説明

光学コヒーレンス撮像のシステムおよび方法

【課題】高感度で例えば検体およびプローブの動きに起因するアーチファクトを低減する光学コヒーレンス撮像のシステムおよび方法を提供すること。
【解決手段】検体40および参照物に向けて少なくとも1つの電磁放射光を生成する。複数の検出器を使用し、少なくとも1つの検出器が検体から受けた少なくとも1つの第一電磁放射および前記参照物から受けた少なくとも1つの第二電磁放射の組合せに関連する信号を検出可能とする。少なくとも1つの特定の検出器は、特定の電気的積分時間を有してよく、予め設定された閾値よりも大きい第一パワーレベルを有する第一の部分および第一の部分の直前または直後の第二の部分を有する時間分、少なくとも信号の一部を受信する。第二の部分は、予め設定された閾値よりも低い第二パワーレベルを有してよく、少なくとも第二の部分は、特定の電気的積分時間、例えば約10%以上の時間の間延長する。

【発明の詳細な説明】
【技術分野】
【0001】
<関連出願の相互参照>
本発明は2004年9月10日に出願された米国特許出願番号60/608,800からの優先権を主張し、その全体がここに参考資料として組み込まれている。
【0002】
本発明は一般に光学コヒーレンストモグラフィ撮像に関し、特に光学コヒーレンストモグラフィを使用して、高感度で例えば検体およびプローブの動きに起因するアーチファクト(人為的な結果)を低減する生物検体の撮像を可能にするシステムおよび方法に関する。
【背景技術】
【0003】
動きに起因する画像のアーチファクトは、画像品質を劣化させ、画像の的確でない臨床的な解釈を引き起こすので、多くの医学画像モダリティの研究で重要な問題になっている。アーチファクトは、撮像される物体(検体)がデータ取得の間に動かされたが、画像再生プロセスでは静止していたと見なされることによって発生する。各撮像モダリティにおいて、動きアーチファクトは、いろいろな形状、いろいろな大きさで存在することができる。特定の撮像法で基本的な動きの影響を理解することは、生じるアーチファクトを防止または補償するための技術開発において基本的なステップである。周波数領域レンジングを使用した光学干渉撮像法は、その高い撮像スピードおよび感度の故に、近年かなりの関心を引き付けている。
【0004】
2つの周波数領域技術が実証されてきている。スペクトラル領域光学コヒーレンストモグラフィ(SD−OCT)は下記の論文で説明されている。
A.F.Fercher他、「後方散乱スペクトル干渉法による眼球内距離の測定」Opt.Comm.117、43−48(1995)。
G.Hausler他、「コヒーレンスレーダおよびスペクトルレーダ‐皮膚診断用の新しいツール」、J.Biomed.Opt.3、21−31(1998)。
M.Wojtkowski他、「高速スペクトル光学コヒーレンストモグラフィによる実時間生体内撮像」、Opt.Lett.28、1754−1747(2003)。
N.Nassif他、「超高速スペクトル領域光学コヒーレンストモグラフィによる実時間人間の網膜撮影」、Opt.Lett.29、480−482(2004)。
S.H.Yun他、「1.3ミクロン波長での高速スペクトル領域光学コヒーレンストモグラフィ」、Opt.Express、11、3598−3604(2003)。
さらに光学周波数領域撮影(「OFDI」)では下記の論文がある。
S.R.Chinn、E.SwansonおよびJ.G.Fujimoto、「周波数可変光学光源を使用した光学コヒーレンストモグラフィ」、Opt.Lett、22、340−342(1997)。
B.Golubovic他、「高速波長同調Cr4+フォルステライトレーザを使用した光学周波数領域反射光測定法」、Opt.Lett、22、1704−1706(1997)。
F.Lexer他、「眼球内距離の波長同調干渉法」、Appl.Opt、36、6548−6553(1997)。
S,H.Yun他、「高速光学周波数領域撮像」、Opt.Express、11、2953−2963(2003)。これら公開の全部がここに参考資料として組み込まれる。
SD−OCT技術を使用して、周波数干渉縞は回折格子および電荷結合デバイス(「CCD」)を使用して空間領域で測定できる。例としてのOFDI技術で、スペクトル縞は周波数掃引光源を使用し、時間の関数として受光器で測定されて、時間領域にマップされる。両方の方法において軸方向反射プロファイル(A‐line)は、取得したデータの離散的フーリエ変換を実行して得られる。フーリエ変換プロセスは単一のAライン期間中に得られた全体のデータセットの積分を含んでいるので、以下の論文に記述されているように、信号対雑音比(「SNR」)は時間領域レンジングに比べて強化される。S,H.Yun他、「高速光学周波数領域撮像」、Opt.Express、11、2953−2963(2003)。
R.Leitgeb他、「フーリエ領域対時間領域光学コヒーレンストモグラフィの性能」、Opt.Express、11、889−894(2003)。
J.F.deBoer他、「時間領域に比べて改良されたスペクトル領域中の光学コヒーレンストモグラフィ信号対雑音比」、Opt.Lett.28、2067−2069(2003)。およびM.A.Choma他、「掃引光源およびフーリエ領域光学コヒーレンストモグラフィの感度の利点」、Opt.Express.11、2183−2189(2003)。
これらの全体はここに参考資料として組み込まれる。
【発明の開示】
【発明が解決しようとする課題】
【0005】
このSNRの改良は、病気のスクリーニングや大きな組織容量の監視のように、高速の画像取得が要求されるアプリケーションでは特に有利である。しかしながら、信号中の運動によって誘起された変化もまた全体のAライン取得期間中に一体化(積分)されるので、一体化(積分)の影響が検体の運動に対する感度を増加する可能性がある。
【0006】
スペクトル領域光学コヒーレンストモグラフィ(「SD−OCT」)は、生物検体の断面画像を得るために、低コヒーレンススペクトル干渉法を利用する。波長の関数としての干渉縞は広帯域幅光源および電荷結合デバイス(「CCD」)カメラをベースとしたスペクトロメータを使用して測定される。検体の軸方向の反射率プロファイル、またはAラインは、カメラが読み出したデータの離散的フーリエ変換によって得ることができる。この撮像技術は、近年急速な技術開発がなされ、最先端技術の時間領域OCTシステムよりも1桁速い、高速の画像取得時間での生物検体の高品質撮像を実証している。撮像スピードの近年の進歩は近い将来、多数の臨床アプリケーションでのSD−OCTの利用を導く可能性がある。
【0007】
今日まで使用されてきたSD−OCTシステムは、スーパールミネセントダイオード(「SLD」)のような連続波(「CW」)広帯域幅光源または10−100MHzの範囲の高い繰返しの極短モードロックパルスを使用してきた。いずれにしても、CCDアレイは一般に定常的に照明されるので、CCDカメラの露出時間が単一Aラインの信号取得時間を決定する。この場合、画像取得中の干渉計内での光路長の変化は干渉縞の位相ドリフトを生じる。単一Aライン取得中にミクロン以上位相がシフトすると、干渉縞は完全に消される可能性があり、SNRの劣化を生じる。この運動のアーチファクトはプローブビームに対する検体の軸方向の運動に起因する可能性がある。これに比べて、横方向の検体の運動または横方向のビームの走査は干渉縞の消去は生じない。しかしながら、横方向の運動は横方向の解像度およびSNRの劣化を生じる可能性がある。生体内の医用撮像では、運動の影響はいろいろな光源から生じ得る。主要な原因は患者の動き、心臓の動き、血液の流れ、脈動のような生理的な現象や、ビームの走査に関連するカテーテルの動き、またはオペレータの手のコントロールできない動きなどを含む。さらに、機械的振動、音波、および温度ドリフトなどのような環境変化は干渉計の光路長差を変化させ、干渉縞の消去を通じてSNRの劣化を生じる可能性がある。SD−OCT用に適切なカメラは、通常10マイクロ秒よりも長い露出時間を提供することを考慮すると、検体およびプローブの運動が日常的な生物医学的アプリケーション用には干渉縞消去問題の解決方法が要求されるであろう。
【0008】
従って、本発明の1つの目的は、運動アーチファクトを減少または消去することである。
【課題を解決するための手段】
【0009】
本発明によれば、光源および少なくとも1つの検出器アレイを含む、1つの撮像装置/システムが提供される。本発明の1つの実施例によれば、1つの光源が例えばQスイッチングまたはモードロッキングでパルス繰返し速度が好ましくは検出器の読出し速度に等しいパルスモードで広帯域幅のスペクトルを放射できる。パルス光源は撮像に要求される十分な信号対雑音比を提供するための十分な平均光学パワーを生成することができ、一方、出力パルスの比較的短い期間は、検出器の積分時間よりも実質的に短い有効な信号積分時間を生じ、高感度の運動アーチファクトのない撮像に導く。このパルス光源の取組みは全視野光学コヒーレンストモグラフィおよび/またはスペクトル領域光学コヒーレンストモグラフィに関連してよい。本発明のもう1つ別の実施例では、光源は広い範囲に渡って掃引される比較的狭いスペクトルを放出する、繰返し速度が好ましくは検出器アレイの読出し速度またはAライン速度に等しい、波長掃引光源である。本発明のこの実施例は、実質的にAライン取得時間よりも短い有効な積分時間を持ち、測定されるべき各スペクトル成分に関連する干渉信号を可能にする。この例の考えはまた、連続波広帯域幅光源または高速繰返しモードロックパルスを使用して、従来の技術に存在するような干渉縞消去の問題を解消する可能性がある。本発明の上記の実施例は、デュアル平衡検出および/または偏光ダイバーシティ用に2つまたはそれ以上の検出器アレイを使用し、さらに光ファイバプローブを使用して、高感度、高速、および運動アーチファクトに耐える生体内の医用撮像ができるようにする可能性がある。
【0010】
従って、検体の少なくとも一部の撮像用の1つのシステムおよび方法の1つの実施例が提供されている。特に、少なくとも1つの電磁放射光が生成され、そして検体およびリファレンス(参照物)へ向けられる。検体から受けた少なくとも1つの第一電磁放射光およびリファレンスから受けた少なくとも1つの第二電磁放射光の組合せに関連する信号は、複数の検出器の少なくとも1つを使用して検出できる。少なくとも1つの特定の検出器は、特定の電気的積分時間を有することができる。そのような検出器は、予め設定された閾値よりも大きい、少なくとも1つの第一パワーレベルを有する第一の部分および少なくとも1つの第一の部分の直前または直後の第二の部分を有する時間分、少なくとも信号の一部を受信してよい。第二の部分は、予め設定された閾値よりも低い、少なくとも1つの第二パワーレベルを有することができ、特定の電気的積分時間の少なくとも約10%の時間の間延長できてよい。
【0011】
加えて、信号は少なくとも1つの組合せの成分の周波数でよく、そして特定の検出器がそのような周波数成分を受けることができる。電磁放射光は、パルス広帯域幅光源の可能性がある光源装置によって生成できる。パルス光源によって生成された電磁放射光は、特定の電気的積分時間当たり1回のパルスでよい。パルス光源は、Qスイッチレーザ、キャビティ−ダンプモードロックレーザ、および/または利得スイッチレーザでよい。光源装置によって生成された電磁放射光は、特定の電気的積分時間の最大約90%の間の放射光のバーストであってよい。放射光のバーストは複数のパルスを含んでよい。パルス広帯域幅光源によって生成された電磁放射光は、(i)約700ナノメートルから2000ナノメートルの間の中心波長を有し、そして/または(ii)中心波長の約1%より大きなスペクトル幅を有するスペクトルを有することができる。パルス広帯域幅光源によって生成された電磁放射光は、およそ1マイクロ秒よりも短いパルス幅を有してよい。放射光のバーストの持続期間は、約1マイクロ秒よりも短くてよい。
【0012】
本発明のもう1つの実施例によれば、電磁放射光を生成する光源装置は、光ゲートスイッチを含んでよい。電磁放射光の周波数は、時間とともに変化できる。電磁放射光の平均周波数は、(i)実質的に時間とともに連続的にミリセカンド当り100テラヘルツよりも大きな同調速度で、そして/または(ii)特定の電気的積分時間の約90%よりも短い繰返し周期で変化してよい。電磁放射光は、(i)約700ナノメートルから2000ナノメートルの間の中心波長を有し、そして/または(ii)中心波長の1%より大きな同調範囲を有することができる。電磁放射光は、瞬時線幅が同調範囲よりも約10%狭い、瞬時線幅および同調範囲を有してよい。光源装置は、(i)同調レーザ、(ii)同調フィルタ、および/または(iii)媒質を含んでよく、そして媒質に関連する非線形性に基づいて電磁放射光を生成できる。周波数は実質的に(i)時間とともに線形に、そして/または(ii)時間とともに正弦波状に変化してよい。
【0013】
第一および第二電磁放射光の組合せと関連付けられた光電子の伝送をゲートするように適合され、光電子の伝送を許可するためのゲートの時間は、特定の電気的積分時間の約90%より短い、電気シャッタを含む検出器を含む検出器装置が提供できる。検体は生体の検体であり得る。検出装置は、少なくとも1つの電荷結合デバイスを含んでよい。光源装置は、パルス広帯域幅光源でよい。第一電磁放射光、第二電磁放射光および/または少なくとも1つの周波数成分の組合せのスペクトルを分離する、少なくとも1つのスペクトル分離ユニットが提供できる。これらおよび他の本発明の目的、特徴および利点は貼付の請求項との関連で、発明の実施例の詳細な説明を読めば明らかになる。
【発明の効果】
【0014】
本発明によれば、高感度で例えば検体およびプローブの動きに起因する運動アーチファクト(人為的な結果)を減少または消去した生物検体の撮像が可能になる。
【0015】
発明のさらなる目的、特徴および利点は、発明の実施例を示す添付して関連付けた次の詳細な説明から明らかになる。
【発明を実施するための最良の形態】
【0016】
図1は、スペクトル領域の光学コヒーレンストモグラフィ(「SD−OCT」)システムの一例としての基本構成を描写している。広帯域幅光10は、検体アーム22およびその遠い方の先端がミラー26で終端されているリファレンスアーム24へカップラ20により分割されている。検体アーム22の先端のプローブ30が検体40に光を供給し、検体40からの後方散乱光を受け取る。2つの干渉計アームから戻ってきた光は、サーキュレータ44を介して再度結合され、コリメータ52、回折格子54およびレンズ56、CCDアレイ60およびカメラ62から構成されたスペクトロメータ50へ向けられる。CCDアレイ60の個々のピクセルは波数k=2π/λの関数として光学パワーを測定する。ここでλは光の波長である。CCDアレイ60の出力は、ディジタイザ70を使用してディジタル化され、コンピュータ74で処理される。CCD走査出力の離散的フーリエ変換(「DFT」)は、検体の軸方向反射プロファイル(Aライン)を生成する。プローブビームが横方向に沿って検体の上を走査されるときに、複数のAラインを取得することによって2Dトモグラフ画像が得られる。上記の例としてのアーキテクチャおよび走査原理は従来からよく知られている。
【0017】
従来技術で使用される広帯域幅光学光源は、2つのタイプに分類される。すなわち、図2Aに示されているような連続波(「cw」)および図2Bに示されているようなモードロックパルス光源である。連続光は定常的なスペクトルおよび定常的な出力パワーを放出する。この場合、OCT信号の積分時間は、検出器アレイの露出時間に等しい。そのような連続波ソースの例は、スーパルミネッセントダイオード、増幅自然放出(「ASE」)ソースおよびスーパコンティニュームソースを含む。一方、モードロックソースは、持続時間がサブナノ秒から数フェムト秒の間の範囲で非常に短く、10MHzから1GHzの比較的高い繰返し速度の光パルスを放出する。CCDの露出時間は、通常およそ10マイクロ秒から10ミリ秒である。その結果、モードロックパルスは基本的に連続波のように作用し、CCDアレイを定常的に、その全体の露出時間照明する。OCTでの連続波およびモードロックソースの使用は2つの欠点を有する。すなわち(a)比較的長い積分時間に起因する大きな運動アーチファクトおよび(b)検出器アレイ内での信号積分のデューティサイクルが100%よりも小さい場合のSNRの劣化である。本発明による実施例はそのような問題に対する検体の解決方法を提供する。
【0018】
本発明の1つの実施例は、検体およびリファレンスに向けられる少なくとも1つの電磁放射光を生成する1つの光源装置を含む、例えば、生物学の検体の撮像用のシステムに関連している。そのような例としてのシステムは、複数の検出器を有し、少なくとも1つの検出器が検体から受け取った少なくとも1つの第一電磁放射光およびリファレンスから受け取った少なくとも1つの第二電磁放射光の組合せ(併用)に関連する信号検出が可能な少なくとも1つの検出装置を含んでよい。少なくとも1つの特定の検出器は、特定の電気的積分時間を持ってよく、特定の閾値よりも大きな第一のパワーレベルの第一部および第一部の直前または直後の第二部を有する持続時間の間の信号の少なくとも1部を受け取ることができる。第二の部分は、予め設定された閾値よりも低い、少なくとも1つの第二パワーレベルを持ってよく、特定の電気的積分時間の約10%以上の時間の間延長する。
【0019】
電磁放射光は、好ましくは中心波長が700から2000nmの範囲にある光である。検出器アレイは、好ましくは電荷結合デバイス(「CCD」)である。例としてのSD−OCTシステムを使用して、検出器アレイ中に検出される信号は、組合せの周波数成分またはスペクトルである。通常、スペクトルは回折格子などのようなスペクトル分離デバイスを使用して得られる。検出器アレイによってスペクトルを得るいくつかの方法は、従来技術でよく知られている。全視野OCTに対しては、信号は組合せの光学パワーであり、それは検体の特定の横方向の位置に結び付けられている。
【0020】
本発明のもう1つ別の実施例では、光源装置は特定の電気的積分時間当たり1つのパルスを生成するか、または特定の電気的積分時間の最大約90%の間に広がる放射光のバーストを生成するパルス広帯域幅光源である。各バーストは、その中に複数の超短光パルスを含んでいてよい。パルス光源の例は、Qスイッチレーザ、キャビティ−ダンプモードロックレーザ、および利得スイッチレーザを含む。好ましくは、パルス光源のスペクトルは、中心周波数の約1%よりも大きなスペクトル幅および約1マイクロ秒よりも短いパルス幅または放射光のバーストの継続時間を持っていてよい。光源装置は、1つの広帯域幅連続波光源およびCCDアレイに組み込まれた、1つの光学ゲートスイッチまたは電気的シャッタを含んでよい。光学パワーが閾値よりも低い時間ウインドウは、オフ状態と考えることができ、パワーが閾値よりも大きなウインドウはオン状態と考えることができる。閾値はオン状態の間のパワーレベルの50%よりも低いことが好ましく、しかしながら、通常のパルス光源はオンとオフとの間のずっと大きなパワー消光比を提供できる。単一の検出器の積分時間中に、1つまたは複数のオン状態が存在し得るが、全体の照明スパンまたは最初のオン状態から最後のオン状態の終わりまでの期間は検出器の積分時間の90%よりも短いことが好ましい。例えば、照明スパンが短ければ短いほど、より大きな運動アーチファクトの抑制を得ることができる。
【0021】
本発明のさらにもう1つの実施例では、光源装置は、出力スペクトルの平均の周波数が時間とともに変化する波長掃引光源であり得る。電磁放射光の平均周波数は、実質的に時間とともに連続的にミリ秒当り100テラヘルツよりも大きな同調速度で、そして特定の電気的積分時間の約90%よりも短い繰返し周期で繰返し変化してよい。電磁放射光の同調範囲は、中心波長が約700nmから2000nmの間で、同調幅が中心波長の約1%よりも大きく、そして瞬時ライン幅が同調範囲の約10%よりも狭い同調範囲を持っていてよい。そのような光源装置は、同調レーザ、ラマン自己周波数シフトと連動するソリトンレーザ、または同調フィルタと連動する連続波広帯域幅光源を含む。平均周波数は、実質的に時間とともに線形または正弦波で変化してよい。パルス光源に関しては、特定のピクセルによって受けられた光学パワーが閾値よりも低い時間ウインドウは、その特定のピクセルに対してはオフ状態と考えることができ、パワーが閾値よりも大きなウインドウはオン状態と考えることができる。閾値はオン状態の間のパワーレベルの50%よりも低いことが好ましく、しかしながら、通常のパルス光源はオンとオフとの間の著しく大きなパワー消光比を提供できる。ピクセルの検出器の積分時間中に、1つまたは複数のオン状態が存在し得るが、全体の照明スパンまたは最初のオン状態から最後のオン状態の終わりまでの期間はピクセルの積分時間の90%よりも短いことが好ましい。照明スパンが短ければ短いほど、より大きな運動アーチファクトの抑制を得ることができる。
【0022】
本発明の尚もう1つの実施例によれば、通常の生物学的検体の撮像用の方法を提供することができる。例えば、少なくとも1つの電磁放射光が検体およびリファレンスへ向けられて生成されてよい。検出装置の複数の検出器の少なくとも1つの検出器を使用して、検体から受けた1つの第一電磁放射光、および少なくともリファレンスから受けた1つの第二電磁放射光の組合せを有する少なくとも関連する信号の一部を検出できてよい。少なくとも1つの特定の検出器は特定の電気的積分時間を持ってよく、特定の閾値よりも大きな第一のパワーレベルの第一部分および第一部分の直前または直後の第二部分を有する持続時間の間の信号の少なくとも1部を受け取ることができる。上記第二部分は、予め設定された閾値よりも低く、少なくとも1つの第二パワーレベルを持ってよく、特定の電気的積分時間の約10%以上の時間の間延長できる。
【0023】
図3は、広帯域幅パルス光源を基にした本発明によるシステムおよび方法の1つの実施例の検体出力を示している。図3に示すように、そのような光源は、パルスと検出器アレイの積分ウインドウとの間のタイミング同期をとって、検出アレイの各積分ウインドウ当り、単一の光学エネルギのバーストまたは単に「パルス」を放出する。そのような光源の例は、タイムゲートされた連続波または外部強度変調器(シャッタ)210を使用したモードロック広帯域幅連続波光源200(図4(a)に示す)、Qスイッチポンプレーザ220およびスーパコンティニューム非線形ファイバ(生成媒質)230を基にしたスーパコンティニューム光源(図4(b)に示す)、ダイオードポンプレーザ240および非線形ファイバ(非線形媒質)250を基にしたセルフQスイッチスーパコンティニューム光源またはラマン光源(図4(c)に示す)を含んでよい。そのような光源を使用すると、サブマイクロ秒からサブナノ秒の範囲にあって、実質的に検出器アレイ自身の積分時間よりも短い有効な信号積分時間がパルスの持続時間に等しくなる。単一パルス動作が説明されたけれども、パルスが検出器の積分時間よりも実質的に短い期間に生成されるならば、各積分時間当たり複数のパルスを放出する他の光源が使用されてもよい。眼科のような臨床アプリケーションの実施例では、網膜を照明することができる最大の光学エネルギまたは強度レベルは組織を損傷させる可能性があるので制限されている。図4(a)に示されている実施例の装置を使用して、SLDおよびTi:サファイアモードロックレーザのような高い出力パワーを放出する広帯域幅光源を使用し、デューティサイクルを減少し、検体に有効な露出エネルギを減少させるために出力を時間ゲートすることが可能である。
【0024】
図5(a)−(d)は、広いスペクトル範囲を時間的に繰返し掃引される、実質的に狭いスペクトルを放出する波長掃引光源を基にした、本発明のもう1つ他の実施例の原理を説明するグラフを図示している。図5(c)は、のこぎり歯状に出力波長を掃引した掃引光源を使用して生成された信号の例を示している。同調サイクルは検出器アレイの積分ウインドウと同期されている。この例の場合、各検出器素子は実効的信号積分時間を決定する短い時間だけ対応する波長の光を受けることができる。数値例として、全体の同調範囲が150nm、中心が1300nmで瞬時ライン幅が1nmのとき、実効的信号積分時間は検出器の積分時間の1/100にできる。
【0025】
図6(a)−(c)に示されているように、波長掃引光源は通常の広帯域幅光源300に続いて波長走査フィルタ310を使用して実現されてもよい。本発明の1つの変形例によれば、1つの波長掃引レーザは利得媒質320、同調可能なフィルタ330およびレーザキャビティ350中の出力カップラ340が使用されてよい。波長掃引レーザは、スペクトロメータの解像度よりも狭いライン幅を生じるように構成されてよく、この場合スペクトロメータ設計の複雑さおよび許容誤差が緩和される。上記の波長掃引光源および検出器アレイの組合せは光学周波数領域撮像に類似しており、ドップラシフトのような運動アーチファクトを示している。運動アーチファクトをさらに減少させるには、波長掃引光源は低いデューティサイクルまたはQスイッチ領域で動作されてよく、これによって実行信号積分時間をさらに減少できる利点がある。もう1つの可能な光源は、ソリトン光源360およびラマン媒質370を使用したソリトンセルフ周波数シフトに基づいた広範囲同調光源を含むことができる。
【0026】
例としての従来のSD−OCTシステムは、スーパールミネセントダイオード(「SLD」)のような連続波(「CW」)広スペクトル光源または10−100MHzの範囲の高い繰返しの極短モードロックパルスを使用している。全視野OCTシステムは通常連続波熱光源を使用してきた。そのような通常のシステムの場合、CCDアレイは一般に定常的に照明されるので、CCDカメラの露出時間が単一Aラインの信号取得時間を決定する。しかしながら、Aライン取得時間中の検体またはプローブの運動は、信号の減衰や空間解像度の劣化のような各種の望ましくないアーチファクトを生じる可能性がある。特に、軸方向の検体の運動により、検出されたスペクトル縞はかなり消え、かなりの画像の消失を生じる可能性がある。SD−OCT用に適切なカメラは、通常10マイクロ秒よりも長い露出時間を提供することを考慮すると、検体およびプローブの運動が日常的な生物医学的アプリケーション用には干渉縞消去問題の解決が好ましい。
【0027】
図7(a)−(c)は、スペクトロメータ中のCCDアレイによる検出信号の例で、次の3つの異なった光学光源でどのようにSD−OCTシステムで信号が検出されるかを示している。広帯域連続波光源(図7(a))、広帯域幅パルス光源(図(b))、狭帯域幅波長掃引光源(図7(c))。この図では、各CCDピクセルが光源光の狭帯域幅部分を受けるように、スペクトルが分散した広スペクトル光400がCCDアレイ410に入射している。垂直なバー420はカメラがフォトン生成電子を積分する時間ウインドウを示している。図7(a)は、SD−OCTの共通の器具を使用して得られた信号を示している。図7(b)および(c)に示された信号を生成するシステムの動作原理は以下に説明される。
【0028】
特に、図7(b)は、繰返し速度がCCDの読出し速度に等しい一連の短い広帯域パルス光430を描写している。この例のシステムの積分時間は、カメラの読出し時間よりもむしろパルスの継続時間によって与えられている。結果として、スナップショットのAラインプロファイルが検体またはプローブの運動とは無関係に得られる。例としての技術は概念的には写真におけるストロボスコピック照明の使用と類似している。大抵の生物学的アプリケーションに対しては、運動アーチファクトの防止にはナノ秒パルスは十分短いが、原則として、このアプローチは低い繰返しのモードロックレーザを使用してフェムト秒の時間解像度のAラインの取得を提供できることに注目することは興味のあることである。次の分析は、しかしながら、短い継続時間の広帯域幅光の単一のバーストまたはモードロックパルスの短い列を含むバーストのいずれかを提供する任意のパルス光源に関連している。パルス光源SD−OCTの撮像特性を理解するために、軸運動が存在するときのパルスおよび連続動作の信号対雑音比(SNR)が再調査されてよい。例えば、TおよびTをそれぞれパルス継続時間およびカメラの電気的積分時間とする。光学プローブビームを平行な軸方向に速度vで運動する検体に対して、v=0で正規化された信号パワーSは次式で与えられる。
【数1】

ここで、P(t)はパルスの時間変化する光学パワーであり、k=2π/λは中心周波数λに対する波数を示す。方程式1はTを最大値の半分の位置での全幅(「FWMH」)パルス幅として、矩形パルスに対してs≒sin(/kΔz)/(/kΔz)、ガウスパルスに対してs≒exp[−/kΔz/(2ln2)]を与える。ここで、Δz=Vはパルス期間Tの全体の検体の動きである。これらの式はパルスの継続時間中に検体の運動が光の半波長より大きいと、かなりの信号の消失が生じることを意味している。それ故、運動に起因する信号消失に関しては、短いパルス幅の技術(Ts≪Te)が従来の連続波オペレーションに対してかなりの利点を提供する。同様に、パルス動作は検体の運動および横方向のビーム走査に起因する空間解像度の劣化などのような他の運動アーチファクトをまた抑制できることを見ることができる。
【0029】
パルス動作の基本的な雑音特性は連続波のそれとほぼ同一であると思われる。その理由は検出帯域幅がカメラの積分時間によってのみ決定されるからである。パルスおよび連続波の両方の光源が同一の平均光学パワーおよび相対強度雑音(「RIN」)を生成する場合、両者は静止検体に限って言えば同一のSNRを生じるであろう。
【0030】
図7(c)は、狭帯域幅、波長掃引光源に基づいたもう1つの例のパルス光源SD−OCTアプローチを使用したもう1つの例の技術を使用して生成された信号を示している。CCDアレイ420へ入射する光学スペクトル440は時間とともに連続的に変化しているので、各々のCCDピクセルは短い時間間隔の間だけその対応するスペクトル成分を受け取る。パルス広帯域幅照明と同様に、高速に波長を掃引することによって縞の消失に起因する信号の消失に無関係なSD−OCT信号を得ることができる。しかしながら、パルス動作と異なり、個々の「スペクトルパルス」は同時刻にCCDピクセルには到達しない。
【0031】
図7(c)に示されている線形掃引に関して、掃引動作は2003年10月27日に出願された米国特許出願番号60/514,769に記載されている光学周波数領域撮像(「OFDI」)にほぼ類似しており、全体の開示がここに参考資料として組み込まれる。この例の掃引動作では、掃引光源および標準フォトダイオードを使用して時間の関数としてスペクトル縞が測定されている。それ故、両方の撮像技術が同様の運動アーチファクトを示すことができる。例としてのOFDIシステムによって生成される運動アーチファクトの生成はよく知られている。例としてのSD−OCTシステム中での掃引光源動作は、しかしながら、これらの仕様が検出スペクトロメータによって制御されているので、それが線形同調スロープ、または光源の狭い瞬時ライン幅を要求しないという点でOFDIシステムの動作とは異なっている。波長掃引レーザにおける同調速度およびパワーは線形性および瞬時ライン幅の制約によってしばしば制限されていることを考慮すると、そのような差異は重要である。
【0032】
例えば、パルスおよび波長掃引光源は本発明の実施例に従って構築されてよい。本発明の例としての、ゲートデバイスを含む、システムのブロック図が図8(a)に示されている。パルス広帯域光源は、半導体光学増幅器450(例えばSOA、フィリップスCQF882/e)からの連続波広帯域増幅器の自然放出(「ASE」)の外部時間ゲートによって提供できる。時間ゲート前のSOAの出力は中心波長が1.3ミクロン、注入電流が450mAで、全出力が7mWの連続波非偏光ASEと特徴付けできる。連続波ASEは多角形の走査ミラー460、コリメータレンズ462、合焦レンズ464を含み、サーキュレータ466と連動する外部光学的ゲートデバイスと結合できる。多角形ミラーは面と面の角度が9度で40個の面を持っていた。コリメータレンズ462および合焦レンズ464の焦点距離はそれぞれ11および100mmで、出力にデューティサイクル約5%を得ることができる。図9(a)は、多角形走査器が1秒間に474回転され、パルス繰返し速度が18.94kHzのときに、InGaAs光検出器およびオッシロスコープ(検出帯域幅=100MHz)で測定した出力パルス列を示している。測定されたパルス幅および対応するデューティサイクルはそれぞれ2.85マイクロ秒(FWHM)および5.4%であった。電力計で測定される平均出力電力は300マイクロワットであり得る。図9(b)は光学スペクトルアナライザで測定された出力スペクトルを示している。スペクトルは中心波長が1300nm、FWHMが66nmで、ほぼ入力ASEのそれと同一でよい。
【0033】
図8(b)は、波長掃引レーザを含む本発明によるシステムのもう1つの実施例のブロック図を示している。レーザは同じSOA450および光ファイバリングレーザキャビティ468内の多角形ミラーのスキャナ(走査ミラー)460に基づいた波長走査フィルタを使用した。回折格子470(1mm当り830ライン)、4f構成の2つのレンズ(472;f=60mm、474;f=63.5)および同じ40個の面を有する多角形ミラースキャナ(走査ミラー)460から構成された走査フィルタがパルス光源として使用された。走査フィルタは、1320nm波長に中心を持つ275nmの自由スペクトル範囲を有するように構成でき、CCDカメラのデューティサイクル(46%)にほぼ適合するレーザ出力のデューティサイクルを結果として得ることができる。フィルタの通過帯域がSOAの利得帯域幅の外側を走査するとき、光源はレーザ閾値に到達せず、単にASEを生成する。図9(c)は、掃引繰返し速度が18.94kHzのレーザ出力の時間特性を示している。出力パワーがガウス分布のようなプロファイルで変化する領域は、光源がレーザ閾値以上で動作されているときに対応する。この領域の外側では出力は一定パワーのASEである。掃引レーザ動作中にASEレベルがどれくらい検出光に貢献しているかを決定するために、キャビティ中のフィルタとSOAとの間に5%のタップカップラを挿入して、後方に伝搬するASEパワーが測定された(図9(c)の下部のトレース、灰色ライン)。SOA中の利得飽和によってASEが抑制されたので、ASEレベルはレーザ動作中かなり低下した。レーザ対ASEレベルは、レーザ同調範囲の中央で16dBもの高さに到達した。水平バー(緑)はカメラの積分ウインドウを表しており、これはレーザ同調と同期が取られている。電力計で測定された平均出力電力は18mWであった。
【0034】
図9(d)は、光スペクトルアナライザで測定されたピーク−ホールドモードでの1つの例としての出力スペクトルを示している。ピーク−ホールドモードでは、与えられた時間でASEのスペクトル密度はレーザのそれよりもかなり低いので、ASEの測定への寄与は無視できる。従って、測定されたスペクトラムは掃引レーザの同調包絡線を表している。同調範囲は約135nmで、中心波長は1325nmであった。1つの例として掃引出力の瞬時のライン幅は、遅延可変干渉計を使用してコヒーレンス長を測定して決定され、約0.4nmであった。
【0035】
図10は、本発明によるシステムのもう1つの実施例のブロック図を示している。この例としてのシステムは干渉計、プローブ、およびS.H.Yun他、「1.3マイクロメータ波長での高速スペクトル領域光コヒーレンストモグラフィ」、3598−3604(2003)他に詳細が説明されている検出スペクトロメータを含んでいる。要約すると、この例としてのシステムは光源500、スキャナドライバ502、スキャナクロック発生器504、5%タップ512を含む光トリガ発生器510、1つの(オプションの)光狭帯域幅フィルタ514、光検出器516およびTTL生成回路518を含んでいる。光狭帯域幅フィルタ514は、掃引光源動作に使用されているが、パルス広帯域光源動作には不要である。干渉計はサーキュレータ520、偏光コントローラ522、偏光器524、10/90結合器534、コリメータ536、ニュートラル濃度フィルタ538、リファレンスミラー540、ガルバノメータ搭載ミラー542、ガルバノメータドライバ544、結像レンズ546、検体550を含むことができる。検出アームはコリメータ562、回折格子564、結像レンズ566、CCDリニアアレイ570、カメラ572を有する検出スペクトロメータ560を含むことができる。ガルバノメータは、FMHMビーム径で共焦点長がそれぞれ18ミクロンおよび1.1mmで、検体を横切って横方向のビームを提供するためにプローブ中に使用できる。検出スペクトロメータ560は、点線ボックス内に示されているが、1200本/mmの線引きされた回折格子564、結像(合焦)レンズ566(f=150mm)および512素子のInGaAsCCDアレイ(Sensors Unlimited Inc.,SU512LX)を備えたラインスキャンカメラ(LSC)から構成されている。偏光コントローラはCCD中の縞の可視性を最大化するために調整された。中心が1320nm、全体の波長スパンが106nmで解像度0.1nmの512素子CCDアレイに投射された。
【0036】
カメラの読出しは、光源出力から生成された外部TTL信号によってトリガできる。パルス光源の場合、図10の点線ボックスに示されているように電気的トリガパルスは光学パルスから直接生成された。掃引光源の場合、レーザ出力はサーキュレータおよび0.2nmの帯域幅と90%の反射率を有するファイバブラッグ格子反射器の組合せによって伝送されてよい(狭帯域フィルタ装置は小さな点線ボックス510で表されている)。レーザの出力スペクトルがブラッグ格子の反射帯域に渡って掃引されたとき、光検出器は生成された一連の短いパルスを検出できる。光検出器の出力から調整可能な位相遅延を持ったTTLトリガパルスが生成された。
【0037】
上記のように両方のレーザは、繰返し速度18.939kHzで動作させることができる。この速度はカメラの最高の読出し速度に対応していた。トリガを受けて、カメラは24.4マイクロ秒の間で光生成電子を積分し、次の28.4マイクロ秒の間に積分された電圧を読み出すことができる。図7(a)および(c)に示すように、PPLパルスジェネレータ中の位相遅延を調整して、カメラの積分時間ウインドウは光源の出力に合わせることができた。カメラ出力は、4チャンネル、12ビットデータ取得ボード582(National Instruments, NI PCI−6115)およびパーソナルコンピュータ584の処理でディジタル化できる。データ処理は、ゼロパッディング、内挿およびリニア空間へのマッピングを含み、その後高速フーリエ変換して画像を生成してよい。
【0038】
SD−OCT撮像は次の3つの異なった光源を使用して実行できる。(a)SOAから直接得られた連続ASE、(b)強度ゲートASEパルス(図8(a)に示すように)、および(c)波長掃引レーザ(図8(b)に示されているように)。運動アーチファクトを調査するために、音響スピーカの上に紙を搭載して1つの検体を作成できる。図11は比較のために3つの異なった光源で取得された例としての画像を示している。図11の左側に示されている部分は、紙の検体が静止位置に保持されているときの連続波、パルスおよび掃引光で取得された例としてのOCT画像である。各画像は軸方向に256、横方向に500ピクセルを含み、深さ2.1mm、幅5mmに広がり、全時間26.4msに渡って取得された。画像は反射のダイナミックレンジが40dBに渡って対数逆グレースケールを使用して生成される(図11のグレースケールマップに示す)。光源の各々に対し、検体を照明している光学パワーはプローブのニュートラル濃度フィルタを使用してほぼ同じレベルに調整された。各光源に対するグレースケールマップのオフセットは細かく調整でき、その結果、3つの静止画像がほぼ同じコントラストを示すようにできる(図11のセクションa、c、e参照)。軸方向に運動する検体の画像(図11のセクションb、d、およびf)は、スピーカが80Hzでピークからピークまで(ピーク間)の振幅が0.8mmで正弦波状に駆動されたときに取得できる。縞の消去に起因する信号の消失は連続波ASE光源の場合に顕著である(図11、セクションb参照)。軸方向の速度がゼロの振動の山と谷を除いて、画像のコントラストおよび浸透深さは著しく劣化している。これに比べて、画像dはパルス光源で取得され、画像の消失がかなり減少していることを示している。信号の消失は、波長掃引光源を使用しているときは観察されない(図11、セクションf参照)。
【0039】
信号消失の量を数値化するために、図11に示されている例としての画像から得られた各Aラインに沿った線形パワーの単位でピクセル値の和を取得でき、これは特定のAラインの全信号パワーを表している。31番目から230番目までの素子の全200ピクセルが和として考慮された。その結果が図12(a)−(c)に示されており、図12(a)の結果は連続波光源を使用して得られた信号に対応し(図11のセクションaおよびb参照)、図12(b)はパルス光源を使用して得られた信号に対応し(図11セクションcおよびd参照)、図12(c)は掃引光源を使用して得られた信号に対応している(図11セクションeおよびf参照)。
【0040】
各々のグラフの中で、積分された信号パワーがAラインインデックスの関数として、静止検体画像(明るい線)および運動する検体画像(暗い線)に対してプロットされている明るい線で描写されているように、静止検体の信号パワーは、プローブビームが検体の上を走査されたときスペックルに起因する、標準偏差が約2dBのランダムな変動を示している。スペックル平均化された平均値は検体の横方向の位置に対して線形に変化し、その変動は有限のコンフォーカルパラメータおよび結果として生じた深さ方向に依存性のある収集効率に起因していた。図11のセクションb、d、fから得られた信号パワートレース(より暗いライン)は運動によって誘起された信号消失の減少に関してパルスおよび掃引光源の利点を明らかに証明している。
【0041】
時間ゲートパルスは、信号積分時間を24.4マイクロ秒から2.85マイクロ秒まで8.6倍減少させる可能性がある。瞬時ライン幅が0.4nmの掃引光源に対して、個々のCCDピクセルは各Aライン取得当りわずか75nsだけ照明され、信号積分時間の325倍の減少を表している。方程式(1)に基づいた理論曲線は次の例外を除いて実験結果と完全な一致を示す。実験雑音フロアが−14dBより大きな信号損失の検出を禁止し、図12(c)中の青と黒曲線との間の小さな不一致は2つの検体間の異なった深さの不均一なプローブの収集効率に起因すると考えられる。
【0042】
例としてのSNR分析は、パルスASE光源が本質的に同一の平均光パワーを持った連続波ASEと同じ雑音特性を生成したことを示している。しかしながら、波長掃引レーザを使用して取得された画像は、深さに依存して、同一の平均パワーのASE光源の使用と比べて10−20dB高い雑音フロアを示した。我々はこの雑音フロアの増加はCCD積分時間の逆数に対応する、DCから41kHzの周波数帯域の中での掃引レーザのRINに起因すると考える。掃引光源で得られた最高の感度は、リファレンスアームパワーが1〜2マイクロワットで約−95dBであってよい。
【0043】
生体外の人間の冠状動脈の例としてのSD−OCT撮像が光ファイバカテーテルを使用して実行されてよい。光ファイバカテーテルはグレーデッドインデックスレンズおよびその遠い方の先端に90度のプリズムを含み、1秒当り最高100回転(rps)までの回転速度を提供できる高速回転ジョイント経由で干渉計に接続された。図13は、同じAライン取得速度の18.94kHzでの連続波ASE光源(図13の画像AおよびB参照)、掃引光源(図13の画像CおよびD参照)で得られた、例としての画像を示している。画像AおよびBと画像CおよびDの差はカテーテルの回転速度で、画像AおよびCに対しては9.5rpsで画像当り2000Aラインに対応し、画像BおよびDに対しては37.9rpsで画像当り500Aラインに対応している。干渉計のゼロ遅延は検体と外部プリズム表面との間に配置され、組織の画像上の重畳された円形のアーチファクトを生じている(pとマークされている)。
【0044】
画像Aは血管の通常のOCT画像を表現していてよい。これに対して画像Bは信号の損失による明らかな径方向の線条を示すことができる。画像の消失は主としてカテーテルに起因する光路長の変調によるものと考えられ、回転速度とともに増加する。光路長の変調は3つのメカニズムから生じる可能性がある。(a)オフセンターオブジェクトの回転ビーム走査によって、プローブが検体から遠ざかったり、近づいたりするようなプローブビームの軸方向長の変化が生じることは避けられない。(b)回転するカテーテルの先端が保護鞘の中で揺れ動き、プローブと検体との間の距離を変調する可能性がある。(c)回転ジョイントからの機械的振動がねじりまたは変形によってカテーテルの内側で光ファイバの長さを変調する可能性がある。そのような第三のメカニズムがこの特定の実験では優勢であると考えられ、その理由はプリズム表面に対応する円(p)は、また同一の半径位置でかなりのコントラストの損失を受けているからである。図13の画像CおよびDは掃引光源で得られた例としてのSD−OCT画像である。信号の消失は画像Dでは顕著ではなく、明かにパルス光源の取り組みの利点を証明している。
【0045】
このようにして、パルスまたはゲート照明の利点を認識するために各種の戦略が適用できる。伝統的な光源は、連続波SLD、スーパコンティニューム光源、またはモードロックレーザを含む。これら光源の各々が外部強度変調の仕組みを使用してパルス光源に変換できる。強度変調またはスイッチとして、電子光学、または音響光学変調器または注入電流変調器を考えることができる。代わりに組込みの電子シャッタを備えたCCDカメラが使用されてよい。この外部ゲートの取り組みはしかしながら、光学パワーの損失を生じ、それ故に検出感度を劣化させる主要な欠点を持っている。しかしながら、運動が縞の消去を通じてかなりの信号の消失の原因となる状況においては、外部ゲート法は光学パワーの損失にもかかわらず、よりよい感度を導くことができる。他のアプリケーションでは、しかしながら、システム中で使用可能な光学パワーは、検体の最大許容露出によってしばしば制限されている。この場合、外部ゲート法は強力な光源からシステムへ入力するパワーレベルを減衰させるための有効な方法であろう。例えば、眼科の網膜の撮像はSD−OCTを使用して波長800nmで実行されてきている。この波長では、目への許容最大連続露出は米国規格協会(ANSI)に従って、約600−700マイクロワットに制限されている。このアプリケーションに対しては、市販の利用できるTi:サファイアレーザからの出力をゲートして、システムに十分なパワーを供給でき、運動に対する感度を1桁減少できる。
【0046】
外部ゲートの代わりに各種パワー効率のよい、内部変調技術を採用してもよい。例えば、Qスイッチおよびキャビティダンピングはよく知られた技術で超短パルスレーザに適用できる。繰返し速度2,3から10kHzのQスイッチスーパコンティニューム光源が報告されており、例としてのSD−OCTシステムの中に使用するのに適している可能性がある。運動アーチファクトを減少する利点の他に、パルス光源の取り組みの縞消去の減少は、またシーケンシャル位相ディザリングに基づいた直交縞検出を容易にする可能性がある。
【0047】
この明細書の中で説明されている波長掃引光源の使用は、基本的にはOFDIおよびSD−OCTの間のハイブリッド技術であり、この技術は狭い瞬時ライン幅を含み、同調線形性が緩和されたより柔軟性の高いOFDI光源を許容する可能性がある。この場合、スペクトロメータの高解像度および線形性は、共振的に走査されたファブリペローフィルタのような非線形同調素子を備えた掃引レーザまたは非線形ファイバ中のソリトンセルフ周波数シフトに基づいて同調光源に適応できる。さらに掃引レーザの瞬時ライン幅の緩和された要求は、高出力パワーの生成を容易にしてよい。
【0048】
本発明によるシステムのもう1つ他の実施例では、CCDアレイの各々が2次元アレイであり得る。2次元同時走査は2次元アレイを使用して実行でき、そこにおいては1つの軸に沿ってスペクトル情報がエンコードされ、一方、第二のディメンジョンに渡って空間情報がエンコードされる。図14は、線光源600、レンズ604、ビームスプリッタ610および2次元CCDアレイ620を含むそのようなシステムのブロック図が示されている。組織は好ましくはラインビームで照明され、検体の照明された部分はアレイの1次元上に撮像され、一方光はスペクトル的にアレイの他方向に分散される。先に説明したように、連続光源による長い積分時間は結果として運動アーチファクトおよび縞の消去を導く。また、2次元アレイの読出し時間は1次元アレイのそれよりも大きい。パルス光源の使用によって、運動アーチファクトおよび縞の消去は防止でき、そこにおいて露出時間はフレーム転送速度よりもかなり短い。光強度はライン上に分布されているので、より多くのパワーが組織に入射することが許容される。100フェムト秒よりも長いパルス幅のパルス光源を使用するとき、光源は眼科のアプリケーションではセミ連続であるとして取り扱うことができる。このようにして、高いピークパワーが短い時間に渡って使用でき、一方、平均パワーは、組織の光露出のANSI標準に準拠している。加えて、掃引光源は、ライン照明と組み合わせて使用でき、そこでは検出器は1または2次元であり得る。1次元アレイの場合、全体のラインに渡る組織の情報は各波長に対して順次1次元アレイによって取得される。2次元アレイを使用して波長は、アレイの第二のディメンジョンにエンコードされる。
【0049】
本発明のもう1つの実施例では、図15にブロック図として描写されているように、パルス光源が全視野光コヒーレンストモグラフィに使用できる。検出器アレイは、通常2次元CCDアレイである。全視野OCTの動作原理および一般的なシステムアーキテクチャは従来技術としてよく知られている。全視野OCTは通常正面画像を生成する。先のSD−OCTの説明のように、パルス光源の取り組みは通常2次元のCCDアレイ内の実効信号取得時間を効果的に減少する。繰返し速度はCCDアレイのフレーム読出し速度に適合されている。通常の全視野OCT技術は、スペクトル領域干渉計法に基づいていないので、掃引光源の取り組みは運動アーチファクトに関しては全視野OCTで利点を提供しない。それにもかかわらず、その掃引繰返し速度がCCD読出し速度に適合された掃引光源は従来の広帯域幅光源の代替光源として全視野OCTに使用できる可能性がある。これは時間積分法でCCDから見た掃引スペクトルは、同一のスペクトル包絡線の広帯域幅スペクトルと同一であるという事実による。光源700は好ましくはKohler構成のハロゲンまたはタングステンランプのような空間的にコヒーレントな光源で、しかし全視野撮像で運動アーチファクトを減少するためにパルス領域で動作されている。光源ビームはビームスプリッタによってリファレンスおよび検体に分割されている。高い開口数の対物レンズ710が通常使用される。ヘテロダイン検出を実現するために、位相ディザリング用にリファレンスミラー540はPZTのような機械的アクチュエータに取付けられてよい。
【0050】
ここで開示された発明は冠状動脈撮像、消化管、眼科撮像からダイナミックな生物学的または化学プロセス、移動材料および部品のモニタリングで、高感度、高速度、運動アーチファクトのない撮像が好まれる各種アプリケーションに使用できる。
【0051】
ここまで説明してきたものは単に本発明の原理を例示するだけである。説明された実施例の各種変更および代替はここでの教えを考慮して当業者には明らかである。例えば、ここに説明された発明は、2003年10月27日に出願された米国仮特許出願番号60/514,769で、2003年1月24日に出願された国際特許出願番号PCT/US03/02349に記載されている例としての方法、システムおよび装置とともに使用することが可能で、その全体をここに参考資料として組み込む。ここに明示的には示されず、また説明されなかったけれども、当業者が本発明の精神と範囲内で各種システム、装置および方法を案出し、本発明の原理を具象化することができる。加えて、上記で参照されたすべての発行物、特許および特許出願はその全体が参考資料としてここに組み込まれる。
【図面の簡単な説明】
【0052】
【図1】従来のSD−OCTシステムの例を示す図である。
【図2A】従来の連続波光学光源から得られたスペクトルおよび時間的特徴の一連の例を示すグラフである。
【図2B】従来の高速繰返しモードロックレーザ光源から得られたスペクトルおよび時間的特徴の一連の例を示すグラフである。
【図3】従来の低速繰返し広帯域幅光源から得られたスペクトルおよび時間的特徴の一連の例を示すグラフである。
【図4】(a)−(c)は本発明による低速繰返し広帯域幅光源の実施例を示すブロック図である。
【図5】(a)−(d)は1つの例としての波長掃引光源から得られたスペクトルおよび時間特性を示すグラフである。
【図6】(a)−(c)は本発明による1つの例としての波長掃引光源装置の実施例を示すブロック図である。
【図7】(a)はスペクトロメータ内のCCDアレイによる連続光の検出信号の一例を示す図である。(b)はスペクトロメータ内のCCDアレイによるパルス光の検出信号の一例を示す図である。(c)はスペクトロメータ内のCCDアレイによる掃引光の検出信号の一例を示す図である。
【図8】(a)は1つの例としてのパルスASE光源を示す図である。(b)は1つの例としての波長掃引光源を示す図である。
【図9】(a)および(b)は例としてのパルスASE光源から得られた例としての時間およびスペクトル出力特性の信号を示す図である。(c)および(d)は例としての掃引光源から得られた時間およびスペクトル出力特性の信号を示す図である。
【図10】本発明による1つの実施例のSD−OCTシステムの一例を示すブロック図である。
【図11】3つの異なった光源で、検体が静止状態(セクションa,cおよびe)のとき、および80Hzで0.8mmに渡って運動している(セクションb、dおよびf)ときに取得された、紙のSD−OCT画像の一例を示す図である。
【図12】(a)は図11に示された画像aおよびbから得られた、Aラインインデックスまたは時間の関数として、各Aラインの256デプスポイントの反射率の和を全体の信号パワーの変化として示す図である。(b)は図11に示された画像cおよびdから得られ、Aラインインデックスまたは時間の関数として、各Aラインの256デプスポイントの反射率の和を全体の信号パワーの変化として示す図である。(c)は図11に示された画像eおよびfから得られた、全体の信号パワーの変化、Aラインインデックスまたは時間の関数として、各Aラインの256デプスポイントの反射率の和を全体の信号パワーの変化として示す図である。
【図13】本発明によるシステムの実施例を使用して得られた、SD−OCTの生体外の冠状動脈の画像の一連の例を示す図であり、カテーテルの回転速度および光源は次のとおりである(セクションA−4.5rps、連続ASE光源、セクションB−37.9rps、連続ASE光源、セクションC−4.5rps、掃引光源、およびセクションD−37.9rps、掃引光源)。
【図14】ラインパルスまたは掃引光源および2次元CCDアレイを使用するもう1つの例のSD−OCTを示すブロック図である。
【図15】パルス光源および2次元CCDアレイを使用する1つの例の全視野OCTシステムを示すブロック図である。
【符号の説明】
【0053】
10 広帯域幅光
20 カップラ
22 検体アーム
24 リファレンスアーム
26 ミラー
30 プローブ
40 検体
44 サーキュレータ
50 スペクトロメータ
52 コリメータ
54 回折格子
56 レンズ
60 CCDアレイ
62 カメラ
70 ディジタイザ
74 コンピュータ
200 モードロック広帯域幅連続波光源
210 シャッタ
220 Qスイッチポンプレーザ
230 スーパコンティニューム非線形ファイバ
240 ダイオードポンプレーザ
250 非線形ファイバ
300 広帯域幅光源
310 波長走査フィルタ
320 利得媒質
330 フィルタ
340 出力カップラ
350 レーザキャビティ
360 ソリトン光源
370 ラマン媒質
400 広スペクトル光
410 CCDアレイ
420 垂直なバー
450 半導体光学増幅器(SOA)
460 走査ミラー
462 コリメータレンズ
464 合焦レンズ
466 サーキュレータ
472,474 レンズ
500 光源
502 スキャナドライバ
504 スキャナクロック発生器
510 光トリガ発生器
514 光狭帯域幅フィルタ
516 光検出器
518 TTL生成回路
520 サーキュレータ
522 偏光コントローラ
524 偏光器
534 10/90結合器
536 コリメータ
538 ニュートラル濃度フィルタ
540 リファレンスミラー
542 ガルバノメータ搭載ミラー
544 ガルバノメータドライバ
546 結像レンズ
550 検体
560 検出スペクトロメータ
582 4チャンネル、12ビットデータ取得ボード
584 パーソナルコンピュータ

【特許請求の範囲】
【請求項1】
検体の少なくとも一部を撮像するシステムであって、
前記検体および参照物に向けて少なくとも1つの電磁放射光を生成する光源装置と、
前記検体から受けた少なくとも1つの第一電磁放射光および前記参照物から受けた少なくとも1つの第二電磁放射光の組合せに関連する信号を検出可能な少なくとも1つの検出器により複数の検出器を含む少なくとも1つの検出装置とを備え、
前記検出器の少なくとも1つの特定の検出器は、特定の電気的積分時間を有し、
前記少なくとも1つの特定の検出器は、予め設定された閾値よりも大きい、少なくとも1つの第一パワーレベルを有する第一の部分および前記少なくとも1つの第一の部分の直前または直後の第二の部分を有する時間分、少なくとも前記信号の一部を受信し、
前記少なくとも第二の部分は、予め設定された閾値よりも低い、少なくとも1つの第二パワーレベルを有するとともに、
前記少なくとも第二の部分は、前記特定の電気的積分時間の少なくとも約10%の時間の間延長する、
ことを特徴とするシステム。
【請求項2】
前記信号は、少なくとも1つの組合せの周波数成分であることを特徴とする請求項1に記載のシステム。
【請求項3】
前記少なくとも1つの特定の検出器は、前記周波数成分の少なくとも1つを受けることを特徴とする請求項2に記載のシステム。
【請求項4】
前記光源装置は、パルス広帯域幅光源であることを特徴とする請求項1に記載のシステム。
【請求項5】
前記パルス光源によって生成された前記少なくとも1つの電磁放射光は、前記特定の電気的積分時間当たり1回のパルスであることを特徴とする請求項4に記載のシステム。
【請求項6】
前記パルス光源は、Qスイッチレーザ、キャビティ−ダンプモードロックレーザ、および利得スイッチレーザの少なくとも1つを含むことを特徴とする請求項5に記載のシステム。
【請求項7】
前記光源装置によって生成された前記少なくとも1つの電磁放射光は、前記特定の電気的積分時間の最大約90%の間の放射光のバーストであることを特徴とする請求項4に記載のシステム。
【請求項8】
前記放射光のバーストは、複数のパルスを含むことを特徴とする請求項7に記載のシステム。
【請求項9】
前記パルス広帯域幅光源によって生成された前記少なくとも1つの電磁放射光は、約700ナノメートルから2000ナノメートルの間の中心波長のスペクトルを有することを特徴とする請求項4に記載のシステム。
【請求項10】
前記パルス広帯域幅光源によって生成された前記少なくとも1つの電磁放射光は、前記中心波長の約1%より大きなスペクトル幅のスペクトルを有することを特徴とする請求項9に記載のシステム。
【請求項11】
前記パルス広帯域幅光源によって生成された前記少なくとも1つの電磁放射光は、およそ1マイクロ秒よりも短いパルス幅を有することを特徴とする請求項5に記載のシステム。
【請求項12】
前記放射光のバーストの持続期間は、約1マイクロ秒よりも短いことを特徴とする請求項4に記載のシステム。
【請求項13】
前記光源装置は、光ゲートスイッチを含むことを特徴とする請求項3に記載のシステム。
【請求項14】
前記少なくとも1つの電磁放射光の周波数は、時間とともに変化することを特徴とする請求項3に記載のシステム。
【請求項15】
前記少なくとも1つの電磁放射光の平均周波数は、実質的に時間とともに連続的にミリセカンド当り100テラヘルツよりも大きな同調速度で変化することを特徴とする請求項14に記載のシステム。
【請求項16】
前記平均周波数は、前記特定の電気的積分時間の約90%よりも短い繰返し周期で変化することを特徴とする請求項15に記載のシステム。
【請求項17】
前記光源装置によって生成された前記少なくとも1つの電磁放射光は、約700ナノメートルから2000ナノメートルの間の中心波長を有することを特徴とする請求項14に記載のシステム。
【請求項18】
前記光源装置によって生成された前記少なくとも1つの電磁放射光は、前記中心波長の約1%より大きな同調範囲を有することを特徴とする請求項17に記載のシステム。
【請求項19】
前記光源装置によって生成された前記少なくとも1つの電磁放射光は、瞬時線幅が同調範囲よりも約10%狭い、前記瞬時線幅および前記同調範囲を有することを特徴とする請求項14に記載のシステム。
【請求項20】
前記光源装置は、同調レーザを含むことを特徴とする請求項14に記載のシステム。
【請求項21】
前記光源装置は、同調フィルタを含むことを特徴とする請求項14に記載のシステム。
【請求項22】
前記光源装置は、媒質を含み、当該媒質に関連する非線形性に基づいて前記少なくとも1つの電磁放射光を生成することを特徴とする請求項14に記載のシステム。
【請求項23】
前記周波数は、実質的に時間とともに線形に変化することを特徴とする請求項14に記載のシステム。
【請求項24】
前記周波数は、実質的に時間とともに正弦波状に変化することを特徴とする請求項14に記載のシステム。
【請求項25】
前記検出器は、前記第一および第二電磁放射光の組合せと関連付けられた光電子の伝送をゲートするように適合され、前記光電子の伝送を許可するためのゲートの時間が前記特定の電気的積分時間の約90%より短い、電気シャッタをさらに含むことを特徴とする請求項3に記載のシステム。
【請求項26】
前記検体は、生体の検体であることを特徴とする請求項3に記載のシステム。
【請求項27】
前記検出装置は、少なくとも1つの電荷結合デバイスを含むことを特徴とする請求項3に記載のシステム。
【請求項28】
前記光源装置は、パルス広帯域幅光源であることを特徴とする請求項1に記載のシステム。
【請求項29】
前記検出装置は、少なくとも1つの電荷結合デバイスを含むことを特徴とする請求項1に記載のシステム。
【請求項30】
前記少なくとも1つの第一電磁放射光、前記少なくとも1つの第二電磁放射光および前記少なくとも1つの周波数成分の組合せのスペクトルを分離する、少なくとも1つのスペクトル分離ユニットをさらに備えることを特徴とする請求項3に記載のシステム。
【請求項31】
検体の少なくとも一部を撮像する方法であって、
前記検体および参照物に向けて少なくとも1つの電磁放射光を生成するステップと、
検出装置の複数の検出器における少なくとも1つの検出器を使用して前記検体から受けた少なくとも1つの第一電磁放射光および前記参照物から受けた少なくとも1つの第二電磁放射光の組合せに関連する信号を検出するステップとを備え、
前記検出器の少なくとも1つの特定の検出器は、特定の電気的積分時間を有し、
前記少なくとも1つの特定の検出器は、予め設定された閾値よりも大きい、第一パワーレベルを有する第一の部分および当該第一の部分の直前または直後の第二の部分を有する時間分、少なくとも前記信号の一部を受信し、
前記第二の部分は、予め設定された閾値よりも低い第二パワーレベルを有するとともに、前記特定の電気的積分時間の少なくとも約10%の時間の間延長する、
ことを特徴とする方法。
【請求項32】
前記信号は、少なくとも1つの組合せの周波数成分であることを特徴とする請求項31に記載の方法。
【請求項33】
前記少なくとも1つの特定の検出器は、前記周波数成分の少なくとも1つを受けることを特徴とする請求項32に記載の方法。
【請求項34】
前記生成するステップは、パルス広帯域幅光源である光源装置により行うことを特徴とする請求項31に記載の方法。
【請求項35】
前記パルス光源によって生成された前記少なくとも1つの電磁放射光は、前記特定の電気的積分時間当たり1回のパルスであることを特徴とする請求項34に記載の方法。
【請求項36】
前記パルス光源は、Qスイッチレーザ、キャビティ−ダンプモードロックレーザ、および利得スイッチレーザの少なくとも1つを含むことを特徴とする請求項35に記載の方法。
【請求項37】
前記光源装置によって生成された前記少なくとも1つの電磁放射光は、前記特定の電気的積分時間の最大約90%の間の放射光のバーストであることを特徴とする請求項34に記載の方法。
【請求項38】
前記放射光のバーストは、複数のパルスを含むことを特徴とする請求項37に記載の方法。
【請求項39】
前記パルス広帯域幅光源によって生成された前記少なくとも1つの電磁放射光は、約700ナノメートルから2000ナノメートルの間の中心波長のスペクトルを有することを特徴とする請求項34に記載の方法。
【請求項40】
前記パルス広帯域幅光源によって生成された前記少なくとも1つの電磁放射光は、前記中心波長の約1%より大きなスペクトル幅のスペクトルを有することを特徴とする請求項39に記載の方法。
【請求項41】
前記パルス広帯域幅光源によって生成された前記少なくとも1つの電磁放射光は、およそ1マイクロ秒よりも短いパルス幅を有することを特徴とする請求項35に記載の方法。
【請求項42】
前記放射光のバーストの持続期間は、約1マイクロ秒よりも短いことを特徴とする請求項34に記載の方法。
【請求項43】
前記光源装置は、光ゲートスイッチを含むことを特徴とする請求項34に記載の方法。
【請求項44】
前記少なくとも1つの電磁放射光の周波数は、時間とともに変化することを特徴とする請求項33に記載の方法。
【請求項45】
前記少なくとも1つの電磁放射光の平均周波数は、実質的に時間とともに連続的にミリセカンド当り100テラヘルツよりも大きな同調速度で変化することを特徴とする請求項44に記載の方法。
【請求項46】
前記平均周波数は、前記特定の電気的積分時間の約90%よりも短い繰返し周期で変化することを特徴とする請求項45に記載の方法。
【請求項47】
前記光源装置によって生成された前記少なくとも1つの電磁放射光は、約700ナノメートルから2000ナノメートルの間の中心波長を有することを特徴とする請求項43に記載の方法。
【請求項48】
前記光源装置によって生成された前記少なくとも1つの電磁放射光は、前記中心波長の約1%より大きな同調範囲を有することを特徴とする請求項47に記載の方法。
【請求項49】
前記光源装置によって生成された前記少なくとも1つの電磁放射光は、瞬時線幅が同調範囲よりも約10%狭い、前記瞬時線幅および前記同調範囲を有することを特徴とする請求項43に記載の方法。
【請求項50】
前記光源装置は、同調レーザを含むことを特徴とする請求項43に記載の方法。
【請求項51】
前記光源装置は、同調フィルタを含むことを特徴とする請求項43に記載の方法。
【請求項52】
前記光源装置は、媒質を含み、当該媒質に関連する非線形性に基づいて前記少なくとも1つの電磁放射光を生成することを特徴とする請求項43に記載の方法。
【請求項53】
前記周波数は、実質的に時間とともに線形に変化することを特徴とする請求項44に記載の方法。
【請求項54】
前記周波数は、実質的に時間とともに正弦波状に変化することを特徴とする請求項44に記載の方法。
【請求項55】
前記検出器は、前記第一および第二電磁放射光の組合せと関連付けられた光電子の伝送をゲートするように適合され、前記光電子の伝送を許可するためのゲートの時間が前記特定の電気的積分時間の約90%より短い、電気シャッタをさらに含むことを特徴とする請求項31に記載の方法。
【請求項56】
前記検体は、生体の検体であることを特徴とする請求項33に記載の方法。
【請求項57】
前記検出するステップは、少なくとも1つの電荷結合デバイスである検出装置により行うことを特徴とする請求項31に記載の方法。
【請求項58】
前記生成するステップは、パルス広帯域幅光源である光源装置により行うことを特徴とする請求項33に記載の方法。
【請求項59】
前記検出するステップは、少なくとも1つの電荷結合デバイスを含む検出装置により行うことを特徴とする請求項31に記載の方法。
【請求項60】
前記少なくとも1つの第一電磁放射光、前記少なくとも1つの第二電磁放射光および前記少なくとも1つの周波数成分の組合せのスペクトルを分離するステップをさらに備えることを特徴とする請求項33に記載の方法。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公表番号】特表2008−512686(P2008−512686A)
【公表日】平成20年4月24日(2008.4.24)
【国際特許分類】
【出願番号】特願2007−531425(P2007−531425)
【出願日】平成17年9月12日(2005.9.12)
【国際出願番号】PCT/US2005/032422
【国際公開番号】WO2006/039091
【国際公開日】平成18年4月13日(2006.4.13)
【出願人】(592017633)ザ ジェネラル ホスピタル コーポレイション (177)
【Fターム(参考)】