説明

乗客コンベアの状態検知システム

【課題】システムの大型化を抑制し、且つ強度変化をもたらすエスカレータの踏段構造の変更を回避することのできる乗客コンベアの状態検知システムを提供する。
【解決手段】複数の搭乗用の踏段がチェーンを介して連結され、ガイドレール上を踏段ローラ及びチェーンローラが走行移動することで複数の踏段を駆動させる乗客コンベアの状態検知システムであって、少なくとも1台以上の踏段に対して設置される音センサと、音センサで取得された信号を入力し、該乗客コンベアの状態検知を行う状態検知装置とを備え、音センサは、踏段の裏面であって、取得しようとする音の減衰量が所定値以下の領域に設置される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、乗客コンベアの状態検知システムに関する。
【背景技術】
【0002】
乗客を目的地に輸送する乗客コンベアとして、エスカレータが多用されている。エスカレータの故障を含めた異常状態からの迅速な復旧対応に向けた情報収集を目的とした、エスカレータの異常診断システムがある(例えば、特許文献1及び非特許文献1参照)。
【0003】
エスカレータの異常診断システムでは、対象エスカレータの稼動状態を音により観察する場合、音センサをエスカレータの搭乗用踏段の裏に設置し、持続的に発生する音を移動する音センサにより広い対象領域を対象としていた。しかし、エスカレータ機器及び据付建物の構造部材により、音の伝播を妨げてしまう。これを解決する為に音センサ設置数を増やすこととなり、システムの大型化を招く結果となっていた。この為、音センサの対象領域を広げる試みがなされている(例えば、特許文献2参照)。
【0004】
しかし、取得対象音の特性、構造強度等の周囲環境を変化させてしまう為に、都度適用可否の技術判定、及び設計変更可否の技術検討の必要があり、設計が複雑になるという問題があった。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2009−173434号公報
【特許文献2】特開2009−120368号公報
【非特許文献】
【0006】
【非特許文献1】蔦田広幸、外3名、「加速度・音センサを搭載した点検踏段によるエスカレータ異常診断」、計測自動制御学会論文集、2007年、第43巻、第9号、p.735−740
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明が解決しようとする課題は、システムの大型化を抑制し、且つ強度変化をもたらすエスカレータの踏段構造の変更を回避することのできる乗客コンベアの状態検知システムを提供することである。
【課題を解決するための手段】
【0008】
実施形態の乗客コンベアの状態検知システムは、複数の搭乗用の踏段がチェーンを介して連結され、ガイドレール上を踏段ローラ及びチェーンローラが走行移動することで複数の踏段を駆動させる乗客コンベアの状態検知システムであって、少なくとも1台以上の前記踏段に対して設置される音センサと、前記音センサで取得された信号を入力し、該乗客コンベアの状態検知を行う状態検知装置とを備え、前記音センサは、前記踏段の裏面であって、取得しようとする音の減衰量が所定値以下の領域に設置される。
【図面の簡単な説明】
【0009】
【図1】第1の実施形態に係わるエスカレータ状態検知システムの概略構成例を示す図である。
【図2】第1の実施形態に係わる踏段と踏段裏面の音センサの概略設置例を示す図である。
【図3】踏段裏面の音減衰のシミュレーションの踏段横方向(長手方向)に垂直な平面内の分布である。
【図4】踏段裏面の音減衰シミュレーションの踏段クリートに垂直な平面内の分布である。
【図5】第1の実施形態に係わるエスカレータ状態検知システムの動作フローを示す図である。
【図6】音センサの向き及び位置変更の機構例を示す図である。
【図7】第2の実施形態に係わるエスカレータ状態検知システムの動作フローを示す図である。
【図8】第3の実施形態に係わるエスカレータ状態検知システムの動作フローを示す図である。
【発明を実施するための形態】
【0010】
以下、本発明の一実施の形態について、図面を参照して説明する。尚、各図において同一箇所については同一の符号を付すとともに、重複した説明は省略する。各実施形態は、乗客コンベアの一例としてエスカレータを例にとり、エスカレータ状態検知システムとして説明する。本発明は、エスカレータ以外の乗客コンベアにも、適用できることは言うまでもない。
【0011】
(第1の実施形態)
図1は、第1の実施形態に係わるエスカレータ状態検知システムの概略構成例を示す図である。
【0012】
図1に示すように、エスカレータ状態検知システム100は、エスカレータEの状態を検知する。エスカレータEは、踏段101と、移動手すり102と、駆動装置103と、制御装置104とを備える。
【0013】
踏段101は、乗客が搭乗する複数の踏段を踏段チェーンにより無端で連結され、ガイドレール上を踏段ローラ及びチェーンローラが走行移動することで駆動させる。踏段101は、エスカレータE設置場所200に設置されたトラス201に収納されており、トラス201上部において回転自在に支持されたスプロケット105と、下部において回転自在に支持されたスプロケット106との間を移動する。
【0014】
移動手すり102は、踏段101の移動と共に移動するものであり、無端で構成されている。
【0015】
駆動装置103は、踏段101及び移動手すり102の移動開始・移動停止、移動速度などを制御することでエスカレータEを駆動制御するものである。
【0016】
制御装置104は、エスカレータEの遠隔に設けられた集中管理システムと接続されても良い。この場合、制御装置104は、集中管理システムからの指示に基づいてエスカレータEの駆動制御を行うことが出来る。つまり、エスカレータEは、集中管理システムから遠隔操作されても良い。
【0017】
本実施形態では、図1に示すように、エスカレータEを運転することで発生する検出対象音を取得するために、音センサ3をエスカレータE内に設置する。1台のエスカレータEに対して、1台以上の音センサ3、状態検知装置4、振動センサ5を備えている。音センサ3は、エスカレータEの複数の検出箇所に設置してもよい。
【0018】
図2は、第1の実施形態に係わる踏段と踏段裏面の音センサの概略設置例を示す図である。図2に示すように、踏段101は、踏段クリート101a、踏段ライザl01b、踏段梁101cを有している。踏段クリート101aは、乗降口のくしと噛み合う溝で、異物、ゴミが機械室内に侵入するのを防ぐ。踏段ライザl01bは、踏段101の端部から湾曲して形成される蹴上部である。
【0019】
本実施形態では、音センサ3の設置箇所を、踏段101の裏面側に限定している。音センサ3の設置領域を限定することにより、広範囲な音が取得可能となる。踏段101の裏面側に設置した場合、エスカレータEの静止側が原因で異常が発生し、かつ音として検出可能な事象・設置箇所に対して、少ない音センサ3で状態検知システム100を構成することが出来る。検知対象は踏段101に限らず、正常と異常との差異が顕著な位置であればエスカレータEの構成部品、及び周囲何れでも良い。本実施形態では、検知対象音は、人間の可聴周波数範囲である20Hz〜20kHzの音とするのが好適である。
【0020】
踏段101は、スプロケット105,106を含む無端駆動範囲を移動しており、エスカレータEのトラス201及びエスカレータ設置場所200に囲まれている。そのため、音センサ3同士の相互干渉を避ける為、音センサ3が踏段101の2本の踏段梁101cの水平方向内側、及び鉛直方向のステップクリートとは反対側へ突出することは許容されない。
【0021】
音センサ3は、動電型、圧電型、静電型など音を電気信号に変換するいずれのマイクロフォンであっても良い。音センサ3は、少なくとも20Hz〜20kHzの周波数範囲からなる音を検出できるもので状態検知装置4に接続されており、検知対象音に基づいた出力信号、すなわち検出された検知対象音の音信号が状態検知装置4に入力される。
【0022】
音センサ3には、指向特性により無指向性タイプと指向性タイプが存在する。空間から伝播する音の内、いずれかの向きの音に対して感度の高低があるものが、指向性タイプ、いずれの向きでも指向性による差が殆どないものが無指向性タイプと分類される。音センサ3の本来の性質のみならず、取り付け方により指向性を付けることも可能である。本実施形態に適用する音センサ3は、無指向性タイプ、指向性タイプの何れかに限定されず、周囲環境、検出対象音等により使い分けすることが好適である。
【0023】
状態検知装置4は、音センサ3により検出された検出対象音に基づき、エスカレータEの状態、すなわちエスカレータEが正常であるか否かを判定するものである。本実施形態では、状態検知装置4は、検知対象音の音信号に対してフーリエ変換等による周波数分析を行い、ピークの周波数成分をエスカレータEが正常な状態で運転されている場合に発生する検知対象音のピークの周波数成分と比較することで正常であるか否かを判定する。
【0024】
エスカレータEは、正常な状態で運転されている場合と、正常でない状態で運転されている場合とで、検出対象音の周波数成分が変化する。そこで、検出された音の内、ピーク周波数成分を、エスカレータEが正常な状態で運転されている場合に発生する音のピークの周波数成分と比較することで、エスカレータEが正常であるか否かを判定する。同様に、検出された音の内、ピーク周波数成分を、エスカレータEが異常な状態で運転されている場合に発生する音のピークの周波数成分と比較することでエスカレータEが異常であるか否かを判定する。エスカレータEが正常でない状態で運転されている場合としては、異常な状態と、異常な状態でないが正常でもない状態とがある。正常でない状態で運転されている場合に発生する状態検知対象音は、一般的に、正常な状態で運転されている場合に発生する状態検知対象音に比較して、音が高くなる。
【0025】
図3及び図4は、いずれも踏段101の裏面における音の低減量を予想(音減衰のシミュレーション)した分布図である。音は、物を透過した時のロスや物に衝突した時の回折により、減衰する。ここでのシミュレーションでは、音の出所(音源)は、特定せず、300Hz以上の音を取得するので、一例として315Hzの透過ロス及び回折による減衰の分布を計算している。
【0026】
図3は、踏段101の横方向(長手方向)に垂直な平面内における減衰量の分布を示している。図3では、踏段ライザl01bの下端部、かつ踏段梁101cの下端部では、0~3dBの減衰量であり、踏段ライザl01bの上端部、かつ踏段クリート101a側では、9~12dBの減衰量となっている。
【0027】
図4は、踏段クリートに垂直な平面内における減衰量の分布を示している。左上の踏段クリート101a側では、6~8dBの減衰量、踏段ライザl01bの下端側を示す右下では、6~8dBの減衰量となっている。
【0028】
踏段内に設置した音センサ3によって、エスカレータEの機械室内を踏段101が通過した時、数百Hz〜数kHz迄の広帯域に亘り、数dBの音圧上昇が起きることを観測することができる。
【0029】
尚、各図中には、シミュレーション時の計算上の誤差が表れているが、好適な設置場所の選定には、支障がないことは言うまでもない。これらのシミュレーションでは、減衰量の許容限界領域として6dBを上限として設置領域を限定している。これにより、音センサ1台当たりの有効性が向上する。
【0030】
エスカレータEの運転中の音を的確に取得するには、できるだけ、減衰の少ない箇所に設置することが肝心である。
【0031】
上記シミュレーション結果から、例えば、幅寸法が1mの踏段101における好適な音センサ3の設置領域は、以下のようになる。
【0032】
踏段ライザの下端面を0mm基準とし、50mm下方の水平面から60mm上方迄の水平面に囲まれた領域と、踏段ライザの下端面から60mm上方の水平面と踏段前端面のクリート・デマケーションラインから110mm奥の鉛直面との交線を始点群とし、クリート裏面から50mm下方の水平面と踏段前端面のクリート・デマケーションラインから340mm奥の鉛直面との交線を終点群とする平面と上記踏段ライザ下端面の60mm上方の水平面とで囲まれる領域との論理和で形成される領域に音センサ3を設置することが好適である。
【0033】
また、踏段左端と踏段ライザ下端面の20mm上方の交点群と、踏段クリート面と踏段左端から740mmの交点群と、踏段ライザ下端から下方50mmの面で囲まれる領域と、踏段右端と踏段ライザ下端面の20mm上方の交点群と、踏段クリート面と踏段右端から740mmの交点群と、踏段ライザ下端から下方50mmの面で囲まれる領域と、踏段ライザ裏面の論理積で形成される領域に音センサ3を設置することが好適である。
【0034】
さらに、音センサ3は、踏段101駆動時の運動を妨げない様、ローラを支える傾斜支柱2本の縁の境界内に設置することが好適である。
【0035】
なお、状態検知装置4は、エスカレータEの遠隔に設けられた集中管理システム(図示せず)と接続されていても良い。この場合、状態検知装置4は、音センサ3により検出された検知対象音に基づいたエスカレータEの状態を集中管理システムに通知することも出来る。このような場合、エスカレータEは、集中管理システムにおいて遠隔状態を検知されていることになる。したがって、集中管理システムが状態検知装置4としての機能を有し、音センサ3から出力信号を集中管理システムに出力し、集中管理システムが音センサ3により検出された検知対象音に基づいてエスカレータEの状態を直接検知しても良い。
【0036】
次に、エスカレータの状態検知システム100の動作について説明する。図5は、第1の実施形態に係わるエスカレータの状態検知システム100の動作フローを示す図である。まず、状態検知装置4は、音センサ3により検出された検知対象音の音データを取得する(ステップST1)。
【0037】
次に、状態検知装置4は、取得した検出対象音の音データの周波数分析をする(ステップST2)。ここでの周波数分析は、検出された検出対象音の複数の周波数成分の内、ピークの周波数成分であるDa周波数成分を決定する。
【0038】
次に、状態検知装置4は、Da周波数成分が、エスカレータEが正常な状態で運転されている場合に発生する検知対象音のピークの周波数成分であるA周波数成分を超える(Da>A)か否かを判定する(ステップST3)。
【0039】
次に、Da周波数成分がA周波数成分を超えると判定する場合(ステップST3肯定)には、状態検知装置4は、Da周波数成分が、エスカレータEが異常な状態で運転されている場合に発生する音のピークの周波数成分であるB周波数成分に許容差αを引いた値以上であり、B周波数成分に許容差βを加えた値以下である(B−α≦Da≦B+β)か否かを判定する(ステップST4)。すなわち、状態検知装置4は、Da周波数成分とB周波数成分とを比較することで、エスカレータEが異常な状態で運転されているか否かを判定する。ここで、B周波数成分は、A周波数成分よりも高い値である。B周波数成分は、エスカレータEが異常な状態で運転されていると仮定した場合において予測される検知対象音のピーク周波数成分であっても良い。許容差α,βは、任意に設定されるものであり、B周波数成分のみならず、Da周波数成分がB周波数成分近傍であっても、異常と判定するためのものである。なお、許容差α、βは、同一でも異なっていても良い。
【0040】
次に、状態検知装置4は、B−α≦Da≦B+βであると判定する(ステップST4肯定)と、異常判定を行う(ステップST5)。異常判定を行うと、例えば、エスカレータEの状態検知者にエスカレータEが異常であることを通知する。
【0041】
状態検知装置4は、B−α≦Da≦B+βでないと判定する(ステップST4否定)と、注意判定を行う(ステップST6)。注意判定とは、エスカレータEが正常な状態で運転されておらず、異常な状態でも運転されていない状態のことである。
【0042】
尚、Da周波数成分がA周波数成分を超えないと判定する場合(ステップST3否定)には、エスカレータEが正常な状態で運転されていると判定する(ステップST7)。
【0043】
踏段101の寸法精度や構造の相違、エスカレータEの設置場所等に応じて、音センサ3は設置場所において、取付の向きや角度等を自在に変更できることが好適である。そこで、音センサ3は、取付アームの向きを調整する各軸回り回転調整機構3a,3b、位置を調整する位置調整機構3c、及び伸縮調整機構3d,3e,3fを備える。図6は、音センサ3の向き及び位置変更の機構例を示す図である。例えば、各機構を、踏段101のクリート平面に鉛直な上下方向及び踏段の前端面のクリート・デマケーションラインに平行な軸及びこの平行軸に水平面内で90度に交わる軸の両2軸方向に回転傾斜可能とし、音センサ3を、各機構を成す可動治具によって、踏段101に設置するのが好適である。また、踏段101のクリート幅方向、踏段クリート奥行方向及び踏段クリート鉛直方向の各軸方向に可動可能とし、音センサ3を、各機構を成す可動治具によって、踏段101に設置するのが好適である。尚、各機構については、周知の機構を活用できるので、ここでは詳述しない。
【0044】
本実施形態によれば、少なくとも1台の音センサ3を用いて検知領域が狭い配置の場合であっても、エスカレータEの状態を的確に検知することが出来るので、システムの大型化を抑制することができる。
【0045】
(第2の実施形態)
次に、第2の実施形態に係わるエスカレータ状態検知システムを説明する。第2の実施形態に係わるエスカレータ状態検知システム100は、1台のエスカレータEの1箇所以上の検出箇所に音センサ3を設置し、さらに、1台以上設置され変位、速度または加速度を検出する振動センサ5とを備える。音センサ3及び振動センサ5の踏段101裏面への設置領域については、第1の実施形態における音センサ3の設置と重複する為、説明を省略する。
【0046】
第2の実施形態では、音センサ3で取得された信号と振動センサ5で取得された信号との相互相関を状態検知装置4で算出する。これにより、音センサ3による状態検知に加えて、発生箇所情報を取得する。音センサ3による状態検知装置4での正常、注意、異常の判定は第1の実施形態と同様であるので、重複する説明は省略する。
【0047】
次に、第2の実施形態に係わるエスカレータ状態検知システム100の動作について説明する。図7は、第2の実施形態に係わるエスカレータ状態検知システムの動作フローを示す図である。
【0048】
まず、状態検知装置4は、音データを取得(ステップST1)し、これと同時に振動データを取得(ステップST11)する。
【0049】
次に、状態検知装置4は、取得した音データ及び振動データの周波数分析をする(ステップST2及びステップST12)。ここでの周波数分析では、検出対象音及び振動の周波数成分の内、ピーク周波数であるDa及びDav周波数成分を決定する。
【0050】
次に、状態検知装置4は、Da周波数成分とDav周波数成分を複素積を求め、相関があると認められるピーク周波数であるC周波数特性を超える(Da*Dav>C)か否かを判定する(ステップST14)。
【0051】
次に、状態検知装置4は、Da*Dav周波数成分がC周波数成分を超えると判定する(ステップST14肯定)と、Dav周波数成分がDa周波数成分の音発生箇所であると判定する(ステップST15)。一方、Da*Dav周波数成分がC周波数成分を超えない場合(ステップST14否定)には、特段、問題無しとして処理を終える。
【0052】
本実施形態によれば、1台以上の音センサ3と1台以上の振動センサ5の相互相関により、音発生箇所の特定を実現することができる。
【0053】
(第3の実施形態)
次に、第3の実施形態に係わるエスカレータ状態検知システムを説明する。第3の実施形態に係わるエスカレータ状態検知システム100は、1台のエスカレータEの複数の検出箇所に複数の音センサ3を備える。
【0054】
音センサ3の踏段101裏面への設置領域については、第1の実施形態、第2の実施形態と重複する為、説明を省略する。音センサ3の設置箇所は、エスカレータEの検知対象領域と成り得る全領域が候補となるが、第1の実施形態で述べたように、音の減衰量を考慮して好適な設置個所を選定する。複数の音センサ3による状態検知を分析して、発生箇所情報を取得する。音センサ3による状態検知装置4での正常、注意、異常の判定は第1の実施形態と同様であるので、重複する説明は省略する。
【0055】
次に、第3の実施形態に係わるエスカレータ状態検知システム100の動作について説明する。図8は、第3の実施形態に係わるエスカレータ状態検知システムの動作フローを示す図である。
【0056】
まず、状態検知装置4は、音データを取得(ステップST1)し、これと同時に他の音データを取得(ステップST21)する。
【0057】
次に、状態検知装置4は、取得した複数の音データの周波数分析をする(ステップST2及びステップST22)。複数の音データの周波数分析では、検出された検出対象音及び振動の周波数成分の内、ピーク周波数であるDa(1)及びDa(2〜N)周波数成分を決定する(但し、N≧2の整数)。
【0058】
次に、状態検知装置4は、Da(1)周波数成分とDa(2〜N)周波数成分の複素積を求め(ステップST23)、相関があると認められるピーク周波数であるC周波数特性を超える(Da(1)*Dav(2〜N)>C)か否かを判定する(ステップST24)。
【0059】
次に、状態検知装置4は、Da(1)*Da(2〜N)周波数成分がC周波数成分を超えると判定する(ST24肯定)と、Da(2〜N)周波数成分がDa(1)周波数成分と同一箇所から発生している音を捉えていると判定する(ステップST24肯定)。
【0060】
次に、状態検知装置4は、Da(1)>Da(2〜N)周波数成分の大小比較を行う。Da(1)がDa(2〜N)を超えると、Da(1)が音発生箇所近傍であると判定する(ST25肯定)。Da(2〜N)周波数成分がDa(1)周波数成分を超えない場合には、Da(2〜N)が音発生箇所近傍であると判定する(ステップST25否定)。
【0061】
本実施形態によれば、2つ以上の音センサ3の相互相関により、音発生箇所の特定を実現することができる。
【0062】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0063】
100・・・エスカレータ状態検知システム
3・・・ 音センサ
3a,3b・・・ 軸回り回転調整機構
3c・・・ 位置調整機構
3d,3e,3f・・・ 伸縮調整機構
4・・・ 状態検知装置
5・・・ 振動センサ
101・・・ 踏段
101a・・・ 踏段クリート
l01b・・・ 踏段ライザ
101c・・・ 踏段梁
102・・・ 移動手すり
103・・・ 駆動装置
104・・・ 制御装置
105,106・・・ スプロケット
200・・・ エスカレータ設置場所
201・・・ トラス
E・・・ エスカレータ

【特許請求の範囲】
【請求項1】
複数の搭乗用の踏段がチェーンを介して連結され、ガイドレール上を踏段ローラ及びチェーンローラが走行移動することで複数の踏段を駆動させる乗客コンベアの状態検知システムであって、
少なくとも1台以上の前記踏段に対して設置される音センサと、
前記音センサで取得された信号を入力し、該乗客コンベアの状態検知を行う状態検知装置とを備え、
前記音センサは、前記踏段の裏面であって、取得しようとする音の減衰量が所定値以下の領域に設置される乗客コンベアの状態検知システム。
【請求項2】
前記音センサは、踏段ライザ下端面を0mm基準とし、50mm下方の水平面から60mm上方迄の水平面に囲まれた領域と踏段ライザ下端面から60mm上方の水平面と踏段前端面のクリート・デマケーションラインから110mm奥の鉛直面との交線を始点群とし、クリート裏面から50mm下方の水平面と踏段前端面のクリート・デマケーションラインから340mm奥の鉛直面との交線を終点群とする平面と上記踏段ライザ下端面の60mm上方の水平面とで囲まれる領域との論理和で形成される領域に設置される請求項1記載の乗客コンベア状態検知システム。
【請求項3】
前記音センサは、踏段左端と踏段ライザ下端面の20mm上方の交点群と、踏段クリート面と踏段左端から740mmの交点群と、踏段ライザ下端から下方50mmの面で囲まれる領域と、踏段右端と踏段ライザ下端面20mmの交点群と、踏段クリート面と踏段右端から740mmの交点群と、踏段ライザ下端から下方50mmの面で囲まれる領域と、踏段ライザ裏面の論理積で形成される領域に設置される請求項1記載の乗客コンベア状態検知システム。
【請求項4】
前記音センサは、前記踏段ローラ及び前記チェーンローラを支える傾斜支柱2本の縁の境界内に設置される請求項1乃至3のいずれか1項に記載の乗客コンベア状態検知システム。
【請求項5】
前記状態検知装置は、前記音センサで取得した音信号に対して周波数分析を行い、ピークの周波数成分Daを該乗客コンベアが正常な状態で運転されている場合に発生する音のピークの周波数成分Aと比較する請求項1乃至4のいずれか1項に記載の乗客コンベア状態検知システム。
【請求項6】
前記状態検知装置は、前記音センサで取得した音信号に対して周波数分析を行い、ピークの周波数成分Daを該乗客コンベアが異常な状態で運転されている場合に発生する音のピークの周波数成分Bと比較する請求項1乃至5のいずれか1項に記載の乗客コンベア状態検知システム。
【請求項7】
前記周波数成分Bに対して補正値を加算あるいは減算したものと前記周波数成分Daを比較し、前記周波数成分Daが前記周波数成分Bの近傍であっても、異常の判定が可能とした請求項6記載の乗客コンベア状態検知システム。
【請求項8】
前記音センサは、前記踏段のクリート平面に鉛直な上下方向及び前記踏段の前端面のクリート・デマケーションラインに平行な軸及びこの平行軸に水平面内で90度に交わる軸の両2軸方向に回転傾斜可能な可動治具により前記踏段に設置された請求項1乃至7のいずれか1項に記載の乗客コンベア状態検知システム。
【請求項9】
前記音センサは、前記踏段のクリート幅方向、踏段クリート奥行方向及び踏段クリート鉛直方向の各軸方向に可動可能な可動治具により前記踏段に設置された請求項1乃至7のいずれか1項に記載の乗客コンベア状態検知システム。
【請求項10】
該乗客コンベアに、変位、速度または加速度を検出する振動センサを設置し、前記音センサと相互相関により、該乗客コンベアの運転状態音の発生箇所の情報を取得する請求項1乃至9のいずれか1項に記載の乗客コンベア状態検知システム。
【請求項11】
前記音センサを、該乗客コンベアに複数台設置し、分析した前記周波数成分Daの相互相関と大小により、該乗客コンベアの運転状態音の発生箇所の情報を取得する請求項1乃至10のいずれか1項に記載の乗客コンベア状態検知システム。
【請求項12】
前記音センサは、20Hz〜20kHzの周波数集数範囲の音を検知可能である請求項1乃至11のいずれか1項に記載の乗客コンベア状態検知システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−148844(P2012−148844A)
【公開日】平成24年8月9日(2012.8.9)
【国際特許分類】
【出願番号】特願2011−7733(P2011−7733)
【出願日】平成23年1月18日(2011.1.18)
【出願人】(390025265)東芝エレベータ株式会社 (2,543)
【Fターム(参考)】