説明

レーザ超音波検査装置およびこれを備えたシステム

【課題】検査対象の欠陥の検出のために欠陥検出手段に入力されるデータを選択的に減少させ、そのデータを記録する記憶容量やデータ解析時間の減少を図ったレーザ超音波検査装置およびこれを備えたシステムを提供する。
【解決手段】検査対象11にレーザ光を照射して表面波を励起させる変調光源12と、このレーザ光照射位置に対して既知の距離離間Lした位置Mにてレーザ光を照射する一方、そのレーザ光の反射光を受光することにより、欠陥部23があったときに、この欠陥部で発生する欠陥波22a,22bを含む表面波19を検出する表面波検出装置13と、変調光源の出力信号と同期させた表面波検出装置からの表面波検出信号sigを所定時間記録し、この表面波検出信号に基づいて欠陥部23を検出する欠陥検出装置14と、を具備している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、検査対象に非接触でレーザを照射し、超音波の表面波を励起させるレーザ超音波検査装置およびこれを備えたシステムに関する。
【背景技術】
【0002】
超音波を用いた検査対象表面の欠陥検査手法としては、図12に示す超音波探傷法が従来から知られている。この従来の手法は、まず、検査対象1に対して送信側カプラント2aを介して圧電素子を有する送信側表面波探触子3aを接触させる。この状態で送信器4から電気信号を送信側表面波探触子3aに印加し、この表面波探触子3aから検査対象1中に超音波を送波し、表面波5を送信する。
【0003】
すると、この表面波5が検査対象1の表面を伝播し、受信側カップラント2bを介して圧電素子を有する受信側表面波探触子3bに到達する。この到達信号は受信側表面波探触子3bで受信され、圧電素子によって電気信号に変換されて欠陥検出部6に入力される。欠陥検出部6には送信器4からの送信信号も入力されており、この送信信号の送信時刻と受信信号の受信時刻の差Δt、つまり検査対象1の表面を表面波5が伝播した時間が計測される。
【0004】
ここで予め送信側と受信側の表面波探触子3a,3b同士の間隔Lと表面波5の音速vsが既知とすると、これらはL=vs・Δtという関係にある。ここで検査対象1の表面に開口を無視し得る深さDなる欠陥7が存在していたとすると、表面波5の一部5aは欠陥面を回り込み、その結果、伝播時間ΔtDは欠陥がない場合の伝播時間Δtと比べて長くなる。
【0005】
したがって、この伝播時間ΔtDを計測すれば、本来計測されるべき伝播時間L/vsとΔtDとの比較から欠陥7の有無が検出され、かつD=(vs・ΔtD−L)/2の関係から欠陥の深さDが算出できる。
【0006】
図13は超音波を用いた表面検査の第2の従来手法を示している。この手法は、送受信兼用の表面波探触子3から検査対象1中にカップラント2を介して送信された表面波5に基づく欠陥7の開口端部および底部における欠陥波8aおよび8bを再び表面波探触子3で受信するものである。本手法においては、欠陥波8aの表面波探触子3への到達時刻Δtaと欠陥波8bの表面波探触子3への到達時刻Δtbは、既知の表面波音速vsを用いて2D=vs・(Δta−Δtb)なる関係にあることから、欠陥検出部6でΔtaとΔtbを計測することによって欠陥の深さDを求めることができる。
【0007】
一方、近年では、表面波探触子3およびカップラント2を用いずに、レーザ光による表面波5の送受信で代替する手法も提案されている。このレーザ光を用いた非接触の表面波送信手法とは、短パルス高エネルギーのレーザ光をある検査対象に照射すると、そのレーザ光照射点付近にレーザエネルギーの吸収による熱応力あるいは気化(アブレーション)圧縮力が発生し、その作用による歪みが表面波となって対象中を伝播するという現象を利用したものである(例えば非特許文献1参照)。
【0008】
またレーザ光を用いた他の非接触の表面波受信手法とは、検査対象1にレーザ光を照射し、その反射光を受光することにより、表面波が検査対象表面に励起する微小振動を、レーザ光の進行方向の変化(偏向)や反射光の位相差、周波数遷移量などから計測するものである(例えば非特許文献2参照)。
【非特許文献1】J.D.Aussel(“Generation Acoustic Waves by Laser: Theoretical and Experimental Study of the Emission Source, ”Ultrasonics,vol.24(1988),246-255)
【非特許文献2】C.Chenu(“Defect Detection by Surface Acoustic Waves Generated by a Multiple Beam Laser, ” Proc. of IEEE Ultrasonics Symposium(1995)821-824)
【発明の開示】
【発明が解決しようとする課題】
【0009】
しかしながら、上記従来の超音波探傷方法では、検査対象に表面波探触子3,3a,3bを設置する際にはカプラント2,2a,2bの塗布が必要であり、これは作業工程の増加につながる。また検査対象1が小型の場合や狭隘部にある場合には表面波探触子3,3a,3bを設置することが困難である。
【0010】
また、従来のレーザ光を用いた非接触探傷方法では、より詳細なデータを取得するためや分解能を上げる探傷のためにデータ取得時間が長大になるという課題がある。このために、取得データを記録するための記憶媒体の容量や欠陥部検出解析時間が増大し、大量のデータの中から必要な個所だけ抽出するという煩雑な作業が必要であるという課題がある。
【0011】
本発明はこのような事情を考慮してなされたもので、その目的は、検査対象の欠陥の検出のために欠陥検出手段に入力されるデータを選択的に減少させ、そのデータを記録する記憶容量やデータ解析時間の減少を図ったレーザ超音波検査装置およびこれを備えたシステムを提供することを目的とする。
【課題を解決するための手段】
【0012】
請求項1に係る発明は、検査対象にレーザ光を照射して表面波を励起させる表面波送信手段と、この表面波送信手段のレーザ光照射位置に対して既知の距離離間した位置にて前記検査対象にレーザ光を照射する一方、そのレーザ光の反射光を受光することにより、前記検査対象に欠陥部があったときに、この欠陥部で発生する欠陥波を含む表面波を検出する表面波受信手段と、前記表面波受信手段からの表面波検出信号を前記表面波送信手段の出力信号と同期した時刻から所定時間記録し、この表面波検出信号に基づいて前記欠陥部を検出する欠陥検出手段と、を具備していることを特徴とするレーザ超音波検査装置である。
【0013】
請求項8に係る発明は、請求項3〜7のいずれか1項記載のレーザ超音波検査装置と、このレーザ超音波検査装置を収容するコンテナと、このコンテナ内の温度を制御する温度制御装置と、具備していることを特徴とするレーザ超音波検査システムである。
【発明の効果】
【0014】
本発明によれば、欠陥検出手段が、検査対象への送信用レーザ光の照射開始時から所定時間だけ表面波信号を記録し、欠陥を検出するので、この表面波信号の記録時間の短縮を図ることができる。このために、表面波信号を記録する記憶媒体の容量の減少と欠陥解析ないし検出時間の短縮を図ることができる。
【発明を実施するための最良の形態】
【0015】
以下、本発明の実施形態を添付図面に基づいて説明する。なお、添付図面中、同一または相当部分には同一符号を付している。
【0016】
(実施形態1)
図1は本発明の第1実施形態に係るレーザ超音波検査装置10の全体構成を示す機能ブロック図である。このレーザ超音波検査装置10は、検査対象11に送信用レーザ光を照射して超音波の表面波を励起させる表面波送信手段の一例である変調光源12、表面波受信手段の一例である表面波検出装置13、欠陥検出手段の一例である欠陥検出装置14、走査装置15を具備している。
【0017】
変調光源12は、トリガパルスTrgによりパルス状に変調した所定周波数のパルスレーザ光16を発振するものであり、このパルスレーザ光16を検査対象11の表面上の所要位置Eに照射するために導光する照射用光学系17と、フォーカスするためのレンズ系18とを備えている。
【0018】
すなわち、変調光源12は、レーザ光16を検査対象11の表面に照射することにより、超音波の表面波19を励起させる表面波送信手段として構成されている。
【0019】
表面波検出装置13は、上記レーザ光16の照射位置Eから既知の所定距離L離れた検査対象11の表面上の受信点Mに、レーザ光20を光学系21を介して照射する一方、この受信点Mで反射した反射光を受光し、レーザ光の進行方向の変化(偏向)や反射光の位相差、周波数遷移量等に基づいて表面波19を検出するものである。
【0020】
また、表面検出装置13は、表面波19と共に欠陥波22a,22bを検出する。欠陥波22a,22bは表面波19が表面開口の欠陥部23に到達すると、この欠陥部23の開口部と底部のエッジ部で欠陥波22a,22bがそれぞれ発生し、受信点Mで表面波検出装置13により検出されたときに、表面波検出信号sigに含まれて出力信号として出力される。
【0021】
走査装置15は、変調光源12からのレーザ光16が照射される照射点Eを、受信点Mとの間で既知の所定距離Lを置いた状態でX−Y方向に検査対象11a表面を走査するものである。
【0022】
欠陥検出装置14は、信号記録装置14a、欠陥検知装置14bおよび欠陥同定装置14cを具備しており、変調光源12からのトリガパルスTrgにより同期して動作するようになっている。表面波検出装置13により検出された表面波検出信号と欠陥波検出信号の少なくとも一方を出力信号sigとして受けて記録するものである。
【0023】
欠陥検知装置14bは、信号記録装置14aを介して表面波検出装置13からの出力信号sigを受け、この出力信号sig中に欠陥波22a,22bが含まれていることを検出したときに、欠陥部23があることを検出するものである。
【0024】
欠陥同定装置14cは信号記録装置14aを介して表面波検出装置13からの出力信号sigを受け、この出力信号sig中に欠陥波22a,22bが含まれているときに、欠陥部23の位置と深さを同定するものである。
【0025】
すなわち、欠陥検出装置14は、表面波19の未知の音速Vsを、送信点Eから受信点Mまでの距離Lが既知であるから、トリガ信号Trgが示す表面波19の発振時刻Toを基準とし、表面波検出装置13により表面波が受信されるまでの時刻T1を用いてVs=L/T1から算出する。
【0026】
また、欠陥検出装置14は、欠陥波22a,22bが受信点Mまでにそれぞれ到達する時間差Tdは、表面波19が欠陥部23の深さ方向に伝播する時間であるので、欠陥部23の深さDは、D=L・T1から求める。すなわち、予め表面波19の音速Vsを知ること無しに欠陥深さDを求める。
【0027】
さらに、欠陥波22a,22bの伝播時間T3を用いることにより、Ld=L・T3/T1の関係から、送信点Eから欠陥部23の存在位置までの距離Ldを求め、未知の欠陥位置を求めることができる。
【0028】
次に、このレーザ超音波検査装置10の作用を説明する。
【0029】
まず、変調光源12ではトリガパルスTrgによりパルス状に変調されたレーザ光16が発振され、照射用光学系17により導光され、かつレンズ系18によりフォーカスされて、検査対象11の表面上の送信点Eに照射される。
【0030】
このために、送信点Eでは超音波の表面波19が励起され、検査対象11の表面を伝播し、受信点Mに到達する。
【0031】
この受信点Mでは、表面波検出装置13から発振されたレーザ光20が照射用光学系21を介して照射される一方、その反射光が表面波検出装置13により受光され、このときに表面波19が検出される。
【0032】
さらに、表面波19は受信点Mを通過して伝播し、欠陥部23に到達し、欠陥部23の開口部と底部のエッジ部で欠陥波22a,22bが発生する。
【0033】
これら欠陥波22a,22bは再び受信点Mに到達して表面波検出装置13により検出され、出力信号sigとして欠陥検出装置14の信号記録装置14aに与えられる。
【0034】
信号記録装置14aには変調光源12からのトリガ信号Trgが入力され、この変調光源12の送信用レーザ光の各発振と同期した時刻から所定時間のみ、検出信号sigをそれぞれ記録する一方、この検出信号sigを欠陥検知装置14bと欠陥同定装置14cとにそれぞれ与える。
【0035】
このために、欠陥検知装置14bは欠陥部23の有無を検出し、その結果を信号記録装置14aに与えて記録させる。また、欠陥同定装置14cは表面波19の速度校正機能を備えており、表面波信号や欠陥波信号の時間差から表面波19の正確な音速と経路上の欠陥部23の位置と深さDを検出し、その検出結果を信号記録装置14aに与えて記録させる。
【0036】
したがって、このレーザ超音波検査装置10によれば、変調光源12のパルス状送信用レーザ光の発振と信号記録装置14aによる検出信号sigの取込みタイミングを同期させているので、変調光源12のパルス状送信用レーザ光16の各発振時から、所定期間だけ表面波検出装置13からの検出(出力)信号sigを信号記録装置14aにより記録すればよいので、この検出信号sigの記録量を減少させることができる。
【0037】
このために、この検出信号sigを記録する信号記録装置14aの記憶媒体の記録容量の減少を図ることができるうえに、この検出信号sigから欠陥部23の有無や位置、深さを検出する欠陥検知装置14bと欠陥同定装置14cによる欠陥部23の検出ないし解析時間の短縮を図ることができる。
【0038】
また、信号記録装置14aによる表面波や欠陥波等のデータの記録量の減少を図ることができるので、その分、これらデータの記録量を増大させて欠陥部検出精度の向上を図ることができる。
【0039】
(実施形態2)
図2は本発明の第2の実施形態に係るレーザ超音波検査装置10Aの構成を示す機能ブロック図、図3はこのレーザ超音波検査装置10Aの主要部の動作のタイミングチャートである。
【0040】
レーザ超音波検査装置10Aは、前記第1の実施形態に係るレーザ超音波検査装置10に、シャッター装置24、マスタークロック25と遅延発生装置26を設けた点に主な特徴がある。
【0041】
シャッター装置24は、変調光源12から出力される送信用レーザ光16が検査対象11の表面の送信点Eに照射されるレーザ光照光路の途中に介装されて、このレーザ光照射光路を開閉することにより、レーザ光16の検査対象11への照射をON−OFF制御するものである。
【0042】
マスタークロック25はクロック信号(同期信号)を変調光源12、シャッター装置24、表面波検出装置13、欠陥検出装置14へそれぞれ与えて、これらの動作を同期させるものである。
【0043】
図3に示すように遅延発生装置25はシャッター装置24のシャッターの開動作をクロック信号に対して所要数(所定時間)遅延させるものであり、変調光源12から出力される送信レーザ光16の出力が安定してからシャッターを開放させるものである。
【0044】
したがって、図3に示すようにこのレーザ超音波検査装置10Aによれば、変調光源12の送信用レーザ光16の発振が開始されても、その発振開始から所定の遅延時間経過前では、シャッター装置24によりレーザ光照射光路が閉じているので、送信用レーザ光16が検査対象11に照射されず、待機する。
【0045】
そして、遅延時間経過後は、変調光源12の送信用レーザ光16の発振が安定するので、シャッター装置24がレーザ光照射光路を開く。このために、送信用レーザ光16が検査対象11の送信点Eに照射される。
【0046】
この送信点Eに照射される送信用レーザ光16の発振に同期して発振する受信用レーザ光20が受信点Mに照射される。また、この受信用レーザ光20の受信点Mへの照射に同期して信号記録装置14aによる表面波信号や欠陥波信号等のデータの取込みが開始され、所定時間記録される。また、このデータ記録時には図3に示すように、走査装置15の走査位置信号が信号記録装置14aに与えられて記録される。
【0047】
すなわち、信号記録装置14aは、シャッター装置24のシャッターが開くのとほぼ同時にデータ収録を開始する。一部の信号は、クロック信号発生開始直後は不安定なため、微少時間遅らせて数値が安定してからデータを取得する。データ収録に関しては、検査に用いているセンサ情報、レーザ照射位置情報、レーザ状態信号、超音波信号、他の機器から送られてくる状態信号、その他必要な詳細なデータをアナログからデジタルに変換(AD変換)またはLANなどのネットワーク経由で取得して保存する。AD変換装置としては汎用のPCIボードが適用可能で、高速AD変換装置としては例えばPXIモジュールを用いた装置が適用可能である。
【0048】
したがって、このレーザ超音波検査装置10Aによれば、送信用レーザ光を、その発振が安定してから検査対象11に照射させるので、欠陥検出装置14による欠陥部23の検出精度を向上させることができる。さらに、この欠陥検出装置14には走査装置15から走査位置信号が与えられるので、この欠陥検出装置14による欠陥位置検出精度のさらなる向上を図ることができる。
【0049】
また、送信用レーザ光16の検出対象11への照射に同期して信号記録装置14a表面波や欠陥波の信号等のデータを所定時間だけ記録し、送信用レーザ光16が検査対象11へ照射されていない期間は記録しないので、その記録量を減少させることができる。このために、これらデータを記録する記憶媒体の容量と記録時間を減少させることができる。
【0050】
さらに、データ記録量の減少分だけ、逆に必要なデータ記録量と記録時間の増大を図ることにより、信号記録精度と欠陥検出精度の向上を図ることができる。
【0051】
(実施形態3)
図4は本発明の第3の実施形態に係る信号記録装置14aの表示画面27の要部拡大正面図である。この表示画面27は、マルチウインドウに形成され、例えば、その図4中左半分側に、時間波形表示ウインドウ27a、トレンド表示ウインドウ27b、主要パラメータ表示ウインドウ27cを配設し、右半分側に、ステータス表示ウインドウ27d、他機器情報表示ウインドウ27e、運転状態表示ウインドウ27f、走査装置15の運転を操作する操作ボタン表示ウインドウ27gを表示している。
【0052】
時間波形表示ウインドウ27aは表面波検出装置13から信号記録装置14aに入力される表面波19と欠陥波22a,22bの各検出信号の時間波形を、パルス状送信用レーザ光16の検査対象11への照射毎に、所定時間だけ順次表示する小ウインドウである。
【0053】
トレンド表示ウインドウ27bは、信号記録装置14aに入力された表面波19や欠陥波22a,22bの所要数を時系列に並べて所定時間表示し、これら表面波19や欠陥波22a,22bのトレンドを表示する小ウインドウである。
【0054】
主要パラメータ表示ウインドウ27cは、パルス状の送信用レーザ光16と受信用レーザ光20の各拡幅を示す波形や、受信用レーザ光20の検査対象11への照明と、シャッター装置24の開動作のタイミングのずれ等主要パラメータのトレンドを表示するウインドウである。
【0055】
ステータス表示ウインドウ27dは、変調光源12、表面波検出装置13、欠陥検知装置14b、欠陥同定装置14c、走査装置15、シャッター装置24、マスタークブロック25、遅延発生装置26等の他の機器の異常の有無等現状を表示する小ウインドウである。
【0056】
他機器情報表示ウインドウ27eは走査装置15の現在のX−Y位置(走査位置)や動作速度等他の機器からの情報を表示する小ウインドウである。
【0057】
運転状態表示ウインドウ27fは走査装置15が動作中か否か等、他の機器の運転状態を表示するウインドウである。
【0058】
操作ボタン表示ウインドウ27gは、走査装置15の運転を操作するためのON−OFFボタンや走査速度、走査範囲を設定するための表示ボタン等、操作ボタンを表示する小ウインドウである。
【0059】
したがって、この実施形態によれば、信号記録装置14aの表示画面27を目視することにより、表面波19と欠陥波22a,22bの時間波形やそのトレンド、その他主要パラメータのトレンド、他機器の異常の有無等の現状ないし運転状態を、それぞれ確認し、走査装置15の運転を操作することができる。
【0060】
(実施形態4)
図5は本発明の第4の実施形態に係るレーザ超音波検査装置10Bの全体構成を示す機能ブロック図である。このレーザ超音波検査装置10Bは図2で示す第2の実施形態に係るレーザ超音波検査装置10Aの欠陥検出装置14に、レーザ超音波検査装置10Aを遠隔監視する遠隔監視装置28を設けた点に特徴がある。
【0061】
すなわち、図5に示すようにレーザ超音波検査装置10Bは、その遠隔監視装置28以外の本体装置10Aが原子力発電所の放射線管理区域等問題なくアクセスし難い現場に配設される場合に、その現場から離間した事務所等に遠隔監視装置28を設けている。現場と事務所間の通信手段としては短距離であればLANケーブルが考えられるが、中長距離の時は無線LANや一般の公衆回線などを用いることにより、リアルタイムでの状態監視が可能である。
【0062】
遠隔監視装置28は、現場設置の欠陥検出装置14とほぼ同様に構成され、図4で示す表示画面27を具備している。
【0063】
したがって、このレーザ超音波検査装置10Bによれば、現場から離れた事務所においても、このレーザ超音波検査装置10Bの運転状態を遠隔監視装置28により監視することができるうえに、走査装置15等の運転を遠隔監視することができる。したがって、監視技術に特別な技能・経験が必要な場合においても一人で複数の現場の検査状態を把握することが可能である。
【0064】
(実施形態5)
図6は本発明の第5の実施形態に係るレーザ超音波検査装置10Cの全体構成を示す機能ブロック図である。このレーザ超音波検査装置10Bは図2で示す第2の実施形態に係るレーザ超音波検査装置10Aに、監視カメラ29を設けた点に特徴がある。
【0065】
監視カメラ29は主に検査対象11とその表面上で走査される走査面や表面検査作業を撮像し、その撮像信号を信号記録装置14aに与えて記録させ、表示画面に表示させるものである。この撮像信号は信号記録装置14aを介して図5で示す遠隔監視装置28に送信させ、その表示画面に、撮像画面を表示させるように構成してもよい。
【0066】
すなわち、一般に、検査対象11の表面検査の手順としては、実施前の目視検査と実施後の目視検査が行われることが想定される。さらに、検査中にも画像で検査位置・状態などを確認することは検査員が検査の状態を把握するためには求められると考えられる。このために、その表面検査作業を監視カメラ29により撮影する。また、検査前後と検査中とでは光量が違うため、1台の監視カメラ29により撮影する場合には、光量対感度が対数の関係にあるカメラ(ログカメラ)を使用する。または、通常の監視カメラ29の1台だけで撮影するためには、露光量が調節できる電気的な構造、もしくは減光フィルタを機械的に動作させる機構を設けることにより可能である。複数の監視カメラ29により撮影する際にも同様の構造・機構を設けることで、コストダウンを図ることが可能である。
【0067】
したがって、このレーザ超音波検査装置10Cによれば、監視カメラ29の撮像画面を監視員が目視することにより検査対象11の表面検査の前後において、その検査状態を目視チェックすることができる。
【0068】
(実施形態6)
図7は本発明の第6の実施形態に係るレーザ超音波検査システム30の構成を示す模式図である。このレーザ超音波検査システム30は、コンテナ31内に、前記レーザ超音波検査装置10,10A,10B,10Cのいずれかを配設し、このコンテナ31内に、温度制御装置の一例である空気調和機32を1台以上配設した点に特徴がある。
【0069】
このレーザ超音波検査システム30によれば、コンテナ31内の温度と湿度を、空気調和機32,32によりレーザ超音波検査装置10,10A〜10Cのいずれかに好適な温度と湿度に制御することができるので、特に夏場等高温多湿の環境においても、レーザ超音波検査装置10,10A〜10Cを正常に動作させることができ、表面検査の精度、品質を保証することができる。
【0070】
(実施形態7)
図8は本発明の第7の実施形態に係るレーザ超音波検査システム30Aの構成を示す模式図である。このレーザ超音波検査システム30Aは、前記レーザ超音波検査装置10,10A〜10Cのいずれかの1台以上、例えば2台を、レーザ光光源等光学系を有する光学系10Lと、それ以外の制御系を含む電気系10Eとにそれぞれ区別し、これらをコンテナ31L,31E内にそれぞれ収容し、各光学系コンテナ31Lの上に、各電気系コンテナ31Eをそれぞれ積み上げ、フロアF上に2層に立設した点に特徴がある。
【0071】
ここで、光学系とは変調光源12、表面波検出装置13、走査装置15、照射用光学系17、レンズ系18、シャッター装置24である。電気系とは、欠陥検出装置14、マスタークロック25、遅延発生装置26である。
【0072】
また、レーザ超音波検査システム30Aは、1階(1F)のフロアFから2階(2F)の電気コンテナ31Eにアクセスするための外付けの階段33と、光学コンテナ31Lと電気系コンテナ31Eとを上下方向に結合する結合手段の一例であるコネクタ34と、を具備している。
【0073】
そして、レーザ超音波検査システム30Aは、これら光学系コンテナ31Lと電気系コンテナ31Eとを図示しないワイヤ等により建屋やその他安定した個所に接続している。また、これらコンテナ31E,31Lの一部に各階を接続するコネクタボックスを設けてもよく、これによれば、信号ケーブルなどのやり取り合いも境界線を壊すことなく可能である。
【0074】
そして、このレーザ超音波検査システム30Aによれば、複数のコンテナ31E,31Lを上下2段で重ねているので、検査現場での設置スペースの節約を図ることができる。また、レーザ超音波検査装置10,10A〜10Cのいずれかのうちの振動に対して影響の受け易い光学系10Lを振動の小さい1階(1F)に設けているので、光学系10Lの信頼性を向上させることができる。
【0075】
(実施形態8)
図9は本発明の第8の実施形態に係るレーザ超音波検査システム30Bの構成を示す平面模式図である。このレーザ超音波検査システム30Bは、前記レーザ超音波検査装置10,10A〜10Cのいずれかの1台以上、例えば2台の各走査装置15を除く本体装置を大形のコンテナ31F内にそれぞれ収容し、走査装置15と検査対象11が設置されるコンテナ31F外の作業エリア35側のコンテナ31Fの側壁31Faに、透視窓36,36をそれぞれ形成した点に特徴がある。
【0076】
各透視窓36は作業エリア35での検査作業を目視できる大きさに形成され、透明な合成樹脂またはガラス等透明素材が使用される。これら透明素材には破壊時飛散防止フィルムを貼着し、または複数枚積層することにより、外部との境界を確保している。
【0077】
このレーザ超音波検査システム30Bによれば、検査員37がコンテナ31Fの内部から外部を透視窓36を通して作業エリア35を目視することができるので、コンテナ31Fの内部から検査作業を実施することができる。
【0078】
(実施形態9)
図10は本発明の第9の実施形態に係るレーザ超音波検査システム30Cの構成を示す模式図である。このレーザ超音波検査システム30Cは、前記図8で示すレーザ超音波検査システム30Aのコンテナ31E,31Lの外面を、ビニールシート等のカバー38により全面的に被覆した点に特徴がある。
【0079】
一般に、レーザ超音波検査装置10,10A〜10Cのレーザなどの光学系10Lは粉塵等により誤動作を生じる確率が高くなるので、このレーザ超音波検査装置10,10A〜10Cを収容するコンテナ31E,31Lの外面をカバー38により被覆することによって粉塵が電気系コンテナ31E、光学系コンテナ31内へ流入するのを低減ないし防止することができる。このために、光学系10Lと電気系10Eの精度を向上させることができる。
【0080】
(実施形態10)
図11は本発明の第10の実施形態に係るレーザ超音波検査システム30Dの構成を示す模式図である。このレーザ超音波検査システム30Dは、前記図8で示すレーザ超音波検査システム30Aに、電気系コンテナ31E,光学系コンテナ31Lの内部の気圧を外気圧よりも高い正圧に制御する気圧制御装置39を設けた点に特徴がある。
【0081】
このレーザ超音波検査システム30Dによれば、電気系,光学系コンテナ31E,31L内を、気圧制御装置39により外気圧よりも高い正圧に制御するので、これらコンテナ31E,31Lに出入りする際に、ドアを開閉しても空気の流れはコンテナ31E,31L内から外気に流れるため、粉塵の浸入を阻止することが可能である。また、これらコンテナ31E,31Lが放射線管理区域内に設置されている場合には、コンテナ31E,31L内への放射線物質の流れ込みを阻止することが可能であるため、被曝低減を図ることが可能である。
【図面の簡単な説明】
【0082】
【図1】本発明の第1の実施形態に係る表面検査装置の機能ブロック図。
【図2】本発明の第2の実施形態に係る表面検査装置の機能ブロック図。
【図3】本発明の第2の実施形態に係る表面検査装置のタイミングチャート。
【図4】本発明の第3の実施形態に係る表面検査装置の表示画面の正面図。
【図5】本発明の第4の実施形態に係る表面検査装置の機能ブロック図。
【図6】本発明の第5の実施形態に係る表面検査装置の機能ブロック図。
【図7】本発明の第6の実施形態に係る表面検査装置の説明図。
【図8】本発明の第7の実施形態に係る表面検査システムの模式図。
【図9】本発明の第8の実施形態に係る表面検査システムの模式図。
【図10】本発明の第9の実施形態に係る表面検査システムの模式図。
【図11】本発明の第10の実施形態に係る表面検査システムの模式図。
【図12】従来の第1の超音波検査装置の機能ブロック図。
【図13】従来の第2の超音波検査装置の機能ブロック図。
【符号の説明】
【0083】
10,10A,10B,10C レーザ超音波検査装置
11 検査対象
12 変調光源
13 表面波検出装置
14 欠陥検出装置
14a 信号記録装置
14b 欠陥検知装置
14c 欠陥同定装置
15 走査装置
16 送信用レーザ光
17 照射用光学系
18 レンズ系
19 表面波
20 受信用レーザ光
22a,22b 欠陥波
23 欠陥部
24 シャッター装置
25 マスタークブロック
26 遅延発生装置
27 表示画面
28 遠隔監視装置
29 監視カメラ
30,30A,30B,30C,30D レーザ超音波検査システム
31 コンテナ
31E 電気系コンテナ
31L 光学系コンテナ
36 透視窓
38 カバー
39 気圧制御装置

【特許請求の範囲】
【請求項1】
検査対象にレーザ光を照射して表面波を励起させる表面波送信手段と、
この表面波送信手段のレーザ光照射位置に対して既知の距離離間した位置にて前記検査対象にレーザ光を照射する一方、そのレーザ光の反射光を受光することにより、前記検査対象に欠陥部があったときに、この欠陥部で発生する欠陥波を含む表面波を検出する表面波受信手段と、
前記表面波受信手段からの表面波検出信号を前記表面波送信手段の出力信号と同期した時刻から所定時間記録し、この表面波検出信号に基づいて前記欠陥部を検出する欠陥検出手段と、
を具備していることを特徴とするレーザ超音波検査装置。
【請求項2】
前記欠陥検出手段は、前記欠陥部の有無、欠陥部の位置および深さの少なくともいずれかを検出する手段を、
具備していることを特徴とする請求項1記載のレーザ超音波検査装置。
【請求項3】
前記表面波送信手段と前記表面波受信手段の両レーザ光照射位置を、前記所定間隔で保持した状態で前記検査対象の表面上を走査させ、その走査位置信号を前記欠陥検出手段に与えて欠陥位置を同定させる走査装置を、
具備していることを特徴とする請求項1または2記載のレーザ超音波検査装置。
【請求項4】
前記表面波送信手段から前記検査対象へ照射される前記照射光路を開閉するシャッター装置と、
前記走査装置、前記シャッター装置、前記表面波送信手段、前記表面波受信手段および前記信号記録手段に、これらの動作を同期させる同期信号を与えるクロックと、
前記シャッター装置による前記レーザ光路を開く開動作と、前記信号記録手段による信号記録動作とを、前記表面波送信手段のレーザ光発振よりも所定時間遅延させる遅延手段を、
具備していることを特徴とする請求項3記載のレーザ超音波検査装置。
【請求項5】
前記欠陥検出手段は、その入力信号と検出信号を表示する表示部を、
具備していることを特徴とする請求項1〜4のいずれか1項記載のレーザ超音波検査装置。
【請求項6】
前記欠陥検出手段の入力信号と検出信号を遠隔監視する遠隔監視装置を、
具備していることを特徴とする請求項1〜5のいずれか1項記載のレーザ超音波検査装置。
【請求項7】
前記検査対象の表面検査作業を撮像する監視カメラを、
具備していることを特徴とする請求項1〜6のいずれか1項記載のレーザ超音波検査装置。
【請求項8】
請求項3〜7のいずれか1項記載のレーザ超音波検査装置と、
このレーザ超音波検査装置を収容するコンテナと、
このコンテナ内の温度を制御する温度制御装置と、
具備していることを特徴とするレーザ超音波検査システム。
【請求項9】
前記コンテナは、その外部に配設された前記走査装置および前記検査対象を、前記コンテナの内部から目視するための透視窓を、
具備していることを特徴とする請求項8記載のレーザ超音波検査システム。
【請求項10】
前記コンテナの外面を被覆するシートを、
具備していることを特徴とする請求項8または9記載のレーザ超音波検査システム。
【請求項11】
前記コンテナは、前記レーザ超音波検査装置の光学系を有する光学系部をコンテナ内に収容した光学系コンテナと、
前記レーザ超音波検査装置の前記光学系部以外の電気系部をコンテナ内に収容した電気系コンテナとを有し、
前記光学系コンテナ上に前記電気系コンテナを積み上げた状態でこれらコンテナ同士を結合手段により結合してなることを特徴とするレーザ超音波検査システム。
【請求項12】
前記コンテナ内を正圧に調整する気圧制御装置を、
具備していることを特徴とする請求項8〜11のいずれか1項記載のレーザ超音波検査システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2007−17297(P2007−17297A)
【公開日】平成19年1月25日(2007.1.25)
【国際特許分類】
【出願番号】特願2005−199465(P2005−199465)
【出願日】平成17年7月7日(2005.7.7)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】