説明

プローブ

【課題】患者の口腔内に挿入されるノズルに内設される斜鏡を洗浄したり、滅菌処理したりすることが可能なプローブを提供すること。
【解決手段】プローブ30は、レーザ光を、被写体照射用の計測光と参照ミラー照射用の参照光とに分配し、サンプルSからの散乱光と参照ミラー21で反射した反射光とを合成させた干渉光を解析して光干渉断層画像を生成する光干渉断層画像生成装置1に使用され、サンプルSに照射して戻ってきた散乱光を回収する。光ファイバ60Aと、光ファイバ60Aからのレーザ光の照射方向を変化させる走査手段33と、走査手段33からの計測光を被写体に照射して散乱光を回収するノズル37と、光ファイバ60A、走査手段33及びノズル37を保持するハウジング3と、を備えている。ノズル37には、金属素材を鏡面加工して形成した反射面を有する斜鏡M1が内設されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば、光のコヒーレント(干渉性)を利用して物体内部の断層像を撮像する光干渉断層画像生成装置に使用されるプローブに関する。
【背景技術】
【0002】
従来、光干渉断層画像生成装置(Optical Coherence Tomography:以下、OCT装置と称する)は、生体の分野では、眼球の角膜や網膜の断層計測等の眼科医療で応用されている。OCTの方式は、TD(Time Domain)−OCT、FD(Frequency Domain)−OCTに大別され、後者のFD−OCTは、SD(Spectrum Domain)−OCTと、SS(Swept Source)−OCTとに分類されることが知られている。
【0003】
例えば、SS−OCTは、波長(波数)を連続的に掃引できるレーザ光源を使用し、検出器により取得したスペクトル情報をFFT(Fast Fourier Transform)処理し、光路長を特定する方式である。SS−OCTは、X線撮影装置やCT(Computed Tomography)装置等に比べ、解像度が高く、リアルタイムに計測が行える等の特徴がある。
また、歯科用のために、前記したTD−OCTが試されていたが、SS−OCTはTD−OCTに比べて、高感度かつ高速にデータを取得できることから、モーションアーチファクト(体動によるゴースト)に強いという特徴がある。
【0004】
歯科の分野のOCT装置では、歯科光診断装置用ハンドピース(プローブ)において、OCT手段を備え、歯部の光診断箇所を位置決めする手段が、カメラによる撮像方式で、内部に、表面画像取得用の撮像カメラを備えている(特許文献1参照)。
【0005】
前記特許文献1のプローブは、外部で生成された低コヒーレント光の信号光伝送用光ファイバの先端に設置された集光レンズと、集光レンズからの信号光を反射させる光スキャナ(MEMS(Micro Electro Mechanical Systems)ミラー)と、光スキャナを空間を介して覆うように配置された窓ガラス及びカバーと、を長い円筒状のハンドピース内の先端部に集合させて設置して構成されている。
【0006】
特許文献1に記載されたプローブ(ハンドピース)は、光スキャナや集光レンズや窓ガラスやカバー等の殆どの構成部品をプローブの先端部の口腔内挿入部内に集合させて配置している。そして、患者の口腔内の奥にある臼歯部を撮影するときは、特許文献1に記載されたようなプローブの先端部側面に信号光照射用窓がある臼歯部撮影専用のプローブが使用され、また、前歯部を撮影するときは、前歯部撮影専用のプローブが使用される。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2007−83009号公報(請求項2、図2)
【特許文献2】特表2010−536041号公報(段落0022,0026,0027)
【発明の概要】
【発明が解決しようとする課題】
【0008】
特に、臼歯部撮影用のプローブによって患者の歯部の断層画像を撮影する際は、プローブの口腔内挿入部を患者の口腔内に挿入して撮影が行われる。
しかしながら、臼歯撮影用のプローブ内は、光スキャナ等の電気部品が集合されて内設されているため、加熱滅菌することができず、感染防止策がとれないという問題点があった。
【0009】
また、一般のOCT装置に使用されるミラー(対物ミラー)には、例えば、シリコン部材に金を蒸着させたものが使用されている。しかし、このような金で蒸着したミラーでは、滅菌作業を行った際に、ミラーの表面が傷付くという問題点があった。
【0010】
また、OCT装置のスキャニングリフレクタを金属コーティングしたプローブが知られている(例えば、特許文献2参照)。しかしながら、そのプローブのスキャニングリフレクタは、患者の歯部を撮影した際に、唾液等による汚染の心配がない位置に設置されているので、スキャニングリフレクタに滅菌処理を行う際の不具合対策とはならない。
【0011】
また、プローブのノズル先端の開口部に透明な感染防止用のディスポーザブルなカバーを設けて唾液等が開口部内に浸入するのを防止することも可能だが、その場合、撮像画像にカバーの断層画像が映り込むという問題点があった。
【0012】
そこで、本発明は、そのような問題を解消すべく発明されたものであって、患者の口腔内に挿入されるノズルに内設される斜鏡を洗浄したり、滅菌処理したりすることが可能なプローブを提供することを課題とする。
【課題を解決するための手段】
【0013】
前記課題を解決するために、本発明に係るプローブは、光源から照射されたレーザ光を、被写体に照射する計測光と参照ミラーに照射する参照光とに分配し、前記被写体から反射して戻ってきた散乱光と前記参照ミラーで反射した反射光とを合成させた干渉光を解析して光干渉断層画像を生成する光干渉断層画像生成装置に使用され、前記計測光を前記被写体に照射して前記反射して戻ってきた散乱光を回収するプローブであって、前記計測光及び前記散乱光を伝送する光ファイバと、この光ファイバによって前記プローブ内に導入されたレーザ光の照射方向を変化させる走査手段と、この走査手段からの前記計測光を前記被写体に照射して前記散乱光を回収する開口部を有するノズルと、前記光ファイバ、前記走査手段、及び、前記ノズルを保持するハウジングと、を備え、前記ノズルには、金属素材を鏡面加工して形成した反射面を有する斜鏡が内設されていることを特徴とする。
【0014】
かかる構成によれば、プローブは、ノズルに金属素材を鏡面加工して形成した反射面を有する斜鏡が内設されていることによって、斜鏡が耐熱性及び強度を有するので、斜鏡を加熱滅菌等の感染防止対策としての滅菌処理や、洗浄処理を行っても、腐食したり、損傷したり、傷付いたりすることがない。このため、斜鏡が唾液等によって汚染されたときは、斜鏡を滅菌処理及び洗浄処理を行って常に清潔な状態にすることができる。
【0015】
また、前記斜鏡は、前記計測光及び前記散乱光を反射する金属ミラー部と、この金属ミラー部が一体形成された斜鏡本体と、前記ノズルに形成された貫通孔に挿入された固定具が着脱可能に挿着される固定穴と、を有して前記ノズルの中空部内に着脱可能に取り付けられていることが好ましい。
【0016】
かかる構成によれば、プローブの斜鏡は、金属ミラー部が一体形成された斜鏡本体と、ノズルに形成された貫通孔に挿入された固定具が着脱可能に挿着される固定穴と、を有していることによって、ノズル内に取り外し自在に取り付けることができる。このため、斜鏡は、ノズルから取り外して容易に洗浄したり、滅菌処理したりすることができる。
【0017】
また、前記ノズルは、前記斜鏡を前記開口部から挿入して前記中空部内に配置可能に形成された斜鏡収納部と、この斜鏡収納部の内壁に形成され、前記斜鏡が光軸に対して斜めに取り付けられるように形成された屈曲部と、この屈曲部の外周部に形成され、前記斜鏡本体の外周部に形成された回転止め溝に係合する位置決め部と、を有していることが好ましい。
【0018】
かかる構成によれば、ノズルは、斜鏡を開口部から挿入して中空部内に配置可能に形成された斜鏡収納部を有することによって、斜鏡を開口部から中空部内に容易に着脱する作業が行える。また、ノズルは、斜鏡が、ノズル内に形成された位置決め部に係合する回転止め溝を有していることによって、斜鏡を固定具で固定する際に、斜鏡が回転するのを抑止することができると共に、斜鏡をノズル内の所定位置に位置決めしてしっかりとガタツキなく固定することができる。
【0019】
また、前記ノズルは、前記ハウジングの先端部に形成されたノズル設置部に装着されたノズル支持体に、着脱自在に取り付けられていることが好ましい。
【0020】
かかる構成によれば、ノズルは、ハウジングのノズル設置部に装着されたノズル支持体に、着脱自在に取り付けられることによって、ハウジングから取り外して分離することにより、容易に洗浄処理をしたり、滅菌処理をしたりすることが可能となる。
【0021】
また、前記斜鏡は、例えば、ステンレス鋼、チタン、あるいは、チタン合金などが考えられる。
【0022】
かかる構成によれば、斜鏡は、例えば、ステンレス鋼、チタン、あるいは、チタン合金から形成されていることによって、斜鏡自体に鏡面加工を行って金属ミラーを形成することができると共に、滅菌処理及び洗浄処理に耐える耐熱性、耐食性及び強度を有しているので、ノズル内の所定位置にしっかりと固定したり、取り外して洗浄したり、滅菌処理したりすることが可能な材料で形成することができる。また、斜鏡は、金属から形成されているので、ノズルから取り外して再研磨することが可能である。
【発明の効果】
【0023】
本発明によれば患者の口腔内に挿入されるノズルと、このノズル内に配置される斜鏡とを洗浄したり、滅菌処理したりすることが可能なプローブを提供することができる。また、斜鏡は、金属製であるので、ノズルから取り外して再研磨することも可能である。
【図面の簡単な説明】
【0024】
【図1】本発明の実施形態に係るプローブが設けられた光干渉断層画像生成装置の外観図であって、(a)は単関節アーム型、(b)は多関節アーム型をそれぞれ示している。
【図2】本発明の実施形態に係るプローブが設けられた光干渉断層画像生成装置のユニット構成を模式的に示す構成図である。
【図3】本発明の実施形態に係るプローブが使用される光干渉断層画像生成装置の参照ミラー周りの構成を示す要部斜視図である。
【図4】本発明の実施形態に係るプローブの斜視図である。
【図5】本発明の実施形態に係るプローブを示す図であり、ハウジング半体を外したときの状態を示す一部断面を有する側面図である。
【図6】本発明の実施形態に係るプローブを示す分解斜視図である。
【図7】本発明の実施形態に係るプローブを示す図であり、ハウジング半体を取り除いたプローブの要部斜視図である。
【図8】本発明の実施形態に係るプローブにおけるノズルの設置状態を示す縦断面図である。
【図9】本発明の実施形態に係るプローブにおけるノズルの分解斜視図である。
【図10】本発明の実施形態に係るプローブの変形例を示す斜視図である。
【図11】本発明の実施形態に係るプローブの変形例を示す図であり、ハウジング半体を外したときの状態を示す分解斜視図である。
【図12】本発明の実施形態に係るプローブの変形例を示す図であり、ハウジング半体を外したときの状態を示す側面図である。
【発明を実施するための形態】
【0025】
以下、図面を参照して本発明の装置を実施するための形態(以下「実施形態」という)について詳細に説明する。本発明の実施形態に係るプローブを説明する前に、プローブが使用されるOCT装置1(光干渉断層画像生成装置)について説明する。
【0026】
[OCT装置の構成の概要]
OCT装置1(光干渉断層画像生成装置)の構成の概要について、OCT装置1によって撮影する被写体(サンプルS)を、歯科の患者の診断対象の歯牙(前歯部)である場合を例に挙げて説明する。図1及び図2に示すように、OCT装置1は、光学ユニット部10(光学ユニット)と、診断プローブ部30(プローブ)と、制御ユニット部50(制御ユニット)と、を主に備える。
OCT装置1は、光源11から照射されたレーザ光をサンプルS(被写体)に照射する計測光と、参照ミラー21とに照射する参照光にカップラ12(光分割器)で分配し、診断プローブ部30で、前記計測光をサンプルSに照射しサンプルSの内部から散乱して戻って来た散乱光と、参照ミラー21からの反射光と、をカップラ16(光合波器)で合成させた干渉光を解析して、光干渉断層画像を生成する光干渉断層画像生成装置である。
【0027】
≪光学ユニット部≫
光学ユニット部10(光学ユニット)は、一般的な光コヒーレンストモグラフィの各方式が適用可能な光源、光学系、検出部を備えている。図2に示すように、光学ユニット部10は、サンプルS(被写体)に高帯域な波長のレーザ光を続けて(周期的に)照射する光源11と、レーザ光をサンプルSに照射する計測光と参照ミラー21に照射する参照光に分配するカップラ12(光分割器)と、計測光をサンプルSに照射しこのサンプルSの内部で散乱して戻って来た散乱光を受光する診断プローブ部30(プローブ)と、参照光が参照ミラー21から反射して戻って来た反射光と散乱光とを合成させて干渉光を生成するカップラ16(光合波器)と、その干渉光からサンプルSの内部情報を検出するディテクタ(検出器)23と、光源11とディテクタ23との間の光路中に設けられた光ファイバ19b,60Aやその他光学部品等を備えている。
【0028】
ここで、光学ユニット部10の概略を説明する。
光源11から射出された光は、光分割器であるカップラ12により、計測光と参照光とに分けられる。計測光は、サンプルアーム13のサーキュレータ14から診断プローブ部30に入射する。この計測光は、診断プローブ部30のシャッタ機構31のシャッタ312(図6参照)が開状態において、コリメータレンズ32、走査手段33(二次元MEMSミラー)を経て集光レンズ34によってサンプルSに集光され、そこで散乱、反射した後に再び集光レンズ34、走査手段33、コリメータレンズ32を経てサンプルアーム13のサーキュレータ14に戻る。戻ってきた計測光の偏光成分は、偏光コントローラ15によってより偏光の少ない状態に戻され、光合波器としてのカップラ16を介してディテクタ23に入力される。
【0029】
一方、光分割器用のカップラ12により分離された参照光は、レファレンスアーム17のサーキュレータ18からコリメータレンズ19、光路長変更手段24を経て参照光集光レンズ20によって参照ミラー21(レファレンスミラー)に集光され、そこで反射した後に再び参照光集光レンズ20、コリメータレンズ19を経てサーキュレータ18に戻る。戻ってきた参照光の偏光成分は、偏光コントローラ22によってより偏光の少ない状態に戻され、光合波器用のカップラ16を介してディテクタ23に入力される。つまり、カップラ16が、サンプルSで散乱、反射して戻ってきた計測光と、参照ミラー21で反射した反射光とを合波するので、合波により干渉した光(干渉光)をディテクタ23がサンプルSの内部情報として検出することができる。
【0030】
<光源>
光源11としては、例えばSS−OCT方式用のレーザ光源を用いることができる。
この場合、光源11は、例えば、中心波長1310nm、掃引波長幅100nm、掃引速度50kHz、可干渉距離(コヒーレント長)が14mmの性能のものが好ましい。
ここで、可干渉距離とは、パワースペクトルの減衰が6dBとなるときの距離に相当する。なお、レーザ光の可干渉距離は10mm以上で、48mm未満の高コヒーレント光が好ましいが、これに限定されるものではない。
【0031】
<参照光のコリメータレンズ>
参照光のコリメータレンズ19(図2参照)は、カップラ12(光分割器)で分割された参照光を平行光に収束させるレンズであり、図3に示すように、コリメータレンズユニット19’のコリメータ19dの略円筒状のレンズホルダ19a内に収容されている。
コリメータレンズユニット19’は、コリメータ19dと、コリメータ19dを抱持するコリメータ保持体19eと、コリメータ保持体19eを支持するブロック19fと、ブロック19fを光軸に直交する方向に微調整可能に支持するブラケット19hと、ブラケット19hを保持する支持台191と、支持台191を支持フレーム部材194に係合させるためのガタ防止部材192と、支持台191を支持フレーム部材194に固定するための固定具193と、前記支持フレーム部材194と、を主に備えている。
【0032】
コリメータ19dは、前記コリメータレンズ19と、コリメータレンズ19を内嵌した略円筒状のレンズホルダ19aと、レンズホルダ19aに取り付けられたコネクタ19cと、一端がコネクタ19cに接続され、他端がレンズホルダ19aとサーキュレータ18(図2参照)とに接続された光ファイバ19bと、を備えている。このように、コリメータレンズ19は、レンズホルダ19aに内設されて、そのレンズホルダ19aに光ファイバ19bの一端を接続したコネクタ19cが装着されているため、コリメータレンズ19の光軸と光ファイバ19bの光軸を合致させて、一定の距離を保った状態に設置されている。
【0033】
レンズホルダ19aは、光軸上の一端側に光ファイバ19bが取り付けられコネクタ19cを固定し、他端側に参照ミラー21に向けて開口され、参照光と反射光とが出入りする開口部が形成されている。
コリメータ保持体19eは、コリメータ19dを光軸方向へ進退させて微調整可能にねじ止めし、ブロック19f上に固定されている。
ブロック19fは、正面視して略コ字状のブラケット19h内に圧縮コイルばねSPを介在して光軸に直交する方向に微調整可能に支持されている。
ブラケット19hは、支持台191に固定されて一体化されている。
【0034】
支持台191は、この支持台191に固定したコリメータレンズユニット19’を載設して、コリメータレンズユニット19’を支持フレーム部材194に対して光軸方向に位置調整可能に支持する部材である。支持台191は、支持フレーム部材194上に光軸方向に摺動自在に係合された略コ字状の厚板部材であり、支持フレーム部材194の上方を跨ぐようにして連設されている。この支持台191には、ブラケット19hが当接された状態で配置される摺動面191aと、摺動面191aが形成される平板形状部位の両端部から支持フレーム部材194側に突設された左右一対の係合突起191bと、この左右の係合突起191b間に形成されて支持フレーム部材194のレール状部位に当接する凸部191cと、が形成されている。
【0035】
固定具193は、支持台191の一方の係合突起191bに係合されたガタ防止部材192をその係合突起191bに固定するための締結部材からなり、コリメータレンズユニット19’を支持フレーム部材194の所定位置に固定するためのものである。
かかる構成により、前記コリメータ19dは、サンプルS(被写体)光側の光路長と参照光側の光路長が等しくなるように予め設定された光軸上の位置に位置調整して配置することができる。
【0036】
参照光集光レンズ20は、コリメータレンズ19により収束された平行光を参照ミラー21に集光させるレンズであり、例えば、支持フレーム部材194上のコリメータレンズ19と参照ミラー21との間の予め設定された光軸上の位置に配置されている。参照光集光レンズ20は、この参照光集光レンズ20の傾きを調整可能に支持台20aに支持されると共に、その支持台20aが支持フレーム部材194に光軸方向へ移動及び固定可能に締結される固定具20bで支持フレーム部材194の所定位置に固定される。
【0037】
支持フレーム部材194は、光軸方向に延設された板状の部材であり、この支持フレーム部材194上のそれぞれの所定位置に適宜な間隔でコリメータレンズユニット19’、参照光集光レンズ20、及び参照ミラー21が載設されている。支持フレーム部材194には、例えば、端部に参照ミラー21が固定され、この参照ミラー21から適宜な間隔を介して参照光集光レンズ20とコリメータ19dとが順に配置されて、参照光集光レンズ20及びコリメータ19dを移動することによって光路長が変更できるように設けられている。
【0038】
<参照光の光路長変更手段>
図2に示すように、参照光の光路長変更手段24は、コリメータ19dを光軸方向に移動させて、カップラ12(光分割器)から参照ミラー21までの光路長を変更して光軸方向に位置を調整したり、光軸方向の位置を初期設定する際に使用する装置である。参照光の光路長変更手段24は、例えば、コリメータ19dを保持してそのコリメータ19dと共に光軸に沿って手動式に進退可能に配置されたコリメータレンズユニット19’と、前記参照光集光レンズ20と、前記参照ミラー21と、光軸に沿って延設されてコリメータレンズユニット19’、参照光集光レンズ20及び参照ミラー21を支持する支持フレーム部材194と、を備えて構成されている。
【0039】
≪診断プローブ部≫
図2に示すように、診断プローブ部30(プローブ)は、レーザ光を2次元走査する走査手段33(二次元MEMSミラー)を含み、光学ユニット部10からのレーザ光をサンプルSに導くと共に、サンプルS内で散乱して反射した散乱光を受光して光学ユニット部10に導くものである。この診断プローブ部30は、それぞれ後記するケーブル60と、ハウジング3と、フレーム本体300と、シャッタ機構31と、コリメータレンズ32と、走査手段33(二次元MEMSミラー)と、集光レンズ34と、集光点調整機構35と、ノズル37(図4参照)と、を備えている。
【0040】
<ケーブル>
図4に示すように、ケーブル60は、診断プローブ部30と、光学ユニット部10及び制御ユニット部50とを光学的及び電気的に接続するためのものである。ケーブル60は、光学ユニット部10に接続された光ファイバ60Aと、制御ユニット部50に接続された通信線60Bとを内蔵している。光ファイバ60Aは、計測光及び散乱光を伝送する。
【0041】
撮影中以外のときには、診断プローブ部30のハウジング3を、図1(a)に示すように、OCT装置1の上部に配置された表示装置54の下部側から水平方向に延伸した単関節アーム70の先端のホルダ71に保持させておく。これにより、収納時には、長いケーブル60であってもケーブル60を捻じったりすることなく収納し、収納スペースを低減することができる。
【0042】
一方、撮影時には、利用者は、診断プローブ部30を単関節アーム70のホルダ71から外して把持し、手振れ防止等のため診断プローブ部30を患者の歯(サンプルS)に対して当接させる。このとき利用者の両手が塞がっていたとしても撮影開始の操作ボタンSW(図4参照)を操作するために、制御ユニット部50に有線または無線で通信可能に接続されたフットコントローラ80(図1参照)を用いることもできる。
【0043】
図1(b)に示すOCT装置1Aは、撮影中以外のときには、診断プローブ部30を、OCT装置1Aの上部に配置された表示装置54の上部側から水平方向に延伸した多関節アーム70Aの先端のホルダ71に保持させておくことができるようにした点以外は、図1(a)に示すOCT装置1と同様なものである。多関節アーム70Aは、単関節アーム70に比べて、基端から先端のホルダ71までの長さが長く、床からより高い位置に配置されている。そのため、ケーブル60の垂れ下がりが低減できる。これにより、操作性を向上させ、垂れ下がったケーブル60を誤って踏んだりすることを防止できる。
【0044】
<ハウジング>
図4〜図6に示すように、ハウジング3は、フレーム本体300や診断プローブ部30等の構成部品を覆ったり、支持したりするケース体であり、側面視して略逆L字形状(略ピストル形状)に形成されている。このため、持ち易くて操作性がよく、前記ホルダ71にも容易に取り付けることもできる形状をしている。ハウジング3には、それぞれ後記する走査手段収納部3aと、グリップ部3bと、集光レンズ収納部3cと、ノズル設置部3dと、が形成されている。ハウジング3は、水平方向に向けて形成された集光レンズ収納部3c及びノズル設置部3dに対して、グリップ部3b及び走査手段収納部3aが下方向に折れ曲がった状態に形成されている。
【0045】
このハウジング3には、このハウジング3内の略全体にフレーム本体300が配置され、略中央部に走査手段33が収納され、基端部側にケーブル60、コリメータレンズ32及びシャッタ機構31が配置され、先端部側寄りに集光レンズ34、先端にノズル37が着脱して交換可能に配置されている。ハウジング3は、例えば、中央部を縦断面して左右に二分した2つのハウジング半体3e,3fを合致させてなる。ハウジング3において、集光レンズ収納部3c及びノズル設置部3dの外径D1(図5参照)は、グリップ部3b及び走査手段収納部3aの外径D2よりも小さく形成されている。
【0046】
走査手段収納部3aは、略逆L字形状のハウジング3の略中央部(折曲部)内に配置され、走査手段33を収納する部位である。この走査手段収納部3a内には、走査手段33である四角形のチップ形状の二次元MEMSミラーが、例えば、約45度に傾けて配置されて、この二次元MEMSミラーでコリメータレンズ32からのレーザ光が反射される。
グリップ部3bは、利用者が手で診断プローブ部30を持つ際に握る部位であると共に、ホルダ71(図1参照)で抱持される部位である。グリップ部3bは、ハウジング3の基端部側に配置されたコリメータレンズ32の配置位置から走査手段33の配置位置までのレーザ光の光軸の方向に延びて形成されて、略円筒状に形成されている。グリップ部3bには、外周面に設置された操作ボタンSWと、ハウジング3の下面から引き出された状態に配線された光ファイバ60Aと、この光ファイバ60Aによって導入された計測光を受光してレーザ光を平行光に収束させるコリメータレンズ32と、そのレーザ光を遮断するシャッタ機構31と、が主に収納される収納空間が内設されている。
【0047】
集光レンズ収納部3cは、走査手段33で走査された走査光を集光する集光レンズ34を内設したレンズ収納筒体352(図5及び図6参照)を収納する部位であり、走査手段収納部3aよりも先端部寄りの位置に形成されている。集光レンズ収納部3cは、グリップ部3bに対して直交する方向に延びて形成されると共に、走査手段収納部3aから前方向のノズル設置部3dに亘って略円筒状に形成されている。つまり、集光レンズ収納部3cは、走査手段33で反射された反射光の方向に延びて形成され、グリップ部3bに対して折れ曲がって形成されている。
ノズル設置部3dは、ノズル37が取り付けられる部位であり、この集光レンズ収納部3cよりも先端側のハウジング3の先端に形成されている。
【0048】
<フレーム本体>
図5に示すように、フレーム本体300は、シャッタ機構31、光軸調整機構321、走査手段33及びレンズ収納筒体352を保持する厚板状の部材であり、ハウジング3内にねじ止めされている。フレーム本体300は、ハウジング3の形状に合わせて、側面視して略逆L字形状(略ピストル形状)に形成されている。このフレーム本体300には、中央部に走査手段33が固定されるL字型部300aと、中央部から下側に延びて形成され、シャッタ機構31及び光軸調整機構321が固定される垂直部300bと、中央のL字型部300aから前側に延びて形成されて、レンズ収納筒体352が固定されている水平部300cと、垂直部300bに上下方向に延設された位置調整孔301と、水平部300cに水平方向に延設された位置調整孔302と、が主に形成されている。
【0049】
<計測光の光路長変更手段>
そのフレーム本体300には、コリメータレンズ32をレンズホルダ322a内に内設し、レンズホルダ322aに光軸上の一端側に光ファイバ60Aを取り付けたコネクタ322bをセットにしたコリメータ322の光軸長を可変させて光軸方向の位置を調整できるようにした計測光の光路長変更手段39が設けられている。
計測光の光路長変更手段39は、フレーム本体300に計測光の光軸方向に延びて形成された位置調整孔301と、コリメータ322を保持するコリメータブラケット324と、位置調整孔301に光軸方向に移動可能に挿入されてこのコリメータブラケット324を所定位置に締結するブラケット締結具327と、を備えてなる。
【0050】
位置調整孔301は、垂直部300bに計測光の光軸方向に延びて形成された長孔であり、コリメータブラケット324を光軸方向に移動可能及び傾動可能に支持すると共に、そのコリメータブラケット324を所定の向き及び位置に締結するブラケット締結具327が上下動可能に挿入されている。
位置調整孔302は、集光レンズ34を光軸に沿って進退させる集光点調整機構35を移動自在の設置するための長孔であり、調整ボルト353が移動自在に挿入されている。
【0051】
<シャッタ機構>
図5〜図7に示すように、シャッタ機構31は、サーキュレータ14(図2参照)から送られて来た計測光と、サンプルSに計測光が当たって反射した散乱光とが診断プローブ部30を通過するのを遮断する装置であり、例えば、グリップ部3b内のコリメータレンズ32と走査手段収納部3a内の走査手段33との間に介在されている。このシャッタ機構31は、例えば、シャッタ基体311と、シャッタ312と、シャッタ駆動手段313と、シャッタ基体締結具314と、を備えている。シャッタ機構31は、シャッタ312によってサンプルSからの反射光を遮断して、表示画面上に写るノイズ(像)をソフト的に除去するゼロ点補正を行うためのものである。
【0052】
シャッタ基体311は、シャッタ312及びシャッタ駆動手段313が取り付けられる部材であり、シャッタ基体締結具314によってフレーム本体300に上下動可能な状態に固定されている。シャッタ基体311には、計測光及び散乱光が通過する透孔311aが上下方向に向けて光軸上に形成されている。シャッタ基体311は、シャッタ基体締結具314の締結を緩めることによって、シャッタ基体締結具314を中心として矢印a方向に回動可能となっている。
シャッタ312は、透孔311aを通過する計測光及び散乱光の光路を遮断する部材であり、シャッタ駆動手段313の駆動軸(図示省略)を中心に回動して、透孔311aを開閉するように配置された板部材からなる。
【0053】
シャッタ駆動手段313は、シャッタ312を光軸上に移動させたり、光軸上から退避させたりして開閉駆動させて、透孔311aを開閉させるアクチュエータである。シャッタ駆動手段313は、例えば、シャッタ312を回動させて透孔311aを開閉させるモータ、または、シャッタ312を進退移動させて透孔311aを開閉させるソレノイド等からなる。
シャッタ基体締結具314は、シャッタ基体311をフレーム本体300に上下方向に移動可能に固定するためのボルトである。このシャッタ基体締結具314は、フレーム本体300の位置調整孔301に挿入してシャッタ基体311に螺着される。
なお、シャッタ機構31は、手動でシャッタ312が動かすものであっても構わない。
【0054】
<コリメータレンズ>
図5〜図7に示すように、コリメータレンズ32は、コリメータレンズ32をレンズホルダ322a内に内設し、レンズホルダ322aに光軸上の一端側に光ファイバ60Aを取り付けたコネクタ322bをセットしたコリメータ322のレンズである。コリメータレンズ32は、カップラ12(図2参照)からサーキュレータ14を介して送られた計測光を受光してレーザ光を平行光に収束させる。コリメータレンズ32は、略円筒状のコリメータ322に内設されて、コリメータホルダ323及びコリメータブラケット324を介在してフレーム本体300の下部に回動可能に取り付けられている。
【0055】
<光軸調整機構>
図5〜図7に示すように、光軸調整機構321は、コリメータレンズ32を内設したコリメータ322を光軸に対して傾けたり、進退してコリメータ322の向きと位置とを調整する装置である。光軸調整機構321は、それぞれ後記するコリメータ322と、コリメータホルダ323と、コリメータブラケット324と、ユニット締結具325と、ホルダ締結具326と、ブラケット締結具(図示省略)と、を備えて構成されている。
【0056】
コリメータ322は、コリメータレンズ32を内設した略筒状の部材あり、光軸に沿って上下方向に向けて配置されている。
コリメータホルダ323は、コリメータ322を光軸を中心として矢印b方向に回動自在に保持する部材であり、コリメータ322が挿入される貫通孔323aと、貫通孔323aに切欠成形された切欠部323bと、ユニット締結具325及びホルダ締結具326が螺合されるねじ穴(図示省略)と、を有している。
【0057】
コリメータブラケット324は、コリメータホルダ323をホルダ締結具326(図5参照)を中心として矢印c方向に回動自在に保持されて、ハウジング3内のフレーム本体300に対して位置調整可能に取り付けられる部材であり、平面視して略L字状の厚板材からなる。コリメータブラケット324には、ホルダ締結具326が挿入される孔(図示省略)と、ブラケット締結具(図示省略)が螺合されるねじ穴(図示省略)と、が形成されている。
ユニット締結具325は、コリメータホルダ323に回動自在に挿入されたコリメータ322の締め付けを緩めることにより矢印b方向に回動可能にしたり、締め付けてコリメータ322をコリメータホルダ323に固定したりするための締結具である。ユニット締結具325は、コリメータホルダ323の切欠部323bに直交するように形成されたねじ穴(図示省略)に螺入される。
【0058】
図5に示すように、ホルダ締結具326は、コリメータブラケット324に回動自在に内嵌されたコリメータホルダ323の締め付けを緩めることにより矢印c方向に回動可能にしたり、締め付けてコリメータ322の前後方向の傾きを固定したりするための締結具である。ホルダ締結具326は、先端部がコリメータブラケット324を挿通してコリメータホルダ323に螺着される。
不図示のブラケット締結具は、コリメータブラケット324を上下動及び回動自在にするためにフレーム本体300に上下方向に長く形成された位置調整孔301に取り付けるための締結具であり、位置調整孔301を挿通してコリメータブラケット324に形成されたねじ穴(図示省略)に螺合される。このブラケット締結具は、コリメータブラケット324の締め付けを緩めることにより矢印d方向に回動可能にして、コリメータブラケット324及びコリメータ322の光軸の傾きを調整することができる。
【0059】
<走査手段>
図7に示すように、走査手段33は、光ファイバ60Aによって診断プローブ部30内に導入され、コリメータレンズ32を通過したレーザ光の照射方向を変化させるためのミラーであり、コリメータレンズ32を透過した計測光の光軸を変換する二次元MEMSミラーからなる。
二次元MEMSミラーの素子は、例えば、ミラーや平面コイル等の可動構造体が形成されたシリコン層と、セラミック台座と、永久磁石との三層構造になっている。シリコン層は、中央に配置されて光を全反射するミラーと、このミラーを支える十字形状の梁と、X及びYフレームと、ミラーの周囲及び各フレームに配置され電磁力を発生する電磁駆動用の二層平面コイルと、から構成されている。そして、X及びYフレーム上に形成されたコイルへの通電により、電流の大きさに比例してX軸方向及びY軸方向に静的、動的傾斜する制御が可能になっている。
ミラーの動作角度は、例えば、デバイス平面に対してX軸方向が±10度、Y軸方向が±5度である。二次元MEMSミラーのデバイスの大きさは、例えば、10mm×10mm×5mm程度である。そのデバイスの中央にあるミラーは、一辺が2mm程度の正方形となっている。
【0060】
光源11から照射されたレーザ光は、二次元MEMSミラーを介してサンプルS(図2参照)に照射され、診断プローブ部30のノズル先端が正対するサンプルSの表面から内部に進む深さ方向(A方向)の内部情報をディテクタ23が取得する。後記するように1回のスキャンで1152ポイントからなるA方向のデータ(以下、Aラインデータという)を取得し、その後の周波数解析の画像処理を取得する。
ここで、X方向及びY方向とは、診断プローブ部30のノズル先端が正対するサンプルSの表面において横方向及び縦方向(Y軸方向)に対応する。
なお、走査手段33は、ガルバノミラーであっても構わない。
【0061】
<集光レンズ>
図5〜図7に示すように、集光レンズ34は、走査手段33による走査光を集光すると共に、計測光をサンプルSに集光させて照射するレンズであり、レンズ収納筒体352に内設されている。レンズ収納筒体352は、ハウジング3の集光レンズ収納部3c内に収納され、フレーム本体300に固定されている。この場合、レンズ収納筒体352は、フレーム本体300に形成された位置調整孔302に沿って進退自在に配置されている。このレンズ収納筒体352の下面部には、利用者の指が遊嵌するリング状の操作ノブ351が一体形成されている。
【0062】
<集光点調整機構>
図5に示すように、集光点調整機構35は、集光レンズ34とノズル37に当接されたサンプルS(被写体)との間の距離を調整して集光点を調整する装置であり、ハウジング3の集光レンズ収納部3cに操作ノブ351を露出した状態で内設されている。集光点調整機構35は、フレーム本体300の水平部300cに水平方向に向けて延設された位置調整孔302と、この位置調整孔302に挿入されてレンズ収納筒体352を光軸に沿って形成された位置調整孔302の適宜な位置に固定する調整ボルト353と、レンズ収納筒体352に一体に形成されて集光レンズ34を位置調整孔302の適宜な位置に移動操作するための前記操作ノブ351と、ノズル支持体36を介在してノズル37(側視撮影用ノズル)をフレーム本体300に固定するための連結用筒体354と、を備えて構成されている。
集光点調整機構35は、操作ノブ351を操作して移動させることによって、操作ノブ351と共に集光レンズ34が光軸方向に進退して、集光点の位置を調整できるようになっている。
【0063】
つまり、レンズ収納筒体352は、集光レンズ34とノズル37に当接されたサンプルS(被写体)との間の距離を調整して集光点を調整する集光点調整機構を介在してハウジング3の集光レンズ収納部3cに内設してもよい。その場合は、例えば、集光点調整機構の操作ノブ(図示省略)を操作して移動させることによって、操作ノブと共に集光レンズ34が光軸方向に進退して、集光点を調整できるようになる。
【0064】
<ノズル>
図8に示すように、ノズル37は、患者の臼歯部、口腔内組織の撮影や、直視撮影用ノズル(図示省略)で撮影困難な部位、例えば、臼歯部の咬合面、舌側面、頬側面の撮影や、その他、前歯部の舌側面側を撮影するのに最適なアングルタイプの側視撮影用ノズル(臼歯用ノズル)である。
【0065】
この場合、ノズル37(側視撮影用ノズル、臼歯用ノズル)は、集光レンズ34の光軸を直交する方向に変換する斜鏡M1を中空部37h内の屈曲部37jに設置すると共に、集光レンズ34(図7参照)の光軸に対して直交する方向に開口部37gが形成されて、ノズル37の長手方向に対して直交する方向にあるサンプルSに照射して散乱光を回収するようになっている。ノズル37は、ハウジング3に対して着脱自在(交換可能)、かつ、回動自在に装着されている。
【0066】
ノズル37は、診断プローブ部30で臼歯部を撮影する際に、集光レンズ収納部3c及びノズル設置部3dが延在する方向に対して側面方向に向けて配置された開口部37gをサンプルS(臼歯部)に当接させてその間隔を保持しながら計測光をサンプルSに照射して、反射された散乱光を回収する。
ノズル37は、それぞれ後記する接続用筒部37a、環状溝37b、フランジ部37c、中央筒部37d、斜鏡収納部37e、貫通孔37f、開口部37g、中空部37h、位置決め部37i及び屈曲部37jが、例えば、加熱滅菌処理が可能な合成樹脂によって一体形成されている。
なお、ノズル37は、加熱滅菌処理や洗浄処理が可能な材料であれば、合成樹脂以外に、ステンレス鋼(例えば、SUS304)、チタン、チタン合金、アルミニウム合金、ニッケル合金、クロム合金、銀等の金属で形成したものであっても構わない。
【0067】
接続用筒部37aは、ノズル37をノズル支持体36に着脱自在に内嵌させるための部位であり、ノズル37の基端部に形成された円筒状部位である。このため、ノズル37は、診断プローブ部30のハウジング3に対して着脱して、ノズル37のみを適宜に洗浄処理及び滅菌処理ができるようになっている。
環状溝37bは、接続用筒部37aの外側表面にリング状に形成された縦断面視して円弧状の溝であり、球体SBが係合した状態に配置されている。
フランジ部37cは、接続用筒部37aの先端側の外周部に突出形成された鍔状の突起であり、外環部材38の開口部位に隣接して配置されている。
【0068】
中央筒部37dは、そのフランジ部37cから先端側に向けて光軸に沿って真っ直ぐに延設された円筒部位である。
斜鏡収納部37eは、斜鏡M1が収納される部位であり、開口部37gから斜鏡M1が出し入れ可能に形成されている。斜鏡収納部37eは、斜鏡M1を開口部37gから挿入して中空部37h内に配置可能に形成されている。
【0069】
貫通孔37fは、斜鏡M1をノズル37にねじ止めするための固定具Nが挿入される孔であり、中空部37h内の屈曲部位に、ノズル37外から中空部37hに連通した状態に形成されている。この貫通孔37fは、固定具Nの頭部及び凸部M1dに形状に合致するように、縦断面視して段差状に形成されている。
前記固定具Nは、例えば、ステンレス鋼製(例えば、SUS304)、チタン製、チタン合金製等の耐腐食性を有する金属からなるねじ、クリップ等である。この固定具Nは、斜鏡M1の固定穴M1eに着脱可能に固定されて、斜鏡M1をノズル37に取り付けたり、取り外したりできるようにしている。
【0070】
図8に示すように、屈曲部37jは、斜鏡M1の背面部位が斜めに固定される部位であり、接続用筒部37a内、中央筒部37d内及び開口部37g内の光軸に対して、例えば、45度に傾いた傾斜面になっている。換言すると、屈曲部37jは、斜鏡収納部37eの内壁に形成され、斜鏡M1が光軸に対して斜めに取り付けられるように形成されている。
位置決め部37iは、斜鏡M1をノズル37内の設定された所定位置に配置するための部位であり、屈曲部37jの外周部の複数箇所に形成され、斜鏡M1の回転止め溝M1cが係合する係合凸部からなる。
【0071】
開口部37gは、屈曲部37jの下側に開口して形成された部位であり、診断プローブ部30で撮影する際に、この開口部37gの開口端にサンプルSが当接した状態に配置される。
中空部37hは、ノズル37内の光軸に沿って略L字状に形成された筒状の空間であり、計測光及び反射光が通る空間からなる。
【0072】
このように、ノズル37は、光軸を90度変換する斜鏡M1と、ハウジング3のノズル設置部3dに対して接続用筒部37a及び中央筒部37dに対してノズル支持体36及び外環部材38を介在して着脱自在に挿着された接続用筒部37aと、ノズル37の基端側の接続用筒部37aに対して90度直交する方向に開口された開口部37gと、を有して、ノズル37の本体を回動させれば、開口部37gの向き(撮影する方向)を自由に変えられるように設けられ、口腔内の奥にあるそれぞれの臼歯部を容易に撮影することができるように設けられている。
【0073】
<外環部材>
外環部材38は、ノズル支持体36及びスプリングSPを覆うようにその外側に配置される略筒状の部材であり、その内面に、圧縮された状態のスプリングSPの先端部を支持するばね受け凸部38aが形成されている。
【0074】
<斜鏡>
図8に示すように、前記斜鏡M1は、走査手段33からの計測光をサンプルSの方向へ反射、または、サンプルSからの反射光を走査手段33の方向へ反射するための反射ミラーであり、金属素材を鏡面加工して形成した反射面を有する。この斜鏡M1は、ノズル37内の屈曲部37jから着脱して洗浄処理及び滅菌処理することができるようになっている。斜鏡M1には、それぞれ後記する斜鏡本体M1a、金属ミラー部M1b、回転止め溝M1c、凸部M1d、及び固定穴M1eが一体形成されている。
【0075】
前記鏡面加工とは、金属素材からなる斜鏡本体M1aの反射面を鏡面状に加工する方法であり、例えば、電解研磨による電気化学的な研磨と、研磨材による物理的な研磨を複合して同時に行うことにより、ナノレベルの超平滑面を得る方法等が挙げられる。なお、斜鏡M1の鏡面の加工する方向は、一例であって、その他にもいろいろな研磨方法がある。
【0076】
斜鏡本体M1aは、金属ミラー部M1b等が一体形成された金属製本体であり、例えば、ステンレス鋼(例えば、SUS304)、チタン、チタン合金、アルミニウム合金、ニッケル合金、クロム合金、銀等からなる厚板を加工して形成されている。斜鏡本体M1aは、ノズル37の中空部37h内に着脱可能に取り付けられている。
【0077】
金属ミラー部M1bは、斜鏡本体M1aを前記した鏡面加工で仕上げた鏡面状部位であり、計測光及び反射光を反射する反射面である。なお、金属ミラー部M1bは、メッキ、蒸着、コーティング、薄膜によって鏡面が形成されたものは、滅菌処理に不向きであるため、含まれない。
【0078】
回転止め溝M1cは、斜鏡本体M1aの背面側の外周部に形成され、ノズル37内に形成された位置決め部37iに係合する切欠溝からなり、斜鏡M1をノズル37内に固定具Nで固定する際に、斜鏡M1が回転するのを抑止することができる。
凸部M1dは、斜鏡本体M1aの背面中央部に突設した筒状突起であり、貫通孔37f内の段差部位に係合するように形成されている。
固定穴M1eは、固定具Nが着脱可能に挿着される穴であり、例えば、ねじからなる固定具Nが螺合するねじ穴からなる。
【0079】
≪制御ユニット部≫
制御ユニット部50(制御ユニット)は、図2に示すように、AD変換回路51と、DA変換回路52と、二次元MEMSミラー制御回路53と、表示装置54と、OCT制御装置100とを備える。
【0080】
AD変換回路51は、ディテクタ23(検出器)のアナログ出力信号をデジタル信号に変換するものである。本実施形態では、AD変換回路51は、光源11であるレーザ出力装置から出力されるトリガ(trigger)に同期して信号の収得を開始し、同じくレーザ出力装置から出力されるクロック信号ckのタイミングに合わせて、ディテクタ(検出器)23のアナログ出力信号を収得し、デジタル信号に変換する。このデジタル信号は、OCT制御装置100に入力する。
【0081】
DA変換回路52は、OCT制御装置100のデジタル出力信号をアナログ信号に変換するものである。本実施形態では、DA変換回路52は、光源11であるレーザ出力装置から出力されるトリガ(trigger)に同期して、OCT制御装置100のデジタル信号をアナログ信号に変換する。このアナログ信号は、二次元MEMSミラー制御回路53に入力する。
【0082】
二次元MEMSミラー制御回路53は、診断プローブ部30の走査手段33を制御するドライバである。二次元MEMSミラー制御回路53は、OCT制御装置100のアナログ出力信号に基づいて、光源11から出照されるレーザ光の出力周期に同期して、二次元MEMSミラーのミラーを水平方向と垂直方向に駆動させる駆動信号を出力する。
二次元MEMSミラー制御回路53は、ミラーの軸を回転させて水平方向にミラー面の角度を変更する処理と、ミラーの軸を回転させて垂直方向にミラー面の角度を変更する処理と、を異なるタイミングで行う。
【0083】
表示装置54は、OCT制御装置100によって生成される光干渉断層画像(以下、OCT画像という)を表示するものである。表示装置54は、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)、EL(Electronic Luminescence)、CRT(Cathode Ray Tube)、PDP(Plasma Display Panel)等から構成される。
【0084】
OCT制御装置100は、OCT装置1の制御装置であって、レーザ光に同期して走査手段33を制御することで撮影を行うと共に、ディテクタ23の検出信号を変換したデータからサンプルSのOCT画像を生成する制御を行うものである。OCT制御装置100は、不図示の入出力手段と、記憶手段と、演算手段と、を備えたコンピュータと、このコンピュータにインストールされたプログラムとから構成される。
【0085】
[作用]
次に、OCT装置1(光干渉断層画像生成装置)を使用してサンプルS(前歯部)を撮影する場合を説明する。
サンプルSを撮影する場合は、まず、不図示の電源スイッチをONした後、診断プローブ部30のスイッチの操作ボタンSWを操作して、図6に示すシャッタ機構31のシャッタ駆動手段313を駆動させてシャッタ312を開放状態にする。
また、光軸が傾いている場合には、図6に示すホルダ締結具326を緩めて、V方向の傾きを調整すると共に、ブラケット締結具(図示省略)を緩めてA方向の傾きを調整する。
【0086】
診断プローブ部30は、撮影する際に、集光レンズ34と、ノズル37の先端に当接させたサンプルSとの間の距離(集光点)を集光点調整機構(図示省略)で調整することにより、撮影する断層画像をサンプルSの基準面から深さ方向に位置調整して、深さ方向に広い範囲に亘って断層画像を得ることができる。
【0087】
また、図2に示すように、OCT装置1は、コリメータ19dを光軸方向に移動させて、カップラ12(光分割器)から参照ミラー21までの光路長を変更する光路長変更手段24と、前記集光レンズ34とサンプルSとの距離を調整して集光点を調整する集光点調整機構(図示省略)と、を有し、両者を作動させて互いの光路長を一致させることによって、所望の可干渉距離内の鮮明な断層画像を得ることができる。
【0088】
撮影するときは、図5に示す診断プローブ部30のグリップ部3bを手で握って、ノズル37の先端を開口部37gをサンプルS(前歯部)に当接させた状態で撮影する。
この場合、診断プローブ部30が、前記した構成からなるため、以下に示すように、従来よりも快適に撮影することができる。
すなわち、ハウジング3は、このハウジング3の略中央部に走査手段33を収納し、基端部側にコリメータ322及び光ファイバ60Aを配置し、先端部にノズル37が配置された配置構造になっていることによって、略中央部から先端部に亘ってレンズ収納筒体352が設置されているだけのスリムでシンプルな構造になっている。走査手段33は、二次元MEMSミラーからなることによって、ガルバノミラー等の他の走査手段を備えたプローブと比較して、モータ等の構成部品が少なくて小さいので、それらの部品の設置スペースも不要となるため、小型軽量化することができる。
【0089】
これに伴い、ハウジング3は、集光レンズ収納部3c及びノズル設置部3dの外径D1が、グリップ部3b及び走査手段収納部3aの外径D2よりも小さく形成することが可能となり、先端側(ノズル側)の外径D1を細い形状に形成ことができると共に、ノズル37の外径も小さくすることができる。
その結果、患者が口を大きく開かなくてもノズル37を口腔内に挿入することができる。また、診断プローブ部30は、全体が小型軽量化されて、利用者が撮影する際に、長時間に亘って診断プローブ部30を手で持って撮影しても苦痛にならない重量にすることができる。
【0090】
また、ハウジング3が、略中央部を中心としてL字状に折れ曲がったピストル形状に形成されていることによって、利用者が診断プローブ部30を手で持って撮影するときに、握り易いので、手で持って撮影し易く、また、診断プローブ部30を把持するブラケットにも容易に取り付けることができる。
【0091】
そのハウジング3の先端部位に配置されたノズル37は、患者の口腔内に入れて臼歯部や口腔内組織や前歯部の舌側面側等に当接させて使用するので、汚染されることが考えられるが、ノズル37のみをハウジング3から容易に着脱可能にすることで、ノズル37を滅菌処理及び洗浄処理することが容易になる。例えば、ノズル37を滅菌対応可能なステンレス鋼等の金属で形成すれば、ノズル37をオートクレーブ等の滅菌器にかけて感染防止対策としての滅菌処理したり、また、洗浄したりしても影響がない。
【0092】
また、ノズル37内の斜鏡M1は、固定具Nを工具で緩めることによって、ノズル37から取り外して前記したノズル37から分離した状態で、滅菌処理及び洗浄処理を行うことができる。
この場合、斜鏡M1全体がステンレス鋼等の金属でできているので、耐熱性及び強度を有するため、斜鏡M1を加熱滅菌等の滅菌処理や、洗浄処理を行っても、腐食したり、損傷したり、傷付いたりすることがない。さらに、その斜鏡M1は、一つのステンレス鋼等の金属材料で形成することができるので、部品点数及び組付工数を削減してコストダウンを図ることがきると共に、錆びない斜鏡M1を安価に加工して提供することができる。
【0093】
斜鏡M1は、ノズル37から取り外しても、回転止め溝M1cをノズル37の位置決め部37iに係合させることにより、予め設定した所定角度で所定の位置に正確にしっかりと固定具Nによって固定できる。
なお、従来使用していた斜鏡用のミラーは、このミラーが取り付けられる樹脂製の支持体に一体形成された複数の係止爪に、ミラーを押し付けて嵌め込むようにして取り付けられていたため、取り付けの際に、係止爪が破損するという問題点があった。
本発明のプローブは、斜鏡M1を金属製ミラーで形成して固定具Nによってノズル37内に固定することにより、係止爪が破損してミラーが落下するという不具合を解消することができる。
【0094】
≪変形例≫
なお、本発明は、前記実施形態に限定されるものではなく、その技術的思想の範囲内で種々の改造及び変更が可能であり、本発明はこれら改造及び変更された発明にも及ぶことは勿論である。なお、既に説明した構成は同じ符号を付してその説明を省略する。
【0095】
図10は、本発明の実施形態に係るプローブの変形例を示す斜視図である。図11は、本発明の実施形態に係るプローブの変形例を示す図であり、ハウジング半体を外したときの状態を示す分解斜視図である。図12は、本発明の実施形態に係るプローブの変形例を示す図であり、ハウジング半体を外したときの状態を示す側面図である。
【0096】
また、前記実施形態の診断プローブ部30は、図10〜図13に示すように、ストレート型のハウジング3Aを備えたものであっても構わない。この場合、ハウジング3Aは、このハウジング3Aの中央部に走査手段収納部3Aaが配置され、基端部にグリップ部3Abが配置され、中央部の先端側寄りの位置に集光レンズ収納部3Acが配置され、先端にノズル設置部3Adが配置されて、ハウジング3A全体が真っ直ぐに配置されたストレートタイプの形状に形成されている。そのハウジング3Aは、長さ方向に中央部を縦断面して左右に二分した2つのハウジング半体3Ae,3Afを合致させてなる。
グリップ部3Abは、コリメータレンズ32から反射鏡Mまでのレーザ光の光軸の方向に延びて形成されている。走査手段収納部3Aa内では、反射鏡Mで走査手段33に向けて反射され、さらに、走査手段33で反射されたレーザ光の光軸が、グリップ部Ab内の光軸に対して平行線上に反射されるように配置されている。集光レンズ収納部3Acは、その平行線の方向に延びて形成されている。このため、ハウジング3Aは、グリップ部Abから走査手段収納部3Aa及び集光レンズ収納部3Acを介してノズル37までストレートに形成されている。
【0097】
走査手段収納部3Aa内には、走査手段33(二次元MEMSミラー)と反射鏡Mとが、鏡面を、例えば、約45度傾斜させた状態で空間を介して対向して配置されている。
図11に示すように、反射鏡Mは、光ファイバ60Aから診断プローブ部30A内に入ったレーザ光が、コリメータ322、シャッタ機構31を通ってその反射鏡Mで、走査手段33の中央にあるミラーに向けて反射するように、ハウジング3Aの長さ方向に対してグリップ部3Ab側へ傾けた状態に配置されている。
走査手段33は、二次元MEMSミラーのデバイスからなるので、ハウジング3A内における占有スペースが狭く、反射鏡Mの鏡面にミラー面が平行になるように、ハウジング3Aの長さ方向に対してノズル37側へ傾けた状態に配置されている。
【0098】
グリップ部3Abは、撮影の際の利用者が診断プローブ部30Aを持つ握り部分であり、ハウジング3Aの長手方向に沿った形状になっている。このグリップ部3Abは、ハウジング3Aにおいて最大径の走査手段収納部3Aaからグリップ部3Abの基端部に向かって徐々に細くなるようにテーパ状に形成されている。グリップ部3Ab内には、基端部側にケーブル60、コリメータ332、シャッタ機構31等が主に収納されている。グリップ部3Abの側面の集光レンズ収納部3Ac寄りの位置には、複数の操作ボタンSW(図10参照)が設けられている。
【0099】
集光レンズ収納部3Acは、集光レンズ34を内設したレンズ収納筒体352を収納する部位であり、走査手段収納部3aの先端部寄りの位置に円筒状に形成されている。
図11に示すように、ノズル設置部3Adは、外環部材38を介在してノズル37が着脱自在の取り付けられる部位であり、使用用途に応じてノズル37を直視撮影用ノズル(図示省略)、あるいは、ノズル伸縮機構(図示省略)を備えたその他のノズルに適宜に取り替えることができる。ノズル設置部3Adは、集光レンズ収納部3Acの先端側からハウジング3の先端に亘って形成されている。
【0100】
図12に示すように、ハウジング3Aにおいて、集光レンズ収納部3Ac及びノズル設置部3Adの外径D3は、走査手段収納部3Aaの外径D4及びグリップ部3Abの外径D5よりも小さく形成されている。
【0101】
また、図10に示す診断プローブ部30Aは、ノズル37を前側にした際に、ハウジング3Aの右側側面に操作ボタンSWを配置した左利き用のハンドピースの一例を示す。左利きの利用者がその操作ボタンSWを操作する場合は、グリップ部3Abを左手で握り、左手の親指で操作ボタンSWを押圧操作する。
このため、診断プローブ部30Aを右効き用とする場合は、操作ボタンSWを図10に示すハウジング3Aの右側側面とは反対の左側側面に配置する。つまり、操作ボタンSWは、使用する利用者の効き手に合わせて側に配置することが望ましい。
【符号の説明】
【0102】
1 OCT装置(光干渉断層画像生成装置)
3 ハウジング
3d ノズル設置部
11 光源
21 参照ミラー
30,30A 診断プローブ部(プローブ)
33 走査手段
34 集光レンズ
36 ノズル支持体
37 ノズル(側視撮影用ノズル、臼歯用ノズル)
37c 係合部
37e 斜鏡収納部
37f 貫通孔
37g 開口部
37h 中空部
37i 位置決め部
37j 屈曲部
60A 光ファイバ
M 反射鏡
M1 斜鏡
M1a 斜鏡本体
M1b 金属ミラー部
M1c 回転止め溝
M1e 固定穴
N 固定具
S サンプル(被写体)

【特許請求の範囲】
【請求項1】
光源から照射されたレーザ光を、被写体に照射する計測光と参照ミラーに照射する参照光とに分配し、
前記被写体から反射して戻ってきた散乱光と前記参照ミラーで反射した反射光とを合成させた干渉光を解析して光干渉断層画像を生成する光干渉断層画像生成装置に使用され、
前記計測光を前記被写体に照射して前記反射して戻ってきた散乱光を回収するプローブであって、
前記計測光及び前記散乱光を伝送する光ファイバと、
この光ファイバによって前記プローブ内に導入されたレーザ光の照射方向を変化させる走査手段と、
この走査手段からの前記計測光を前記被写体に照射して前記散乱光を回収する開口部を有するノズルと、
前記光ファイバ、前記走査手段、及び、前記ノズルを保持するハウジングと、を備え、
前記ノズルには、金属素材を鏡面加工して形成した反射面を有する斜鏡が内設されていることを特徴とするプローブ。
【請求項2】
前記斜鏡は、前記計測光及び前記散乱光を反射する金属ミラー部と、
この金属ミラー部が一体形成された斜鏡本体と、
前記ノズルに形成された貫通孔に挿入された固定具が着脱可能に挿着される固定穴と、
を有して前記ノズルの中空部内に着脱可能に取り付けられていることを特徴とする請求項1に記載のプローブ。
【請求項3】
前記ノズルは、前記斜鏡を前記開口部から挿入して前記中空部内に配置可能に形成された斜鏡収納部と、
この斜鏡収納部の内壁に形成され、前記斜鏡が光軸に対して斜めに取り付けられるように形成された屈曲部と、
この屈曲部の外周部に形成され、前記斜鏡本体の外周部に形成された回転止め溝に係合する位置決め部と、
を有していることを特徴とする請求項1または請求項2に記載のプローブ。
【請求項4】
前記ノズルは、前記ハウジングの先端部に形成されたノズル設置部に装着されたノズル支持体に、着脱自在に取り付けられていることを特徴とする請求項1から請求項3のいずれか一項に記載のプローブ。
【請求項5】
前記斜鏡は、ステンレス鋼、チタン、あるいは、チタン合金から形成されていることを特徴とする請求項1ないし請求項4のいずれか一項に記載のプローブ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2013−92478(P2013−92478A)
【公開日】平成25年5月16日(2013.5.16)
【国際特許分類】
【出願番号】特願2011−235483(P2011−235483)
【出願日】平成23年10月26日(2011.10.26)
【出願人】(000141598)株式会社吉田製作所 (117)
【Fターム(参考)】