説明

光増幅装置および光伝送システム

【課題】波長分割多重光信号を一括して増幅可能な光増幅装置を提供すること。
【解決手段】波長分割多重光信号を入力する入力部(入力ポート11)と、マルチモードレーザ光を発生するレーザ光源(レーザダイオード20)と、コア部に希土類元素が添加され、レーザ光源からのマルチモードレーザ光に基づく誘導放出によって波長分割多重光信号を増幅して出力するダブルクラッド型の光ファイバ(増幅光ファイバ12)と、ダブルクラッド型の光ファイバによって増幅された波長分割多重光信号を出力する出力部(出力ポート23)と、を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光通信分野等に適用される光増幅装置および光伝送システムに関するものである。
【背景技術】
【0002】
近年、FTTx(Fiber To The x)と呼ばれる、ユーザ宅向けの光ファイバ通信網が社会に浸透している。このような光ファイバ通信網では、伝送路の伝送損失を補償するとともに、複数の加入者に光信号を分配するための分配器における分配損失を補償する目的で、光増幅装置が使用される。
【0003】
このような光増幅装置としては、例えば、光増幅物質としてエルビウムがコア部に添加された光ファイバに、映像信号等の光信号を入力するとともに、励起光源からの励起光を入力することにより、光信号を増幅するファイバ型光増幅装置(EDFA:Erbium Doped Fiber Amplifier)が知られている。近年では、さらに、吸収帯域としてワット級出力の高出力レーザが励起光源として適用できるイッテルビウム(Ytterbium)をコア部に添加することが行われている。また、コア部において結合可能な励起光強度を高めるために、光信号をコア部内にシングルモード伝搬させ、出力の高いマルチモードレーザ光源からの励起光を、コア部を囲むクラッド部内にマルチモード伝搬させるダブルクラッド型の光ファイバを使用することも行われている(特許文献1参照)。
【0004】
エルビウムおよびイッテルビウムを添加した光ファイバを用いた光増幅装置は、当該光ファイバにおける変換効率が高い1550〜1560nm帯域内の1波もしくは2波程度の光信号を増幅する目的で使用されることが多い。図7は、このような光増幅装置の出力を16分岐した後の増幅特性を示す図である。この図の横軸は光信号の波長を示し、縦軸は光出力を示している。この例は、1550nmの信号を増幅した光スペクトルである。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−53294号
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、前述したエルビウムおよびイッテルビウムを添加した光ファイバを用いた光増幅装置は、一般的に1550〜1560nm帯の波長域の信号が広く使われているFFTxシステムに適用されてきたが、増幅帯域幅は広くても25nm程度である。しかし、通信分野で使われる波長分割多重(WDM:Wavelength Division Multiplexing)したC−Band全域(1530〜1560nm)の光信号を一括して増幅するためには、帯域幅が狭いという問題点がある。
【0007】
そこで、本発明が解決しようとする課題は、従来より広帯域な波長分割多重光信号を一括して増幅可能な光増幅装置を提供することにある。
【課題を解決するための手段】
【0008】
上記課題を解決するため、本発明は、波長分割多重光信号を増幅する光増幅装置において、前記波長分割多重光信号を入力する入力部と、マルチモードレーザ光を発生するレーザ光源と、コア部に希土類元素が添加され、前記レーザ光源からの前記マルチモードレーザ光に基づく誘導放出によって前記波長分割多重光信号を増幅して出力するダブルクラッド型の光ファイバと、前記ダブルクラッド型の光ファイバによって増幅された前記波長分割多重光信号を出力する出力部と、を有することを特徴とする。
このような構成によれば、波長分割多重光信号を一括して増幅可能となる。
【0009】
また、他の発明は、上記発明に加えて、前記コア部には、前記希土類元素として、エルビウムとイッテルビウムが共添加されていることを特徴とする請求項1記載の光増幅装置。
このような構成によれば、ワット級出力の高出力レーザを励起光源として適用することが可能となる。
【0010】
また、他の発明は、上記発明に加えて、前記ダブルクラッド型の光ファイバは、当該光ファイバの条長と吸収係数の所定波長帯におけるピーク値との積で表される吸収条長積が、前記波長分割多重光信号を構成する全ての波長に対して所定のゲインを有する吸収条長積に設定されていることを特徴とする。
この構成によれば、吸収条長積を適切に設定することにより、十分な吸収条長積を有する場合に最も変換効率が高い波長帯域を多少犠牲にすることにより、波長分割多重光信号を構成する全ての波長の光信号に対してゲインを有することができる。
【0011】
また、他の発明は、上記発明に加えて、前記ダブルクラッド型の光ファイバは、前記吸収条長積が略300dB以下に設定されていることを特徴とする。
この構成によれば、全ての波長の光信号に対して所定のゲインを持たせることができる。
【0012】
また、他の発明は、上記発明に加えて、前記ダブルクラッド型の光ファイバは、前記吸収条長積が略30dB〜150dBの範囲に設定されていることを特徴とする。
この構成によれば、例えば、C−Bandの波長分割多重光信号を構成する全ての波長の光信号に対して所定のゲインを持たせるとともに、増幅効率を高めることができる。
【0013】
また、本発明の光伝送システムは、波長分割多重光信号を送信する光送信装置と、前記請求項1〜5のいずれか1項記載の光増幅装置と、前記光増幅装置によって増幅された前記波長分割多重光信号を受信する光受信装置と、を有することを特徴とする。
この構成によれば、伝送システムの通信品質を高めるとともに、消費電力を削減して、システムの維持に必要な経費を節約することができる。
【発明の効果】
【0014】
本発明の光増幅装置および光伝送システムによれば、波長分割多重光信号を一括して増幅可能となる。
【図面の簡単な説明】
【0015】
【図1】本発明の光増幅装置の構成例を示すブロック図である。
【図2】図1に示す増幅光ファイバの断面構造と各部位の屈折率を示す図である。
【図3】増幅光ファイバの長さを変化させた場合の励起光の強度と変換効率との関係を示す図である。
【図4】増幅光ファイバの長さを1.8〜7.8mの間で変化させた場合の光信号の波長とゲインとの関係を示す図である。
【図5】利得等化器の動作を説明する図である。
【図6】本実施形態の光増幅装置を適用した光伝送システムの構成例を示す図である。
【図7】増幅光ファイバの長さが12mである場合において、16分岐後の光信号の波長とゲインとの関係を示す図である。
【発明を実施するための形態】
【0016】
次に、本発明の実施形態について説明する。
(A)実施形態の構成
図1は本発明の実施形態の光増幅装置の構成例を示す図である。この図に示すように、光増幅装置10は、入力ポート11、増幅光ファイバ12、光カプラ13,14、光アイソレータ15,16、励起光混合器17、フォトダイオード18,19、レーザダイオード20、制御回路21、利得等化器22、および、出力ポート23を有している。
【0017】
入力ポート11は、例えば、光コネクタ等によって構成され、例えば、波長帯域が1530〜1560nmであるC−Bandの波長分割多重光信号を入力する。増幅光ファイバ(EYDF:Erbium Ytterbium Doped Fiber)12は、波長分割多重光信号を、レーザダイオード20によって発生された励起光による誘導放出によって増幅する。
【0018】
図2は、増幅光ファイバ12の断面構造と、各部の屈折率を示す図である。図2に示すように、増幅光ファイバ12は、コア部12a、第1クラッド部12b、および、第2クラッド部12cを有するダブルクラッド型の光ファイバである。また、図2の下に示すように、各部の屈折率の高さは、コア部12a、第1クラッド部12b、および、第2クラッド部12cの順になっており、光信号は、コア部12aをシングルモードで伝搬され、レーザダイオード20からの励起光は、コア部12aと第1クラッド部12bをマルチモードで伝搬される。コア部12aは、例えば、石英ガラスによって構成され、エルビウム(Er)とイッテルビウム(Yb)とが共添加されている。第1クラッド部12bは、例えば、石英ガラスによって構成されている。第2クラッド部12cは、例えば、樹脂や石英ガラス等によって構成されている。増幅光ファイバ12の条長と、吸収係数の所定波長のピーク値との積で表される吸収条長積は、後述する条件に基づいて設定されている。なお、図2は、第1クラッド部12bが円形の断面形状を有する場合を例に挙げているが、円形に限らず、例えば、矩形、三角形、または、星形等の形状であってもよい。
【0019】
光カプラ13は、入力ポート11から入力された光信号の一部を分岐してフォトダイオード18に入力し、残りを光アイソレータ15に入力する。フォトダイオード(PD)18は、光カプラ13によって分岐された光信号を対応する電気信号に変換し、制御回路21に供給する。なお、制御回路21では、フォトダイオード18から供給された電気信号をアナログもしくは対応するデジタル信号に変換し、入力信号の光強度を検出する。
【0020】
光アイソレータ15は、光カプラ13からの光を透過させ、増幅光ファイバ12と励起光混合器17から戻ってくる光を遮断する機能を有する。レーザダイオード(LD)20は、例えば、波長が900nm帯域の励起光としてのレーザ光を発生するマルチモード半導体レーザ素子によって構成される。なお、レーザダイオード20は、冷却素子としてのペルチェ素子を有しないアンクールド(uncooled)型の半導体レーザ素子である。
【0021】
励起光混合器17は、レーザダイオード20によって発生された励起光を、増幅光ファイバ12に入力し、コア部12a内と第1クラッド部12b内とをマルチモードで伝搬させる。また、励起光混合器17は、光アイソレータ15から出力された光信号を、増幅光ファイバ12に入力し、コア部12a内をシングルモードで伝搬させる。
【0022】
光アイソレータ16は、増幅光ファイバ12からの光を透過させ、光カプラ14から戻ってくる光を遮断する機能を有する。光カプラ14は、光アイソレータ16から出力される光信号の一部を分岐してフォトダイオード19に入力し、残りを利得等化器22に導く。利得等化器(EQ)22は、増幅光ファイバ12によって増幅された光信号の利得特性が平坦になるようにゲインの調整を行う。出力ポート23は、例えば、光コネクタ等によって構成され、増幅された光信号を外部に対して出力する。
【0023】
制御回路21は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、A/D(Analog to Digital)変換回路、および、D/A(Digital to Analog)変換回路等によって構成され、CPUがROMに格納されているプログラムに応じて、RAMをワークエリアとして演算処理を実行し、フォトダイオード18,19から供給される信号に基づいて、レーザダイオード20の駆動電流を制御することにより、光増幅装置10から出力される光信号の強度が一定になるようにALC(Automatic Output Power Level Control)、または、利得が一定となるようにAGC(Automatic Gain Control)を実行する。なお、制御回路21は、例えば、DSP(Digital Signal Processor)等によって構成するようにしてもよい。
【0024】
(B)実施形態の動作
以下では、本実施形態の動作の概要を説明した後、詳細な動作を説明する。本実施形態では、エルビウムとイッテルビウムとが共添加されたダブルクラッド型の増幅光ファイバ12を使用しているが、当該増幅光ファイバ12は、一般的には、1550〜1560nm付近の1波または2波程度の光信号の増幅に使用される。また、変換効率を高めるために、増幅光ファイバ12の長さ(条長)は、10m以上(吸収条長積にして400dB以上)に設定されることが一般的である。図3は、増幅光ファイバ12の長さを変化させた場合における、915nmの励起光のパワーと、波長1550nmの出力信号光パワーの変換効率(PCE:Power Conversion Efficiency)との関係を示す図である。この図に示すように、増幅光ファイバ12の長さが、10m以上である場合(10m,12m,14mの場合)には、変換効率は略同じ特性を有しているが、8mの場合には10m以上の場合に比較すると変換効率が顕著に低くなっている。
【0025】
前述した図7は、増幅光ファイバ12の長さが12mである場合における16分岐後の増幅特性である。このように、増幅光ファイバ12の長さが10m以上である場合には、増幅特性は1550〜1560nm付近に25nm程度の増幅帯域を有する(狭帯域)な特性となる。
【0026】
図4は、増幅光ファイバ12の長さを1.8〜7.8mの間で変化させた場合の波長とゲインの関係をプローブ法によって実測した結果を示す図である。プローブ法は、一般的に波長多重信号を入力した場合の増幅特性を少数の信号を用いて容易かつ正確に把握する手段である。この図に示すように、増幅光ファイバ12の長さが長くなるにつれて、短波長側の増幅帯域が図の右側(長波長側)に移動し、特性が狭帯域化する。
【0027】
そこで、本願では、エルビウムとイッテルビウムとが共添加されたダブルクラッド型の増幅光ファイバ12を、1550nm帯の信号を増幅するために通常使用される長さ(10m以上)よりも短い長さに設定することにより、十分な長さ(例えば、10m以上)において最も変換効率が高い帯域である1550〜1560nm付近の特性は多少犠牲にする代わりに、増幅特性を広帯域化(例えば、33nm程度に広帯域化)する。これにより、例えば、波長帯域が1530〜1560nmであるC−Bandの波長分割多重光信号を一括増幅することが可能となる。その結果、本実施形態の光増幅装置10を、WDMおよびDWDM(Dense Wavelength Division Multiplexing)等の光増幅装置として、従来のEDFA(Erbium Doped Fiber Amplifier)に代替して、通信分野に適用することが可能になる。また、レーザダイオード20としてアンクールド型の高出力マルチモードレーザダイオードを使用することができることから、ペルチェ素子によって消費される電力(レーザダイオード20を駆動するために必要な電力の約2倍の電力)が不要になり、光増幅装置10の消費電力を1/3以下に減少させることができる。消費電力の一例として、1波のアンプの例を示す。EDFAで冷却型シングルモードLDの400mW級を3個使用して得られる出力は、約+28.5dBmで最大消費電流は12.6Aであるのに対し、ダブルクラッド型アンプ(クラッドポンプアンプ)で4W級の非冷却マルチモードLD1個を使用して得られる出力は+30dBmで最大消費電流は4.2Aである。また、ペルチェ素子の放熱器を省略することにより、装置全体のサイズを縮小することができる。さらに、エルビウムとイッテルビウムとが共添加されたダブルクラッド型の増幅光ファイバ12は、高利得を簡単に得ることができることから、利得等化器22によって利得の平坦化を行った場合であっても、従来のEDFAで波長多重信号を増幅した場合よりも広帯域かつ高利得の増幅を実現できる。
【0028】
つぎに、本実施形態の詳細な動作について説明する。
【0029】
本実施形態では、一例として、波長帯域が1530〜1560nmであるC−Bandの波長分割多重光信号を増幅する場合を例に挙げて説明する。波長分割多重光信号が入力ポート11から入力されると、光カプラ13は、その一部を分岐してフォトダイオード18に入力する。具体的には、光カプラ13が20dBカプラである場合(分岐比が1/100である場合)には、光信号の1/100がフォトダイオード18に入力され、残りが光アイソレータ15に入力される。
【0030】
フォトダイオード18は、入力された光信号を電気信号に変換し、制御回路21に供給する。制御回路21は、入力された電気信号をアナログ信号または対応するデジタル信号に変換した後、得られたデータと、光カプラ13の分岐比とに応じて入力ポート11から入力された光信号の強度を算出する。
【0031】
光アイソレータ15を通過した光信号は、励起光混合器17に導かれる。励起光混合器17は、光アイソレータ15を通過した光信号を増幅光ファイバ12のコア部12aに入力し、コア部12a内をシングルモードで伝搬させる。一方、レーザダイオード20が発生した励起光は、励起光混合器17により、増幅光ファイバ12のコア部12aと第1クラッド部12bに入力され、コア部12aと第1クラッド部12bの内部をマルチモードで伝搬される。励起光は、増幅光ファイバ12を伝搬しながら、コア部12aのイッテルビウムイオン(Yb3+)に吸収され、イッテルビウムイオンが間接的にエルビウムイオン(Er3+)を励起する。コア部12aを伝搬される光信号は、励起されたエルビウムイオンからの誘導放出によって増幅される。
【0032】
このとき、増幅光ファイバ12の長さが1.8mに設定されている場合であって、光信号の強度が−3dBmであるときには、図4の実線で示すような増幅特性を有することから、波長帯域が1530〜1560nmであるC−Bandの波長分割多重光信号は、図4に示すゲイン特性に基づいて増幅される。具体的には、1530nmの波長に対しては約27dBのゲインで増幅され、1560nmの波長に対しては約34dBのゲインで増幅される。
【0033】
増幅光ファイバ12によって増幅された光信号は、光アイソレータ16を介して光カプラ14に入力される。光カプラ14は、入力された光信号の一部を分岐してフォトダイオード19に入力する。具体的には、光カプラ14が20dBカプラである場合(分岐比が1/100である場合)には、光信号の1/100がフォトダイオード19に入力され、残りが利得等化器22に導かれる。
【0034】
フォトダイオード19は、入力された光信号を電気信号に変換し、制御回路21に供給する。制御回路21は、入力された電気信号をアナログ信号または対応するデジタル信号に変換した後、得られたデータと、光カプラ14の分岐比とに応じて、増幅後の光信号の強度を算出する。そして、制御回路21は、前述した処理によって算出した入力光の強度と、出力光の強度に基づいて、増幅光ファイバ12のゲインを求める。そして、出力光強度や求めたゲインに基づいて、出力または利得が一定になるようにする制御である出力一定制御(ALC)や利得一定制御(AGC)を実行する。なお、これ以外にも、励起電流一定制御(ACC:Automatic Current Control)または励起パワー一定制御(APC:Automatic Pump Power Control)等に基づいて制御するようにしてもよい。
【0035】
光カプラ14から出力された増幅された光信号は、利得等化器22に入力される。利得等化器22では、対象となる帯域内における各波長の利得の平坦化が実行される。図5は、利得等化器22の動作の概略を説明する図である。図5(A)は、増幅光ファイバ12の波長とゲインとの関係を示す図である。なお、この曲線は、図4の増幅光ファイバ12の長さが1.8mの場合に対応している。図5(B)は、利得等化器22の波長とゲインの関係を示す図である。この図に示すように、利得等化器22の波長とゲインの関係を示す曲線は、図5(A)に示す増幅光ファイバ12の特性を示す曲線と逆のゲイン特性を有している。図5(C)は、増幅光ファイバ12と利得等化器22のトータルのゲインを示す図である。この図に示すように、増幅光ファイバ12と利得等化器22の双方を通過することにより、ゲインは波長によらず一定とされる。このように、利得等化器22を用いることにより、波長分割多重光信号をその波長によらず一定のゲインで増幅することができる。なお、図4の例では、1530〜1560nmの範囲では、1530nmに対するゲインが約27dBで最も低いことから、利得等化器22通過後の1530〜1560nmの範囲のゲインは、当該27dBを基準として平坦化され、波長によらず約27dB程度となる。
【0036】
以上に説明したように、本発明の実施形態によれば、エルビウムとイッテルビウムとが共添加されたダブルクラッド型の増幅光ファイバ12を、通常使用される長さである10mよりも短い長さに設定し、最も変換効率が高い帯域である1550〜1560nm付近の特性を多少犠牲にする代わりに、増幅特性を広帯域化することにより、例えば、波長帯域が1530〜1560nmであるC−Bandの波長分割多重光信号を一括増幅することが可能となる。
【0037】
また、本実施形態では、レーザダイオード20としてアンクールド型を使用するため、ペルチェ素子によって消費される電力が不要になることから、光増幅装置10の消費電力を1/3程度に減少させることができるとともに、ペルチェ素子の放熱器を省略することにより、装置全体のサイズを縮小することができる。
【0038】
また、本実施形態では、エルビウムとイッテルビウムとが共添加されたダブルクラッド型の増幅光ファイバ12を使用しているが、当該増幅光ファイバ12は、高利得を簡単に得ることができることから、利得等化器22によって利得の平坦化を行った場合であっても、従来のEDFAで利得を得る場合よりも広帯域かつ高利得の増幅を実現できる。
【0039】
図6は、本実施形態の光増幅装置を光伝送システム50に適用した場合の一例を説明する概略構成図である。この図の例では、光伝送システム50は、波長多重光送信装置60、送信側光伝送路70、本実施形態の光増幅装置10、受信側光伝送路80、および、波長多重光信号受信装置90を有している。この例では、波長多重光送信装置60から送信された波長多重光信号は、送信側光伝送路70を伝搬されて光増幅装置10に到達する。光増幅装置10では、前述したように、波長多重光信号が一括増幅された後、受信側光伝送路80を伝搬されて波長多重光信号受信装置90に到達し、そこで多重化されている信号が分離され、それぞれの信号が復号される。本実施形態の光増幅装置10は、高利得および低消費電力を実現することができることから、このような光増幅装置10を用いた光伝送システム50では、システム全体の通信品質を高めるとともに、消費電力を削減して、システムの維持に必要な経費を節約することができる。
【0040】
(C)変形実施形態
【0041】
なお、以上の実施形態では、波長帯域が1530〜1560nmであるC−Bandの波長分割多重光信号に対しては、増幅光ファイバ12の長さを略8m以下、より望ましくは、略1.8〜3.8mの範囲に設定することにより、光信号を構成する各波長に対して所定のゲインを有することができる。この場合、吸収条長積は、主要なドーパントとしてのエルビウムについては、1535nm近傍の励起光に関して、条長が8mの場合が略300dBとなり、1.8〜3.8mの場合が略30〜150dBの範囲となる。なお、エルビウムに対してエネルギー伝達現象を利用してエルビウムの準位間で反転分布を形成させるために添加されるイッテルビウムについては、915nm近傍の励起光に関して、条長が8mにおけるイッテルビウムの吸収条長積は、略3100dBとなり、また、1.8〜3.8mにおける吸収条長積は略180〜1500dBの範囲となる。従って、ドーパントの濃度が異なる場合には、前述した吸収条長積となるように増幅光ファイバ12の長さを設定することで、前述の場合と同様の増幅特性を得ることができる。なお、増幅光ファイバ12の吸収条長積または長さを設定する際には、従来の構成で、最もゲインが低くなると想定される波長(例えば、C−Bandの場合では1530nm)において所望のゲイン(例えば、30dB)が得られるように設定すればよい。従来の構成で、最もゲインが低い波長において、所望のゲインを確保できれば、利得等化器22を通過後にも、他の波長に対しては所望のゲインを確保できるからである。あるいは、所望利得が得られる波長域が最も広くなるように短波長側の利得と長波長側の利得のバランスが取れる長さ(または吸収条長積)に設定してもよい。
【0042】
また、以上の実施形態では、コア部12aにエルビウムとイッテルビウムとが共添加されたダブルクラッド型の増幅光ファイバ12を用いる場合を例に挙げて説明したが、ツリウム(Tm:Thulium)、ネオジム(Nd:Neodymium)、プラセオジウム(Pr:Praseodymium)等の希土類元素、あるいは、希土類元素と同様の増幅作用を有する他の物質を添加したりしてもよい。この場合、以上の実施形態とは、増幅帯域は異なるが、本発明と同様の効果を得ることができる。
【0043】
また、以上の実施形態では、利得等化器22を用いるようにしたが、増幅光ファイバ12によるゲインが略平坦である場合には、利得等化器22を省略する構成としてもよい。あるいは、利得等化器22を光増幅装置10には含まれない独立した構成としてもよい。また、以上の実施形態では、利得等化器22を光カプラ14の後段に設けるようにしたが、例えば、光アイソレータ16と光カプラ14の間に設けるようにしてもよい。そのような構成によれば、増幅しようとする帯域内の最終的なゲインを正確に制御することができる。また、EYDFを中心としてEYDFより入力側に利得等化器22を設置することや、EYDFを2分してその中段に利得等化器22を設置してさらなる高出力化を実現する構成も考えられる。
【0044】
また、以上の実施形態では、励起方式として前方励起方式を採用したが、例えば、後方励起方式や双方向励起方式を採用するようにしてもよい。後方励起方式は、前方励起方式に比較するとノイズ特性は劣るものの、高出力化が可能となる。また、双方向励起方式は、前方励起方式と後方励起方式の双方の特徴を兼備する増幅が可能となる。
【0045】
また、以上の実施形態では、主に、C−Bandの波長分割多重光信号を増幅する場合を例に挙げて説明したが、吸収条長積を調整することにより、これ以外の波長分割多重光信号(例えば、S−Bandその他)にも対応可能であることはいうまでもない。
【0046】
また、以上の実施形態では、光増幅装置10をブースタアンプのみの構成としたが、例えば、雑音指数としてのNF(Noise Figure)を改善するために、例えば、ブースタアンプの前段に設けたプリアンプによって増幅した後に、ブースタアンプによってさらに増幅するようにしてもよい。
【符号の説明】
【0047】
10 光増幅装置
11 入力ポート(入力部)
12 増幅光ファイバ(ダブルクラッド型の光ファイバ)
12a コア部
12b 第1クラッド部
12c 第2クラッド部
13,14 カプラ
15,16 光アイソレータ
17 励起光混合器
18,19 フォトダイオード
20 レーザダイオード(レーザ光源)
21 制御回路
22 利得等化器
23 出力ポート(出力部)
50 光伝送システム
60 波長多重光信号送信装置(光送信装置)
70 送信側光伝送路
80 受信側光伝送路
90 波長多重光信号受信装置(光受信装置)

【特許請求の範囲】
【請求項1】
波長分割多重光信号を増幅する光増幅装置において、
前記波長分割多重光信号を入力する入力部と、
マルチモードレーザ光を発生するレーザ光源と、
コア部に希土類元素が添加され、前記レーザ光源からの前記マルチモードレーザ光に基づく誘導放出によって前記波長分割多重光信号を増幅して出力するダブルクラッド型の光ファイバと、
前記ダブルクラッド型の光ファイバによって増幅された前記波長分割多重光信号を出力する出力部と、
を有することを特徴とする光増幅装置。
【請求項2】
前記コア部には、前記希土類元素として、エルビウムとイッテルビウムが共添加されていることを特徴とする請求項1記載の光増幅装置。
【請求項3】
前記ダブルクラッド型の光ファイバは、当該光ファイバの条長と吸収係数の所定波長帯におけるピーク値との積で表される吸収条長積が、前記波長分割多重光信号を構成する全ての波長に対して所定のゲインを有する吸収条長積に設定されていることを特徴とする請求項2記載の光増幅装置。
【請求項4】
前記ダブルクラッド型の光ファイバは、前記吸収条長積が略300dB以下に設定されていることを特徴とする請求項3記載の光増幅装置。
【請求項5】
前記ダブルクラッド型の光ファイバは、前記吸収条長積が略30〜150dBの範囲に設定されていることを特徴とする請求項4記載の光増幅装置。
【請求項6】
波長分割多重光信号を送信する光送信装置と、
前記請求項1〜5のいずれか1項記載の光増幅装置と、
前記光増幅装置によって増幅された前記波長分割多重光信号を受信する光受信装置と、
を有することを特徴とする光伝送システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2010−262988(P2010−262988A)
【公開日】平成22年11月18日(2010.11.18)
【国際特許分類】
【出願番号】特願2009−110870(P2009−110870)
【出願日】平成21年4月30日(2009.4.30)
【出願人】(000005290)古河電気工業株式会社 (4,457)
【Fターム(参考)】