説明

二次電池

【課題】 従来の二次電池よりも軽量で、長寿命な二次電池を提供する。
【解決手段】 基板1aの一方の面上に、電解液13に不溶な半導体材料からなる低抵抗率半導体層2、イオン析出促進層6a、電解質層7aがこの順に形成されおり、他方の面上に金属膜8aを介して引き出し電極9が接続され、低抵抗率半導体層2側の表面以外に被覆層11aが形成されている電極5aと、基板1bの一方の面上に低抵抗率半導体層3、電解液13に不溶で低抵抗率半導体層2よりも高抵抗の半導体材料からなる高抵抗率半導体層4、イオン析出促進層6bがこの順に形成されており、他方の面上に金属膜8bを介して引き出し電極10が接続され、高抵抗率半導体層4側の表面以外に被覆層11bが形成されている電極5bとを、容器12内に低抵抗半導体層2と高抵抗半導体層4とが相互に対向するように配置し、電極5aと電極5b間に電解液13を満たす。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、化学反応を利用した充電可能な二次電池に関し、特に、半導体材料により電極を形成した二次電池に関する。
【背景技術】
【0002】
従来の代表的な二次電池としては、鉛蓄電池及びリチウムイオン二次電池等がある。鉛蓄電池は、現在自動車エンジンの始動及び電気自動車等の電力用途に使用されており、一般に、正極用材料には二酸化鉛(PbO)が、負極用材料には鉛(Pb)が夫々使用されており、電解液には希硫酸(HSO)が使用されている(例えば、非特許文献1参照。)。
【0003】
また、リチウムイオン二次電池は、正極用材料としてリチウムイオンをドープ及び脱ドープできる物質が使用され、負極用材料としてリチウムイオンをドープ及び脱ドープできる炭素材料が使用されている。(例えば、特許文献1参照。)。特許文献1に記載の非水電解液型二次電池においては、リチウム二次電池を長寿命化するために、リチウムをドープ又は脱ドープ可能なコバルト系又はマンガン系のリチウム含有化合物により正極を形成し、非水電解液にリチウムをドープ又は脱ドープ可能な難黒鉛化炭素質材料により負極を形成し、エチレンカーボネート、プロピレンカーボネート及びジメチルカーボネートの混合液に六フッ化リン酸リチウムを溶解させた溶液を使用している。
【0004】
【特許文献1】特開2001−126760号公報
【非特許文献1】阿部英俊、外4名,「鉛蓄電池の化成における温度の影響」,FBテクニカルニュース,2003年11月,第59号,p.35−40
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、前述の従来の技術には以下に示す問題点がある。非特許文献1に記載されているような鉛蓄電池は、現在自動車用として広く利用されているが、主原料である鉛の比重が11.4g/cmと大きいため、電池全体の重量が重いという問題点がある。このため、鉛蓄電池は、持ち運びが不便であり、使用される用途範囲が限定される。また、その重量により、自動車の燃費及び車体の重量バランスに与える影響も少なくない。更に、鉛蓄電池は、自動車に適用した場合の寿命が2乃至3年であり、寿命が短いという問題点もある。鉛蓄電池においては、通常の充放電を繰り返すうちに、電極表面に鉛硫酸化合物が生成して、硫酸化ビルドアップを生じるが、この過程で一部の硫酸塩がエネルギー変換にあずからないところまで肥大化し、プレートに固着してしまう。そして、この固着した硫酸塩によって、電池の効率が低下し、更には電池として機能しなくなる。
【0006】
一方、特許文献1に記載されているようなリチウムイオン二次電池は、鉛蓄電池よりも軽量で、小型なものが開発されているが、正極に含まれるコバルト又はマンガンが使用している間に電解液中に溶け出し、容量が徐々に減少するという問題点がある。
【0007】
本発明はかかる問題点に鑑みてなされたものであって、従来の二次電池よりも軽量で、長寿命な二次電池を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明に係る二次電池は、電解液と、この電解液に可溶な電解質により形成され前記電解液に接触するように配置された電解質層と、前記電解液に不溶な半導体材料により形成された第1の半導体層を備えた第1の電極と、前記電解液に不溶で前記第1の半導体層よりも仕事関数が大きい半導体材料により形成された第2の半導体層を備えた第2の電極と、前記第1の電極及び前記第2の電極に夫々接続された1対の引き出し電極と、を有し、前記第1の電極及び前記第2の電極は前記第1の半導体層及び第2の半導体層が前記電解液に接触するように配置されていることを特徴とする。
【0009】
本発明においては、電解液に不溶な半導体材料により電極を形成しているため、反応過程において電極が溶解することがない。その結果、電極を薄くすることができると共に電極の劣化を防止することができるため、鉛蓄電池及びリチウム二次電池等の従来の二次電池に比べて、軽量化することができ、更に寿命も長くなる。
【0010】
前記第1の電極及び前記第2の電極からなる電極対が複数個設けられており、一の電極対の第1の半導体層と他の電極対の第2の半導体層とを相互に接続することにより前記複数の電極対が前記電解液を介して直列に接続され、この直列接続体の両端部の電極対の第1の半導体層及び第2の半導体層に前記1対の引き出し電極が接続されていてもよい。これにより、起電力を増加させることができる。
【0011】
前記第1の半導体層と前記第2の半導体層とは、導電型が相互に異なる半導体材料により形成されていてもよい。また、前記第2の半導体層は、前記第1の半導体層よりも抵抗率が高くてもよい。これにより、第2の半導体層の仕事関数を第1の半導体層の仕事関数よりも大きくすることができる。このとき、前記第2の半導体層を、前記第2の半導体層よりも抵抗値が低く膜厚が厚い第3の半導体層上に形成してもよく、その場合、前記引き出し電極はこの第3の半導体層を介して前記第2の半導体層に接続し、前記第3の半導体層及び前記引き出し電極は前記電解液に接触しないようにすることが好ましい。これにより、接触抵抗を低減し、充放電効率を向上させることができる。
【0012】
前記第1の半導体層及び前記第2の半導体層をダイヤモンドにより形成してもよい。これにより、電池を長寿命化することができる。このとき、前記第1及び第2の半導体層はドーパントがドーピングされたドープダイヤモンド層であり、前記第2の半導体層は前記第1の半導体層よりドーパント濃度が低くてもよい。これにより、第2の半導体層の仕事関数を第1の半導体層の仕事関数よりも大きくすることができる。前記ドーパントは、例えば、ホウ素である。又は、前記第1の半導体層及び前記第2の半導体層は、ドーピングされているドーパントの種類が相互に異なっていてもよい。このとき、前記第1の半導体層にホウ素がドーピングされ、前記第2の半導体層に窒素、リン、酸素及び硫黄からなる群から選択された少なくとも1種の元素がドーピングされていることが好ましい。これにより、第2の半導体層の仕事関数を第1の半導体層の仕事関数よりも大きくすることができる。
【0013】
また、前記第1の半導体層又は前記第2の半導体層の表面の少なくとも一部に、イオン析出促進層を設けてもよい。これにより、第1の電極及び第2の電極表面において、酸化還元反応が促進される。更に、前記電解液は、フッ酸、弱酸及び弱塩基からなる群から選択された1種の化合物を含んでいてもよい。これにより、酸化還元反応を促進することができ、充放電効率が向上する。なお、本発明における弱酸とは、酸性の程度が低い酸であり、例えば、ブレーンステッド酸では電離定数Kが10−3未満のものである。同様に、本発明における弱塩基とは、塩基性の程度が小さい塩基であり、例えば、ブレーンステッド塩基では電離定数Kが小さい塩基である。更にまた、前記電解質は、リチウム、ベリリウム、ホウ素、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム及びガリウムからなる群から選択された少なくとも1種を含んでいてもよい。
【発明の効果】
【0014】
本発明によれば、電極を電解液に不溶な半導体材料により形成しているため、電極の劣化を防止することができると共に電極を薄くすることができ、従来の二次電池に比べて軽量化及び長寿命化することができる。
【発明を実施するための最良の形態】
【0015】
以下、本発明の実施形態に係る二次電池について、添付の図面を参照して具体的に説明する。先ず、本発明の第1の実施形態に係る二次電池について説明する。図1は本実施形態の二次電池の構造を模式的に示す断面図である。図1に示すように、本実施形態の二次電池20は、プラスチック等からなる密封容器12の中に電極5a及び電極5bが対向して配置されており、この1対の電極5a及び5b間に電解液13が満たされている。
【0016】
本実施形態の二次電池20における電極5aは、抵抗率が0.01Ω・cm以下の半導体材料又は導体材料からなる基板1aの一方の面上に、電解液13に不溶で抵抗率が1Ω・cm以下の半導体材料により低抵抗率半導体層2が形成されている。一方、電極5bは、抵抗率が0.01Ω・cm以下の半導体材料又は導体材料からなる基板1bの一方の面上に、抵抗率が1Ω・cm以下の半導体材料により低抵抗率半導体層3が形成されており、この低抵抗率半導体層3上には、電解液13に不溶で抵抗率が50Ω・cm以上の半導体材料により高抵抗率半導体層4が形成されている。本実施形態の二次電池20における基板1a及び1bとしては、例えば、シリコン等の半導体材料、又はグラファイト、白金及びイリジウム等の導体材料を使用することができる。但し、基板1a及び1bを白金及びイリジウム等の金属材料により形成すると、重量及び製造コストが増加するため、基板1a及び1bを導体材料により形成する場合は、グラファイトを使用することが好ましい。
【0017】
また、低抵抗率半導体層2及び高抵抗率半導体層4の表面上には、夫々、局所的にイオン析出促進層6a及び6bが形成されており、電極5aには、低抵抗率半導体層2及びイオン析出促進層6aを覆うように、電解液13に可溶な電解質からなる電解質層7aが形成されている。更に、基板1a及び1bの他方の面上には、夫々接触抵抗を低減するため、アルミニウム、銀及びスズ等の金属材料からなる金属層8a及び8bが形成されており、この金属層8a及び8bは、夫々引き出し電極9及び10に接続されている。この金属層8a及び8bの厚さは、特に限定されるものではなく、相互に等しくても、又は相互に異なっていてもよい。更にまた、電極5a及び5bにおけるイオン析出促進層6a及び6bが形成されている面以外の部分には、電解液13に接触しないように、エポキシ樹脂からなる被覆層11a及び11bが形成されている。そして、電極5a及び5bは、イオン析出促進層6a及び6bが形成されている面同士が対向するように配置されている。
【0018】
このように、本実施形態の二次電池20においては、電極5a及び5bおける電解液13に接触する部分、即ち、低抵抗率半導体層2及び高抵抗率半導体層4が、抵抗率が相互に異なる半導体材料により形成されている。抵抗率が相互に異なる半導体材料は、フェルミ準位が異なっているため、仕事関数も相互に異なる。これは、ドープされているドーパントの種類が同じ場合でも、異なる場合でも同様である。即ち、本実施形態の二次電池20においては、低抵抗率半導体層2及び高抵抗率半導体層4の仕事関数が相互に異なっている。これにより、低抵抗率半導体層2及び高抵抗率半導体層4の表面に電位差が生じ、これらの表面において、電解質層7aから電解液13中に電解質が溶解してイオン化したり、又は、電解液13中のイオンが電極表面に析出したりする酸化還元反応が起こるため、充電又は放電を行うことができる。
【0019】
このとき、低抵抗率半導体層2の仕事関数と高抵抗率半導体層4の仕事関数との差が大きい程、放電圧及び充電圧が高くなる。従来の二次電池においては、必要な電圧を得るために、電極対及びその間に満たされた電解液により構成される電池セルを、複数個直列に接続しているが、1つのセルの放電圧が高くなれば、この直列に接続するセルの数を減らすことができるため、より小型化することができる。具体的には、本実施形態の二次電池20における低抵抗率半導体層2と高抵抗率半導体層4との仕事関数の差は、0.03乃至9eVであることが好ましく、より好ましくは0.06乃至5eVである。例えば、室温が300K(27℃)の場合、室温の熱エネルギーは約26meVである。低抵抗率半導体層2及び高抵抗率半導体層4の仕事関数の差が室温の熱エネルギーよりも小さいと、これらの間の仕事関数の差が室温の熱エネルギーにより埋められてしまうため、低抵抗率半導体層2及び高抵抗率半導体層4の表面で酸化還元反応が起こらなくなり、充放電することができなくなる。
【0020】
低抵抗率半導体層2と高抵抗率半導体層4との仕事関数の差を有効にし、これらの表面で酸化還元反応を進行するためには、仕事関数差を室温の熱エネルギーよりも充分に高く、具体的には30meV以上とすることが好ましい。特に、室温が変化しても安定して酸化還元反応を進行するためには、低抵抗率半導体層2と高抵抗率半導体層4との仕事関数の差を60meV以上にすることが好ましい。これにより、起電力を増加させることができるため、二次電池の全体の体積及び重量を低減することができると共に、高温下における起電力の低下を防止し、熱的に安定化することができる。但し、電解液13が水を含む場合は、低抵抗率半導体層2及び高抵抗率半導体層4における仕事関数の差は5eV以下にすることが好ましい。これにより、水の電気分解を抑制することができる。
【0021】
低抵抗率半導体層2の仕事関数と高抵抗率半導体層4の仕事関数との差を30meV以上にするためには、例えば高抵抗率半導体層4の抵抗率を、低抵抗率半導体層2の抵抗率の100倍以上にすればよい。また、高抵抗率半導体層4の抵抗率を低抵抗率半導体層2の抵抗率の1000倍以上にすることがより、低抵抗率半導体層2及び高抵抗率半導体層4の仕事関数の差を90meV以上にすることができる。具体的には、低抵抗率半導体層2の抵抗率を5mΩ・cm以下とし、高抵抗率半導体層4の抵抗率を1Ω・cm以上にすることにより、これらの仕事関数の差を30meV以上にすることができる。また、低抵抗率半導体層2の抵抗率を5mΩ・cm以下とし、高抵抗率半導体層4の抵抗率を1000Ω・cm以上とすることにより、これらの仕事関数の差を90meV以上にすることができる。このように、低抵抗率半導体層2及び高抵抗率半導体層4の仕事関数の差を90meV以上にすると、起電力が更に増加すると共に、熱的により安定化して高温下においても高い起電力が得られる。
【0022】
本実施形態の二次電池20においては、高抵抗率半導体層4と基板1bとの間に低抵抗率半導体層3を設けている。電極5a及び5bにおける電流密度を大きくするためには、これらの表面積をできるだけ大きくすることが好ましいが、表面積を大きくすると、電極5a及び5bと引き出し電極9及び10との間で接触電位降下が発生し、接触抵抗が大きくなる。接触抵抗の増加は半導体層の抵抗率が高い程大きいため、半導体層の抵抗率が高い場合は、半導体層と引き出し電極との間に低抵抗率の半導体層を設けることが好ましい。また、半導体層と引き出し電極との接触面は、ショットキー接合ではなく、オーミック接合にすることが好ましい。これにより、接触抵抗をより低減することができる。そこで、本実施形態の二次電池20においては、高抵抗率半導体層4と引き出し電極10との間に、抵抗率が低い低抵抗率半導体層3を設け、更に基板1bを低抵抗の導体材料又は半導体材料により形成している。そして、引き出し電極10は、基板1b上に設けられた金属層8bを介して基板1bに接続されている。
【0023】
更に、高抵抗率半導体層4における電力損失を最小限に抑制するためには、その膜厚を薄くし、表面積を広くして実質的な抵抗率を下げることが有効である。この場合、低抵抗率半導体層3が高抵抗率半導体層4の支持基材となる。低抵抗率半導体層3上には、この低抵抗率半導体層3と同じ材料を使用することにより、高品質な高抵抗率半導体膜がエピタキシャル成長する。但し、低抵抗率半導体層3が電解液13と接触すると、高抵抗率半導体層4、低抵抗率半導体層3及び電解液13により回路が構成され、自己放電が発生するため、低抵抗率半導体層3は電解液13に接触しないようにする。具体的には、高抵抗率半導体層4以外の部分を電解液13外に配置するか、又は、エポキシ樹脂、フッ素樹脂及びポリエチレン樹脂等のように、電解液13に耐性がある絶縁性の樹脂により高抵抗率半導体層4以外の部分を被覆すればよい。そこで、本実施形態の二次電池20においては、高抵抗率半導体層4以外の部分にエポキシ樹脂からなる被覆層11bを設けている。
【0024】
本実施形態の二次電池20おける各半導体層は、例えば、シリコン、ガリウムに砒素、インジウム又はアルミニウム等を添加したもの、窒化ガリウム、炭化シリコン、ガリウムリン、酸化チタン、酸化スズ、ダイヤモンド、窒化アルミニウム、窒化ホウ素及び炭窒化ホウ素等を使用することができる。半導体の仕事関数は、フェルミ準位のエネルギーと真空準位との差で定義される。フェルミ準位は、ドナー及びアクセプタの準位及び濃度により変化するが、その変化範囲はバンドギャップエネルギーの近傍に限られる。即ち、材料が同じであれば、バンドギャップが大きい程フェルミ準位の変化範囲が大きくなり、これに伴い仕事関数の差も大きくなる。従って、低抵抗率半導体層2及び高抵抗率半導体層4は、ダイヤモンド、窒化アルミニウム、窒化ホウ素及び炭窒化ホウ素等のワイドギャップ半導体材料により形成することが望ましい。
【0025】
これらワイドギャップ半導体材料の中でも、特に、ダイヤモンドにより低抵抗率半導体層2及び高抵抗率半導体層4を形成することがより望ましい。前述のシリコン、ガリウムに砒素、インジウム又はアルミニウムを添加したもの、窒化ガリウム、炭化シリコン及びガリウムリン等の半導体、酸化チタン及び酸化スズ等の酸化物半導体、並びにこれらの接合物により形成された電極は、酸及びアルカリに溶解することがあるため、これらの材料を使用した場合、酸溶液及びアルカリ溶液を電解液として使用することはできない。一方、ダイヤモンドは、酸及びアルカリにほぼ不溶であり、この特性は、電流を流しても変わらず、化学的にも安定であるため、電池の寿命を半永久的にすることができる。更に、ダイヤモンドは電位窓が広いため、水の電気分解が始まる電圧が高くなり、充放電の過程における酸素及び水素の発生を抑制することができる。このため、溶媒を水にすることもでき、従来の二次電池に比べて、溶解及び析出させるイオン種の選択肢が広がる。
【0026】
次に、ダイヤモンドの特性について説明する。ダイヤモンドは電位窓が5V以上と広く、優れた電極材料として知られている。例えば、本発明者等は特開2003−73876号公報において、ダイヤモンドを使用した電気化学的処理用電極を提案している。この電気化学的処理用電極は、導電性基体の表面上に、ドーパントがドーピングされたドープダイヤモンド層と、このドープダイヤモンド層の少なくとも一部を覆うアンドープダイヤモンド層とを設けている。アンドープダイヤモンド層中は電荷拡散要因が少なく、電荷を効率的に加速することができるため、ドープダイヤモンド層の表面からアンドープダイヤモンド層に注入された電荷が、アンドープダイヤモンド層中で加速された上でアンドープダイヤモンド層の表面まで輸送され、電極表面における被処理物の化学反応を促進する。このため、この電気化学的処理用電極を使用すると、ダイオキシン及びフェノール等のように、水の酸化還元反応よりも高い電位でないと分解反応が促進されない物質も分解することができる。このように、ダイヤモンドにより形成された電極(以下、ダイヤモンド電極という)を使用して、水溶液を電気分解すると、水が分解される電圧よりも低い電圧で有害物質を分解することができる。
【0027】
また、電位窓の広さにより、ダイヤモンドを溶液中の成分を検出するセンサへ応用する検討もなされている。更に、ダイヤモンド電極は強酸、強アルカリ等の薬液にも侵されないため、白金電極よりもメンテナンス性に優れており、メンテナンスフリーの化学電極として期待されている。
【0028】
更にまた、ダイヤモンドは、バンドギャップエネルギーが5.47eVの半導体であり、通常、室温における電気抵抗率は高く、絶縁体と同等であるが、三属元素であるホウ素をドーピングすることによりp型の導電体となり、ホウ素濃度が高くなる程その抵抗率は低くなる。更に、表面に水素又はフッ素を吸着させたり、ドーピングしたりすることによっても、部分的にp型の導電体となることが知られている。一方、ダイヤモンドは、五属元素であるリン、六属元素である硫黄、一族元素であるリチウム等をドーピングしたり、イオン注入等の方法で格子欠陥を導入したりすることにより、n型の導電体となる。なお、窒素をドーピングしたダイヤモンドもn型の導電体となるが、ドーパント準位が1.7eV又は4eVと深いため、室温付近では実質上絶縁性を示す。
【0029】
更にまた、ホウ素をドープしたダイヤモンド層とドーパントをドープしていないノンドープ(アンドープ)ダイヤモンド層とを積層することにより、ホウ素ドープダイヤモンド単層よりも優れた整流ダイオード及び発光ダイオードを作製できる。なお、アンドープダイヤモンドの代わりに、リン等のn型ドーパントをドープしたダイヤモンド層を積層しても、同様に整流ダイオード及び発光ダイオードを作製することができる。
【0030】
半導体材料の抵抗率は、例えば、ドナー及びアクセプターとなるドーパントの濃度を変えたり、活性化率を変化させたりすることにより調節することができる。例えば、ダイヤモンドにより半導体層を形成する場合、ホウ素を1000ppmドーピングすると抵抗率は約50mΩ・cmとなり、ホウ素を3000ppmドーピングすると抵抗率は約5mΩ・cmになる。また、ドーパント濃度を低くすると、半導体層の抵抗値は上昇する。
【0031】
低抵抗率半導体層2及び高抵抗率半導体層4をダイヤモンドにより形成する場合、例えば、低抵抗率半導体層2をドーパントが高濃度にドープされている高ドープダイヤモンド層とし、低抵抗率半導体層4を低抵抗率半導体層2よりもドーパント濃度が低い低ドープダイヤモンド層としてもよい。ここで、高ドープダイヤモンド層とは、例えば、ドーパント濃度が1×10乃至1×10ppmであるダイヤモンド層であり、この高ドープダイヤモンド層におけるドーパント濃度は3×10乃至6×10ppmであることがより好ましい。ドーパント濃度を1×10ppm以上にすることにより、ドーパントの活性化率を著しく向上させることができるため、電力損失の原因となる半導体層の抵抗を下げることができる。また、ドーパントを高濃度にドーピングすることにより、例えばドーパントがp型ドーパント、即ち、アクセプタである場合は仕事関数を最大にし、ドーパントがn型ドーパント、即ち、ドナーである場合は仕事関数を最小にすることができる。但し、ドーパント濃度が1×10ppmを超えると、半導体材料の結晶構造が乱れたり、ドーパント原子が対又は塊になったりするため、ドーパントとしての性質が変化してしまう。
【0032】
一方、低ドープダイヤモンド層とは、例えば、ドーパント濃度が1×10ppm以下であるダイヤモンド層であり、低ドープダイヤモンド層におけるドーパント濃度は、10ppm以下であることがより好ましい。但し、ドーパント濃度が低い場合、内部抵抗が高くなることは避けられないため、低ドープダイヤモンド層(高抵抗率半導体層4)は可能な範囲でドーパント濃度を低くして、高ドープダイヤモンド層(低抵抗率半導体層2)との仕事関数の差が大きくなるようにする。具体的には、低ドープダイヤモンド層(高抵抗率半導体層4)と高ドープダイヤモンド層(低抵抗率半導体層2)との導電型が同じであり、高ドープダイヤモンド層(高抵抗率半導体層4)のドーパント濃度が1×10ppm以上である場合は、低ドープダイヤモンド層(低抵抗率半導体層2)のドーパント濃度を100ppm以下にすることが好ましい。これにより、30meV以上の仕事関数差が得られる。なお、より好ましくは、高ドープダイヤモンド層(低抵抗率半導体層2)のドーパント濃度が3×10乃至6×10ppmであり、低ドープダイヤモンド層(高抵抗率半導体層4)のドーパント濃度が10ppm以下である。これにより、高ドープダイヤモンド層(低抵抗率半導体層2)を低抵抗化すると共に、低抵抗率半導体層2と低抵抗率半導体層3との仕事関数の差を最大にすることができる。
【0033】
また、低抵抗率半導体層2及び高抵抗率半導体層4を形成するダイヤモンドにドーピングされるドーパントとしては、抵抗率を下げる効果が優れ、ダイヤモンド中で安定なホウ素を使用することが好ましい。なお、ダイヤモンド層の表面又はその近傍に水素をドーピングすることによっても、ダイヤモンド層の抵抗率を下げることができるが、現在の技術では、水素をドーピングする方法で、ダイヤモンド層全体を低抵抗にすることができない。更に、水素をドーピングしたダイヤモンド層は、表面にイオンが吸着することにより、容易に抵抗率が変化してしまうため、電池には使用することができない。更に、ホウ素以外の元素では、十分に低い抵抗率を安定して得ることはできない。
【0034】
本実施形態の二次電池20においては、低抵抗率半導体層2及び高抵抗率半導体層4に、相互に異なるドーパントをドーピングしてもよい。半導体中に含まれるドーパントは、元素によって夫々異なるフェルミ準位を形成する要因になる。即ち、低抵抗率半導体層2及び高抵抗率半導体層4に、相互に異なるドーパントをドーピングすることにより、低抵抗率半導体層2及び高抵抗率半導体層4の仕事関数が相互に異なるようにすることができる。
【0035】
ダイヤモンド中に比較的固溶しやすい元素としては、前述のホウ素以外に、窒素、リン、酸素、硫黄、ニッケル、リチウム及び水素等が挙げられる。これらの元素のうち、現時点では、ホウ素がアクセプタとなり、窒素、リン、酸素及び硫黄がドナーとなることが知られている。このため、例えば、低抵抗率半導体層2及び高抵抗率半導体層4のいずれか一方にホウ素を、他方に窒素、リン、酸素及び硫黄からなる群から選択された少なくとも1種の元素をドーピングする。但し、現在の技術では、ホウ素以外の元素をドーピングしてもダイヤモンド層の抵抗率を十分に低くすることはできないため、表面に高抵抗率ダイヤモンド層4が形成されている電極5bにおいては、例えば、ホウ素を高濃度にドーピングした低抵抗率ダイヤモンドにより低抵抗率半導体層3を形成し、この低抵抗率半導体層3上に薄く、窒素、リン、酸素及び硫黄からなる群から選択された少なくとも1種の元素をドーピングした高抵抗率ダイヤモンドからなる高抵抗率半導体層4を形成することが好ましい。
【0036】
また、本実施形態の二次電池20においては、電極5a及び5bの電解液13に接触する面、即ち、低抵抗率半導体層2及び高抵抗率半導体層4の表面に、夫々イオン析出促進6a及び6bが設けられている。このイオン析出促進層6a及び6bに含まれるイオン析出促進材としては、例えば、シリカ、アルミナ、チタニア、酸化スズ等を使用することができる。但し、これらのイオン析出促進材は抵抗率が高いため、イオン析出促進層6a及び6bは、低抵抗率半導体層2及び高抵抗率半導体層4の全面には形成せず、低抵抗率半導体層2及び高抵抗率半導体層4の表面が半分以上露出するように、例えば、平面視で網目状になるように形成することが好ましく、その厚さも薄い程好ましい。なお、イオン析出促進層6a及び6bに含まれるイオン析出促進材は相互に同じ材料でなくてもよく、イオン析出促進層6aに含まれるイオン析出促進材とイオン析出促進層6bに含まれるイオン析出促進材とが相互に異なっていてもよい。
【0037】
なお、これらのイオン析出促進材は、一般的に、フッ酸又はバッファードフッ酸に溶解しやすいが、本発明者等は、電極対のうち、仕事関数が小さい半導体層の表面にイオン析出促進層を形成することにより、イオン析出促進材が溶解しにくくなることを見出した。そこで、図1に示す二次電池20においては、低抵抗率半導体層2及び高抵抗率半導体層4の両方にイオン析出促進層が形成されているが、イオン析出促進材が溶解しやすい溶媒を含む電解液を使用する場合には、仕事関数が小さい低抵抗率半導体層2の表面にのみイオン析出促進層を形成することが好ましい。これにより、従来、イオン析出促進材が溶解するために、適用できないとされていた溶液も処理することができるようになる。
【0038】
更に、本実施形態の二次電池20における電解液13としては、フッ酸、弱酸又は弱塩基を含むことが好ましい。電解液にフッ酸が含まれていると、低抵抗率半導体層2及び高抵抗率半導体層4の表面近傍のエネルギーバンドが大きく曲がり、反応促進効果が増大して電流密度が向上する。但し、フッ酸は毒性が強いという問題点があるため、フッ酸溶液を使用できない場合には、比較的危険性が低い酢酸、炭酸及び有機酸等の弱酸を含む溶液、又は、アンモニア水及び石鹸水等の弱塩基を含む溶液を使用することが好ましい。また、弱酸及び弱塩基はフッ酸よりも半導体層表面近傍のエネルギーバンドを曲げる効果が小さいため、電解液13としては、用途に応じて、最適な溶液を選択することが望ましい。また、電解液13には、塩酸等の強酸溶液及び水酸化ナトリウム等の強塩基溶液を使用することもできるが、これらは、揮発性及び毒性が高いため、実用上好ましくない。なお、電解液13はゲル等で担持させてもよい。
【0039】
更にまた、本実施形態の二次電池20における電解質層7aを形成する電解質材料としては、前述のフッ酸溶液、弱酸溶液又は弱塩基溶液に可溶な材料であることが好ましく、具体的には、リチウム、ベリリウム、ホウ素、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム及びガリウム等の1乃至3族の金属を使用することができる。特に、電池の軽量化の観点から、原子数が小さく比重が小さい金属を使用することが好ましい。
【0040】
なお、本実施形態の二次電池20においては、抵抗率が相互に異なる半導体材料を使用することにより、電極5a及び電極5bの電解液に接触する面の仕事関数を相互に異なるようにしているが、本発明はこれに限定されるものではなく、導電型が異なる半導体材料を使用してもよい。半導体材料には、p型及びn型の2種類の導電型があるが、一般に、主原料が同じであっても導電型が異なる場合は、仕事関数は異なる。従って、電極5a及び電極5bの電解液に接触する面を夫々導電型が異なる半導体材料により形成することにより、電極5a及び5bの表面の電荷又は電位を不均衡にすることができる。
【0041】
また、本実施形態の二次電池20においては、基板1a及び1b上に夫々低抵抗率半導体層2及び3を形成しているが、本発明はこれに限定されるものではなく、低抵抗率半導体層2及び3が十分な強度を備えている場合は、基板1a及び1bを設けなくてもよい。但し、低抵抗率半導体層2及び3をダイヤモンドにより形成する場合、強度を高めるためにこれらの厚さを厚くすると、重量が増加してしまう。また、ダイヤモンドはシリコンに比べて、低抵抗化しにくい。そこで、低抵抗率半導体層2及び3をダイヤモンドにより形成する場合は、基板1a及び1bとしてダイヤモンドよりも比重が小さく、抵抗率が低いシリコン又はアルミニウム等を使用し、その上に低抵抗率半導体層2及び3としてダイヤモンド膜を薄く形成することが好ましい。特に、シリコン基板上にはダイヤモンドを成膜しやすいため、低抵抗率半導体層2及び3をダイヤモンドにより形成する場合、基板1a及び1bにはシリコン基板を使用することが好ましい。
【0042】
次に、本実施形態の二次電池20の動作について説明する。図2(は本実施形態の二次電池20における放電状態を模式的に示す図であり、図3は充電状態を模式的に示す図である。先ず、図2及び図3に示すように、引き出し電極9に、抵抗14の一方の端部及び定電圧源の負極を接続すると共に、引き出し電極10にはスイッチ15の一方の端部を接続する。このスイッチ15の他方の端部は、抵抗14の他方の端部又は定電圧源の他方の正極に接続する。そして、本実施形態の二次電池20を放電する場合は、図2に示すように、スイッチ15の他方の端部を抵抗14の他方の端部に接続し、引き出し電極9と引き出し電極10とを抵抗14を介して接続する。これにより、高抵抗率半導体層2と低高効率半導体層4との電位差によって、電極5aにおいては、電解質層7aから電解液13中へ電解質が溶解して正イオン17が生成する。この正イオン17は、電極5bの高抵抗率半導体層4の表面で析出し、電解質析出部7bが形成される。このとき、電子は電極5aから抵抗14を経由して電極5bへ移動する。即ち、電子の移動方向18は、低抵抗率半導体層2から高抵抗率半導体層4に向かう方向となり、放電が起こる。なお、電極5aの表面上に形成された電解質層7aが全て溶解し、電解液13中の正イオン17が全て電極5bの高抵抗率半導体層4の表面に析出すると放電は終了する。
【0043】
一方、本実施形態の二次電池20を放電する場合は、図3に示すように、スイッチ15の他方の端部を定電圧源15の正極に接続して、引き出し電極9及び引き出し電極10を定電圧源15に接続する。そして、引き出し電極9と引き出し電極10との間に所定の電圧を印加する。これにより、電極5bの高抵抗率半導体層4の表面上に形成された電解質層7cが電解液13中に溶解して正イオン17が生成する。この正イオン17は、電極5aの低抵抗率半導体層2の表面で析出し、電解質析出部7dが形成される。このとき、電子は電極5bから定電圧源15を経由して電極5aへ移動する。即ち、電子の移動方向18は、高抵抗率半導体層4から低抵抗率半導体層4に向かう方向となり、充電される。なお、電極5bの高抵抗率半導体層4の表面上に形成された電解質層7cが全て溶解し、電解液13中の正イオン17が全て電極5aの低抵抗率半導体層2の表面に析出すると充電は終了する。
【0044】
鉛蓄電池は、電極自体が電解液に溶解するため、電極をある程度厚くする必要があるが、本実施形態の二次電池20においては、電極を電解液に不溶な半導体材料により形成しているため、電極を薄型化することができる。その厚さは、ピンホール等の欠陥が発生しない程度であればよく、例えば0.1μm程度にすることもできる。但し、電極を薄くすると、機械的強度が低下するため、本実施形態の二次電池20においては、抵抗率が低い半導体又は導体からなる基板1a及び1bの一方の面上に、電極となる電解液13に不溶な低抵抗率半導体層2及び3を形成することにより、所定の強度を確保している。
【0045】
また、本実施形態の二次電池20は、鉛蓄電池に比べて軽量化することができる。例えば、各半導体層をダイヤモンドにより形成し、基板をシリコン又はグラファイトで形成した場合、ダイヤモンドの比重が3.52g/cm、シリコンの比重が2.33g/cm、グラファイトの比重が2.25g/cmであるため、電極材料として比重が11.37g/cmである鉛を使用している鉛蓄電池に比べて、電極を軽量化することができる。一方、リチウム二次電池では、電極材料にグラファイト等の炭素材料が使用されているが、リチウム二次電池におにおいては、電極がリチウムを担持する量により電池の容量が決まる。リチウムの担持量は電極の体積に依存するため、リチウム二次電池の電極はある程度の体積が必要であり、本実施形態の二次電池20のように、薄型化及び軽量化することは困難である。
【0046】
更に、鉛蓄電池は、導体ではない鉛硫酸化物の析出及び溶解を利用しているため、過剰に鉛硫酸化物が析出することにより電極面積が縮小されて効率が低下しやすいが、本実施形態の二次電池20は、アルミニウム等の金属導体材料の析出及び溶解を使用しているため、これらの析出量が増加しても、電気抵抗はほとんど増加せず、実質的に効率は低下しない。更にまた、本実施形態の二次電池においては、電解液に不溶な半導体材料により電極を形成しているため、リチウム二次電池のように電極材料が電解液中に溶解して電極が劣化することがない。その結果、従来の二次電池に比べて長寿命化することができる。
【0047】
次に、本発明の第2の実施形態に係る二次電池について説明する。図4は本実施形態の二次電池を模式的に示す断面図である。図4に示すように、本実施形態の二次電池30は、図1に示す第1の実施形態の二次電池20を4個、直列に接続したものである。具体的には、単電池である二次電池20の電極5bに接続された引き出し電極と、この二次電池20と隣り合う他の二次電池20の電極5aに接続された引き出し電極とを外部接続線21を介して接続されている。そして、この二次電池30を充放電する場合は、単電池接続体の一方の端部に位置する二次電池20の電極5aに接続され外部接続線21が接続されていない引き出し電極22に、抵抗14の一方の端部及び定電圧源15の負極を接続し、他方の端部に位置する二次電池20の電極5bに接続され外部接続線21が接続されていない引き出し電極23に、スイッチ15の一方の端部を接続する。そして、このスイッチ15の他方の端部は、抵抗14の他方の端部又は定電圧源16の正極に接続する。本実施形態の二次電池30は、複数個の単電池(二次電池20)を直列に接続しているため、より高い起電力を得ることができる。なお、本実施形態の二次電池30における上記以外の構成及び動作は、前述の二次電池20と同様である。
【0048】
次に、本発明の第3の実施形態に係る二次電池について説明する。図5は本実施形態の二次電池を模式的に示す断面図である。なお、図5においては、図1及び図4に示す二次電池における構成要素と同じものには同じ符号を付し、その詳細な説明は省略する。本実施形態の二次電池40は、外部接続線ではなく、基板1aと基板1bとを貼り合わせることにより、複数の単電池を直列に接続している。具体的には、電極5aと電極5bとの間に、一方の面に低抵抗率半導体層2と、イオン析出促進層6aと、電解質層7aとがこの順に形成された基板1aの他方の面と、一方の面に低抵抗率半導体層3、高抵抗率半導体層4、イオン析出促進層6bがこの順に形成された基板1bの他方の面とが貼り合わされた電極5cが、低抵抗率半導体層2と高抵抗率半導体層4とが相互に対向するように複数個配置されている。そして、電極5a、5b及び5bの間は、電解液13で満たされており、これにより、複数個の電池セルが直列に接続されている。なお、電極5cにおいても、低抵抗率半導体層2及び高抵抗率半導体層4の表面以外の部分には、電解液13に耐性がある樹脂材料により被覆層11cが形成されている。本実施形態の二次電池40においては、各電池セルを接続するための配線及び各電池セルを区画する容器が不要となるため、軽量化及び小型化することができると共に、製造コストを低減することができる。なお、本実施形態の二次電池40における上記以外の構成及び動作は、図4に示す二次電池30と同様である。
【0049】
次に、本発明の第3の実施形態の第1変形例に係る二次電池について説明する。図6は本変形例の二次電池の構造を模式的に示す断面図である。図6に示すように、本変形例の二次電池50は、電極5cの代わりに、一方の面に低抵抗率半導体層3と、高抵抗率半導体層4と、イオン析出促進層6bとがこの順に形成された基板の中央部分を溶解除去して、枠部51を形成してメンブレン構造にした後、基板を除去することにより露出した低抵抗率半導体層3の表面に、イオン析出促進層6bと、電解質層7とをこの順に形成した電極5dが、高抵抗率半導体層4と低抵抗率半導体層3又は電極5aの低抵抗率半導体層2とが相互に対向するように、複数個配置されている。この二次電池50においては、電極の機械的強度を確保するために、低抵抗率半導体層3の厚さを50乃至100μmにすることが好ましい。本変形例の二次電池50においては、低抵抗率半導体層2の代わりに、低抵抗率半導体層3の高抵抗率半導体層4が形成されていない面を利用しているため、図5に示す第3の実施形態の二次電池40に比べて全体の厚さを薄くすることができる。なお、本変形例の二次電池50における上記以外の構成及び動作は、前述の二次電池40と同様である。
【0050】
次に、本発明の第3の実施形態の第2変形例に係る二次電池について説明する。図7は本変形例の二次電池を模式的に示す断面図である。図7に示すように、本変形例の二次電池60は、電極5cの代わりに、一方の面に低抵抗率半導体層3と、高抵抗率半導体層4と、イオン析出促進層6bとがこの順に形成された基板1の他方の面上に、低抵抗率半導体層2と、イオン析出促進層6aと、電解質層7とをこの順に形成した電極5eが、低抵抗率半導体層2と高抵抗率半導体層4とが相互に対向するように、複数個配置されている。本変形例の二次電池60においては、1枚の基板を共有しているため、図5に示す第3の実施形態の二次電池40のように、半導体基板同士を貼り合わせたものよりも、全体の厚さを薄くすることができる。また、この二次電池60は、図6に示すメンブレン構造の二次電池50よりも若干厚くはなるが、二次電池50に比べて機械的強度を向上させることができる。なお、本変形例の二次電池60における上記以外の構成及び動作は、前述の二次電池40と同様である。
【実施例】
【0051】
以下、本発明の実施例の効果について詳細に説明する。本発明の実施例として、図1に示す構造の二次電池を作製した。先ず、電極5aとして、抵抗率が0.02Ω・cmであるp型シリコン基板上に、マイクロ波プラズマCVD(Chemical Vapor Deposition:化学気相成長)法により、原料ガスとしてメタン濃度が1体積%のメタン水素混合ガスを使用し、この原料ガスにジボランを添加し、ピンホールが発生しないように注意しながら、低抵率半導体層2としてホウ素ドープ多結晶ダイヤモンド膜を3μm成膜した。このホウ素ドープ多結晶ダイヤモンド膜中のホウ素濃度は、炭素原子との濃度比(B/C)で、3000ppm以上であった。
【0052】
次に、電極5bとして、前述のホウ素ドープ多結晶ダイヤモンド膜と同様の方法で、p型シリコン基板上に低抵抗率半導体層3としてホウ素ドープ多結晶ダイヤモンド膜を3μm成膜した後、このホウ素ドープ多結晶ダイヤモンド膜上にマイクロ波プラズマCVD法により、原料ガスとしてメタン濃度が1体積%のメタン水素混合ガスを使用し、この原料ガスに微量の窒素を添加し、ピンホールが発生しないように注意しながら、高抵抗率半導体層4として窒素ドープ多結晶ダイヤモンド膜を0.01乃至0.1μm成膜した。この窒素ドープ多結晶ダイヤモンド膜中の窒素濃度は、炭素原子との濃度比(N/C)で、1ppm以下であった。そして、低抵率半導体層2であるホウ素ドープ多結晶ダイヤモンド膜及び高抵抗率半導体層4である窒素ドープ多結晶ダイヤモンド膜の仕事関数の差は、4.3eVであった。
【0053】
次に、ホウ素ドープ多結晶ダイヤモンド膜及び窒素ドープダイヤモンド膜の表面に、夫々、イオン析出促進層としてアルミナを0.05乃至0.1μmの厚さになるように蒸着した。そして、アルミナ膜上に平面視で格子状になるようにレジストパターンを形成した後、フッ酸によりアルミナ膜をエッチングして、ホウ素ドープ多結晶ダイヤモンド膜及び窒素ドープダイヤモンド膜の表面が、表面積で半分程度露出するようにした。その後、電極5aのホウ素ドープ多結晶ダイヤモンド膜及びイオン析出促進層であるアルミナ膜を覆うように、アルミニウムを10乃至50μmの厚さで蒸着して電解質層7aを形成した。
【0054】
また、電極5a及び5bにおけるp型シリコン基板のダイヤモンド膜が形成されていない側の面には、接触抵抗を低減するため、アルミニウムを0.2乃至0.4μmの厚さで蒸着した。そして、このアルミニウム膜に引き出し電極を接続した。更に、電極5a及び電極5bにおけるホウ素ドープ多結晶ダイヤモンド膜表面及び窒素ドープダイヤモンド膜の表面以外の部分をエポキシ樹脂で被覆した後、ホウ素ドープ多結晶ダイヤモンド膜及び窒素ドープダイヤモンド膜が相互に対向するようにポリエチレン容器内に配置し、電極5aと電極5bとの間に、電解液13として1質量%のフッ酸水溶液を満たし、ポリエチレン容器を密封した。
【0055】
次に、前述の方法で作製した実施例の二次電池の引き出し電極9に、抵抗14の一方の端部及び定電圧源の負極を接続すると共に、引き出し電極10には、他方の端部が抵抗14の他方の端部又は定電圧源の他方の正極に接続するスイッチ15の一方の端部を接続して、その動作を確認した。先ず、図2に示すように、スイッチ15の他方の端部を抵抗14の他方の端部に接続し、引き出し電極9と引き出し電極10とを抵抗14を介して接続した。その結果、アルミニウムからなる電解質層7aが溶解し、窒素ドープ多結晶ダイヤモンド膜表面にアルミニウムが徐々に析出し、放電が起こった。このとき、引き出し電極9及び引き出し電極10の両端部における電位差は約4Vであった。そして、電極5aの表面上に形成された電解質層7aが全て溶解し、電解液13であるフッ酸水溶液中の全てのアルミニウムイオンが電極5bの窒素ドープダイヤモンド膜の表面に析出した時点で、放電電流が0になって放電は終了した。
【0056】
次に、スイッチ15の他方の端部を定電圧源15の正極に接続して、引き出し電極9及び引き出し電極10を定電圧源15に接続した後、引き出し電極9と引き出し電極10との間に4.5乃至5.0Vの電圧を印加した。その結果、電極5bの窒素ドープ多結晶ダイヤモンド膜の表面上に析出したアルミニウムが溶解し、電極5aのホウ素ドープ多結晶ダイヤモンド膜の表面に、アルミニウムが徐々に析出し、充電された。そして、電極5bの窒素ドープ多結晶ダイヤモンド膜の表面上に析出したアルミニウムが全て溶解し、電解液13であるフッ酸水溶液中の全てのアルミニウムイオンが電極5aのホウ素ドープ多結晶ダイヤモンド膜の表面に析出した時点で、充電電流が0になって充電は終了した。
【0057】
この充放電を1000回以上繰り返したが、ホウ素ドープ多結晶ダイヤモンド膜及び窒素ドープ多結晶ダイヤモンド膜の表面は変化せず、劣化は全くなく、本実施例の二次電池の寿命は半永久的であった。
【図面の簡単な説明】
【0058】
【図1】本発明の第1の実施形態の二次電池の構造を模式的に示す断面図である。
【図2】本発明の第1の実施形態の二次電池における放電状態を模式的に示す図である。
【図3】本発明の第1の実施形態の二次電池における充電状態を模式的に示す図である。
【図4】本発明の第2の実施形態の二次電池を模式的に示す断面図である。
【図5】本発明の第3の実施形態の二次電池を模式的に示す断面図である。
【図6】本発明の第3の実施形態の第1変形例の二次電池を模式的に示す断面図である。
【図7】本発明の第3の実施形態の第2変形例の二次電池を模式的に示す断面図である
【符号の説明】
【0059】
1a、1b;基板
2、3;低抵抗率半導体層
4;高抵抗率半導体層
5a、5b、5c、5d、5e、110;電極
6a、6b;イオン析出促進層
7a、7c;電解質層
7b、7d;電解質析出部
8a、8b;金属層
9、10、22、23;引き出し電極
11a、11b;被覆層
12;容器
13;電解液
14;抵抗
15;スイッチ
16;定電圧源
17;正イオン
18;電子の移動方向
20、30、40、50;二次電池
21;外部接続線
51;枠部
111;導電性基体
112;ドープダイヤモンド層
113;アンドープダイヤモンド層

【特許請求の範囲】
【請求項1】
電解液と、この電解液に可溶な電解質により形成され前記電解液に接触するように配置された電解質層と、前記電解液に不溶な半導体材料により形成された第1の半導体層を備えた第1の電極と、前記電解液に不溶で前記第1の半導体層よりも仕事関数が大きい半導体材料により形成された第2の半導体層を備えた第2の電極と、前記第1の電極及び前記第2の電極に夫々接続された1対の引き出し電極と、を有し、前記第1の電極及び前記第2の電極は前記第1の半導体層及び第2の半導体層が前記電解液に接触するように配置されていることを特徴とする二次電池。
【請求項2】
前記第1の電極及び前記第2の電極からなる電極対が複数個設けられており、一の電極対の第1の半導体層と他の電極対の第2の半導体層とを相互に接続することにより前記複数の電極対が前記電解液を介して直列に接続され、この直列接続体の両端部の電極対の第1の半導体層及び第2の半導体層に前記1対の引き出し電極が接続されていることを特徴とする請求項1に記載の二次電池。
【請求項3】
前記第1の半導体層と前記第2の半導体層とは導電型が相互に異なる半導体材料により形成されていることを特徴とする請求項1又は2に記載の二次電池。
【請求項4】
前記第2の半導体層は、前記第1の半導体層よりも抵抗率が高いことを特徴とする請求項1乃至3のいずれか1項に記載の二次電池。
【請求項5】
前記第2の半導体層は、この第2の半導体層よりも抵抗値が低く膜厚が厚い第3の半導体層上に形成されており、前記引き出し電極はこの第3の半導体層を介して前記第2の半導体層に接続されており、前記第3の半導体層及び前記引き出し電極は前記電解液に接触しないことを特徴とする請求項4に記載の二次電池。
【請求項6】
前記第1の半導体層及び前記第2の半導体層はダイヤモンドにより形成されていることを特徴とする請求項1乃至5のいずれか1項に記載の二次電池。
【請求項7】
前記第1の半導体層及び第2の半導体層はドーパントがドーピングされたドープダイヤモンド層であり、前記第2の半導体層は前記第1の半導体層よりドーパント濃度が低いことを特徴とする請求項6に記載の二次電池。
【請求項8】
前記ドーパントがホウ素であることを特徴とする請求項7のいずれか1項に記載の二次電池。
【請求項9】
前記第1及び第2の半導体層は、ドーピングされているドーパントの種類が相互に異なることを特徴とする請求項7に記載の二次電池。
【請求項10】
前記第1の半導体層にホウ素がドーピングされ、前記第2の半導体層に窒素、リン、酸素及び硫黄からなる群から選択された少なくとも1種の元素がドーピングされていることを特徴とする請求項9に記載の二次電池。
【請求項11】
前記第1の半導体層又は前記第2の半導体層の表面の少なくとも一部にイオン析出促進層が設けられていることを特徴とする請求項1乃至10のいずれか1項に記載の二次電池。
【請求項12】
前記電解液は、フッ酸、弱酸及び弱塩基からなる群から選択された1種の化合物を含むことを特徴とする請求項1乃至11のいずれか1項に記載の二次電池。
【請求項13】
前記電解質は、リチウム、ベリリウム、ホウ素、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム及びガリウムからなる群から選択された少なくとも1種を含むことを特徴とする請求項1乃至12のいずれか1項に記載の二次電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2006−40722(P2006−40722A)
【公開日】平成18年2月9日(2006.2.9)
【国際特許分類】
【出願番号】特願2004−219230(P2004−219230)
【出願日】平成16年7月27日(2004.7.27)
【出願人】(000001199)株式会社神戸製鋼所 (5,860)
【Fターム(参考)】