに、ポリフェニレンスルフィドポリマーを用いて繊維重量含有率を低くした比較例3では、プリプレグの含浸性は比較例2に比較して向上するが、繊維強化複合材料物性も曲げ強度が非常に低く、層間剪断強度も非常に低い。
【0055】
【表1】

【産業上の利用可能性】
【0056】
本発明のプリプレグおよび繊維強化複合材料は、繊維含有率が高く、取扱性に優れたプリプレグであり、それを用いた繊維強化複合材料は機械特性に優れ、耐熱性や難燃性にも優れることが期待できるので、航空宇宙用途や一般産業用途に適し、特に、航空機、車両、船舶、電気電子機器向けの積層体に好適に用いることができるものである。

【特許請求の範囲】
【請求項1】
環式ポリアリーレンスルフィドを少なくとも50重量%以上含み、かつ重量平均分子量が10,000未満であるポリアリーレンスルフィドプレポリマーを含有することを特徴とする樹脂組成物を強化繊維に含浸せしめてなるプリプレグ。
【請求項2】
強化繊維の含有率が60〜80重量%以上である請求項1に記載のプリプレグ。
【請求項3】
請求項1または2に記載のプリプレグ中の前記ポリアリーレンスルフィドプレポリマーを含有する樹脂組成物を重合せしめて得られる繊維強化複合材料。
【請求項4】
請求項1または2に記載のプリプレグを積層した後、ポリアリーレンスルフィドプレポリマーを含有する樹脂組成物を重合せしめて得られる繊維強化複合材料積層体。

【公開番号】特開2008−231237(P2008−231237A)
【公開日】平成20年10月2日(2008.10.2)
【国際特許分類】
【出願番号】特願2007−72399(P2007−72399)
【出願日】平成19年3月20日(2007.3.20)
【出願人】(000003159)東レ株式会社 (7,677)
【Fターム(参考)】