説明

レーザ測定装置

【課題】レーザ光が規定方向に照射される回動位置を正確に「基準位置」として設定することができ、その基準位置に基づいて検出物体の相対位置をより精度高く算出し得るレーザ測定装置を提供する。
【解決手段】レーザ測定装置1は、検出される距離値が所定の距離条件を満たし、且つ検出される受光量が所定の受光量条件を満たす回動位置を「基準位置」として検出する「基準位置検出手段」と、「基準位置検出手段」によって検出された「基準位置」を基準とする偏向部41の相対的な回動位置を検出する「相対位置検出手段」と、フォトダイオード20(受光手段)によって反射光が受光されたとき、「相対位置検出手段」による相対的な回動位置の検出結果に基づいて検出物体の方向を検出する「方向検出手段」とが設けられている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザ測定装置に関するものである。
【背景技術】
【0002】
従来より、レーザ光を用いて検出物体までの距離や方位を検出する技術として例えば特許文献1のような装置が提供されている。この特許文献1の装置では、レーザ光発生手段からのレーザ光の光軸上に、レーザ光を透過させ、かつ検出物体からの反射光を検出手段に向けて反射する光アイソレータを設けている。さらに、光アイソレータを透過するレーザ光の光軸上において当該光軸方向の中心軸を中心として回動する凹面鏡を設け、この凹面鏡によってレーザ光を空間に向けて反射させると共に、検出物体からの反射光を光アイソレータに向けて反射させることで360°の水平走査を可能としている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特許2789741号公報
【特許文献2】特開平10−20035号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、上記のようなレーザ測定装置では、偏向手段(凹面鏡等)の回動の基準となる位置(基準位置)をどのように設定するかが問題となる。例えば、偏向手段の回動軸にロータリエンコーダなどの回転センサを取り付ける方法などが考えられるが、この場合、偏向手段やロータリエンコーダなどの部品を組み付ける際にずれが生じると、検出誤差が大きくなりやすいという問題がある。特に、遠方の検出物体を検出する場合、組み付け時の角度誤差(例えば、偏向手段とロータリエンコーダとの角度誤差)がわずかであっても、遠方位置では相当大きな位置誤差となってしまうため、このような組み付けに起因する誤差要因を極力解消し得る構成が望まれている。
【0005】
また、上記のようなレーザ測定装置では、ロータリエンコーダを省略して装置構成の簡素化、部品点数の削減を図りたいという要望もあり、このようにロータリエンコーダを省略するためには、装置全体に対する偏向手段(凹面鏡等)の相対的な向きをロータリエンコーダ以外の方法で特定できるようにする必要がある。この場合にも、レーザ光が規定方向に照射されるときの偏向手段の回動位置を「基準位置」として定める必要があり、この「基準位置」を正確に検出することが必須となる。
【0006】
本発明は、上述した課題を解決するためになされたものであり、レーザ光が規定方向に照射される回動位置を正確に「基準位置」を検出することができ、その基準位置に基づいて検出物体の相対位置をより精度高く算出し得るレーザ測定装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
請求項1の発明は、レーザ光を発生させるレーザ光発生手段と、前記レーザ光発生手段にて前記レーザ光が発生したときに、当該レーザ光が検出物体にて反射して生じる反射光を受光する受光手段と、所定の中心軸を中心として回動可能に構成された偏向手段を備えるとともに、当該偏向手段により前記レーザ光を空間に向けて偏向させ、且つ前記反射光を前記受光手段に向けて偏向する回動偏向手段と、前記回動偏向手段の前記偏向手段を回転駆動する駆動手段と、少なくとも前記回動偏向手段を収容するケースと、前記ケースの内壁の内側に配置され、前記偏向手段からの前記レーザ光の走査経路上に配置される反射面を有すると共に、前記偏向手段が所定回動範囲にあるときに前記偏向手段からの前記レーザ光を前記反射面で反射させ且つ前記偏向手段を介して前記受光手段に受光させる基準部材と、前記偏向手段の回動位置毎に前記レーザ光の到達位置までの距離値を算出する距離値算出手段と、前記偏向手段の回動位置毎に前記受光手段での受光量を検出する受光量検出手段と、前記距離値算出手段によって検出される前記距離値が所定の距離条件を満たし、且つ前記受光量検出手段によって検出される前記受光量が所定の受光量条件を満たす回動位置を基準位置として検出する基準位置検出手段と、前記基準位置検出手段によって検出された前記基準位置を基準とする前記偏向手段の相対的な回動位置を検出する相対位置検出手段と、前記受光手段によって前記反射光が受光されたとき、前記相対位置検出手段による前記相対的な回動位置の検出結果に基づいて前記検出物体の方向を検出する方向検出手段と、を備えたことを特徴としている。
【0008】
請求項2の発明は、請求項1に記載のレーザ測定装置において、前記基準位置検出手段が、前記距離値算出手段による算出結果に基づき、前記距離値が前記基準部材の位置又は形状に対応した規定条件を満たす所定回動範囲を検出する所定回動範囲検出手段を備えており、前記受光量検出手段による前記受光量の検出結果に基づき、前記所定回動範囲検出手段によって検出された前記所定回動範囲において前記受光量が規定状態となる回動位置を前記基準位置として検出している。
【0009】
請求項3の発明は、請求項2に記載のレーザ測定装置において、前記基準部材は、前記偏向手段における前記レーザ光の出射位置から前記反射面における前記レーザ光の照射経路までの距離が所定距離範囲内に収まるように構成されており、前記所定回動範囲検出手段は、前記距離値算出手段による算出結果に基づき、前記距離値の変動が所定閾値内に収まる回動範囲を前記所定回動範囲として検出することを特徴とする。
【0010】
請求項4の発明は、請求項1に記載のレーザ測定装置において、前記基準位置検出手段は、前記距離値算出手段によって回動位置毎に得られる距離値の複数周分のデータに基づいて、その複数周で得られる距離値が前記基準部材の位置又は形状に対応した所定の統計条件を満たす所定回動範囲を検出する所定回動範囲検出手段を備え、前記受光量検出手段による前記受光量の検出結果に基づき、前記所定回動範囲検出手段によって検出された前記所定回動範囲において前記受光量が規定状態となる回動位置を前記基準位置として検出することを特徴とする。
【0011】
請求項5の発明は、請求項4に記載のレーザ測定装置において、前記基準部材は、前記偏向手段における前記レーザ光の出射位置から前記反射面における前記レーザ光の照射経路までの距離が所定距離範囲内に収まるように構成されており、前記所定回動範囲検出手段は、前記距離値算出手段によって回動位置毎に得られる距離値の複数周分のデータに基づいて、距離値の変動が所定閾値内に収まる回動範囲を前記所定回動範囲として検出することを特徴とする。
【0012】
請求項6の発明は、請求項2から請求項5のいずれか一項に記載のレーザ測定装置において、前記基準部材の前記反射面は、前記偏向手段が前記基準位置にあるときに当該偏向手段からの前記レーザ光が略垂直に入射する平面として構成されており、前記基準位置検出手段は、前記所定回動範囲検出手段によって検出された前記所定回動範囲において前記受光量が最大値となる回動位置を前記基準位置として検出している。
【0013】
請求項7の発明は、請求項6に記載のレーザ測定装置において、前記基準部材は、前記反射面に入射する前記レーザ光の移動方向を幅方向としたとき、前記基準位置に位置する前記偏向手段からの前記レーザ光が前記反射面の幅方向所定位置に入射する構成をなしている。
また、前記基準位置検出手段は、前記所定回動範囲検出手段によって検出された前記所定回動範囲において前記受光量が最大値となる受光量最大回動位置を検出すると共に、その検出された前記受光量最大回動位置が前記幅方向所定位置に対応する対応回動位置か否かを判断する判断手段を備えている。そして、前記判断手段により前記受光量最大回動位置が前記対応回動位置に該当すると判断された場合には、当該受光量最大回動位置を前記基準位置として検出し、前記受光量最大回動位置が前記対応回動位置に該当しないと判断された場合には、前記所定回動範囲検出手段による前記所定回動範囲の検出処理を再度行うと共に、その再度検出された前記所定回動範囲における前記受光量最大回動位置を再度検出し、更に、前記判断手段により、その再度検出された前記受光量最大回動位置が前記対応回動位置に該当するか否かの判断処理を再び試みるように構成されている。
【0014】
請求項8の発明は、レーザ光を発生させるレーザ光発生手段と、前記レーザ光発生手段にて前記レーザ光が発生したときに、当該レーザ光が検出物体にて反射して生じる反射光を受光する受光手段と、所定の中心軸を中心として回動可能に構成された偏向手段を備えるとともに、当該偏向手段の回動範囲が所定の検出可能範囲にあるときに当該偏向手段により前記レーザ光を空間に向けて偏向させ、且つ前記反射光を前記受光手段に向けて偏向する回動偏向手段と、前記回動偏向手段の前記偏向手段を回転駆動する駆動手段と、少なくとも前記回動偏向手段を収容するケースと、前記ケースの内壁の内側において前記偏向手段からの前記レーザ光の走査経路上に配置されると共に、前記偏向手段の回動位置が前記検出可能範囲外における所定回動範囲にあるときに、前記偏向手段からの前記レーザ光を前記偏向手段及び前記受光手段から外れた位置に導く導光部材と、前記偏向手段の回動位置が前記検出可能範囲外であって且つ前記所定回動範囲外にあるときに前記偏向手段からの前記レーザ光を受ける受光壁面を有し、且つ前記レーザ光が当該受光壁面にて反射する光の少なくとも一部を、前記偏向手段を介して前記受光手段に受光させるように配置された受光壁と、前記偏向手段の回動位置毎に前記レーザ光の到達位置までの距離値を算出する距離値算出手段と、前記偏向手段の回動位置毎に前記受光手段での受光量を検出する受光量検出手段と、前記受光量検出手段によって検出される前記受光量が所定の低受光量条件を満たす回動位置を基準位置として検出する基準位置検出手段と、前記基準位置検出手段によって検出された前記基準位置を基準とする前記偏向手段の相対的な回動位置を検出する相対位置検出手段と、前記偏向手段の回動位置が前記検出可能範囲にあるときに前記受光手段によって前記検出物体からの前記反射光が受光された場合に、前記相対位置検出手段による前記相対的な回動位置の検出結果に基づいて当該検出物体の方向を検出する方向検出手段と、を備えたことを特徴としている。
【0015】
請求項9の発明は、請求項8に記載のレーザ測定装置において、前記受光壁は、前記受光壁面にて前記レーザ光を拡散反射させるようにしている。
【0016】
請求項10の発明は、請求項8又は請求項9に記載のレーザ測定装置において、前記基準位置検出手段は、前記受光量検出手段によって検出される前記受光量の状態が、前記受光壁からの光に基づく所定の高受光量状態と、前記レーザ光が前記導光部材によって導かれるときの前記所定の低受光量状態とで切り替わるときの前記偏向手段の回動位置を前記基準位置として検出している。
【0017】
請求項11の発明は、請求項8から請求項10のいずれか一項に記載のレーザ測定装置において、前記レーザ光の走査経路外には、前記レーザ光を減衰する減衰部材が設けられており、前記導光部材は、前記レーザ光を前記減衰部材に向けて導くことを特徴とする。
【0018】
請求項12の発明は、請求項8から請求項10のいずれか一項に記載のレーザ測定装置において、前記レーザ光の走査経路外において入射する光を減衰するように配置された減衰部材と、前記偏向手段の回動位置が前記所定回動範囲にあるときに、前記導光部材によって導かれた前記レーザ光を前記減衰部材に導く光誘導手段と、を備えたことを特徴とする。
【0019】
請求項13の発明は、請求項11又は請求項12に記載のレーザ測定装置において、前記減衰部材が、光ファイバケーブルからなり、前記光ファイバケーブルの一端側から前記レーザ光が入光し、且つその一端側から入光した光が前記光ファイバケーブルの他端側に導かれるように構成され、当該光ファイバケーブル内において、前記レーザ光が減衰するように構成されていることを特徴とする。
【0020】
請求項14の発明は、請求項8から請求項10のいずれか一項に記載のレーザ測定装置において、少なくとも前記回動偏向手段及び前記導光部材を収容する構成をなし、且つ前記レーザ光の走査経路から外れた位置に貫通孔が形成されたケースを備え、前記導光部材は、前記レーザ光を前記貫通孔を介して前記ケースの外部に導くことを特徴とする。
【0021】
請求項15の発明は、請求項8から請求項10のいずれか一項に記載のレーザ測定装置において、少なくとも前記回動偏向手段及び前記導光部材を収容する構成をなし、且つ前記レーザ光の走査経路から外れた位置に貫通孔が形成されたケースと、前記ケース内に収容され、前記偏向手段の回動位置が前記所定回動範囲にあるときに、前記導光部材によって導かれた前記レーザ光を前記貫通孔を介して前記ケースの外部に導く光誘導手段と、を備えたことを特徴とする。
【0022】
請求項16の発明は、請求項8から請求項15のいずれか一項に記載のレーザ測定装置において、前記導光部材は、ミラーによって構成され、前記レーザ光を前記偏向手段及び前記受光手段から外れた位置に鏡面反射させるようにしている。
【0023】
請求項17の発明は、請求項8から請求項15のいずれか一項に記載のレーザ測定装置に置いて、前記導光部材は、プリズムによって構成され、前記レーザ光を前記偏向手段及び前記受光手段から外れた位置に屈折させるようにしている。
【0024】
請求項18の発明は、請求項8から請求項17のいずれか一項に記載のレーザ測定装置において、前記導光部材は、前記偏向手段から当該導光部材に入射する前記レーザ光を、入射方向に対して略直交する方向に導くように配置されている。
【0025】
請求項19の発明は、レーザ光を発生させるレーザ光発生手段と、前記レーザ光発生手段にて前記レーザ光が発生したときに、当該レーザ光が検出物体にて反射して生じる反射光を受光する受光手段と、所定の中心軸を中心として回動可能に構成された偏向手段を備えるとともに、当該偏向手段により前記レーザ光を空間に向けて偏向させ、且つ前記反射光を前記受光手段に向けて偏向する回動偏向手段と、前記回動偏向手段の前記偏向手段を回転駆動する駆動手段と、装置内に配置され、前記偏向手段からの前記レーザ光の走査経路上に配置される反射面を有すると共に、前記偏向手段が所定回動範囲にあるときに前記偏向手段からの前記レーザ光を前記反射面で反射させ且つ前記偏向手段を介して前記受光手段に受光させる基準部と、前記偏向手段の回動位置毎に前記レーザ光の到達位置までの距離値を算出する距離値算出手段と、前記偏向手段の回動位置毎に前記受光手段での受光量を検出する受光量検出手段と、前記距離値算出手段によって検出される前記距離値が所定の距離条件を満たし、且つ前記受光量検出手段によって検出される前記受光量が所定の受光量条件を満たす回動位置を基準位置として検出する基準位置検出手段と、前記基準位置検出手段によって検出された前記基準位置を基準とする前記偏向手段の相対的な回動位置を検出する相対位置検出手段と、前記受光手段によって前記反射光が受光されたとき、前記相対位置検出手段による前記相対的な回動位置の検出結果に基づいて前記検出物体の方向を検出する方向検出手段と、を備えている。
そして、前記基準部は、前記レーザ光が装置外に照射される検出可能回動範囲から外れた範囲に配置され、所定の低反射率で構成され且つ前記レーザ光に対して第1反射光を反射する低反射率部と、前記低反射率部よりも反射率が高く構成され且つ前記レーザ光に対して第2反射光を反射する高反射率部とを少なくとも備え、前記基準位置検出手段は、前記偏向手段の回動範囲において、前記受光量検出手段によって検出される前記受光量が前記低反射率部に応じた第1受光量状態となる第1回動範囲と、前記受光量検出手段によって検出される前記受光量が前記高反射率部に応じた第2受光量状態となる第2回動範囲とを特定すると共に、前記第1回動範囲と前記第2回動範囲とが並ぶ基準部照射範囲を特定し、当該基準部照射範囲の所定位置を基準位置として検出している。
【発明の効果】
【0026】
請求項1の発明では、偏向手段からのレーザ光の走査経路上に反射面を備えた基準部材が配置されており、偏向手段が所定回動範囲にあるときに偏向手段からのレーザ光をその基準部材の反射面で反射させ且つ偏向手段を介して受光手段に受光させている。このようにすると、偏向手段が所定回動範囲にあるときに、基準部材に応じた受光結果が得られることとなる。この基準部材は、ケースの内壁の内側に配置されているため、この基準部材から反射するレーザ光の受光結果(受光量や距離値)は、検出可能範囲(レーザ光が装置外に照射されるときの偏向手段の回動範囲)におけるレーザ光の受光結果と大きく異なり、更に、検出可能範囲外においてケースの内壁に照射される場合の受光結果とも異なりやすくなる。
そして、このような構成を前提として、距離値算出手段によって検出される距離値が所定の距離条件を満たし、且つ受光量検出手段によって検出される受光量が所定の受光量条件を満たす回動位置を基準位置として検出している。従って、基準部材にレーザ光が照射されるときに想定される距離値に対応するように「所定の距離条件」を定め、基準部材にレーザ光が照射されるときに想定される受光量に対応するように「所定の受光量条件」を定めるようにすれば、実際に照射されるレーザ光の受光結果に基づいて正確に基準位置を検出することができる。また、基準部材は、ケース内に配置されているため、外乱光の影響を受けにくく、レーザ光が基準部材に照射される回動範囲では、得られる距離値や受光量が安定し易くなる。従って、このような基準部材からの受光量に基づいて基準位置を検出するようにすれば、基準位置のより正確な検出が可能となる。更に、このように基準位置を正確に定めた上で当該基準位置を基準とする偏向手段の相対的な回動位置を検出し、検出物体の方向を検出しているため、検出物体の位置誤差をより小さくすることができる。
【0027】
請求項2の発明では、距離値算出手段による算出結果に基づいて距離値が基準部材の位置又は形状に対応した規定条件を満たす所定回動範囲を検出する所定回動範囲検出手段が設けられている。そして、受光量検出手段による受光量の検出結果に基づき、所定回動範囲検出手段によって検出された所定回動範囲において受光量が規定状態となる回動位置を基準位置として検出している。このようにすると、基準部材にレーザ光が照射される範囲を複雑な構成を用いることなく正確に検出でき、且つその範囲(所定回動範囲)における特定回動位置を基準位置として安定的に定めることができる。
例えば、受光量を条件とせずに距離値だけで基準位置を検出する場合、距離検出の精度に大きく依存してしまい、距離値の検出精度の安定性を確保し難い場合や、距離値の検出精度に限界がある場合(例えば、距離検出回路の距離検出の分解能がそれほど高くない場合)、基準位置に対応するある程度の範囲(所定回動範囲)は絞れるものの、特定の回動位置(基準位置となるべき位置)と他の回動位置とを距離によって区別し難くなり、基準位置を安定的に検出できなくなる懸念がある。
これに対し、請求項2のように、距離値に基づいて基準部材に対応する範囲(所定回動範囲)を絞った上で、その所定回動範囲の中から受光量が規定状態を示す位置を「基準位置」を検出するようにすれば、距離値のみに大きく依存することなく、受光量変化の特性を利用して特定の回動位置を「基準位置」として正確に検出しやすくなる。特に、受光手段で検出される受光量は、レーザ光の照射対象となる物体への入射角度や物体の表面状態によって大きく変化するものであるため、基準位置と他の位置とにおいて入射状態や表面状態に差異が存在すれば、基準位置を正確且つ安定的に検出し易くなる。
一方、受光量の変化のみに基づいて基準位置を検出しようとすると、基準部材にレーザ光が照射されるときの受光量と、基準部材以外の位置にレーザ光が照射されるときの受光量とが近似する場合(例えば、基準部材での反射状態が他部分での反射状態に近い場合や、基準部材以外の位置にレーザ光が照射されているときに基準部材での反射光に近いノイズ光が発生する場合など)において誤検出が生じる場合がある。このような問題に対し、請求項2の発明では、基準部材の位置に対応する回動範囲(所定回動範囲)を特定した上で、この回動範囲(所定回動範囲)内において受光量が規定状態となる回動位置を基準位置として検出しているため、基準部材以外の位置にレーザ光が照射されるときのノイズ要素(基準位置での受光量に近い受光状態の発生)を排除することができ、より正確且つ安定的に基準位置を定めやすくなる。
【0028】
請求項3の発明では、基準部材は、偏向手段におけるレーザ光の出射位置から反射面におけるレーザ光の照射経路までの距離が所定距離範囲内に収まるように構成されており、所定回動範囲検出手段は、距離値算出手段による算出結果に基づき、距離値の変動が所定閾値内に収まる回動範囲を所定回動範囲として検出している。この構成では、偏向手段におけるレーザ光の出射位置から反射面におけるレーザ光の照射経路までの距離が所定距離範囲内に収まっているため、基準部材にレーザ光が照射されている期間は、検出される距離値がある範囲で安定することが予想される。従って、基準部材にレーザ光が照射されている期間に検出が想定される距離値を含むように閾値を設定し、この閾値内に収まる回動範囲を検出すれば、基準部材に対応する回動範囲をより正確に検出できるようになる。
【0029】
請求項4の発明では、距離値算出手段によって回動位置毎に得られる距離値の複数周分のデータに基づいて、その複数周で得られる距離値が前記基準部材の位置又は形状に対応した所定の統計条件を満たす所定回動範囲を検出する所定回動範囲検出手段が設けられている。そして、受光量検出手段による受光量の検出結果に基づき、所定回動範囲検出手段によって検出された所定回動範囲において受光量が規定状態となる回動位置を基準位置として検出している。
この構成によれば、基準部材の位置に対応する回動範囲(所定回動範囲)を各回動位置の複数周分のデータに基づいて特定することができる。従って、突発的なノイズに起因する検出精度の低下を極力抑えることができ、基準部材の位置に対応する回動範囲(所定回動範囲)の正確な検出、ひいては、基準位置の正確な検出が可能となる。特に、基準部材はケース内に配置されているため、ノイズが生じたとしても、それは突発的なノイズ(外乱光によるショットノイズや電気、磁気的外乱による回路ノイズ等)である可能性が高く、このような構成では、複数周で得られる距離値に基づいて統計的手法で計算することで、ノイズの影響を大きく抑えることができ、計算によって得られる基準位置が正確な位置に収束し易くなる。また、基準部材は予め形状が定められており、ケース内(即ち、偏向手段の近い位置)に安定的に配置されるため、当該基準部材が照射される回動範囲では受光量が一定の状態に安定しやすくなる。従って、基準部材の変化度合いが所定の安定範囲に収まる回動範囲を検出することで、基準部材に対応する回動範囲(所定回動範囲)をより正確に検出することができる。
【0030】
請求項5の発明では、偏向手段におけるレーザ光の出射位置から、基準部材の反射面におけるレーザ光の照射経路までの距離が所定距離範囲内に収まるように構成されている。即ち、基準部材においてどの位置にレーザ光が照射されるときでも、そのレーザ光の照射位置から偏向手段におけるレーザ光の出射位置までの距離が所定距離範囲内となる近似した距離とされている。そして、このような構成を前提として、所定回動範囲検出手段は、距離値算出手段によって回動位置毎に得られる距離値の複数周分のデータに基づいて、距離値の変動が所定閾値内に収まる回動範囲を所定回動範囲として検出している。この構成によれば、基準部材にレーザ光が照射されるときに距離値が近似範囲に収まるという特性に基づき、複数周における各回動位置での距離値の変化量を利用して基準部材にレーザ光が照射される回動範囲(所定回動範囲)をより正確に特定できるようになる。
【0031】
請求項6の発明では、基準部材の反射面が、偏向手段が基準位置にあるときに当該偏向手段からのレーザ光が略垂直に入射する平面として構成されており、基準位置検出手段は、所定回動範囲検出手段によって検出された所定回動範囲において受光量が最大値となる回動位置を基準位置として検出している。このようにすると、基準部材の反射面の特徴を生かして「所定回動範囲」(即ち、レーザ光が基準部材に入射する回動範囲)を正確に検出できると共に、その「所定回動範囲」内の特定回動位置を簡易な構成で安定的に検出でき、このように安定的に定まる特定回動位置を「基準位置」として用いることができる。
【0032】
請求項7の発明は、基準部材は、反射面に入射するレーザ光の移動方向を幅方向としたとき、基準位置に位置する偏向手段からのレーザ光が反射面の幅方向所定位置に入射する構成をなしている。また、基準位置検出手段は、所定回動範囲検出手段によって検出された所定回動範囲において受光量が最大値となる受光量最大回動位置を検出すると共に、その検出された受光量最大回動位置が幅方向所定位置に対応する対応回動位置か否かを判断する判断手段を備えている。そして、判断手段により受光量最大回動位置が対応回動位置に該当すると判断された場合には、当該受光量最大回動位置を基準位置として検出ている。 この構成では、基準部材の幅方向所定位置に入射するときの偏向手段の回動位置を「基準位置」としており、この「基準位置」のときには、レーザ光が反射面に略垂直に入射するようになっている。従って、受光量が最大値となるときの回動位置(受光量最大回動位置)が「基準位置」と推定されるが、請求項5の発明では、その受光量最大回動位置をそのまま「基準位置」とするのではなく、幅方向所定位置に対応する回動位置(対応回動位置)か否かを一旦確認し、対応回動位置に該当する場合に「基準位置」として定めている。このようにすると、ノイズなどの影響によって誤った基準位置が設定されることを効果的に防ぐことができ、「基準位置」をより正確に設定することができる。
また、受光量最大回動位置が前記対応回動位置に該当しないと判断された場合には、所定回動範囲検出手段による前記所定回動範囲の検出処理を再度行うと共に、その再度検出された所定回動範囲における受光量最大回動位置を再度検出し、その再度検出された受光量最大回動位置が前記対応回動位置に該当するか否かを判断している。このようにすると、受光量最大回動位置が前記対応回動位置に該当しない場合であっても受光量最大回動位置の検出を再度行って対応回動位置に該当するか否かを確認することができ、「基準位置」の検出が成功する可能性を高めることができる。
【0033】
請求項8の発明では、偏向手段からのレーザ光の走査経路上に導光部材が配置されており、この導光部材は、偏向手段の回動位置が検出可能範囲外における所定回動範囲にあるときに、偏向手段からのレーザ光を偏向手段及び受光手段から外れた位置に導くように構成されている。さらに、偏向手段の回動位置が検出可能範囲外であって所定回動範囲外にあるときに、偏向手段からのレーザ光を受ける受光壁面を有する受光壁が設けられている。そして、この受光壁は、レーザ光が当該受光壁面にて反射する光の少なくとも一部を、偏向手段を介して受光手段に受光させるように配置されている。このようにすると、「偏向手段の回動位置が検出可能範囲外において所定回動範囲にあるときに受光手段が受光する受光量」が、「偏向手段の回動位置が検出可能範囲外であって所定回動範囲外にあるときに受光手段が受光する受光量」に比べて相対的に小さくなる。即ち、偏向手段が検出可能範囲外にあるときに受光量検出手段によって検出される受光量は、当該偏向手段が所定回動範囲内のときに所定の低受光量状態となり、所定回動範囲外のときに所定の高受光量状態となるため、所定回動範囲の内外で受光量に差が生じることとなる。
そして、このような構成を前提とし、更に、受光量検出手段によって検出される受光量が所定の低受光量条件を満たす回動位置を基準位置として検出する基準位置検出手段と、基準位置検出手段によって検出された基準位置を基準とする偏向手段の相対的な回動位置を検出する相対位置検出手段と、偏向手段の回動位置が検出可能範囲にあるときに受光手段によって検出物体からの反射光が受光された場合に、相対位置検出手段による相対的な回動位置の検出結果に基づいて当該検出物体の方向を検出する方向検出手段とが設けられている。
この構成によれば、実際に照射されるレーザ光の受光結果に基づいてより正確に基準位置を定めることができる。また、このように基準位置を正確に定めた上で当該基準位置を基準とする偏向手段の相対的な回動位置を検出し、検出物体の方向を検出することができるため、検出物体の位置誤差をより小さくすることができる。
【0034】
請求項9の発明では、受光壁は、受光壁面にてレーザ光を拡散反射させるように構成されている。従って、偏向手段の回動位置が検出可能範囲外且つ所定回動範囲外にあるときに受光手段で検出される受光量が飽和受光量(受光手段で検知できる最大受光量)に達しにくくなり、偏向手段が所定回動範囲内となったときに受光手段において受光量の変化をより正確に検出しやすくなる。
【0035】
請求項10の発明では、基準位置検出手段は、受光量検出手段によって検出される受光量の状態が、受光壁からの光に基づく所定の高受光量状態と、レーザ光が導光部材によって導かれるときの所定の低受光量状態とで切り替わるときの偏向手段の回動位置を基準位置として検出している。このようにすると、レーザ光が導光部材に照射されて受光量が低下する回動範囲(所定回動範囲)の中で特定の回動位置を容易に且つ正確に検出して「基準位置」として定めることができる。
【0036】
請求項11の発明では、レーザ光の走査経路外にレーザ光を減衰する減衰部材が設けられており、導光部材は、この減衰部材に向けてレーザ光を導くように構成されている。このようにすると、導光部材によって偏向手段及び受光手段から外れた位置に導かれた偏向手段からのレーザ光を、更に減衰させることができるため、導光部材によって導かれたレーザ光が他部材で反射して受光手段に受光されることを抑制ないし防止することができる。従って、所定回動範囲の内外で、より明確に受光量の差が生じやすくなり、ひいては、より正確且つ安定的に基準位置を設定しやすくなる。
【0037】
請求項12の発明では、レーザ光の走査経路外において入射する光を減衰するように配置された減衰部材と、偏向手段の回動位置が所定回動範囲にあるときに、導光部材によって導かれたレーザ光を減衰部材に導く光誘導手段とが設けられている。
このようにすると、導光部材によって偏向手段及び受光手段から外れた位置に導かれた偏向手段からのレーザ光を、更に光誘導部材によって誘導し、減衰部材によって減衰させることができるため、導光部材によって導かれたレーザ光が他部材で反射して受光手段に受光されることを抑制ないし防止することができる。従って、所定回動範囲の内外で、より明確に受光量の差が生じやすくなり、ひいては、より正確且つ安定的に基準位置を設定しやすくなる。また、導光部材によって導かれたレーザ光を更に光誘導部材によって導いているため、単一の導光部材によってレーザ光を導く構成と比較すると、光をより適切な位置に導くための設計上の自由度が大きくなる。
【0038】
請求項13の発明では、減衰部材が、光ファイバケーブルからなり、光ファイバケーブルの一端側からレーザ光が入光し、且つその一端側から入光した光が光ファイバケーブルの他端側に導かれるように構成され、当該光ファイバケーブル内において、レーザ光が減衰するように構成されている。この構成では、導光部材からのレーザ光を、光ファイバケーブル内において、他部分への漏洩を抑制しつつ効果的に減衰させることができる。
【0039】
請求項14の発明では、レーザ光の走査経路から外れた位置に貫通孔が形成されたケースが設けられ、このケースは、少なくとも回動偏向手段及び導光部材を収容する構成をなしている。そして、導光部材は、貫通孔を介してレーザ光をケースの外部に導いている。この構成によれば、導光部材によって導かれたレーザ光がケース外に放出されるため、導光部材にレーザ光が照射される回動範囲において、レーザ光の一部が偏向手段や受光手段に入光することをより確実に抑えることができる。
【0040】
請求項15の発明は、レーザ光の走査経路から外れた位置に貫通孔が形成されたケースが設けられ、このケースは、少なくとも回動偏向手段及び導光部材を収容する構成をなしている。更に、ケース内に光誘導部材が収容され、この光誘導部材は、偏向手段の回動位置が所定回動範囲にあるときに、導光部材によって導かれたレーザ光を貫通孔を介してケースの外部に導いている。
この構成によれば、導光部材によって導かれたレーザ光が、更に光誘導部材によって導かれてケース外に放出されるため、導光部材にレーザ光が照射される回動範囲において、レーザ光の一部が偏向手段や受光手段に入光することをより確実に抑えることができる。また、導光部材によって導かれたレーザ光を更に光誘導部材によって貫通孔に導いており、単一の導光部材によってレーザ光を貫通孔に導く構成と比較すると、貫通孔や光の誘導経路を定める上で、設計上の自由度が大きくなる。
【0041】
請求項16の発明では、導光部材がミラーによって構成され、レーザ光を偏向手段及び受光手段から外れた位置に鏡面反射させている。このようにすると、偏向手段からのレーザ光を鏡面反射で導くことができ、拡散反射を抑えて偏向手段及び受光手段から外れた位置により確実に導くことができる。従って、導光部材で反射したレーザ光の一部が直接的に受光手段に受光されることをより一層抑制することができ、所定回動範囲の内外でより一層明確に受光量の差を生じさせることができる。
【0042】
請求項17の発明では、導光部材は、プリズムによって構成され、レーザ光を偏向手段及び受光手段から外れた位置に屈折させるようにしている。このように、導光部材がプリズムによって構成されていても、偏向手段からのレーザ光を偏向手段及び受光手段から外れた位置に屈折させて導くことができるため、偏向手段の回動位置が検出可能範囲外における所定回動範囲にあるとき、受光手段が受光する受光量をより小さくすることができ、基準位置検出手段によってより正確に受光量が所定の低受光量条件を満たす回動位置を「基準位置」として検出することができる。
【0043】
請求項18の発明では、導光部材は、偏向手段から当該導光部材に入射するレーザ光を、入射方向に対して略直交する方向に導くように配置されている。このようにすると、導光部材に入射したレーザ光が、偏向手段からより遠ざかる方向に導かれやすく、導光部材で反射したレーザ光の一部が偏向手段側に戻ってしまう事態をより確実に回避することができる。
【0044】
請求項19の発明では、偏向手段からのレーザ光の走査経路上に反射面を備えた基準部が配置されており、この基準部は、所定の低反射率で構成され且つレーザ光に対して第1反射光を反射する低反射率部と、低反射率部よりも反射率が高く構成され且つレーザ光に対して第2反射光を反射する高反射率部とを少なくとも備えている。そして、基準位置検出手段は、受光量検出手段によって検出される受光量が低反射率部に応じた第1受光量条件を満たす回動位置と、受光量検出手段によって検出される受光量が高反射率部に応じた第2受光量条件を満たす回動位置とを含む基準部照射範囲を特定し、当該基準部照射範囲の所定位置を基準位置として検出している。
この構成によれば、実際に照射されるレーザ光の受光結果に基づいて、基準部にレーザ光が照射されるときの回動範囲を正確に特定し易くなる。特に、偏向手段から近い位置に低反射率部と高反射率部とが存在しており、これらによって生じる第1反射光及び第2反射光の組み合わせは、基準部にレーザ光が照射されない回動範囲では生じにくいため、このような第1反射光及び第2反射光に基づいて基準部に対応する回動範囲(基準部にレーザ光が照射されるときの回動範囲)を特定するようにすれば、当該回動範囲をより正確に特定することができ、ひいては、より正確に基準位置を定めることができる。
また、このように基準位置を正確に定めた上で当該基準位置を基準とする偏向手段の相対的な回動位置を検出し、検出物体の方向を検出しているため、検出物体の位置誤差をより小さくすることができる。
【図面の簡単な説明】
【0045】
【図1】図1は、本発明の第1実施形態に係るレーザ測定装置を概略的に例示する断面図である。
【図2】図2(a)は、図1のレーザ測定装置の回動偏向機構、モータ、基準部材を上方から見た様子を概略的に説明する説明図であり、図2(b)は、基準部材を説明する説明図である。
【図3】図3は、偏向部が所定回動範囲にあるときのレーザ光の照射の様子を概念的に説明する説明図である。
【図4】図4は、図1のレーザ測定装置で行われる基準位置検出処理の流れを例示するフローチャートである。
【図5】図5は、偏向部の角度と検出される距離値との関係を説明するグラフである。
【図6】図6(a)は、所定回動範囲における偏向部の角度と検出される距離値との関係を説明するグラフであり、図6(b)は、所定回動範囲における偏向部の角度と検出される受光量との関係を説明するグラフである。
【図7】図7(a)は、基準部材の変形例1を説明する説明図であり、図7(b)は、基準部材の変形例2を説明する説明図である。
【図8】図8は、基準部材の変形例3を説明する説明図である。
【図9】図9(a)は、本発明の第2実施形態に係るレーザ測定装置を概略的に例示する断面図であり、図9(b)は、凹面鏡が図9(a)とは異なる角度となった状態を概略的に示す断面図である。
【図10】図10は、図9のレーザ測定装置を水平方向に切断した断面を概略的に示す断面図である。
【図11】図11は、偏向部の角度と検出される受光量との関係を説明するグラフである。
【図12】図12は、図9のレーザ測定装置で行われる基準位置検出処理の流れを例示するフローチャートである。
【図13】図13(a)は、図9のレーザ測定装置の回動偏向機構、モータ、導光ミラーを上方から見た様子を概略的に説明する説明図であり、図13(b)は、導光ミラーを説明する説明図である。
【図14】図14は、偏向部の角度と検出される受光量との関係から基準位置を検出する様子を説明する説明図である。
【図15】図15は、導光部材にプリズムを採用した構成を概略的に例示する説明図であり、図15(a)は、本発明の第2実施形態の第1変形例に係るレーザ測定装置を概略的に例示する断面図であり、図15(b)は、凹面鏡が図15(a)とは異なる角度となった状態を概略的に示す断面図である。
【図16】図16は、導光部材の下側に減衰部材を設けた構成を概略的に例示する説明図であり、図16(a)は、本発明の第2実施形態の第2変形例に係るレーザ測定装置を概略的に例示する断面図であり、図16(b)は、凹面鏡が図16(a)とは異なる角度となった状態を概略的に示す断面図である。
【図17】図17は、ケースの下側に開口部を設けた構成を概略的に例示する説明図であり、図17(a)は、本発明の第2実施形態及びその変形例に係るレーザ測定装置を概略的に例示する断面図であり、図17(b)は、凹面鏡が図17(a)とは異なる角度となった状態を概略的に示す断面図である。
【図18】図18は、導光部材にプリズムミラーを採用した構成を概略的に例示する説明図であり、図18(a)は、プリズムミラーの斜視図であり、図18(b)は、本発明の第2実施形態及びその変形例に係るレーザ測定装置を概略的に例示する断面図である。
【図19】図19は、第3実施形態に係るレーザ測定装置において、基準位置検出処理で複数周分の距離値データを取得する例を概略的に説明する説明図である。
【図20】図20は、第3実施形態に係るレーザ測定装置で行われる基準位置検出処理において取得された複数周分の距離値データ及び統計データを概念的に説明する説明図である。
【図21】図21は、図20の距離値データによって得られた統計データについて概念的に説明する説明図である。
【図22】図22は、第3実施形態の変更例1で行われる基準位置検出処理の流れを例示するフローチャートである。
【図23】図23は、第3実施形態の変更例1で行われる基準位置検出処理において取得された複数周分の距離値データ及び統計データを概念的に説明する説明図である。
【図24】図24は、第3実施形態の変更例2で行われる基準位置検出処理について説明する説明図である。
【図25】図25は、本発明の第4実施形態に係るレーザ測定装置を概略的に例示する断面図である。
【図26】図26は、第4実施形態の変更例1に係るレーザ測定装置を概略的に例示する断面図である。
【図27】図27は、第4実施形態の変更例2に係るレーザ測定装置を概略的に例示する断面図である。
【図28】図28は、第4実施形態の変更例3に係るレーザ測定装置を概略的に例示する断面図である。
【図29】図29は、本発明の第5実施形態に係るレーザ測定装置を概略的に例示する断面図である。
【図30】図30は、第5実施形態の変更例1に係るレーザ測定装置を概略的に例示する断面図である。
【図31】図31は、本発明の第6実施形態に係るレーザ測定装置を概略的に例示する断面図である。
【図32】図32(a)は、図31のレーザ測定装置の基準部を説明する説明図であり、図32(b)は、基準部の変形例を説明する説明図である。
【図33】図33は、第6実施形態の変更例1に係るレーザ測定装置を概略的に例示する断面図である。
【図34】図34(a)は、図33のレーザ測定装置の基準部を説明する説明図であり、図34(b)は、基準部の変形例を説明する説明図である。
【図35】図35は、他の実施形態に係るレーザ測定装置を概略的に例示する断面図である。
【発明を実施するための形態】
【0046】
[第1実施形態]
以下、本発明のレーザ測定装置を具現化した第1実施形態について、図面を参照して説明する。
(全体構成)
まず、図1等を参照して第1実施形態に係るレーザ測定装置1の全体構成について説明する。なお、図1は、第1実施形態に係るレーザ測定装置1の全体構成を概略的に例示する断面図である。
図1に示すように、レーザ測定装置1は、レーザダイオード10と、検出物体からの反射光L2を受光するフォトダイオード20とを備え、検出物体までの距離や方位を検出する装置として構成されている。
【0047】
レーザダイオード10は、「レーザ光発生手段」の一例に相当するものであり、制御回路70の制御により、図示しない駆動回路からパルス電流を受け、このパルス電流に応じたパルスレーザ光(レーザ光L1)を間欠的に出射している。なお、本実施形態では、レーザダイオード10から検出物体に至るまでのレーザ光を符号L1にて概念的に示し、検出物体からフォトダイオードに至るまでの反射光を符号L2にて概念的に示している。
【0048】
フォトダイオード20は、「受光手段」の一例に相当するものであり、レーザダイオード10からレーザ光L1が発生し、そのレーザ光L1が検出物体にて反射したとき、その反射光L2を受光して電気信号に変換している。なお、検出物体からの反射光については所定領域のものが偏向部41に取り込まれる構成となっており、図1では、符号L2で示す2つのライン間の領域の反射光が取り込まれる例を示している。
【0049】
レーザダイオード10から出射されるレーザ光L1の光軸上にはレンズ60が設けられている。このレンズ60は、コリメートレンズとして構成されるものであり、レーザダイオード10からのレーザ光L1を平行光に変換している。
【0050】
レンズ60を通過したレーザ光L1の光路上には、ミラー30が設けられている。このミラー30は、レンズ60を透過したレーザ光L1の光軸に対して傾斜した反射面30aを備え、レンズ60を透過したレーザ光L1を回動偏向機構40に向けて反射させている。本実施形態では、レンズ60を通過した水平方向のレーザ光L1をミラー30によって垂直方向(後述する中心軸42aと平行な方向)に反射させており、その反射した垂直方向のレーザ光L1が回動偏向機構40の偏向部41に入射するようになっている。
【0051】
回動偏向機構40は、「回動偏向手段」の一例に相当するものであり、平坦な反射面41aを有するミラーからなる偏向部41と、この偏向部41を支持する支持台43と、この支持台43に連結された軸部42と、この軸部42を回転可能に支持する図示しない軸受とを備えている。
【0052】
偏向部41は、「偏向手段」の一例に相当するものであり、ミラー30で反射されたレーザ光L1の光軸上に配置されると共に、中心軸42a(所定の中心軸)を中心として回動可能とされている。この偏向部41は、レーザダイオード10からのレーザ光L1を空間に向けて偏向(反射)させ、且つ検出物体からの反射光L2をフォトダイオード20に向けて偏向(反射)させる構成をなしている。
【0053】
また、偏向部41の回転中心となる中心軸42aの方向は、ミラー30から当該偏向部41に入射するレーザ光L1の方向と一致しており、レーザ光L1が偏向部41に入射する入射位置P1が中心軸42a上の位置とされている。
【0054】
なお、本実施形態では、中心軸42aの方向を垂直方向(Y軸方向)としており、中心軸42aと直交する平面方向を水平方向としている。また、水平方向の内の所定方向をX軸方向として示している。
【0055】
図1に示すように、偏向部41の反射面41aは、垂直方向(反射面41aに入射するレーザ光L1の方向)に対して45°の角度で傾斜しており、ミラー30側から入射するレーザ光L1を、水平方向に反射させている。また、偏向部41は入射するレーザ光L1の方向と一致した方向の中心軸42aを中心として回転するため、偏向部41の回転位置に関係なくレーザ光L1の入射角度が常に45°で維持され、位置P1からのレーザ光L1の向きは絶えず水平方向(中心軸42aと直交する方向)となるように構成されている。
【0056】
また、本実施形態に係るレーザ測定装置1では、偏向部41における反射光を偏向する偏向領域(偏向部41における反射面41aの領域)が、ミラー30におけるレーザ光を反射する反射領域(ミラー30における反射面30aの領域)よりも十分大きく構成されている。
【0057】
さらに、回動偏向機構40を駆動するモータ50が設けられている。このモータ50は、「駆動手段」の一例に相当するものであり、軸部42を回転させることで、軸部42と連結された偏向部41を回転駆動している。なお、モータ50の具体的構成としては、例えばサーボモータ等を用いても良いし、定常回転するモータを用い、偏向部41が測距したい方向を向くタイミングに同期させてパルスレーザ光を出力することで、所望の方向の検出を可能としてもよい。また、本実施形態では、図1に示すように、モータ50の軸部42の回転角度位置(即ち偏向部41の回転角度位置)を検出する回転角度位置センサ52が設けられている。回転角度位置センサ52は、ロータリエンコーダなど、軸部42の回転角度位置を検出しうるものであれば様々な種類のものを使用できる。
【0058】
回動偏向機構40からフォトダイオード20に至るまでの反射光L2の光路上には、フォトダイオード20に向けて反射光を集光する集光レンズ62が設けられ、その集光レンズ62とフォトダイオード20の間にはフィルタ64が設けられている。集光レンズ62は、偏向部41からの反射光L2を集光してフォトダイオード20に導くものであり、集光手段として機能している。
【0059】
また、フィルタ64は、回動偏向機構40からフォトダイオード20に至るまでの反射光L2の光路上において反射光L2を透過させ且つ反射光L2以外の光を除去するように機能するものである。このフィルタ64は、例えば反射光L2に対応した特定波長の光(例えば一定領域の波長の光)のみを透過させそれ以外の光を遮断する波長選択フィルタによって構成されている。
【0060】
また、本実施形態では、レーザダイオード10、フォトダイオード20、ミラー30、レンズ60、回動偏向機構40、モータ50等がケース3内に収容され、防塵や衝撃保護が図られている。ケース3における偏向部41の周囲には、当該偏向部41を取り囲むようにレーザ光L1及び反射光L2の通過を可能とする窓状の導光部4が形成されている。導光部4は、偏向部41に入光するレーザ光L1の光軸を中心とした環状形態で、ほぼ360°に亘って構成されており、この導光部4を閉塞する形態でガラス板等からなるレーザ光透過板5が配され、防塵が図られている。
【0061】
(基準部材)
次に、本実施形態の特徴の1つである基準部材80について説明する。
図2(a)は、図1のレーザ測定装置の回動偏向機構、モータ、基準部材を上方から見た様子を概略的に説明する説明図であり、図2(b)は、基準部材を説明する説明図である。図3は、偏向部が所定回動範囲にあるときのレーザ光の照射の様子を概念的に説明する説明図である。
【0062】
本実施形態に係るレーザ測定装置1は、図1、図2(a)に示すように、偏向部41からのレーザ光L1が入射可能な位置に基準部材80が設けられており、偏向部41が「所定回動範囲」にあるときに偏向部41からのレーザ光が基準部材80に入射するように構成されている。この基準部材80は、全体として板状に構成されており、偏向部41側に面し且つ偏向部41からのレーザ光の走査経路上に配置される反射面81を有している。そして、偏向部材80は、偏向部41が後述する「所定回動範囲」にあるときに当該偏向部41にて偏向(反射)されたレーザ光L1を反射面81で反射させ、その反射光の少なくとも一部を偏向部41に返すように構成されており、その返された反射光を偏向部41を介してフォトダイオード20に受光させている。
【0063】
また、基準部材80の反射面81は、全体として平坦面として構成されており、本実施形態の例では、偏向部41が所定の「基準位置」にあるときに当該偏向部41からのレーザ光が略垂直に入射する平面として構成されており、具体的には、反射面81の面方向が中心軸42aの方向とほぼ平行となる構成で配置されている。この構成では、図2に示すように、位置P1からのレーザ光L1が基準部材80の反射面81に略垂直に入射するときの偏向部41の回動位置が「基準位置」となっている。なお、図1、図2では、偏向部41が「基準位置」となっているときの位置P1からのレーザ光の照射経路を二点鎖線L1'で示している。
【0064】
また、基準部材80は、反射面81での反射率が偏向部41の反射面41aでの反射率よりも小さくなるように構成されている。このように反射面81の反射率を反射面41aの反射率よりも小さく抑える構成としては、例えば、反射面81を黒色面(例えばつや消しの黒色面)として構成し、ミラーとして構成される偏向部41の反射面41aよりも反射率を小さく抑えるような構成が挙げられる。或いは、偏向部41に対向する対向部(図2(a)に示す2つの板面80a、80bの内の偏向部41側の板面80bを構成する部分)にシボ加工等の微細加工を施し、そのシボ加工が施された加工面を反射面81とする構成などが挙げられる。この場合、シボ加工による微少な凹凸はあるものの反射面81が全体としてほぼ平坦面として構成され、その反射面81の面方向が中心軸42aの方向とほぼ平行となる構成で配置されることとなる。このように反射面81での反射率を低く抑えることで、反射面81で反射された反射光が偏向部41を介してフォトダイオード20にて受光されたときに飽和受光量(即ち、フォトダイオード20で受光量が検知できる最大受光量)に達しにくくなり、各回動位置ごとの受光量をより精度高く検出できるようになる。
【0065】
(基準位置検出処理)
次に、レーザ測定装置1で行われる基準位置検出処理について説明する。図4は、図1のレーザ測定装置で行われる基準位置検出処理の流れを例示するフローチャートである。図5は、偏向部の角度と検出される距離値との関係を説明するグラフである。図6(a)は、所定回動範囲における偏向部の角度と検出される距離値との関係を説明するグラフであり、図6(b)は、所定回動範囲における偏向部の角度と検出される受光量(光強度)との関係を説明するグラフである。
【0066】
図4に示す基準位置検出処理は、図示しないメモリに記憶されたプログラムに基づいて制御回路70(図1)によって実行されるものである。この基準位置検出処理は、所定の開始条件の成立時(例えばユーザによる所定操作や電源投入がなされた時等)に開始され、まず、全周分(360°分)の距離値のデータ及び受光量のデータを取得する処理を行う(S1)。
【0067】
本実施形態では、偏向部41の回転が定常状態となったときに一定の回転速度で回転するようになっており、他方、レーザダイオード10から、一定の時間間隔でパルスレーザ光が出射されるようになっている。従って、偏向部41が所定角度(例えば1°)回動する毎の各回動位置でパルスレーザ光がそれぞれ照射され、各回動位置ごとにパルスレーザ光の投光から当該パルスレーザ光に応じた反射光の受光までの経過時間が算出されるようになっている。そして、このような各回動位置ごとに算出される各経過時間に基づき、各回動位置ごとにレーザ光の到達位置(反射光が生じる位置)までの距離値が算出されるようになっている。本実施形態では、所定の距離値算出基準点(距離値算出の原点)からの距離値を算出しており、例えば位置P1を距離値算出基準点とすることができる。なお、図5では、偏向部41の各回動位置(各回動角度)と検出される距離値との関係を例示しており、偏向部41の所定の原点からの回動角度を横軸にとり、各回動角度で検出される距離値を縦軸にとっている。
【0068】
更に、S1では、各回動位置ごとの受光量(即ち、各回動位置で照射されるパルスレーザ光の反射光がフォトダイオード20で受光される各受光量)を検出しており、このような受光量のデータを全周分(360°分)生成している。以上のような処理を行うことで、偏向部41の回動位置ごとに、レーザ光の到達位置(反射光が生じる位置)までの距離値と、その反射光の受光量(フォトダイオード20で受光された受光量)とが検出されることとなる。
なお、本実施形態では、S1の処理を実行する制御回路70が「距離値算出手段」の一例に相当し、偏向部41の回動位置毎にレーザ光の到達位置までの距離値を算出するように機能する。また、制御回路70は、「受光量検出手段」の一例にも相当し、偏向部41の回動位置毎にフォトダイオード20での受光量を検出するように機能する。
【0069】
そして、S1で得られた各回動位置の距離値(レーザ光到達位置までの距離値)のデータに基づいて、レーザ光L1が基準部材80に照射される範囲である「所定回動範囲」を検出する。なお、この「所定回動範囲」とは、即ち、360°回転する偏向部41の全回動範囲のうち、図2(a)(b)に示すように、レーザ光L1が基準部材80の一端部82に入射するときの回動位置から、他端部83に入射するときの回動位置までの回動範囲を指し、偏向部41が当該「所定回動範囲」にあるときに、レーザ光L1が装置外の空間に投射されずに基準部材80に入射し、この基準部材80からの反射光がフォトダイオード20によって受光されるようになっている。なお、図2(a)では、レーザ光L1が一端部82に入射するときのレーザ光L1の方向を直線A1で示し、レーザ光L1が他端部83に入射するときのレーザ光L1の方向を直線A2で示しており、基準部材80に入射可能な走査領域を符号ARにて示している。
【0070】
また、基準部材80は、偏向部41におけるレーザ光L1の出射位置P1から反射面81におけるレーザ光L1の照射経路(即ち、図2(b)の一端部82から他端部83までの一点鎖線の経路)までの距離が所定距離範囲内に収まるように構成されている。具体的には、基準部材80の反射面81が平坦に構成されており、偏向部41が所定位置(基準位置)にあるときのレーザ光(図2では、符号L1')の方向と反射面81とが略直交するように構成されているため、偏向部41が「所定回動範囲」にあるときに各回動位置で算出される各距離値はほぼ同一の値となる。従って、S2の処理では、距離値が所定角度範囲に亘ってほぼ一定となっている回動範囲を検出することで、前記「所定角度範囲」を検出することができる。なお、図3に示すように、偏向部41が「所定回動範囲」にあるときには、回動位置の違いによりレーザ光の経路に若干の誤差が生じるが、この誤差は装置外に照射される場合と比較して無視できるレベルである。例えば、図3の破線41'のときのレーザ光の経路長(図3の破線の矢印参照)と「基準位置」にある偏向部41のときのレーザ光の経路長(図3のレーザ光L1及び反射光La参照)とを比較すると若干長さが異なるが、この長さの違いは装置外の空間を走査するときの距離値の変動に比べて非常に小さいためほぼ無視できるレベルといえる。従って、距離値が一定の範囲内で安定的に推移している部分を検出することで「所定回動範囲」を検出することができる。
【0071】
具体的には、例えば、図5のように、検出される距離値が所定の第1閾値D1(距離値算出基準点(例えば位置P1)から基準部材80までの実際の距離よりも若干大きい閾値)以下であり所定の第2閾値D2(距離値算出基準点(例えば位置P1)から基準部材80までの実際の距離より若干小さい閾値)以上となるような回動角度(回動位置)が所定の閾値角度範囲(例えば、図2に示す範囲ARよりも若干小さい角度範囲)以上続いている角度範囲C(角度θaから角度θbまでの角度範囲:図6(a)参照))を検出し、この角度範囲Cを「所定回動範囲」としている。
【0072】
なお、図1のように、レーザ光L1の照射経路において位置P1から最も近い位置に基準部材80が存在する場合、距離値の最小値が得られる領域を「所定回動範囲」として検出してもよい。この場合、例えば、図5に示す、第2閾値D2以上を条件とせず、第1閾値D1以下となるような回動角度(回動位置)が所定の閾値角度範囲(例えば、図2に示す範囲ARよりも若干小さい範囲)以上続いている角度範囲C(角度θaから角度θbまでの角度範囲:図6(a)参照))を検出し、この角度範囲Cを「所定回動範囲」とすることができる。
【0073】
S2の処理の後には、S2の処理によって基準部材80が検出されたか(即ち、基準部材80に照射される「所定回動範囲」が検出されたか)否かを判断する(S3)。そして、「所定回動範囲」が検出されたと判断される場合には、S3にてYesに進み、S4以降の処理を行う。一方、「所定回動範囲」が検出されない場合には、S3にてNoに進み、S1以降の処理を再び行う。
【0074】
なお、本実施形態では、S2の処理を実行する制御回路70が、「所定回動範囲検出手段」の一例に相当し、「距離値算出手段」による算出結果に基づき、距離値が基準部材80の位置又は形状に対応した規定条件を満たす「所定回動範囲」を検出するように機能する。本実施形態では、偏向部41におけるレーザ光L1の出射位置P1から反射面81におけるレーザ光L1の照射経路(即ち、図2(b)の一端部82から他端部83までの一点鎖線の経路)までの距離が所定距離範囲内に収まるように基準部材80の位置及び形状が設定されており、「距離値の変動が所定閾値内(上記代表例では「第1閾値」と「第2閾値」の間)に収まる回動範囲であること」が「基準部材80の位置又は形状に対応した規定条件」に相当し、このような回動範囲を「所定回動範囲」として検出している。
【0075】
S3にてYesに進む場合には、S2で検出された「所定回動範囲」において受光量が最大となる回動位置を検出する(S4)。本実施形態では、図3のように、レーザ光L1が反射面81に対してほぼ垂直に入射する回動位置(即ち基準位置)となっているときに、最も多くの反射光が偏向部41側に返され、「基準位置」から角度が離れるほど、偏向部41に返される反射光が少なくなっており、図3の破線のようにレーザ光L1が基準部材80の端部に入射するときの回動位置では偏向部41に返される反射光が相当少なくなっている。従って、上記「所定回動範囲」では、図6(b)のように「基準位置」に相当する回動位置(回動角度A1)のときのフォトダイオード20での受光量(光強度)が最も大きく、この「基準位置」から角度が離れるほど受光量(光強度)が次第に小さくなるような検出結果が得られることとなる。S4では、このような現象を考慮し、S2で検出された「所定回動範囲」の中で受光量が最大となる回動位置を「基準位置」の候補として検出する。
【0076】
S4の処理の後には、「対応回動位置」を算出する処理を行う(S5)。この「対応回動位置」は、基準部材80の形状に基づいて「基準位置」と推定される回動位置のことであり、ここでは以下のようにして算出する。
【0077】
本実施形態では、レーザ光L1の走査経路上に配置される基準部材80において、レーザ光L1の照射位置が偏向部41の回動に応じて移動するようになっており(図2(b)の破線の矢印参照)、反射面81での当該照射位置の移動方向(即ち、図2(b)の破線矢印で示すレーザ光の走査方向)がこの基準部材80の「幅方向」となっている。なお、図2では、幅方向を矢印Wで概念的に示している。
【0078】
一方、上述したように反射面81にレーザ光L1が垂直に入射するときの偏向部41の回動位置を「基準位置」としており、図2(a)(b)に示すように、偏向部41がこの「基準位置」に位置するときに当該偏向部41からのレーザ光L1が反射面81の幅方向所定位置に入射するようになっている。具体的には、図2(a)において二点鎖線L1'で示すように、偏向部41が「基準位置」にあるときにレーザ光が基準部材80の幅方向中心位置P2に入射するようになっており、このように基準部材80の幅方向中心位置P2に入射するときに、レーザ光L1が反射面81に垂直に入射するようになっている。このような構成を前提とし、S5の処理では、S2で検出された「所定回動範囲」から、上述の「幅方向所定位置」(図2の例では幅方向中心位置P2)に対応する回動位置(対応回動位置)を検出する。具体的には、図2(a)に示すように、照射範囲ARにおいてθ1=θ2となる中心回動位置が幅方向中心位置P2に入射する回動位置(対応回動位置)と推定されるため、S2で検出された「所定回動範囲」において中心回動位置を検出する。例えば、図6(b)のように初期角度θaと終期角度θbとの間の角度範囲Cが「所定回動範囲」として検出された場合には、初期角度θaと終期角度θbとの間の中心の角度θnを「対応回動位置」として検出する。
【0079】
そして、S5で検出された対応回動位置(図6(a)の例では回動角度θnの回動位置)とS4で検出された受光量最大回動位置(図6(b)の例では回動角度A1の回動位置)とを比較し、所定の一致関係にあるか否かを判断する(S6)。「所定の一致関係」とは、S4で検出された「受光量最大回動位置」とS5で検出された「対応回動位置」とが完全に一致する関係であってもよく、これら「受光量最大回動位置」と「対応回動位置」とが規定の許容範囲内に収まる関係であってもよい。
なお、S6の処理を実行する制御回路70は、「判断手段」の一例に相当し、「所定回動範囲検出手段」によって検出された「所定回動範囲」において受光量が最大値となる「受光量最大回動位置」を検出すると共に、その検出された「受光量最大回動位置」が幅方向所定位置に対応する「対応回動位置」か否かを判断している。
【0080】
S6の判断処理において、S4で検出された「受光量最大回動位置」とS5で検出された「対応回動位置」とが所定の一致関係にないと判断された場合、S6にてNoに進み、S1以降の処理を繰り返す。一方、所定の一致関係にあると判断された場合には、S6にてYesに進み、S4で検出された「受光量最大回動位置」を「基準位置」に設定する(S7)。
【0081】
なお、本実施形態では、図4の処理を実行する制御回路70が「基準位置検出手段」の一例に相当し、「距離値算出手段」によって検出される距離値が所定の距離条件を満たし、且つ「受光量検出手段」によって検出される受光量が所定の受光量条件を満たす回動位置を「基準位置」として検出するように機能する。具体的には、「所定回動範囲検出手段」によって検出された所定回動範囲(上記代表例では、距離値の変動が所定閾値内に収まる回動範囲)において受光量が規定状態となる回動位置(上記代表例では受光量が最大値となる回動位置)を「基準位置」として検出している。更に、前記「判断手段」により「受光量最大回動位置」が「対応回動位置」に該当すると判断された場合(即ち、図4のS6でYesの場合)に、当該「受光量最大回動位置」を「基準位置」として検出し、「受光量最大回動位置」が「対応回動位置」に該当しないと判断された場合(即ち、図4のS6でNoの場合)には、S1に戻って「所定回動範囲検出手段」による「所定回動範囲」の検出処理を再度行うと共に(即ち、再度S2を実行)、その再度検出された「所定回動範囲」における「受光量最大回動位置」を再度検出し(即ち、再度S4を実行)、更に、「判断手段」により、その再度検出された「受光量最大回動位置」が「対応回動位置」に該当するか否かの判断処理を再び試みる(即ち、再度S6を実行する)ように構成されている。
【0082】
(物体検出処理)
図4の処理によって「基準位置」が検出された後には、この「基準位置」を回動角度の原点として実際の検出処理を行う。具体的には、間欠的に照射されるパルスレーザ光の各照射のときの偏向部41の各回動位置を、上述の「基準位置」を基準とする相対的な回動位置として検出できるようになっており(即ち、各照射のときの各回動位置が、「基準位置」を基準としてどの程度回動した位置であるかを検出できるようになっており)、いずれかの回動位置のときに検出物体からの反射光がフォトダイオード20にて受光されたときには、その受光時の偏向部41の角度が、「基準位置」からどの程度回転した角度であるかを特定できるようになっている。従って、「基準位置」のときに偏向部41から照射されるレーザ光L1の照射方向(上記代表例では、基準部材80の反射面81にレーザ光が垂直に入射するときの偏向部41の方向)を基準方向として検出物体の方向を検出できるようになっている。また、本実施形態に係るレーザ測定装置1では、装置外周面において「基準位置」のときにレーザ光が照射される方向に対応する規定位置(例えば、ケース3の周方向において「基準位置」のときにレーザ光が照射される方向に相当する位置等)に予め基準マークなどを付しておいてもよい。
【0083】
本実施形態では、制御回路70が「相対位置検出手段」の一例に相当し、「基準位置検出手段」によって検出された「基準位置」を基準として偏向部41の相対的な回動位置を検出するように機能する。また、制御回路70は、「方向検出手段」の一例に相当し、フォトダイオード20によって検出物体からの反射光が受光されたとき、上記「相対位置検出手段」による相対的な回動位置の検出結果に基づいて検出物体の方向を検出するように機能する。
【0084】
本実施形態では、例えば水晶発振器やCPUなどから出力されるパルス信号(基準パルス)に基づいて、レーザダイオード10を駆動する駆動パルスを生成しており、水晶発振器やCPUなどから出力されるパルス信号をカウントすることで、上記のように決定された「基準位置」からの相対的な回転角度を検出できるようになっている。例えば、偏向部41が1周回転する間にCPUからN回のパルス信号(基準パルス)が出力される構成では、パルスが1回出力される毎(即ち1周期)に360/N(°)回転することになる。この構成では、上述の基準位置検出処理によって「基準位置」が検出された後には、パルスN回毎に基準位置となり、この基準位置のタイミングからパルス数をカウントすることで、基準位置からの相対的な回転角度を特定することができる。
【0085】
また、本実施形態では、例えば、水晶発振器やCPUなどから基準パルスがN回出力される毎(即ち、偏向部41が1周回転する毎)にZ相パルス信号(1周回転する毎に出力されるパルス信号)を出力するZ相信号生成部と、水晶発振器やCPUなどから基準パルスが所定回数(M回)出力される毎にA相パルス信号を出力するA相信号生成部とが設けられており、例えば、偏向部41が1°回転するのに要する時間が基準パルスM周期分に相当している。従って、偏向部41が1°回転する毎にA相パルス信号が出力され、このA相パルス信号をレーザダイオード10を駆動する駆動パルスとして用いている。従って、レーザダイオード10からは、偏向部41が1°回転する毎にレーザ光が出射されるようになっている。
【0086】
また、上述した基準位置検出処理では、偏向部41の回転が定常状態となった後の任意のタイミング(任意の回動位置)から偏向部41が1周する間、各回動位置において距離値の検出を行っており、駆動パルスが出力される毎、或いは基準パルスが出力される毎に距離値の算出を行っている。この場合、基準位置が未だ設定されていなくても、上記の任意のタイミングから基準パルスをN回カウントすることで偏向部41が1回転したことを特定でき、この1回転の期間に得られた回動位置毎の距離値に基づいて上述のように「所定回動範囲」及び「基準位置」を特定するようにすればよい。
【0087】
(本実施形態の主な効果)
本実施形態に係るレーザ測定装置では、偏向部41からのレーザ光の走査経路上に反射面81を備えた基準部材80が配置されており、偏向部41が「所定回動範囲」にあるときに偏向部41からのレーザ光をその基準部材80の反射面81で反射させ且つ偏向部41を介してフォトダイオード20(受光手段)に受光させている。
このようにすると、偏向部41が「所定回動範囲」にあるときに、基準部材80に応じた受光結果が得られることとなる。そして、このような構成を前提として、「距離値算出手段」によって検出される距離値が所定の距離条件を満たし、且つ受光量検出手段によって検出される受光量が所定の受光量条件を満たす回動位置を「基準位置」として検出している。従って、実際に照射されるレーザ光の受光結果に基づいて「基準位置」を定めることができるため、組み付けの影響等を抑えた正確な基準位置設定が可能となる。
そして、このように「基準位置」を正確に定めた上で当該「基準位置」を基準とする偏向部41の相対的な回動位置を検出し、検出物体の方向を検出しているため、検出物体の位置誤差をより小さくすることができる。
【0088】
また、本実施形態では、「距離値算出手段」による算出結果に基づいて距離値が基準部材80の位置又は形状に対応した規定条件を満たす「所定回動範囲」を検出する「所定回動範囲検出手段」が設けられている。そして、「受光量検出手段」による受光量の検出結果に基づき、「所定回動範囲検出手段」によって検出された「所定回動範囲」において受光量が規定状態となる回動位置を「基準位置」として検出している。
このようにすると、基準部材80にレーザ光が照射される範囲を複雑な構成を用いることなく正確に検出でき、且つその範囲(所定回動範囲)における特定回動位置を「基準位置」として安定的に定めることができる。
【0089】
また、本実施形態では、基準部材80の反射面81が平面として構成されており、「所定回動範囲検出手段」は、「距離値算出手段」による算出結果に基づき、距離値の変動が所定閾値内に収まる回動範囲を「所定回動範囲」として検出している。
このようにすると、基準部材80の反射面を簡易な形状とすることができ、かつ、その基準部材80の反射面の特徴を生かして「所定回動範囲」(即ち、レーザ光が基準部材80に入射する回動範囲)を正確に検出できるようになる。
【0090】
基準部材80は、偏向部41におけるレーザ光L1の出射位置P1から反射面81におけるレーザ光L1の照射経路(反射面81におけるレーザ光L1が照射される位置)までの距離が所定距離範囲内に収まるように構成されており、「所定回動範囲検出手段」は、「距離値算出手段」による算出結果に基づき、距離値の変動が所定閾値D1,D2内に収まる回動範囲を「所定回動範囲」として検出している。この構成によれば、「距離値算出手段」による距離値の算出結果を利用して基準部材80にレーザ光L1が照射される回動範囲(所定回動範囲)をより正確に特定できるようになる。
【0091】
また、本実施形態では、基準部材80の反射面81が、偏向部41が「基準位置」にあるときに当該偏向部41からのレーザ光が略垂直に入射する平面として構成されており、「基準位置検出手段」は、「所定回動範囲検出手段」によって検出された「所定回動範囲」において受光量が最大値となる回動位置を「基準位置」として検出している。
このようにすると、基準部材80の反射面81の特徴を生かして「所定回動範囲」(即ち、レーザ光が基準部材80に入射する回動範囲)を正確に検出できると共に、その「所定回動範囲」内の特定回動位置を簡易な構成で安定的に検出でき、このように安定的に定まる特定回動位置を「基準位置」として用いることができる。
【0092】
また、本実施形態では、基準部材80は、反射面81に入射するレーザ光の移動方向を幅方向としたとき、「基準位置」に位置する偏向部41からのレーザ光が反射面81の「幅方向所定位置」(上記代表例では幅方向中心位置)に入射する構成をなしている。また、「基準位置検出手段」は、「所定回動範囲検出手段」によって検出された「所定回動範囲」において受光量が最大値となる「受光量最大回動位置」を検出すると共に、その検出された「受光量最大回動位置」が「幅方向所定位置」に対応する「対応回動位置」か否かを判断する「判断手段」を備えている。そして、「判断手段」により「受光量最大回動位置」が「対応回動位置」に該当すると判断された場合には、当該「受光量最大回動位置」を「基準位置」として検出ている(S6でYes、S7)。
この構成では、基準部材80の「幅方向所定位置」に入射するときの偏向部41の回動位置を「基準位置」としており、この「基準位置」のときには、レーザ光が反射面81に略垂直に入射するようになっている。従って、受光量が最大値となるときの回動位置(受光量最大回動位置)が「基準位置」と推定されるが、本実施形態では、その「受光量最大回動位置」をそのまま「基準位置」とするのではなく、「幅方向所定位置」に対応する回動位置(対応回動位置)か否かを一旦確認し、「対応回動位置」に該当する場合に「基準位置」として定めている。このようにすると、ノイズなどの影響によって誤った基準位置が設定されることを効果的に防ぐことができ、「基準位置」をより正確に設定することができる。
また、「受光量最大回動位置」が「対応回動位置」に該当しないと判断された場合(S6でNo)には、前記「所定回動範囲検出手段」による「所定回動範囲」の検出処理を再度行うと共に、その再度検出された「所定回動範囲」における「受光量最大回動位置」を再度検出し、その再度検出された「受光量最大回動位置」が「対応回動位置」に該当するか否かを判断している。このようにすると、「受光量最大回動位置」が「対応回動位置」に該当しない場合であっても「受光量最大回動位置」の検出を再度行って対応回動位置に該当するか否かを確認することができ、「基準位置」の検出が成功する可能性を高めることができる。
【0093】
[第2実施形態]
次に第2実施形態について説明する。
図9(a)は、本発明の第2実施形態に係るレーザ測定装置を概略的に例示する断面図であり、図9(b)は、凹面鏡が図9(a)とは異なる角度となった状態を概略的に示す断面図である。図10は、図9のレーザ測定装置を水平方向に切断した断面を概略的に示す断面図である。
【0094】
第2実施形態に係るレーザ測定装置200でも、レーザ光L1を間欠的に発生させるレーザダイオード10(レーザ光発生手段)と、レーザダイオード10にてレーザ光が発生したときに、当該レーザ光が検出物体にて反射して生じる反射光を受光するフォトダイオード20(受光手段)と、所定の中心軸242aを中心として回動可能に構成された凹面鏡241(偏向手段)を備えるとともに、当該凹面鏡241の回動範囲が所定の検出可能範囲にあるときに当該凹面鏡241によりレーザ光を空間に向けて偏向させ、且つ反射光をフォトダイオード20に向けて偏向する回動偏向機構240(回動偏向手段)と、この回動偏向機構240の凹面鏡241を回転駆動するモータ50(駆動手段)とが設けられている。
【0095】
なお、図10の例では、説明の便宜上、レーザ光の走査平面において窓部(以下、導光部ともいう)204の一端部204aを通るときの凹面鏡241の回動位置を0°とし、この0°の回動位置からの回動角度を概略的に示している。例えば、窓部204の他端部204bを通るときの凹面鏡241の回動位置は180°となっており、0°のときの回動位置から180°のときの回動位置までの回動範囲が「検出可能範囲」となっている。なお、凹面鏡241の回転方向は時計回り方向であってもよく、反時計回り方向であってもよいが、以下では、凹面鏡241が時計回りに回転して走査がなされる構成を代表例として説明する。
【0096】
一方、本実施形態に係るレーザ測定装置200は、主として、上述した基準部材80に代えて導光ミラー290及び受光壁を用いる点、偏向手段として、偏向部41に代えて凹面鏡241を用いる点、回転角度位置センサ52を省略した点、窓状の導光部204が凹面鏡241の周囲において約半周程度に亘って設けられている点等が第1実施形態と異なっている。
【0097】
本第2実施形態では、図9及び図10に示すように、レーザダイオード10から投射されてレンズ60を通過したレーザ光L1の光路付近には、ミラー230が設けられている。このミラー230は、レーザダイオード10から凹面鏡241までのレーザ光L1の光軸に対し所定角度で傾斜してなる反射面230aと、反射面230aと交差する方向の貫通路232とを備えており、レーザダイオード10からのレーザ光L1を貫通路232を介して通過させる一方、検出物体からの反射光L2(より詳しくは凹面鏡241にて反射された反射光)をフォトダイオード20に向けて反射させている。なお、貫通路232は開口部が開放した孔として構成されていてもよく、図9のように開放部がハーフミラーなどによって閉塞されていてもよい。
【0098】
また、ミラー230を通過するレーザ光L1の光軸上には、回動偏向機構240が設けられている。回動偏向機構240は、「回動偏向手段」の一例に相当するものであり、例えば放物面として構成される凹状の反射面241aを備えた凹面鏡241と、この凹面鏡241に連結された軸部242と、この軸部242を中心軸242a(所定の中心軸)を中心として回転可能に支持する図示しない軸受とを備えている。このように、偏向手段が凹面鏡241として構成されることで、外部空間からの反射光L2をより集光することができるようになっている。
【0099】
そして、本第2実施形態では、図9及び図10に示すように、ケース203における凹面鏡241の周囲には、当該凹面鏡241を取り囲むようにレーザ光L1及び反射光L2の通過を可能とする窓状の導光部204が形成されている。導光部204は、凹面鏡241に入光するレーザ光L1の光軸を中心とした半円弧状で凹面鏡241の周囲において約半周程度に亘って構成されており、この導光部204を閉塞する形態でガラス板等からなるレーザ光透過板205が配され、防塵が図られている。
【0100】
次に、本第2実施形態の特徴の1つである導光ミラー290及び受光壁について説明する。
本第2実施形態では、図9及び図10に示すように、凹面鏡241からのレーザ光L1が入射可能な位置に導光ミラー290が設けられており、凹面鏡241が「検出可能範囲外」(即ち、レーザ光が窓部204を介して外部に照射されず、ケース203の内側に照射されるときの凹面鏡241の回動範囲であり、図10の例では、180°〜360°までの範囲)における「所定回動範囲」にあるときに、凹面鏡241からのレーザ光L1が導光ミラー290に入射するように構成されている。
【0101】
この導光ミラー290は、「導光部材」の一例に相当するものであり、全体として板状に構成されており、凹面鏡241側に面し且つ凹面鏡241からのレーザ光L1の走査経路上に配置される導光反射面290aを有している。そして、導光ミラー290は、凹面鏡241が後述する「所定回動範囲」にあるときに当該凹面鏡241にて偏向(反射)されたレーザ光L1を導光反射面290aで、入射光(導光反射面290aに入射した光)に対して直交する方向或いは入射光が入射する側とは反対側(即ち、凹面鏡241から離れる側)へ鏡面反射させるように構成されている。
【0102】
導光ミラー290は、導光反射面290aで反射された反射光を凹面鏡241及びフォトダイオード20から外れた位置に導くように構成されている。図9(b)に示すように、導光ミラー290は、凹面鏡241から当該導光ミラー290に水平方向から入射するレーザ光L1を、入射方向に対して直交する方向(中心軸242aに沿った方向)又は略直交する方向に導くように配置されており、導光反射面290aと中心軸242aとのなす角度が、45°若しくは45°よりも若干大きい又は若干小さい角度となるように配置されている。また、本実施形態では、図9(b)に示すように、導光ミラー290で反射したレーザ光L1が、内側下壁部296bに入射して当該内側下壁部296bにて拡散反射するようになっている。なお、図9(b)の例では、導光ミラー290で反射したレーザ光L1が内側下壁部296bに入射する位置は、レーザ光L1が導光ミラー290に入射する位置よりも凹面鏡241から遠ざかった側となっており、導光ミラー290で反射したレーザ光L1は内側下壁部296bに対してやや斜めに入射するようになっている。従って、内側下壁部296bで生じる拡散反射光が導光ミラー290に入りにくくなる。
【0103】
このように導光ミラー290が配置されているため、凹面鏡241が「検出可能範囲外」において「所定回動範囲」にあるときには、凹面鏡241からのレーザ光がケース203の内壁面(後述する内側後壁部296d)に直接照射されなくなり、ケース203の内側面で反射するレーザ光L1の光量が抑えられる。なお、導光ミラー290は、導光反射面290aが鏡面反射可能な構成となっていればよく、例えば、ガラスやプラスチックなどからなる板材の表面にアルミニウムや銀などの金属の薄膜を形成したものなどを用いることができる。
【0104】
次に、受光壁について説明する。
本実施形態では、受光壁は、ケース203と一体的に形成されている。ケース203は、図9及び図10に示すように、上壁部205a及び下壁部205bが上下に対向して配置され(上壁部205aが+Y軸側、下壁部205bが−Y軸側)、前壁部205c及び後壁部205dが前後に対向して配置され(前壁部205cが+X側、後壁部205dが−X側)、側壁部205e、205fが左右に対向して配置されており箱状形態をなしている。そして、上壁部205aの内側に設けられる内側上壁部296a、下壁部205bの内側に設けられる内側下壁部296b、前壁部205cの内側に設けられる内側前壁部296c、後壁部205dの内側に設けられる内側後壁部296d、側壁部205e、205fの内側に設けられる内側側壁部296e、296fは、それぞれ受光壁(以下、受光壁296a〜296fとする)として機能している。
【0105】
これら、内側上壁部296a、内側下壁部296b、内側前壁部296c、内側後壁部296d、内側側壁部296e、296fの壁面(受光壁面)には、表面を粗化する黒色のつや消し加工や、表面に凹凸を付与するシボ加工等の反射率を抑える加工が施されている。そして、凹面鏡241の回動位置が「検出可能範囲外」における「所定回動範囲外」にあるときに、凹面鏡241からのレーザ光L1を受光壁296a〜296fの受光壁面で受光し、拡散反射させるように構成されている。即ち、受光壁面で受光したレーザ光L1のうち一部のみを、凹面鏡241を介してフォトダイオード20に受光させるようにしている。具体的には、凹面鏡241が「検出可能範囲外」において「所定回動範囲外」にあるときにケース203における受光壁296a〜296fで反射し、凹面鏡241を介してフォトダイオード20で受光されるレーザ光の受光量がフォトダイオード20の飽和受光量(受光手段で検知できる最大受光量)に達しないように、受光壁296a〜296fの拡散反射状態及びフォトダイオード20の飽和受光量が設定されている。
【0106】
次に、レーザ測定装置200で行われる基準位置検出処理について説明する。
図11は、偏向部の角度と検出される受光量との関係を説明するグラフである。図12は、図9のレーザ測定装置で行われる基準位置検出処理の流れを例示するフローチャートである。図13(a)は、図9のレーザ測定装置の回動偏向機構、モータ、導光ミラーを上方から見た様子を概略的に説明する説明図であり、図13(b)は、導光ミラーを説明する説明図である。図14は、偏向部の角度と検出される受光量との関係から基準位置を検出する様子を説明する説明図である。
【0107】
図12に示す基準位置検出処理は、例えば図示しないメモリに記憶されたプログラムに基づいて制御回路70(図9)によって実行されるものである。この基準位置検出処理は、所定の開始条件の成立時(例えばユーザによる所定操作や電源投入がなされた時等)に開始され、まず、少なくとも全周分(360°分)受光量のデータを取得する処理を行う(S201)。
【0108】
本実施形態では、例えば凹面鏡241が一定の回転速度で回転するようになっており、レーザダイオード10から、一定の時間間隔でパルスレーザ光が出射されるようになっている。そして、S201では、各回動位置ごとにフォトダイオード20で受光される受光量(即ち、各回動位置で照射されるパルスレーザ光の反射光がフォトダイオード20で受光される各受光量)を制御回路70により検出しており、このような受光量のデータを図11に示すように全周分(360°分)生成している。なお、図11の例では、説明の便宜上、検出可能範囲(0°〜180°の範囲)の受光量がほぼ0となっているが、この検出可能範囲の受光量は、レーザ測定装置200の周囲の環境によって変わりうるものであり、一般的にはある程度の受光量が得られる。但し、レーザ測定装置200の周囲に物体が存在しない場合には、ケース内部での受光量と比較して十分小さくなる。
【0109】
そして、S201で得られた各回動位置の受光量のデータ(全周分の受光量のデータ)に基づいて、レーザ光L1が導光ミラー290に導光される「所定回動範囲」を検出する。この「所定回動範囲」とは、即ち、360°回転する凹面鏡241の全回動範囲のうち、図13(a)(b)に示すように、レーザ光L1が導光ミラー290の一端部292に入射するときの回動位置から、他端部293に入射するときの回動位置までの回動範囲を指し、凹面鏡241が当該「所定回動範囲」にあるときに、レーザ光L1が導光ミラー290に入射され、凹面鏡241及びフォトダイオード20から外れた位置に反射されるようになっている(即ち、反射光がフォトダイオード20に受光されることが抑制されるようになっている。)。なお、図13(a)では、レーザ光L1が一端部292に入射するときのレーザ光L1の方向を直線B1で示し、レーザ光L1が他端部293に入射するときのレーザ光L1の方向を直線B2で示しており、導光ミラー290に入射可能な走査領域を符号ARにて示している。
【0110】
本実施形態では、検出可能範囲の内外を区別するための閾値D3が予め記憶されており、まず、この閾値D3に基づいて、検出可能範囲を特定する。例えば、受光量が閾値D3未満の範囲であって且つ回動範囲がW1(図13)に対応する規定回動範囲より十分大きい範囲を検出可能範囲とする。これにより、図11の例では、0°〜180°が「検出可能範囲」であることが特定され、逆に180°〜360°が「検出可能範囲外」であることが特定される。
【0111】
更に、このように特定された検出可能範囲外(図11では180°〜360°)において、予め記憶された閾値D4未満の条件を満たす回動範囲を「所定回動範囲」(導光ミラー290に対応する回動範囲)として決定(検出)する。なお、図11では、「所定回動範囲」を回動範囲C1で示している。また、図11の例では、「検出可能範囲」を区別するための閾値D3と「所定回動範囲」を区別するための閾値D4を別々の値としているが同じ値であってもよい。
【0112】
図12のS202の処理の後には、S202の処理によって導光ミラー290が検出されたか(即ち、「所定回動範囲」が検出されたか)否かを判断する(S203)。そして、「所定回動範囲」が検出されたと判断される場合には、S203にてYesに進み、S204以降の処理を行う。一方、「所定回動範囲」が検出されない場合には、S203にてNoに進み、S201以降の処理を再び行う。
【0113】
S203にてYesに進む場合には、S202で検出された「所定回動範囲」において、受光量が予め定められた「所定の低受光量条件」を満たす回動位置を「基準位置」として検出する。具体的には、「検出可能範囲外」において、受光量の状態が、受光壁296a〜296fからの光に基づく所定の高受光量状態(閾値D4以上の状態)と、レーザ光L1が導光ミラー290によって凹面鏡241及びフォトダイオード20から外れた位置に反射されるときの所定の低受光量状態(閾値D4未満の状態)とで切り替わるタイミングでの凹面鏡241の回動位置を「基準位置」として検出する(S204)。
【0114】
例えば、図14(図11において270°付近を拡大した図)に示すように、「所定回動範囲」において、受光量の状態が、閾値D4以上の所定の高受光量状態から閾値D4未満の所定の低受光量状態に切り替わる回動位置B1を「基準位置」として検出している。即ち、凹面鏡241からのレーザ光L1が上述の受光壁(具体的には、内側後壁部296d)から導光ミラー290へ移る境界位置が「基準位置」として検出されることとなる。このとき、検出精度及び組み付け精度の観点から、図14に示すように、所定の閾値D4未満の条件を満たす回動範囲C1(導光ミラー290に対応する回動範囲)は、少なくとも3パルス分の幅を持っていることが好ましい。例えば、角度分解能が0.5°であって、凹面鏡241の中心軸242aから導光ミラー290までの距離を50mmとし、導光ミラー290の幅W1を2mmとすることで、回動範囲C1に3パルス分が入るように設定することができる。このようにして、S204にて検出された所定の回動位置B1を、S205にて、「基準位置」に設定する。
【0115】
なお、本実施形態では、S201の処理を行う制御回路70が「受光量検出手段」の一例に相当し、凹面鏡241(偏向手段)の回動位置毎にフォトダイオード20(受光手段)での受光量を検出するように機能する。また、S204、S205の処理等行う制御回路70は、「基準位置検出手段」の一例に相当し、受光量検出手段によって検出される受光量が所定の低受光量条件を満たす回動位置を基準位置として検出するように機能する。
【0116】
図12の処理によって「基準位置」が検出された後には、上述した第1実施形態と同様に、この「基準位置」を回動角度の原点として実際の検出処理を行う。具体的には、凹面鏡241が一定の回転速度で回転するようになっており、レーザダイオード10から、一定の時間間隔でパルスレーザ光が照射されるようになっているため、基準位置のときのパルスを基準パルスとしてパルス数をカウントすることで、凹面鏡241が基準位置に対してどの角度に変位(回動)しているかを正確に特定できる。従って、各照射のときの凹面鏡241の各回動位置を、上述の「基準位置」を基準とする相対的な回動位置として検出でき(即ち、各照射のときの各回動位置が、「基準位置」を基準としてどの程度回動した位置であるかを検出でき)、いずれかの回動位置のときに検出物体からの反射光がフォトダイオード20にて受光されたときには、その受光時の凹面鏡241の角度が、「基準位置」からどの程度回転した角度であるかを特定できるようになる。そして、各回動位置ごとにパルスレーザ光の投光から当該パルスレーザ光に応じた反射光の受光までの経過時間が算出され、算出された各経過時間に基づき、各回動位置ごとにレーザ光の到達位置(反射光が生じる位置)までの距離値が算出される。
【0117】
なお、これらの処理はいずれも制御回路70によって行われ、この制御回路70は「距離値算出手段」の一例に相当し、凹面鏡241の回動位置毎にレーザ光の到達位置までの距離値を算出するように機能する。また、制御回路70は、「相対位置検出手段」の一例に相当し、「基準位置検出手段」によって検出された上記基準位置を基準とする凹面鏡241(偏向手段)の相対的な回動位置を検出するように機能する。また、制御回路70は、「方向検出手段」の一例に相当し、凹面鏡241(偏向手段)の回動位置が上記「検出可能範囲」にあるときにフォトダイオード20(受光手段)によって検出物体からの反射光が受光された場合に、「相対位置検出手段」による相対的な回動位置の検出結果に基づいて当該検出物体の方向を検出するように機能する。
【0118】
(本実施形態の主な効果)
本実施形態に係るレーザ測定装置200では、凹面鏡241からのレーザ光L1の走査経路上に導光ミラー290が配置されており、この導光ミラー290は、凹面鏡241の回動位置が検出可能範囲外における所定回動範囲にあるときに、凹面鏡241からのレーザ光L1を凹面鏡241及びフォトダイオード20から外れた位置に導くように構成されている。さらに、凹面鏡241の回動位置が検出可能範囲外であって所定回動範囲外にあるときに、凹面鏡241からのレーザ光L1を受ける受光壁面を有する受光壁296が設けられている。そして、この受光壁296は、レーザ光L1が当該受光壁面にて反射する光の少なくとも一部を、凹面鏡241を介してフォトダイオード20に受光させるように配置されている。このようにすると、「凹面鏡241の回動位置が検出可能範囲外において所定回動範囲にあるときにフォトダイオード20が受光する受光量」が、「凹面鏡241の回動位置が検出可能範囲外であって所定回動範囲外にあるときにフォトダイオード20が受光する受光量」に比べて相対的に小さくなる。即ち、凹面鏡241が検出可能範囲外にあるときに受光量検出手段(制御回路70)によって検出される受光量は、当該凹面鏡241が所定回動範囲内のときに所定の低受光量状態となり、所定回動範囲外のときに所定の高受光量状態となるため、所定回動範囲の内外で受光量に差が生じることとなる。
そして、このような構成を前提とし、更に、受光量検出手段によって検出される受光量が所定の低受光量条件を満たす回動位置を基準位置として検出する基準位置検出手段(制御回路70)と、基準位置検出手段によって検出された基準位置を基準とする凹面鏡241の相対的な回動位置を検出する相対位置検出手段(制御回路70)と、凹面鏡241の回動位置が検出可能範囲にあるときにフォトダイオード20によって検出物体からの反射光が受光された場合に、相対位置検出手段による相対的な回動位置の検出結果に基づいて当該検出物体の方向を検出する方向検出手段(制御回路70)とが設けられている。
従って、特別な回転位置検出センサ(ロータリエンコーダ等)を用いずとも、装置内における予め定められた特定の位置(所定の低受光量条件を満たす回動位置)を基準位置として正確に定めることができ、この基準位置に基づいて検出物体の相対位置をより精度高く算出することができるようになる。
【0119】
また、本実施形態では、受光壁296は、受光壁面にてレーザ光L1を拡散反射させるように構成されている。従って、凹面鏡241の回動位置が検出可能範囲外且つ所定回動範囲外にあるときにフォトダイオード20で検出される受光量が飽和受光量(フォトダイオード20で検知できる最大受光量)に達しにくくなり、凹面鏡241が所定回動範囲内となったときにフォトダイオード20において受光量の変化をより正確に検出しやすくなる。
【0120】
また、本実施形態では、基準位置検出手段は、受光量検出手段によって検出される受光量の状態が、受光壁296からの光に基づく所定の高受光量状態と、レーザ光L1が導光ミラー290によって導かれるときの所定の低受光量状態とで切り替わるときの凹面鏡241の回動位置を基準位置として検出している。このようにすると、レーザ光L1が導光ミラー290に照射されて受光量が低下する回動範囲(所定回動範囲)の中で特定の回動位置を容易に且つ正確に検出して「基準位置」として定めることができる。
【0121】
また、本実施形態では、導光部材が導光ミラー290によって構成され、レーザ光L1を凹面鏡241及びフォトダイオード20から外れた位置に鏡面反射させている。このようにすると、凹面鏡241からのレーザ光L1を鏡面反射で導くことができ、拡散反射を抑えて凹面鏡241及びフォトダイオード20から外れた位置により確実に導くことができる。従って、導光ミラー290で反射したレーザ光L1の一部が直接的にフォトダイオード20に受光されることをより一層抑制することができ、所定回動範囲の内外でより一層明確に受光量の差を生じさせることができる。
【0122】
また、本実施形態では、導光ミラー290は、凹面鏡241から当該導光ミラー290に入射するレーザ光L1を、入射方向に対して略直交する方向に導くように配置されている。このようにすると、導光ミラー290に入射したレーザ光L1が、凹面鏡241からより遠ざかる方向に導かれやすく、導光ミラー290で反射したレーザ光L1の一部が凹面鏡241側に戻ってしまう事態をより確実に回避することができる。
【0123】
[第2実施形態の第1変形例]
次に第2実施形態の第1変形例について説明する。
なお、図15は、導光部材にプリズムを採用した構成を概略的に例示する説明図であり、図15(a)は、本発明の第2実施形態の第1変形例に係るレーザ測定装置を概略的に例示する断面図であり、図15(b)は、凹面鏡が図15(a)とは異なる角度となった状態を概略的に示す断面図である。
【0124】
上述した第2実施形態では、導光部材として導光ミラー290を用いる構成としたが、第2実施形態の本第1変形例では、導光ミラー290に代えてプリズム298を導光部材として用いる点が異なるだけで、それ以外の構成は第2実施形態に係るレーザ測定装置200と同様である。よって、同様の部分(レーザダイオード10、レンズ60、ミラー230、回動偏向機構240、軸部242、モータ50等)については、第2実施形態と同一の符号を付し、詳細な説明は省略する。
【0125】
上述した第2実施形態では、凹面鏡241にて偏向(反射)されたレーザ光L1を導光ミラー290の導光反射面290aで、入射光(導光反射面290aに入射した光)とは反対の方向へ鏡面反射させるように構成されていたが(図9参照)、本第1変形例では、図15(a)に示すように、この導光ミラー290が配置されていた位置に、導光ミラー290に代えてプリズム298を配置している。そして、具体的には、図15(b)に示すように、プリズム298は、凹面鏡241から当該プリズム298の入射面298a(凹面鏡241に面する面)に水平方向から入射するレーザ光L1を屈折させ、出射面298b(入射面とは反対側の内側後壁部296dに面する面)から、凹面鏡241及びフォトダイオード20から外れた位置に出射させるように構成されている。なお、レーザ光L1が入射するプリズム298の入射面298aには減反射コーティングが施されており、当該入射面298aでのレーザ光L1の反射を極力減らすように構成されている。また、プリズム298の入射面298aの水平方向の幅は、導光ミラー209の幅W1と同程度に設定されており、所定回動範囲における凹面鏡241の角度と検出される受光量との関係は、上述の第2実施形態で示した図11のようになる。そして、本第1変形例においても、上述した図12の基準位置検出処理を実施することにより、「基準位置」を検出することができる。
【0126】
以上説明したように、第2実施形態の第1変形例に係るレーザ測定装置200では、導光部材は、プリズム298によって構成され、レーザ光L1を凹面鏡241及びフォトダイオード20から外れた位置に屈折させるようにしている。このように、導光部材がプリズム298によって構成されていても、凹面鏡241からのレーザ光L1を凹面鏡241及びフォトダイオード20から外れた位置に屈折させて導くことができるため、凹面鏡241の回動位置が検出可能範囲外における所定回動範囲にあるとき、フォトダイオード20が受光する受光量をより小さくすることができ、制御回路70によってより正確に受光量が所定の低受光量条件を満たす回動位置を「基準位置」として検出することができる。
【0127】
[第2実施形態の第2変形例]
次に第2実施形態の第2変形例について説明する。
なお、図16は、導光ミラー209の下側に減衰部材299を設けた構成を概略的に例示する説明図であり、図16(a)は、本発明の第2実施形態の第2変形例に係るレーザ測定装置を概略的に例示する断面図であり、図16(b)は、凹面鏡が図16(a)とは異なる角度となった状態を概略的に示す断面図である。
【0128】
第2実施形態の本第2変形例では、上述した第2実施形態の構成に加えて、さらにレーザ光L1を減衰する減衰部材299が設けられている点が異なるだけであり、それ以外の構成は、第2実施形態に係るレーザ測定装置200と同様である。よって、同様の部分(レーザダイオード10、レンズ60、ミラー230、回動偏向機構240、軸部242、モータ50等)については、第2実施形態と同一の符号を付し、詳細な説明は省略する。
【0129】
本第2変形例では、図16(a)に示すように、レーザ光L1の走査経路外であって、導光ミラー209の下側には、減衰部材299が設けられている。そして、図16(b)に示すように、導光ミラー209にて反射されたレーザ光L1はこの減衰部材299に向けて導かれて、減衰されるように構成されている。より具体的に、減衰部材299には導光口299aが設けられており、減衰部材299はこの導光口299aが導光ミラー290の導光反射面290aに向くように配置されている。また、減衰部材299の内壁面299bには、シボ加工やつや消し加工等が施されており、導光口299aから取り込まれたレーザ光L1がより減衰し易い構造になっている。そして、導光ミラー209にて反射されたレーザ光L1が導光口299aを介して減衰部材299の内部に進入すると、減衰部材299の内壁面299bで反射を繰り返しながら減衰し、光量が低減されるようになっている。
【0130】
このように、第2実施形態の第2変形例に係るレーザ測定装置200では、レーザ光L1の走査経路外にレーザ光L1を減衰する減衰部材299が設けられており、導光ミラー290は、この減衰部材299に向けてレーザ光L1を導くように構成されている。このようにすると、導光ミラー290によって凹面鏡241及びフォトダイオード20から外れた位置に導かれた凹面鏡241からのレーザ光L1を、更に減衰させることができるため、導光ミラー290によって導かれたレーザ光L1が他部材で反射してフォトダイオード20に受光されることを抑制ないし防止することができる。従って、所定回動範囲の内外で、より明確に受光量の差が生じやすくなり、ひいては、より正確且つ安定的に基準位置を設定しやすくなる。
【0131】
[第3実施形態]
次に第3実施形態について説明する。第3実施形態は、基準位置検出処理のみが第1実施形態と異なり、それ以外は第1実施形態と同様である。よって基準位置検出処理についてのみ重点的に説明し、それ以外のハードウェア構成等については第1実施形態と同一であるとして適宜図1〜図3を参照して説明する。
【0132】
以下、本実施形態のレーザ測定装置1で行われる基準位置検出処理について説明する。
本実施形態の基準位置検出処理では、偏向部41の回動位置毎に距離値を算出しており、更にこのような回動位置毎の距離値算出処理を複数周行っている。そして、偏向部41の回動位置毎の距離値データを複数周分取得し、その複数周で得られる距離値が基準部材80の位置又は形状に対応した所定の統計条件を満たす所定回動範囲を検出している。
【0133】
図1のようにレーザ光の走査経路上に平坦な反射面を有する基準部材80が存在する場合、第1実施形態と同様の検出波形(図5、図6参照)が得られることになるが、このような検出を複数周行うと、図19のように各周ごとに基準部材80の位置及び形状に対応する波形が現れることになる。なお、図19では、2周目、3周目においては、基準部材80に対応する角度範囲以外の波形は省略して示している。本実施形態では、このような波形が繰り返し安定的に生じることに着目し、この繰り返される波形に対応する回動範囲を「所定回動範囲」として検出し、この範囲に基づいて基準位置を設定している。
【0134】
図19では、図1〜図3に示すレーザレーダ測定装置1を用いて複数周レーザ走査を行ったときの受光波形を例示しており、規定の回転速度となったときの任意のタイミング(任意の回動位置)での時間をT0とし、この時間T0から1周回転した時点の時間をT1、T1から1周回点した時点の時間をT2としている。即ち、任意のタイミングT0からT1までが1周目であり、時間T1から時間T2までが2周目であり、時間T2から時間T3までが3周目となっている。
【0135】
基準位置検出処理の流れは基本的に第1実施形態の図4と同様であるのでこの図4を参照して説明する。本実施形態では、図4のS1において全周分の距離値データを取得する際に、このような全周分のデータ取得を複数周分行う。即ち、第1実施形態と同様、偏向部41の回動位置毎に距離値データを取得することとなるが、このようなデータ取得処理を複数周分行う。
【0136】
図20では、このときに得られる距離値データを概念的に示しており、1周目の各位置で得られる距離値データをV11〜V1Nで示し、2周目の各位置で得られる距離値データをV21〜V2N、3周目の各位置で得られる距離値データをV31〜V3Nと順次示しており、規定された最終週(X周目)の各位置で得られる距離値データをVX1〜VXNで示している。さらに、各回動位置での距離値の平均値をA1、A2、A3・・・ANとそれぞれ示している。なお、図20は、偏向部41が1周回転する間にCPU等からN回基準パルスが出力される例であり、基準パルス毎に得られる距離値をそれぞれ示している。
【0137】
このように回動位置毎の距離値の平均値A1、A2、A3・・・ANをそれぞれ算出した上で、距離値の変動が少ない角度範囲(より詳しくは、連続する所定数の回動位置において距離値の平均値が所定幅で収まっている角度範囲)を検出する。例えば、回転角度(回動位置)と距離値の平均値との関係が図21のようになる場合、平均値の変化幅が所定範囲(範囲W)に収まっている領域が所定角度範囲以上に亘って続く領域AR1を「所定回動範囲」(基準部材にレーザ光が照射される角度範囲)として特定する。
【0138】
このように「所定回動範囲」を特定された後には、図4のS3にてYesに進み、第1実施形態のS4と同様の処理を行う。例えば、ある特定の周(上記「所定回動範囲」を検出している最中の任意の周、或いは、「所定回動範囲」を検出した後の任意の周)で得られた回動位置毎の受光量の検出結果に基づき、「所定回動範囲」において受光量が最大となる回動位置を検出する。そして、図4のS5、S6、S7と同様の方法で基準位置を設定する。なお、S5、S6の処理は省略することもでき、S4で検出された回動位置(即ち、「所定回動範囲」における受光量が最大となる回動位置)をそのまま基準位置として設定してもよい。
【0139】
本実施形態でも、制御回路70(図1)が第1実施形態と同様に「距離値算出手段」として機能する。また、本実施形態でも、制御回路70(図1)が「基準位置検出手段」の一例に相当し、「受光量検出手段」による受光量の検出結果に基づき、「所定回動範囲検出手段」によって検出された「所定回動範囲」において受光量が規定状態となる回動位置を基準位置として検出するように機能する。更に、制御回路70(図1)が「所定回動範囲検出手段」の一例に相当し、「距離値算出手段」によって回動位置毎に得られる距離値の複数周分のデータに基づいて、その複数周で得られる距離値が基準部材80の位置又は形状に対応した所定の統計条件を満たす「所定回動範囲」を検出するように機能する。なお、ここでは、「平均値の変化幅が所定範囲(範囲W)に収まっている領域が所定角度範囲以上に亘って続くこと」(即ち、距離値の平均値の変動が少ない角度範囲であること)を「所定の統計条件」としている。具体的には、本実施形態でも、偏向部41におけるレーザ光L1の出射位置P1から、反射面81におけるレーザ光L1の照射経路までの距離が所定距離範囲内に収まるように構成されており、「所定回動範囲検出手段」は、「距離値算出手段」によって回動位置毎に得られる距離値の複数周分のデータに基づいて、距離値の変動(より詳しく、回動位置毎に得られる距離値の平均値の変動)が所定閾値内に収まる回動範囲を「所定回動範囲」として検出するように機能する。
【0140】
[第3実施形態の変更例1]
次に第3実施形態の変更例1について説明する。変更例1も、基準位置検出処理のみが第1実施形態と異なり、それ以外は第1実施形態と同様である。よって基準位置検出処理についてのみ重点的に説明し、それ以外のハードウェア構成等については第1実施形態と同一であるとして適宜図1〜図3を参照して説明する。
【0141】
以下、本実施形態のレーザ測定装置1で行われる基準位置検出処理について説明する。
変形例1の基準位置検出処理でも、偏向部41の回動位置毎に距離値を算出する処理を行い、このような距離値データを複数周分取得している。そして、回動位置毎の複数周分の距離値データに基づき、その複数周で得られる距離値が基準部材の位置又は形状に対応した所定の統計条件を満たす所定回動範囲を検出している。この変形例1でも、図1のようにレーザ光の走査経路上に平坦な反射面を有する基準部材が存在する場合を想定しており、図19のように各周ごとに基準部材の位置及び形状に対応する波形が現れることが前提となっている。そして、このような波形が繰り返し生じる回動範囲を「所定回動範囲」として検出し、この範囲に基づいて基準位置を設定している。
【0142】
変形例1でも、基準位置検出処理の流れは基本的に第1実施形態の図4と同様であるのでこの図4を参照して説明する。なお、本変形例1では、図4のS1、S2の処理を図22のように変更している。この変形例1では、S301において、第1実施形態のS1と同様に全周分の距離値データを取得しており、このような全周分のデータ取得を、規定周回に達するまで行う(S302)。そして、全周分のデータ取得が規定周回に達した場合には、S302にてYesに進む。S302にてYesに進むときには、図23のようなデータが得られていることになる。
【0143】
図23では、このときに得られる距離値データを概念的に示しており、1周目の各位置で得られる距離値データをV11〜V1Nで示し、2周目の各位置で得られる距離値データをV21〜V2N、3周目の各位置で得られる距離値データをV31〜V3Nと順次示しており、規定された最終週(X周目)の各位置で得られる距離値データをVX1〜VXNで示している。
【0144】
図22の処理において、S302にてYesに進む場合には、回動位置毎に距離値の変化量(誤差)を算出する統計処理を行う。S303では、各回動位置毎に得られる複数周の距離値データ(例えば、図23の回動位置1では、V11〜VX1、回動位置2では、V12〜VX2等)それぞれにおいて、最大値と最小値の幅(偏差)を求め、これを回動位置毎の変化量(誤差)としている。図23では、各回動位置での変化量(偏差)をD1、D2、D3・・・DNとそれぞれ示している。なお、図23は、偏向部41が1周回転する間にCPU等からN回基準パルスが出力される例であり、基準パルス毎に得られる距離値をそれぞれ示している。
【0145】
このように回動位置毎の距離値の平均値D1、D2、D3・・・DNをそれぞれ算出した上で、変化量(誤差)が所定値以下となる回動位置を検出する(S304)。そして、S304での検出結果に基づき、変化量(誤差)が所定値以下となる回動位置が所定範囲(所定数の角度位置に相当する角度範囲)で連続しているか否かを判断する(S305)。変化量(誤差)が所定値以下となる回動位置が所定範囲で連続している場合(即ち、連続する所定数の回動位置において距離値の変化量(誤差)が所定値以下に収まっている場合、S305にてYesに進み、S305で連続すると判断された角度範囲を「所定角度範囲」として検出する(このとき、基準部材80が検出されたものとする)(S306)。
【0146】
このように「所定回動範囲」を特定された後には、図4のS3〜S7と同様の処理を行い、S3にてYesに進み、第1実施形態のS4と同様の処理を行う。例えば、ある特定の周(上記「所定回動範囲」を検出している最中の任意の周、或いは、「所定回動範囲」を検出した後の任意の周)で得られた回動位置毎の受光量の検出結果に基づき、「所定回動範囲」において受光量が最大となる回動位置を検出する。そして、図4のS5、S6、S7と同様の方法で基準位置を設定する。なお、S5、S6の処理は省略することもでき、S4で検出された回動位置(即ち、「所定回動範囲」における受光量が最大となる回動位置)をそのまま基準位置として設定してもよい。
【0147】
この変形例1でも、制御回路70(図1)が第1実施形態と同様に「距離値算出手段」として機能する。また、本実施形態でも、制御回路70(図1)が「基準位置検出手段」の一例に相当し、「受光量検出手段」による受光量の検出結果に基づき、「所定回動範囲検出手段」によって検出された「所定回動範囲」において受光量が規定状態となる回動位置を基準位置として検出するように機能する。更に、制御回路70(図1)が「所定回動範囲検出手段」の一例に相当し、「距離値算出手段」によって回動位置毎に得られる距離値の複数周分のデータに基づいて、その複数周で得られる距離値が基準部材80の位置又は形状に対応した所定の統計条件を満たす「所定回動範囲」を検出するように機能する。なお、ここでは、「変化量(誤差)が所定値以下となる回動位置が所定範囲で連続していること」を「所定の統計条件」としている。具体的には、本実施形態でも、偏向部41におけるレーザ光L1の出射位置P1から、反射面81におけるレーザ光L1の照射経路までの距離が所定距離範囲内に収まるように構成されており、「所定回動範囲検出手段」は、「距離値算出手段」によって回動位置毎に得られる距離値の複数周分のデータに基づいて、距離値の変動(より詳しく、回動位置毎に得られる距離値の平均値の変動)が所定閾値内に収まる回動範囲を「所定回動範囲」として検出するように機能する。
【0148】
[第3実施形態の変更例2]
次に第3実施形態の変更例2について説明する。変更例2も、基準位置検出処理のみが第1実施形態と異なり、それ以外は第1実施形態と同様である。よって基準位置検出処理についてのみ重点的に説明し、それ以外のハードウェア構成等については第1実施形態と同一であるとして適宜図1〜図3を参照して説明する。
【0149】
以下、変更例2に係るレーザ測定装置1で行われる基準位置検出処理について説明する。
変更例2の基準位置検出処理では、図24のように、検出される距離値が所定の第1閾値D1(距離値算出基準点(例えば位置P1)から基準部材80までの実際の距離よりも若干大きい閾値)以下であり所定の第2閾値D2(距離値算出基準点(例えば位置P1)から基準部材80までの実際の距離より若干小さい閾値)以上となるような回動角度(回動位置)が所定の閾値角度範囲(例えば、図2に示す範囲ARよりも若干小さい角度範囲)以上続いている連続角度範囲C(角度θaから角度θbまでの角度範囲:図6(a)参照))を各周回毎に検出している。そして、このような連続角度範囲Cが例えば複数周で一致している場合に、その連続角度範囲Cを「所定角度範囲」としている。例えば、図23の例では、距離値が第1閾値D1以下且つ第2閾値D2以上となる回動角度(回動位置)が所定の閾値角度範囲以上続いている連続角度範囲を各周毎にC1、C2、C3で示しているが、このような角度範囲C1、C2、C3が一致している場合に、この角度範囲を「所定角度範囲」として、図4のS4以下の処理を行うようにしてもよい。或いは、上記角度範囲C1、C2、C3において、重複する角度範囲のみを「所定角度範囲」として、図4のS4以下の処理を行うようにしてもよい。
【0150】
[第4実施形態]
次に第4実施形態について図25を参照して説明する。
第4実施形態は、第2実施形態に係るレーザ測定装置200の一部を変更した点が第2実施形態と異なっている。従って、以下では、第2実施形態のレーザ測定装置200と共通する構成については第2実施形態と同一の符号を付し、詳細な説明は省略する。
【0151】
第4実施形態に係るレーザ測定装置200は、図25に示すように、主として、ミラー401及び減衰部材402が設けられている点、及び、下壁部205bをモータ50から離して配置した点のみが第1実施形態の構成と異なっており、それ以外の部分は第2実施形態で説明したレーザ測定装置200と同様である。
【0152】
本実施形態に係るレーザ測定装置200では、導光ミラー290(導光部材)で反射したレーザ光を更に反射するミラー401が設けられている。このミラー401は導光ミラー290で反射された上下方向のレーザ光を水平方向に反射しており、このレーザ光を減衰部材402に入射させるように導いている。減衰部材402は、上述の減衰部材299と同様に構成されており、例えばポロン等の低反射率部座によって構成されていてもよく、外壁面(入射面402a)に、シボ加工やつや消し加工等が施し、入射するレーザ光L1がより減衰し易い構造としてもよい。
【0153】
また、減衰部材402は、レーザ光の走査経路外において入射する光を減衰するように配置されており、より具体的には、上下方向においてフォトダイオード20が設けられた側とは反対側(下方側)であって、且つ前後方向においてフォトダイオード20が設けられた側とは反対側(前方側)に配置されている。本実施形態では、ミラー401が「光誘導手段」の一例に相当し、偏向部41の回動位置が所定回動範囲にあるときに、導光ミラー290(導光部材)によって導かれたレーザ光を減衰部材402に導くように機能する。
【0154】
[第4実施形態の変更例1]
図26に示す変更例1は、ミラー401を減衰部材411に変更した点が上記第4実施形態の代表例(図25)と異なっている。従って、第4実施形態の代表例と共通する構成については同一の符号を付し、詳細な説明は省略する。
【0155】
変更例1に係るレーザ測定装置200では、導光ミラー290(導光部材)で反射したレーザ光を更に反射するように減衰部材411が設けられている。この減衰部材411は導光ミラー290で反射された上下方向のレーザ光の大部分を水平方向に反射しており、このレーザ光を減衰部材402に入射させるように導いている。また、減衰部材411は、上述の減衰部材402と同様に構成されており、例えばポロン等の低反射率部座によって構成されていてもよく、外壁面(入射面402a)に、シボ加工やつや消し加工等が施し、入射するレーザ光L1がより減衰し易い構造としてもよい。
【0156】
[第4実施形態の変更例2]
図27に示す変更例2は、減衰部材402を減衰部材421に変更した点が上記第4実施形態の代表例(図25)と異なっている。従って、第4実施形態の代表例と共通する構成については同一の符号を付し、詳細な説明は省略する。
【0157】
本実施形態に係るレーザ測定装置200では、導光ミラー290(導光部材)で反射したレーザ光を更に反射するミラー401が設けられている。このミラー401は導光ミラー290で反射された上下方向のレーザ光を水平方向に反射しており、このレーザ光を減衰部材421に入射させるように導いている。
【0158】
減衰部材421には導光口が設けられており、減衰部材421はこの導光口がミラー401の導光反射面に向くように配置されている。また、減衰部材421の内壁面には、シボ加工やつや消し加工等が施されており、導光口から取り込まれたレーザ光L1がより減衰し易い構造になっている。そして、ミラー401によって誘導されたレーザ光L1が導光口を介して減衰部材421の内部に進入すると、減衰部材421の内壁面で反射を繰り返しながら減衰し、光量が低減されるようになっている。
【0159】
[第4実施形態の変更例3]
図28に示す変更例3は、減衰部材402に代えてミラー431を配置した点、及び減衰部材432を配置した点が上記第4実施形態の代表例(図25)と異なっている。従って、第4実施形態の代表例と共通する構成については同一の符号を付し、詳細な説明は省略する。
【0160】
本実施形態に係るレーザ測定装置200では、導光ミラー290(導光部材)で反射したレーザ光を更に反射するミラー401が設けられている。このミラー401は導光ミラー290で反射された上下方向のレーザ光を水平方向に反射している。更に、前後方向においてミラー401の反対側(具体的には、ミラー401からのレーザ光が進む側)には、ミラー431が配置されている。このミラー431は、ミラー401から水平方向に反射されたレーザ光を上方に向かうように上下方向に導いている。そして、上壁部205aに隣接する位置には、ミラー431からのレーザ光を減衰する減衰部材432が設けられている。この減衰部材432は、図26の減衰部材402と同様の構成とすることができる。本実施形態では、ミラー401及びミラー431が「光誘導手段」の一例に相当し、導光ミラー290によって導かれたレーザ光を減衰部材432に入射させるように導いている。
【0161】
[第5実施形態]
次に第5実施形態について図29を参照して説明する。
第5実施形態は、第2実施形態に係るレーザ測定装置200の一部を変更した点が第2実施形態と異なっている。従って、以下では、第2実施形態のレーザ測定装置200と共通する構成については第2実施形態と同一の符号を付し、詳細な説明は省略する。
【0162】
第5実施形態に係るレーザ測定装置200は、図29に示すように、主として、下壁部205bに貫通孔501を設け、導光ミラー290からの光をケース外に導出している点が第2実施形態と異なっており、それ以外の部分は第2実施形態で説明したレーザ測定装置200と同様である。
【0163】
第5実施形態に係るレーザ測定装置200は、第2実施形態と同様にケース203を備えており、このケース203には、回動偏向機構240や導光ミラー290等が収容されている。このケース203には、凹面鏡241からのレーザ光の走査経路から外れた位置(具体的には下壁部205bにおける導光ミラー290の真下の位置)に、貫通孔501が形成されている。そして、導光ミラー290は、レーザ光を貫通孔501側に反射させており、この貫通孔501を介して導光ミラー290で反射されたレーザ光がケース203の外部に導かれるようになっている。
[第5実施形態の変更例1]
次に第5実施形態の変更例1について説明する。
図30に示す第5実施形態の変更例1は、主として、下壁部205bに代えて後壁部205dに貫通孔511を設けた点、及びミラー512を設けた点が上記第5実施形態の代表例と異なっており、それ以外の部分は代表例で説明したレーザ測定装置200(図30)と同様である。
【0164】
変更例1に係るレーザ測定装置200も、第2実施形態と同様にケース203を備えており、このケース203には、回動偏向機構240や導光ミラー290等が収容されている。このケース203には、凹面鏡241からのレーザ光の走査経路から外れた位置(具体的には後壁部205dにおけるミラー512の真後ろ位置)に、貫通孔511が形成されている。この構成では、凹面鏡241からのレーザ光を導光ミラー290が真下に反射させており、導光ミラー290からのレーザ光をミラー512が貫通孔511側に反射させている。そして、この貫通孔511を介して、導光ミラー290及びミラー512で反射されたレーザ光がケース203の外部に導かれるようになっている。この変形例1では、ミラー512が「光誘導手段」の一例に相当し、凹面鏡241の回動位置が「所定回動範囲」(導光ミラー290にレーザ光が入射する回動範囲)にあるときに、導光ミラー290によって導かれたレーザ光を貫通孔511を介してケース203の外部に導くように機能している。
【0165】
[第6実施形態]
次に第6実施形態について図31、図32を参照して説明する。
第5実施形態は、第2実施形態に係るレーザ測定装置200の一部を変更した点が第2実施形態と異なっている。従って、以下では、第2実施形態のレーザ測定装置200と共通する構成については第2実施形態と同一の符号を付し、詳細な説明は省略する。
【0166】
第6実施形態に係るレーザ測定装置200は、図31に示すように、主として、導光ミラー290を省略した点、及び基準部601を設けた点が第2実施形態と異なっており、それ以外の部分は第2実施形態で説明したレーザ測定装置200と同様である。
【0167】
図31に示すレーザ測定装置200では、後壁部205dにおける所定位置(具体的には、凹面鏡241が所定回動範囲にあるときのレーザ光の走査経路)において、凹面鏡241からのレーザ光によって走査(照射)されたときに特定の反射光を生じさせる基準部601が設けられている。
【0168】
この基準部601は、図32(a)に示すように、凹面鏡241からのレーザ光の走査経路上に配置される反射面を有しており、凹面鏡241が所定回動範囲にあるときに凹面鏡241からのレーザ光を反射面で反射させ且つ凹面鏡241を介してフォトダイオード20に受光させるように機能している。この基準部601は、所定の低反射率で構成され且つレーザ光に対して第1反射光を反射する低反射率部601aと、低反射率部601aよりも反射率が高く構成され且つレーザ光に対して第2反射光を反射する高反射率部601bとを少なくとも備えている。低反射率部601aはレーザ光の走査方向と交差する方向(具体的には上下方向)に沿ってバー状(より詳しくは黒色バー状)に構成されており、複数の低反射率部601aが所定間隔で並んで配置されている。高反射率部601bは、低反射率部601aの周囲及び低反射率部601a間に介在する形で配置されている。
【0169】
このような構成において、本実施形態では、偏向部41の回動範囲において、「受光量検出手段」によって検出される受光量が低反射率部601aに応じた第1受光量状態となる第1回動範囲と、「受光量検出手段」によって検出される受光量が高反射率部601bに応じた第2受光量状態となる第2回動範囲とを特定している。具体的には、第1受光状態と第2受光状態とを区別する閾値が用いられており、低反射率部601aからの受光波形は、この閾値を下回り、高反射率部601bからの受光波形はこの閾値を上回るようになっている。従って、このような閾値を上回る領域と下回る領域が繰り返される回動範囲を特定することで、基準部601に入射する回動範囲(所定回動範囲)を特定することができ、この所定回動範囲が特定された後には第2実施形態と同様の方法で基準位置を定めることができる。なお、基準部の構成は、図32(a)の構成に限られず、図32(b)のように、単一の低反射率部602aを備えるものであってもよい。
【0170】
[第6実施形態の変更例1]
次に第6実施形態の変更例1について図33、図34を参照して説明する。
この変更例1に係るレーザ測定装置200は、基準部601に代えて基準部611を設けた点が図31等に示す代表例と異なっており、それ以外は上記代表例と同様である。この例では、図33に示すように、後壁部205dにおける内壁面613から離れた位置に、縦方向(中心軸242aに沿った方向)に長手状(長孔状)に構成されるスリット612aが、レーザ光の走査方向に所定間隔で並ぶように複数形成されたスリット部材612(図34(a)が設けられている。
【0171】
このスリット部材612における外面612bは、ケース203における後壁部205dの内壁面613よりも反射率が高くなっている。つまり、内壁面613における一部の位置(スリット612aを介してレーザ光を照射される位置)が低反射率部に相当し、スリット部材612の外面(板状に構成されるスリット部材612において凹面鏡241側に面する外面)612bが高反射率部に相当している。この構成では、並んで配置されるスリット部材612の各中心位置付近を横方向(スリットの長手方向と直交する方向)にレーザ光が移動するようになっており、レーザ光が各スリット612aの位置を通過するときにはその通過したレーザ光がスリット612aの奥に配置される内壁面613で反射され、この反射光(光量の小さい反射光)が凹面鏡241を介してフォトダイオード20に受光されることになる。一方、スリット部材の外面612bの位置に照射されるときには、この外面612bからの反射光(内壁面613からの反射光と比較して光量の大きい反射光)が凹面鏡241を介してフォトダイオード20に受光されることになる。この構成でも、偏向部41の回動範囲において、「受光量検出手段」によって検出される受光量が低反射率部(内壁面613においてスリット612aを通ってレーザ光が入射する部分)に応じた第1受光量状態となる第1回動範囲と、「受光量検出手段」によって検出される受光量が高反射率部(スリット部材612の外面612b)に応じた第2受光量状態となる第2回動範囲とを特定している。具体的には、第1受光状態と第2受光状態とを区別する閾値が用いられており、上記低反射率部からの受光波形は、この閾値を下回り、上記高反射率部からの受光波形はこの閾値を上回るようになっている。従って、このような閾値を上回る領域と下回る領域が繰り返される回動範囲を特定することで、基準部611に入射する回動範囲(所定回動範囲)を特定することができ、この所定回動範囲が特定された後には第2実施形態と同様の方法で基準位置を定めることができる。なお、基準部のスリット部材の構成は、図34(a)の構成に限られず、図34(b)のように、単一のスリット614aを備え、その周囲が外面614bとして構成されるものであってもよい。
【0172】
[他の実施形態]
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
【0173】
図1の例では、窓状の導光部4が偏向部41の周囲においてほぼ全周に亘って設けられているが、偏向部41の一方側(例えば基準部材80側)に導光部を形成しないようにしてもよい。
【0174】
上記第1実施形態では、平坦な反射面81を備えた基準部材80を用いた例を示したが、基準部材の構成はこれに限定されず、例えば、図7(a)(b)のようにしてもよい。なお、図7(a)は、基準部材の変形例1を説明する説明図であり、図7(b)は、基準部材の変形例2を説明する説明図である。なお、図7(a)では、幅方向一方側(端部282側)の反射面281aの傾斜角度と幅方向他方側(端部283側)の反射面の傾斜角度とが異なっており、偏向部41が基準位置にあるときに両反射面281a、281bの境界付近にレーザ光が入射するようになっている。また、図7(b)では、反射面381が一端部382から他端部383に亘って湾曲した構成をなしている。これらの構成でも、第1実施形態と同様に「所定回動範囲」を検出し、その「所定回動範囲」において「受光量最大回動位置」を「基準位置」とすればよい。
【0175】
上記第1実施形態では、反射面81を平坦に構成し、偏向部41が基準位置にあるときに偏向部41からのレーザ光が反射面81の幅方向中心位置に垂直に入射する構成を例示したが、これに限られない。例えば、図8のように、「所定回動範囲」の全領域においてレーザ光が反射面481(平坦な反射面)に垂直に入射しないようにしてもよい。この場合も、上記実施形態と同様に「所定回動範囲」を検出できる。また、上記実施形態では、「所定回動範囲検出手段」によって検出された「所定回動範囲」において受光量が最大となる回動位置を基準位置として検出しているが、図8の例では、上記実施形態と同様に、「所定回動範囲」において受光量が最大となる回動位置(レーザ光が端部483付近に入射するときの回動位置)を基準位置としてもよく、「所定回動範囲」において受光量が最少となる回動位置(レーザ光が端部482付近に入射するときの回動位置)を「基準位置」とするような構成であってもよい。
【0176】
上記第1、第3実施形態では、図4のS4で検出された「受光量最大回動位置」が「対応回動位置」に該当するか否かの判断処理を行ったが、このような判断処理を省略してもよい。例えば、図4のS5、S6の処理を省略し、S4で検出された受光量最大回動位置を「基準位置」に設定してもよい。
【0177】
上記第1実施形態では、距離値が第1閾値と第2閾値との範囲内で安定している領域を「所定回動範囲」として検出したが、これに限られない。例えば、距離値が所定閾値未満となる回動範囲を「所定回動範囲」としてもよい。
【0178】
上記第2実施形態及びその変形例では、制御回路70により検出される受光量の状態が、受光壁296a〜296fからの光に基づく所定の高受光量状態と、レーザ光L1が導光部材によって導かれるときの所定の低受光量状態とで切り替わる状態が検出できる構成であればよく、例えば、受光壁は、ケース203を構成する各壁部(205a〜205f)のうちの少なくとも一部(例えば、後壁部205dの内側後壁部296dのみ)に設けられていてもよい。
【0179】
上記第2実施形態及びその変形例では、所定の高受光量状態から所定の低受光量状態に切り替わる回動位置を「基準位置」として検出したが、これに限らず、例えば、所定の低受光量状態から高受光量状態に切り替わる回動位置を「基準位置」として検出してもよい。
【0180】
上記第2実施形態の第1変形例において、プリズム298の下側にさらに減衰部材299が設けられていてもよい。
【0181】
上記第2実施形態及びその変形例において、図17(a)(b)に示すように、さらにケース203の下壁部205bに開口部203aが設けられていてもよい。このように、ケース203に開口部203aを設ける構成としても、凹面鏡241からのレーザ光L1を、開口部203aを介してケース203外部に出射させることで、凹面鏡241及びフォトダイオード20から外れた位置にレーザ光L1を導くことができる。
【0182】
上記第2実施形態及びその変形例において、導光部材は、図18(a)(b)に示すように、一部が鏡面反射可能に構成されるプリズムミラー300から構成されていてもよい。このように、導光部材がプリズムミラー300から構成されており、レーザ光L1をプリズムミラー300のプリズム反射面300aで当該プリズムミラー300内に反射させ屈折させることにより、凹面鏡241及びフォトダイオード20から外れた位置にレーザ光L1を導くこともできる。
【0183】
上記第2、第4実施形態では、減衰部材の一例を示したが、減衰部材として図35のような光ファイバケーブル(以下、光ファイバともいう)701を用いるようにしてもよい。この例では、第2実施形態と同様の構成に加え、更に導光ミラー290からのレーザ光の向かう先に光ファイバ701の一端部702を配置している。そして、このように導光ミラー290からのレーザ光を一端側から入光させ、且つその一端側から入光した光を他端側に導いている。光ファイバ701としては光の伝動効率がやや低いもの(例えば85%程度のもの)を使用することが望ましい。光ファイバ701における一端部702とは反対側の端部(他端部)の図示は省略しているが、他端部は、凹面鏡241側を向いていない構成であることが望ましく、例えば、後壁部205d側を向いた構成であってもよく、下壁部296b側を向いた構成であってもよい。また、光ファイバ701をある程度長く構成し、導光ミラー290から一端部702にレーザ光が入光するときの凹面鏡241の回動位置(回動角度)と、光ファイバ701の他端部からレーザ光が導出されるときの凹面鏡241の回動位置(回動角度)とに角度差が生じるようにしてもよい。また、ケース203に形成された図示しない孔を介して光ファイバ701の他端部側がケース203外に導出されており、他端部を介してレーザ光をケース203の外部に導出するような構成であってもよい。或いは、光ファイバ701の他端側は、光が導出しないように遮蔽してもよい。また、第4実施形態で用いた減衰部材402、432に代えて光ファイバ701を用いるようにしてもよい。
【符号の説明】
【0184】
1,200…レーザ測定装置
10…レーザダイオード(レーザ光発生手段)
20…フォトダイオード(受光手段)
40…回動偏向機構(回動偏向手段)
41…偏向部(偏向手段)
42a,242a…中心軸
50…モータ(駆動手段)
70…制御回路(距離算出手段、受光量検出手段、基準位置検出手段、相対位置検出手段、方向検出手段)
205a…上壁部
205b…下壁部
205c…前壁部
205d…後壁部
205e,205f…側壁部
80,280,380,480…基準部材
81,281,381,481…反射面
241…凹面鏡(偏向手段)
3,203…ケース
203a…開口部
290…導光ミラー(導光部材)
290a…導光反射面
296…受光壁
296a…内側上壁部(受光壁)
296b…内側下壁部(受光壁)
296c…内側前壁部(受光壁)
296d…内側後壁部(受光壁)
296e,296f…内側側壁部(受光壁)
298…プリズム(導光部材)
298a…入射面
298b…出射面
299…減衰部材
299a…導光口
299b…内壁面
300…プリズムミラー
300a…プリズム反射面
701…光ファイバケーブル



【特許請求の範囲】
【請求項1】
レーザ光を発生させるレーザ光発生手段と、
前記レーザ光発生手段にて前記レーザ光が発生したときに、当該レーザ光が検出物体にて反射して生じる反射光を受光する受光手段と、
所定の中心軸を中心として回動可能に構成された偏向手段を備えるとともに、当該偏向手段により前記レーザ光を空間に向けて偏向させ、且つ前記反射光を前記受光手段に向けて偏向する回動偏向手段と、
前記回動偏向手段の前記偏向手段を回転駆動する駆動手段と、
少なくとも前記回動偏向手段を収容するケースと、
前記ケースの内壁の内側に配置され、前記偏向手段からの前記レーザ光の走査経路上に配置される反射面を有すると共に、前記偏向手段が所定回動範囲にあるときに前記偏向手段からの前記レーザ光を前記反射面で反射させ且つ前記偏向手段を介して前記受光手段に受光させる基準部材と、
前記偏向手段の回動位置毎に前記レーザ光の到達位置までの距離値を算出する距離値算出手段と、
前記偏向手段の回動位置毎に前記受光手段での受光量を検出する受光量検出手段と、
前記距離値算出手段によって検出される前記距離値が所定の距離条件を満たし、且つ前記受光量検出手段によって検出される前記受光量が所定の受光量条件を満たす回動位置を基準位置として検出する基準位置検出手段と、
前記基準位置検出手段によって検出された前記基準位置を基準とする前記偏向手段の相対的な回動位置を検出する相対位置検出手段と、
前記受光手段によって前記反射光が受光されたとき、前記相対位置検出手段による前記相対的な回動位置の検出結果に基づいて前記検出物体の方向を検出する方向検出手段と、
を備えたことを特徴とするレーザ測定装置。
【請求項2】
前記基準位置検出手段は、
前記距離値算出手段による算出結果に基づき、前記距離値が前記基準部材の位置又は形状に対応した規定条件を満たす所定回動範囲を検出する所定回動範囲検出手段を備え、
前記受光量検出手段による前記受光量の検出結果に基づき、前記所定回動範囲検出手段によって検出された前記所定回動範囲において前記受光量が規定状態となる回動位置を前記基準位置として検出することを特徴とする請求項1に記載のレーザ測定装置。
【請求項3】
前記基準部材は、前記偏向手段における前記レーザ光の出射位置から前記反射面における前記レーザ光の照射経路までの距離が所定距離範囲内に収まるように構成されており、
前記所定回動範囲検出手段は、前記距離値算出手段による算出結果に基づき、前記距離値の変動が所定閾値内に収まる回動範囲を前記所定回動範囲として検出することを特徴とする請求項2に記載のレーザ測定装置。
【請求項4】
前記基準位置検出手段は、
前記距離値算出手段によって回動位置毎に得られる距離値の複数周分のデータに基づいて、その複数周で得られる距離値が前記基準部材の位置又は形状に対応した所定の統計条件を満たす所定回動範囲を検出する所定回動範囲検出手段を備え、
前記受光量検出手段による前記受光量の検出結果に基づき、前記所定回動範囲検出手段によって検出された前記所定回動範囲において前記受光量が規定状態となる回動位置を前記基準位置として検出することを特徴とする請求項1に記載のレーザ測定装置。
【請求項5】
前記基準部材は、前記偏向手段における前記レーザ光の出射位置から前記反射面における前記レーザ光の照射経路までの距離が所定距離範囲内に収まるように構成されており、
前記所定回動範囲検出手段は、前記距離値算出手段によって回動位置毎に得られる距離値の複数周分のデータに基づいて、距離値の変動が所定閾値内に収まる回動範囲を前記所定回動範囲として検出することを特徴とする特徴とする請求項4に記載のレーザ測定装置。
【請求項6】
前記基準部材の前記反射面は、前記偏向手段が前記基準位置にあるときに当該偏向手段からの前記レーザ光が略垂直に入射する平面として構成されており、
前記基準位置検出手段は、前記所定回動範囲検出手段によって検出された前記所定回動範囲において前記受光量が最大値となる回動位置を前記基準位置として検出することを特徴とする請求項2から請求項5のいずれか一項に記載のレーザ測定装置。
【請求項7】
前記基準部材は、前記反射面に入射する前記レーザ光の移動方向を幅方向としたとき、前記基準位置に位置する前記偏向手段からの前記レーザ光が前記反射面の幅方向所定位置に入射する構成をなしており、
前記基準位置検出手段は、
前記所定回動範囲検出手段によって検出された前記所定回動範囲において前記受光量が最大値となる受光量最大回動位置を検出すると共に、
その検出された前記受光量最大回動位置が前記幅方向所定位置に対応する対応回動位置か否かを判断する判断手段を備え、
前記判断手段により前記受光量最大回動位置が前記対応回動位置に該当すると判断された場合には、当該受光量最大回動位置を前記基準位置として検出し、
前記受光量最大回動位置が前記対応回動位置に該当しないと判断された場合には、前記所定回動範囲検出手段による前記所定回動範囲の検出処理を再度行うと共に、その再度検出された前記所定回動範囲における前記受光量最大回動位置を再度検出し、更に、前記判断手段により、その再度検出された前記受光量最大回動位置が前記対応回動位置に該当するか否かの判断処理を再び試みることを特徴とする請求項6に記載のレーザ測定装置。
【請求項8】
レーザ光を発生させるレーザ光発生手段と、
前記レーザ光発生手段にて前記レーザ光が発生したときに、当該レーザ光が検出物体にて反射して生じる反射光を受光する受光手段と、
所定の中心軸を中心として回動可能に構成された偏向手段を備えるとともに、当該偏向手段の回動範囲が所定の検出可能範囲にあるときに当該偏向手段により前記レーザ光を空間に向けて偏向させ、且つ前記反射光を前記受光手段に向けて偏向する回動偏向手段と、
前記回動偏向手段の前記偏向手段を回転駆動する駆動手段と、
少なくとも前記回動偏向手段を収容するケースと、
前記ケースの内壁の内側において前記偏向手段からの前記レーザ光の走査経路上に配置されると共に、前記偏向手段の回動位置が前記検出可能範囲外における所定回動範囲にあるときに、前記偏向手段からの前記レーザ光を前記偏向手段及び前記受光手段から外れた位置に導く導光部材と、
前記偏向手段の回動位置が前記検出可能範囲外であって且つ前記所定回動範囲外にあるときに前記偏向手段からの前記レーザ光を受ける受光壁面を有し、且つ前記レーザ光が当該受光壁面にて反射する光の少なくとも一部を、前記偏向手段を介して前記受光手段に受光させるように配置された受光壁と、
前記偏向手段の回動位置毎に前記レーザ光の到達位置までの距離値を算出する距離値算出手段と、
前記偏向手段の回動位置毎に前記受光手段での受光量を検出する受光量検出手段と、
前記受光量検出手段によって検出される前記受光量が、前記導光部材によって導光されることに基づく所定の低受光量条件を満たす回動位置を基準位置として検出する基準位置検出手段と、
前記基準位置検出手段によって検出された前記基準位置を基準とする前記偏向手段の相対的な回動位置を検出する相対位置検出手段と、
前記偏向手段の回動位置が前記検出可能範囲にあるときに前記受光手段によって前記検出物体からの前記反射光が受光された場合に、前記相対位置検出手段による前記相対的な回動位置の検出結果に基づいて当該検出物体の方向を検出する方向検出手段と、
を備えたことを特徴とするレーザ測定装置。
【請求項9】
前記受光壁は、前記受光壁面にて前記レーザ光を拡散反射させることを特徴とする請求項8に記載のレーザ測定装置。
【請求項10】
前記基準位置検出手段は、前記受光量検出手段によって検出される前記受光量の状態が、前記受光壁からの光に基づく所定の高受光量状態と、前記レーザ光が前記導光部材によって導かれるときの前記所定の低受光量状態とで切り替わるときの前記偏向手段の回動位置を前記基準位置として検出することを特徴とする請求項8又は請求項9に記載のレーザ測定装置。
【請求項11】
前記レーザ光の走査経路外には、前記レーザ光を減衰する減衰部材が設けられており、
前記導光部材は、前記レーザ光を前記減衰部材に向けて導くことを特徴とする請求項8から請求項10のいずれか一項に記載のレーザ測定装置。
【請求項12】
前記レーザ光の走査経路外において入射する光を減衰するように配置された減衰部材と、
前記偏向手段の回動位置が前記所定回動範囲にあるときに、前記導光部材によって導かれた前記レーザ光を前記減衰部材に導く光誘導手段と、
を備えたことを特徴とする請求項8から請求項10のいずれか一項に記載のレーザ測定装置。
【請求項13】
前記減衰部材は、光ファイバケーブルからなり、
前記光ファイバケーブルの一端側から前記レーザ光が入光し、且つその一端側から入光した光が前記光ファイバケーブルの他端側に導かれるように構成され、
当該光ファイバケーブル内において、前記レーザ光が減衰するように構成されていることを特徴とする請求項11又は請求項12に記載のレーザ測定装置。
【請求項14】
少なくとも前記回動偏向手段及び前記導光部材を収容する構成をなし、且つ前記レーザ光の走査経路から外れた位置に貫通孔が形成されたケースを備え、
前記導光部材は、前記レーザ光を前記貫通孔を介して前記ケースの外部に導くことを特徴とする請求項8から請求項10のいずれか一項に記載のレーザ測定装置。
【請求項15】
少なくとも前記回動偏向手段及び前記導光部材を収容する構成をなし、且つ前記レーザ光の走査経路から外れた位置に貫通孔が形成されたケースと、
前記ケース内に収容され、前記偏向手段の回動位置が前記所定回動範囲にあるときに、前記導光部材によって導かれた前記レーザ光を前記貫通孔を介して前記ケースの外部に導く光誘導手段と、
を備えたことを特徴とする請求項8から請求項10のいずれか一項に記載のレーザ測定装置。
【請求項16】
前記導光部材は、ミラーによって構成され、前記レーザ光を前記偏向手段及び前記受光手段から外れた位置に鏡面反射させることを特徴とする請求項8から請求項15のいずれか一項に記載のレーザ測定装置。
【請求項17】
前記導光部材は、プリズムによって構成され、前記レーザ光を前記偏向手段及び前記受光手段から外れた位置に向けて屈折させることを特徴とする請求項8から請求項15のいずれか一項に記載のレーザ測定装置。
【請求項18】
前記導光部材は、前記偏向手段から当該導光部材に入射する前記レーザ光を、入射方向に対して略直交する方向に導くように配置されていることを特徴とする請求項8から請求項17のいずれか一項に記載のレーザ測定装置。
【請求項19】
レーザ光を発生させるレーザ光発生手段と、
前記レーザ光発生手段にて前記レーザ光が発生したときに、当該レーザ光が検出物体にて反射して生じる反射光を受光する受光手段と、
所定の中心軸を中心として回動可能に構成された偏向手段を備えるとともに、当該偏向手段により前記レーザ光を空間に向けて偏向させ、且つ前記反射光を前記受光手段に向けて偏向する回動偏向手段と、
前記回動偏向手段の前記偏向手段を回転駆動する駆動手段と、
装置内に配置され、前記偏向手段からの前記レーザ光の走査経路上に配置される反射面を有すると共に、前記偏向手段が所定回動範囲にあるときに前記偏向手段からの前記レーザ光を前記反射面で反射させ且つ前記偏向手段を介して前記受光手段に受光させる基準部と、
前記偏向手段の回動位置毎に前記レーザ光の到達位置までの距離値を算出する距離値算出手段と、
前記偏向手段の回動位置毎に前記受光手段での受光量を検出する受光量検出手段と、
前記距離値算出手段によって検出される前記距離値が所定の距離条件を満たし、且つ前記受光量検出手段によって検出される前記受光量が所定の受光量条件を満たす回動位置を基準位置として検出する基準位置検出手段と、
前記基準位置検出手段によって検出された前記基準位置を基準とする前記偏向手段の相対的な回動位置を検出する相対位置検出手段と、
を備え、
前記基準部は、前記レーザ光が装置外に照射される検出可能回動範囲から外れた範囲に配置され、所定の低反射率で構成され且つ前記レーザ光に対して第1反射光を反射する低反射率部と、前記低反射率部よりも反射率が高く構成され且つ前記レーザ光に対して第2反射光を反射する高反射率部とを少なくとも備え、
前記基準位置検出手段は、前記偏向手段の回動範囲において、前記受光量検出手段によって検出される前記受光量が前記低反射率部に応じた第1受光量状態となる第1回動範囲と、前記受光量検出手段によって検出される前記受光量が前記高反射率部に応じた第2受光量状態となる第2回動範囲とを特定すると共に、前記第1回動範囲と前記第2回動範囲とが並ぶ基準部照射範囲を特定し、当該基準部照射範囲の所定位置を基準位置として検出することを特徴とするレーザ測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate


【公開番号】特開2012−73216(P2012−73216A)
【公開日】平成24年4月12日(2012.4.12)
【国際特許分類】
【出願番号】特願2010−267245(P2010−267245)
【出願日】平成22年11月30日(2010.11.30)
【出願人】(501428545)株式会社デンソーウェーブ (1,155)
【Fターム(参考)】