説明

光路変換素子

1方向に屈折率周期性を有し、前記屈折率周期方向と略平行である端面の1つを入射端面とし、前記入射端面に対向する端面を出射端面とするフォトニック結晶と、前記フォトニック結晶中にブリルアンゾーン境界上のバンドによる伝搬光を生じさせるように入射光を前記入射端面から入射する入射部と、前記フォトニック結晶のフォトニックバンド構造を変化させる手段および/または前記入射端面から前記出射端面までの距離である伝搬光路長を変化させる手段とを備えている。

【発明の詳細な説明】
【技術分野】
本発明は、光通信システム、光交換システムあるいは光インタコネクションなどに用いられる光路変換素子に関し、特にフォトニック結晶を用いた光路変換素子に関するものである。
【背景技術】
光通信、光交換システムあるいは光インタコネクションなどの分野においては、信号光を所望の経路に伝搬させるために、光路を切り換える機能を有する光学素子が必要とされる。光路を切り換えるもっとも基本的な手段は反射鏡等により、光の方向を機械的に変えることである。最近、この基本的な原理に基づき、微小電気機械システム(MEMS:Micro Electro Mechanical Systems)を用いて反射鏡の角度を変更することで、光路の切り換えを行う光路変換素子が開発されている。機械的に反射鏡の角度を変更するので、大きな角度の光路の切り換えが容易である反面、可動部を有することから、振動や衝撃により安定性には問題がある。
可動部がない光路変換素子として、例えば異なる屈折率をもつ媒体の界面での光の屈折角が両媒体の屈折率に依存することを利用する方法が考えられている。例えば、プリズムを有する構造とし、このプリズムの屈折率を何らかの方法により変化させることができれば、プリズムから出射される光の方向を変化させることができる。プリズムの代わりに例えば回折格子を用いてもよい。
しかし各種の物理的手段(例えば、媒体への電界印加、音波印加および光照射等)により、媒体の屈折率を変化させても、多くは1%にも満たない程度の変化である。したがって、屈折率変化により光路を変換しても、光路の角度変化が小さいため、光路を変換させた光のビーム広がり角を十分小さくし、かつ変換光の伝搬距離を長くする必要がある。そのため、小型化等が不可能であるという問題があった。
また、近年、フォトニック結晶の特異な性質を利用した光路変換素子が提案されている。フォトニック結晶は、屈折率の異なる誘電体を、光の波長程度の周期で周期的に並べた構造を有するものである。このフォトニック結晶は、「フォトニックバンドギャップによる光の閉じ込め」、「特異なバンド構造による非常に大きな波長分散」および「伝搬光の群速度異常」等の特徴的な性質を有していることはよく知られており、このような特性を利用した数多くの光学素子が提案あるいは研究されている(例えば、特開2002−267845号公報)。
フォトニック結晶を利用した光路変換素子(光線偏向装置)が、例えば特開2002−350908号公報に開示されている。この光路変換素子は、伝搬光の波長が、フォトニックバンドギャップ波長とは異なるように設計されており、外部エネルギーによってフォトニックバンド構造を変化させることで、フォトニック結晶内での光の進行方向を変化させる。フォトニック結晶内を伝搬する伝搬光はフォトニックバンド構造によるフォトニック分散面のポテンシャル勾配の方向に伝搬していく。そこで、この従来の光路変換素子は、フォトニックバンド構造を外部エネルギーによって変化させることにより、伝搬光の進行方向を変化させている。
しかし、このフォトニック結晶を利用した従来の光路変換素子では光の進行方向に対して垂直な方向における光の閉じ込めが不十分である。そのため、光路を変換されたのちフォトニック結晶からの出射される光の量が少ない。つまり、回収効率が極めて低い等の問題があった。また、光路の角度変化がとくに大きいわけではない。そのため、数100ミクロン以上の大きさのフォトニック結晶が必要となる。したがって、小型化および集積化の障害となるという問題を有している。
【発明の開示】
本発明は上記問題点を解決するためになされたもので、フォトニック結晶を用いて、小型化が可能な光路変換素子を提供することを目的とする。
本発明の光路変換素子は、1方向に屈折率周期性を有し、前記屈折率周期方向と略平行である端面の1つを入射端面とし、前記入射端面に対向する端面を出射端面とするフォトニック結晶と、前記フォトニック結晶中にブリルアンゾーン境界上のバンドによる伝搬光を生じさせるように入射光を前記入射端面から入射する入射部と、前記フォトニック結晶のフォトニックバンド構造を変化させる手段および/または前記入射端面から前記出射端面までの距離である伝搬光路長を変化させる手段とを備えている。
【図面の簡単な説明】
図1は、一方向に屈折率周期性を有するフォトニック結晶の光の伝搬を示す断面図である。
図2は、図1に示したフォトニック結晶の入射光も含むバンド図である。
図3は、図2のバンド図をブリルアンゾーン中央についてZ方向に限定して示したバンド図である。
図4は、入射端面に対して斜めに入射光を入射させた場合のフォトニック結晶中の光の伝搬を示す断面図である。
図5は、図4に示したフォトニック結晶の入射光も含むバンド図である。
図6は、フォトニック結晶の入射端面に対して斜めに入射光を入射させた場合に、伝搬光がZ軸方向に伝搬する場合を示す断面図である。
図7は、図6に示したフォトニック結晶の入射光も含むバンド図である。
図8は、図7のバンド図をブリルアンゾーン境界上についてZ方向に限定して示したバンド図である。
図9Aは、第1バンドの伝搬形状を模式的に示した断面図である。
図9Bは、図9AをY方向より見たときの電場の振幅を示す図である。
図9Cは、第2バンドの伝搬形状を模式的に示した断面図である。
図9Dは、図9CをY方向より見たときの電場の振幅を示す図である。
図10は、図9Aおよび図9Cに示した第1バンドおよび第2バンドが重ね合あわされた伝搬光の伝搬形状を模式的に示した断面図である。
図11は、フォトニック結晶においてブリルアンゾーン境界上における伝搬を実現する回折格子を用いる方法を示す断面図である。
図12は、ブリルアンゾーン境界上における伝搬を実現する位相格子を用いる方法を示す断面図である。
図13は、フォトニック結晶中にブリルアンゾーン境界上のバンドである第1バンドおよび第2バンドの伝搬光が伝搬している伝搬形状を示す断面図である。
図14Aは、図13に示すフォトニック結晶において出射端面の位置が、伝搬光の山または谷の位置である場合の出射光を示す断面図である。
図14Bは、図13に示す出射端面の位置が、伝搬光の谷と山の中間位置である場合の出射光を示す断面図である。
図14Cは、図13に示す出射端面の位置が、伝搬光の山と谷の中間位置である場合の出射光を示す断面図である。
図15は、実施の形態1に係る光路変換素子の構成を示す平面図である。
図16は、実施の形態1に係る他の光路変換素子の構成を示す平面図である。
図17は、フォトニック結晶の周期を直接変化させる方法を説明するための模式図である。
図18Aは、実施の形態2に係る第1の光路変換素子の構成を示す平面図である。
図18Bは、実施の形態2に係る第1の光路変換素子の光路変換部の構成を示す斜視図である。
図18Cは、実施の形態2に係る第1の光路変換素子の構成を模式的に説明するための断面図である。
図19は、実施の形態2に係る第2の光路変換素子の構成を示す平面図である。
図20Aは、実施の形態2に係る第3の光路変換素子の構成を模式的に説明するための断面図である。
図20Bは、実施の形態2に係る第4の光路変換素子の構成を模式的に説明するための断面図である。
図21Aは、実施の形態3に係る光路変換素子の構成を模式的に説明するための断面図である。
図21Bは、実施の形態3に係る他の光路変換素子の構成を模式的に説明するための側面図である。
図22は、フォトニック結晶の伝搬光路長を変化させる方法を説明するための模式図である。
図23Aは、実施の形態4に係る光路変換素子の構成を模式的に説明するための断面図である。
図23Bは、実施の形態4に係る他の光路変換素子の構成を模式的に説明するための断面図である。
図23Cは、実施の形態4に係るさらに他の光路変換素子の構成を模式的に説明するための断面図である。
図24は、フォトニック結晶のTE偏光に対するバンド図である。
図25は、計算例1におけるシミュレーション結果である電場の強度分布図である。
図26は、計算例1の第1参考例におけるシミュレーション結果である電場の強度分布図である。
図27は、計算例1の第2参考例におけるシミュレーション結果である電場の強度分布図である。
図28は、フォトニック結晶のTE偏光に対するバンド図である。
図29は、計算例2におけるシミュレーション結果である電場の強度分布図である。
図30は、計算例3で用いるフォトニック結晶の構成を示す断面図である。
図31は、計算例3におけるシミュレーション結果である電場の強度分布図である。
図32は、計算例4におけるシミュレーション結果である電場の強度分布図である。
図33は、計算例5におけるシミュレーション結果である電場の強度分布図である。
図34Aは、計算例6におけるシミュレーション結果である電場の強度分布図である。
図34Bは、計算例7におけるシミュレーション結果である電場の強度分布図である。
【発明を実施するための最良の形態】
本発明の光路変換素子は、1次元フォトニック結晶中にブリルアンゾーン境界上のバンドによる伝搬光を生じさせるように入射光を入射端面から入射する入射部と、前記フォトニック結晶のフォトニックバンド構造を変化させる手段および/または前記入射端面から前記出射端面までの距離である伝搬光路長を変化させる手段とを備えているので、出射光の光路を十分大きな角度で変換させることができる。したがって、光路変換素子を小型化および集積化することができる。
また、好ましくは、前記入射光の真空中における波長をλとし、前記入射端面と接触している媒体の屈折率をnとし、前記フォトニック結晶の周期をaとした場合に、前記入射部は、前記入射光を前記入射端面に対して、以下の式を満たす入射角θで入射する。
0.45<n・sinθ・(a/λ)<0.55
それにより、ブリルアンゾーン境界上のフォトニックバンドを利用することができ、ブリルアンゾーン境界上の第1バンド光と高次伝搬バンド光を混在させてフォトニック結晶内を伝搬させることができる。
なお、入射角θは、入射端面の法線と入射光とのなす角度である。また、周期とは、フォトニック結晶において周期的に積層されている基本構成要素の厚さ(積層方向の長さ)である。例えば、2種類の媒質が交互に積層されたフォトニック結晶であれば、それらの媒質の一層あたりの厚さの和である。また、入射端面と接触している媒質とは、入射端面の周囲にある媒質のことである。
また、好ましくは、前記入射部は、前記入射端面に近接もしくは接触して配置された回折格子または位相格子を備えている。それにより、ブリルアンゾーン境界上のフォトニックバンドを利用することができ、ブリルアンゾーン境界上の第1バンド光と高次伝搬バンド光を混在させてフォトニック結晶内を伝搬させることができる。
また、好ましくは、前記フォトニックバンド構造を変化させる手段は、前記フォトニック結晶にエネルギーを供給することで、前記フォトニック結晶を構成する材料のうち少なくとも1つの屈折率を変化させ、前記フォトニック結晶のフォトニックバンド構造を変化させる。それにより、容易に、光路変換を行うことができる光路変換素子を提供できる。
また、好ましくは、前記フォトニック結晶を構成する材料のうち少なくとも1つは電気光学効果を有する材料であり、前記フォトニックバンド構造を変化させる手段は、前記フォトニック結晶に電界を印加する電界印加部とする。そのため、フォトニック結晶を構成する材料のうち少なくとも1つの屈折率を可逆的に変化させることができる。したがって、可逆的に光路変換ができる光路変換素子を提供できる。
また、好ましくは、前記フォトニック結晶を構成する材料のうち少なくとも1つは半導体材料であり、前記フォトニックバンド構造を変化させる手段は、前記フォトニック結晶に電流を注入する電流注入部とする。そのため、フォトニック結晶を構成する材料のうち少なくとも1つの屈折率を可逆的に変化させることができる。したがって、可逆的に光路変換ができる光路変換素子を提供できる。
また、好ましくは、前記フォトニック結晶を構成する材料のうち少なくとも1つは音響光学材料であり、前記フォトニックバンド構造を変化させる手段は、前記フォトニック結晶に超音波を印加する超音波印加部とする。そのため、フォトニック結晶を構成する材料のうち少なくとも1つの屈折率を可逆的に変化させることができる。したがって、可逆的に光路変換ができる光路変換素子を提供できる。
また、好ましくは、前記フォトニック結晶を構成する材料のうち少なくとも1つの1部または全部は非線形光学材料であり、前記フォトニックバンド構造を変化させる手段は、前記フォトニック結晶に光を照射する光源とする。そのため、フォトニック結晶を構成する材料のうち少なくとも1つの1部または全部の屈折率を可逆的に変化させることができる。したがって、可逆的に光路変換ができる光路変換素子を提供できる。
また、好ましくは、前記フォトニックバンド構造を変化させる手段は、前記フォトニック結晶に外力を印加することで前記フォトニック結晶の周期を変化させて、前記フォトニックバンド構造を変化させる周期変化手段である。それにより、フォトニック結晶の周期を変化させることで、光路を変換することができるので、簡単な仕組みで動作する光路変換素子を提供できる。
また、好ましくは、前記周期変化手段は、前記フォトニック結晶の前記屈折率周期方向に垂直な端面の少なくともどちらか一方に接続された外力印加部と、前記外力印加部および前記フォトニック結晶における、前記フォトニック結晶の前記屈折率周期方向の長さを固定する支持筐体とを備え、前記外力印加部の体積が変化することで、前記フォトニック結晶に外力を印加する。そのため、フォトニック結晶の周期の変化を容易に変化させることができる。それにより、光路変換を容易に行うことができる光路変換素子を提供できる。
また、好ましくは、前記外力印加部は圧電素子である。そのため、フォトニック結晶の周期の変化を制御しやすい。それにより、光路変換の制御を容易に行うことができる光路変換素子を提供できる。
また、好ましくは、前記周期変化手段は、前記フォトニック結晶を挟んで前記フォトニック結晶の前記屈折率周期方向に対向配置された一対の電磁石を備え、前記電磁石同士の引力を用いて前記フォトニック結晶に外力を印加する。そのため、フォトニック結晶の周期の変化を容易に制御しやすい。それにより、光路変換の制御を容易に行うことができる光路変換素子を提供できる。
また、好ましくは、前記周期変化手段は、前記フォトニック結晶を挟んで前記フォトニック結晶の前記屈折率周期方向に対向配置された電磁石および磁性体を備え、前記電磁石と前記磁性体との引力を用いて前記フォトニック結晶に外力を印加する。そのため、フォトニック結晶の周期の変化を容易に制御しやすい。それにより、光路変換の制御を容易に行うことができる光路変換素子を提供できる。
また、好ましくは、前記周期変化手段は、前記フォトニック結晶に接続された基板と、前記基板を加熱あるいは冷却できる温度可変装置とを備え、前記温度可変装置によって加熱あるいは冷却された前記基板の膨張あるいは収縮を用いて、前記フォトニック結晶に外力を印加する。そのため、フォトニック結晶の周期の変化を容易に制御しやすい。それにより、光路変換の制御を容易に行うことができる光路変換素子を提供できる。
また、好ましくは、前記伝搬光路長を変化させる手段は、前記入射端面および前記出射端面の少なくともどちらか一方に接続された外力印加部と、前記外力印加部および前記フォトニック結晶における、前記フォトニック結晶の前記伝搬光路長方向の長さを固定する支持筐体とを備え、前記外力印加部の体積が変化することで、前記フォトニック結晶に外力を印加する。そのため、フォトニック結晶の伝搬光路長の変化を容易に変化させることができる。それにより、光路変換を容易に行うことができる光路変換素子を提供できる。
また、好ましくは、前記外力印加部は圧電素子である。そのため、フォトニック結晶の伝搬光路長の変化を制御しやすい。それにより、光路変換の制御を容易に行うことができる光路変換素子を提供できる。
また、好ましくは、前記伝搬光路長を変化させる手段は、前記フォトニック結晶を挟んで前記フォトニック結晶の前記伝搬光路長方向に対向配置された一対の電磁石を備え、前記電磁石同士の引力を用いて前記フォトニック結晶に外力を印加する。そのため、フォトニック結晶の伝播光路長の変化を容易に制御しやすい。それにより、光路変換の制御を容易に行うことができる光路変換素子を提供できる。
また、好ましくは、前記伝搬光路長を変化させる手段は、前記フォトニック結晶を挟んで前記フォトニック結晶の前記伝搬光路長方向に対向配置された電磁石および磁性体を備え、前記電磁石と前記磁性体との引力を用いて前記フォトニック結晶に外力を印加する。そのため、フォトニック結晶の伝搬光路長の変化を容易に制御しやすい。それにより、光路変換の制御を容易に行うことができる光路変換素子を提供できる。
また、好ましくは、前記伝搬光路長を変化させる手段は、前記フォトニック結晶に接続された基板と、前記基板を加熱あるいは冷却できる温度可変装置とを備え、前記温度可変装置によって加熱あるいは冷却された前記基板の膨張あるいは収縮を用いて、前記フォトニック結晶に外力を印加する。そのため、フォトニック結晶の周期の変化を容易に制御しやすい。それにより、光路変換の制御を容易に行うことができる光路変換素子を提供できる。
以下、本発明の実施の形態について図を用いて具体的に説明する。なお、各図において同一の機能を有する部材には同一符号を付し、説明を省略する。
フォトニック結晶の周期方向(屈折率周期方向)に平行な端面より、適当な周波数の平面波を垂直入射させると、周期構造のない方向に沿ってブリルアンゾーン中央におけるフォトニックバンド構造に由来した伝搬が生じ、最低次のバンドによる第1バンド伝搬光と最低次ではない高次の伝搬バンドによる高次伝搬バンド光がそれぞれフォトニック結晶内を伝搬する。
高次伝搬バンド光は、「非常に大きな波長分散」や「群速度異常」といったフォトニックバンド構造に由来した特徴的な特性を有しており、これらを利用してさまざまな光学素子に応用することができる。これに対して、第1バンド光は上述のような特性を有しておらず、通常の均質媒体における伝搬とほぼ同様の振る舞いをする。
しかし、高次伝搬バンド光がフォトニック結晶内を伝搬する場合には必ず第1バンド光も伝搬するため、高次伝搬バンド光を利用する場合には第1バンド光は単なる損失でしかなく、入射光エネルギーの利用効率を低下させてしまうのみならず、迷光として素子のS/N比を低下させる原因ともなる。
しかし、本発明者らの研究によると、ブリルアンゾーン境界上のフォトニックバンドを利用することによって、第1バンド光も高次伝搬バンド光と同様の特徴的な特性を持つということが明らかになった。
これらブリルアンゾーン境界上の第1バンド光と高次伝搬バンド光が混在してフォトニック結晶内を伝搬することにより、伝搬光の電場形状が山と谷を交互に繰り返す特徴的な伝搬形状を示す。このとき伝搬形状のどの位置に出射側端面がくるかによって、その出射端面から出射される出射光の方向が大きく異なる。本実施の形態に係る光路変換素子は、上述の現象を利用したものである。
図1は、一方向に屈折率周期性を有するフォトニック結晶1の光の伝搬を示す断面図である。図1において、光の伝搬方向をZ軸方向とし、光の伝搬方向に対して垂直な方向をY軸方向とする。フォトニック結晶1は、Y軸方向にのみ屈折率周期性を有する1次元フォトニック結晶である。物質5aおよび物質5bとが、交互にY軸方向に積層されて、多層構造5を形成している。物質5aの厚さはtであり、屈折率はnとする。また、物質5bの厚さはtであり、屈折率はnとする。フォトニック結晶1の周期aは、(t+t)である。
フォトニック結晶1が光導波路を構成している。フォトニック結晶1の入射端面1aおよび出射端面1bは、フォトニック結晶1の周期方向と平行である端面であり、入射端面1aおよび出射端面1bは対向している。フォトニック結晶1の入射端面1aから、真空中の波長がλの平面波を入射光2として入射させると、伝搬光4としてフォトニック結晶1内を伝搬する。この伝搬光4がフォトニック結晶1内の物質5aおよび物質5bの多層膜内でどのように伝搬するかは、フォトニックバンドを計算し図示することにより知ることができる。バンド計算の方法は、例えば“Photonic Crystals”,Princeton University Press(1995)あるいは、Physical Review B 44巻、16号、p.8565、1991年、などに詳しく述べられている。
以下、フォトニック結晶1の入射端面1aより平面波である入射光2を入射させたときの、フォトニック結晶1内における伝搬光4の伝搬について図2を加えて考える。図2は、図1に示したフォトニック結晶1の入射光2も含むバンド図である。図2において、右側がフォトニック結晶1中のバンド図であり、左側がフォトニック結晶1の外側(入射光2が入射してくる個所)である均質媒体(空気)のバンド図である。
このときのフォトニック結晶1の条件は、まず物質5aの屈折率nが2.1011であり、厚さtが周期aを用いて表すと、t=0.3aである。また、物質5bの屈折率nが1.4578であり、厚さtが周期aを用いて表すと、t=0.7aである。図2は、このような物質5aおよび物質5bを交互に重ねた周期aの多層構造体であるフォトニック結晶1の、Y軸およびZ軸方向におけるバンド計算の結果を示している。なお、フォトニック結晶1は、物質5aおよび物質5bの各層面がXZ平面において無限に広がっており、Y方向に無限に積層されているとする。なお、図2は、TE偏光の第1および第2バンドについて第1ブリルアンゾーンの範囲内で示したものである。図2の右側に示しているフォトニック結晶1中のバンド図は、規格化周波数ωa/2πcが同じ値となる点を結んだ等高線状で表され、この等高線状の線のことを以下では等高線という。各線の添字は規格化周波数ωa/2πcの値を表している。なお、規格化周波数ωa/2πcは、入射光2の角振動数ω、フォトニック結晶1の周期aおよび真空中での光速cを用いて表している。また、規格化周波数は、入光2の真空中の波長λを用いて、a/λと表すこともできる。以下では簡単に規格化周波数a/λと記述する。
図2において、ブリルアンゾーンのY軸方向の範囲は±π/aであるが(ブリルアンゾーンのY軸方向の幅は2π/a)、Z軸方向には周期性がないのでブリルアンゾーンの境界が存在せず、どこまでも等高線が広がっている。なお、TE偏光とは電場の向きがX軸方向である偏光である。また、磁場の向きがX軸方向の偏光であるTM偏光(磁場の向きがX軸方向)のバンド図は、TE偏光のバンド図に類似しているが幾分異なった形状となる。
矢印401はフォトニック結晶1中の伝搬光4の第1バンドのエネルギー進行方向をあらわしている。また、矢印402はフォトニック結晶1中の伝搬光4の第2バンドのエネルギー進行方向を表している。
また、図2の左側に示しているフォトニック結晶1の外側である均質媒体(空気)のバンド図は、半径rが下記式で表される球(YZ平面においては円)となる。なお、nは、入射端面1aと接触している媒体(フォトニック結晶1の外側である均質媒体)の屈折率である。
r=n・(a/λ)・(2π/a)
なお、上式の右辺の(2π/a)は、フォトニック結晶のバンド図(図2)に対応させるための係数である。また、矢印200は入射光2の波数ベクトルである。
図3は、図2のバンド図をブリルアンゾーン中央についてZ方向に限定して示したバンド図である。縦軸は規格化周波数ωa/2πc(=a/λ)、横軸は波数ベクトルkzの大きさをそれぞれ示している。なお、図3では第3バンドも図示している。図3よりわかるように、第1バンドと高次バンド(第2および第3バンド)では、その特性に大きな差がある。つまり、第1バンドの規格化周波数a/λ(縦軸)と波数ベクトルkz(横軸)はほぼ比例するため、実効屈折率もλの変化に対してほとんど不変である。しかし、高次バンドでは実効屈折率がλにより大きく変化し、kzが0に近づいてもa/λの値はほぼ一定値である。つまり、実効屈折率が1未満になることもある。
また、図3に示すバンド曲線をkzで微分した値(すなわち接線の傾き)が伝搬光の群速度となることはよく知られている。図3の場合、高次バンドでは、kzの値が小さくなるにつれてバンド曲線の接線の傾きは急速に小さくなり、kz=0のとき0となる。これが、フォトニック結晶に特有の群速度異常である。フォトニック結晶における群速度異常は極めて大きく、かつ通常の均質物質の分散とは逆(入射光の波長が長くなるにつれて群速度が遅くなる)である。したがって、高次バンド光を利用することができる光導波路は、光遅延素子や光通信における分散補償素子などの光制御素子に用いることができる。
真空中での波長がλの入射光2がフォトニック結晶1の端面1aに垂直に入射し、この光に対する伝搬ベクトルが複数存在する場合、フォトニック結晶1内では最低次のバンド(第1バンド)による波数ベクトルkzの伝搬光と、それ以上の高次バンドによる波数ベクトルkz(i=2,3,4・・・)の伝搬光とが存在する。なお、入射光2に対するバンドが最低次のバンドのみであれば、第1バンドの伝搬光のみがフォトニック結晶1内を伝搬することになる。フォトニック結晶1内におけるこれらの伝搬光の波長は、第1バンドの伝搬光の波長はλz=2π/kzであり、高次バンドの伝搬光の波長はλz=2π/kzとして表される。フォトニック結晶1内において、各伝搬光4の進行方向は図2に示された等高線の法線方向(矢印401および矢印402の向き)となるため、いずれのバンドによる伝搬光4もZ軸方向に伝搬していく。
次に、図1に示したフォトニック結晶1の端面1aに対して、斜めに入射光2aを入射した場合について説明する。図4は、入射端面に対して斜めに入射光を入射させた場合のフォトニック結晶中の光の伝搬を示す断面図である。図4に示すように、入射光2aをフォトニック結晶1の入射端面1aに入射角θで入射させると、フォトニック結晶1中を、伝搬光4aおよび伝搬光4bが伝搬する。なお、入射角は、入射端面1aの法線と入射光2aとのなす角度である。
図5を加えて、図4の伝搬光4aおよび4bについて説明する。図5は、図4に示したフォトニック結晶の入射光も含むバンド図である。図5において、右側がフォトニック結晶1中のバンド図であり、左側がフォトニック結晶1の外側(入射光2aが入射してくる個所)である均質媒体(空気)のバンド図である。なお、入射光2aの真空中の波長はλである。図5の左側に示しているフォトニック結晶1の外側である均質媒体(空気)のバンド図は、半径rが下記式で表される球であり、その半径rは下記式で表される。
r=n・(a/λ)・(2π/a)
また、矢印201は入射光2aの波数ベクトルである。
図5より、入射光2aがフォトニック結晶1内で結合する伝搬光4aおよび4bのエネルギー進行方向は、点405および406における等高線の法線方向である。それより、第1バンドの伝搬光4aおよび第2バンドの伝搬光4bのエネルギー進行方向はそれぞれ、矢印403および404で表されている。つまり、第1バンドの伝搬光4aと第2バンドの伝搬光4bは、それぞれ異なる方向に伝搬している。
ここで、入射角θが下記の(1)式の条件を満たす場合には、入射光2aはブリルアンゾーン境界上の第1および第2バンドと結合して伝搬する。
n・sinθ・(a/λ)=0.5 (1)
ブリルアンゾーン境界上ではバンドの対称性により、波動エネルギーの進行方向はZ軸に一致する。図6はフォトニック結晶の入射端面に対して斜めに入射光を入射させた場合に、伝搬光がZ軸方向に伝搬する場合を示す断面図である。また、図7は、図6に示したフォトニック結晶の入射光も含むバンド図である。
図6に示した入射光2bは、図4に示した入射光2aと入射角が異なる。図6において、入射光2bの入射角θは、(1)式を満たしている。図7により、入射光2bの波数ベクトルである矢印202を作図して、第1バンドおよび第2バンドの伝搬光4aおよび4bのエネルギー進行方向をそれぞれ求める。それにより、第1バンドおよび第2バンドの伝搬光4aおよび4bのエネルギー進行方向である矢印407および408が求まる(図7参照)。矢印407および408よりわかるように、伝搬光4aおよび4bは、Z軸方向に進行する(図6参照)。ブリルアンゾーンのY方向の周期性を考慮すると、伝搬光4aおよび4bがZ軸方向へ伝搬するためには、下記の(2)式を満たす入射角θで入射光2bが入射端面1aに入射してもよい。
n・sinθ・(a/λ)=1.0,1.5,2.0・・・ (2)
しかし、値が増えるにつれてnおよびθを大きい値とする必要があるため実現が難しくなる。したがって、上記(1)式の条件が最も実用的である。
ただし、実際の光学系では(1)式の条件からずれが生じる場合もある。このずれは±10%程度であれば、本実施の形態の目的は達成される。すなわち、下記の(3)式を満たす範囲であればよい。
0.45<n・sinθ・(a/λ)<0.55 (3)
図8は、図7のバンド図をブリルアンゾーン境界上についてZ方向に限定して示したバンド図である。縦軸は規格化周波数ωa/2πc(=a/λ)、横軸は波数ベクトルkzの大きさをそれぞれ示している。なお、図8では第3バンドも図示している。
図8に示されるように、ブリルアンゾーン境界上では第1バンドを含むすべてのバンドが図3に示す高次バンド(第2および第3バンド)と同様の変化を示しており、ブリルアンゾーン境界上のバンドを利用することで第1バンド光も高次バンド光と同様の特性を持つようになることがわかる。また、各バンドによる伝搬光の波長が異なることも明らかである。
図7および図8に示すように、第1バンドと第2バンドの両方の伝搬光が存在する周波数域において、(1)式の条件を満たす入射角θで入射光2aをフォトニック結晶1の入射端面1aに入射させた場合(図6参照)、第1バンド光と第2バンド光とのそれぞれの波動がZ軸に沿った方向へ伝搬していく。ここで、フォトニック結晶1を構成する媒体(物質5aおよび物質5b)において、物質5aの屈折率が、物質5bの屈折率より高いとする。この場合、第1バンドの伝搬光4aは高い屈折率を有する物質5aの層を電場の腹、低い屈折率を有する物質5bの層を電場の節としてZ軸方向へ伝搬する。また、第2バンドの伝搬光4bは低い屈折率を有する物質5bの層を腹、高い屈折率を有する物質5aの層を節としてZ軸方向へ伝搬する。
これら第1バンドおよび第2バンドの伝搬光4aおよび4bの形状について説明する。図9Aは、第1バンドの伝搬光の形状を模式的に示し、た断面図であり、図9Bは、図9AをY方向より見たときの電場の振幅を示す図である。また、図9Cは、第2バンドの伝搬光の形状を模式的に示した断面図であり、図9Dは、図9CをY方向より見たときの電場の振幅を示す図である。図9Aおよび図9C中において、伝搬光の山901(電場振幅がプラス側の極大となる位置)および谷902(マイナス側の極大となる位置)がそれぞれ図示されている。
図8に示されているように、フォトニック結晶1内における第1バンドと第2バンドの波数ベクトルkzとkzの大きさは異なり、図9Aおよび図9Bで示された山901と谷902との間隔に比べて、図9Cおよび図9Dで示された山901と谷902との間隔は長い。すなわち、図9Aおよび図9Bで示した第1バンドの伝搬光4aの波長は、図9Cおよび図9Dで示した第2バンドの伝搬光4bの波長よりも短い。図10は、図9Aおよび図9Cに示した第1バンドおよび第2バンドの伝搬光が重ね合わされた伝搬形状を模式的に示した断面図である。つまり、図10は、フォトニック結晶1に、第1バンドおよび第2バンドの両方が存在する周波数域の光を、(1)式の条件を満たす入射角θで入射させた場合の伝搬光の形状を示している。図10は、図9Aおよび図9Cを重ねて電場のピークを線で繋いだものである。図10において、実線911でつないだ個所は伝搬光の山であり、破線912でつないだ個所は伝搬光の谷である。また、波面の向きが山(実線911)と谷(破線912)を交互に繰り返す、特徴的な電場パターンを示すことになる(後述の計算例1および図25参照)。
上述のバンド計算よりフォトニック結晶1内における第1バンドの伝搬光4aおよび第2バンドの伝搬光4bのそれぞれの波長は、λz=2π/kzおよびλz=2π/kzと求めることができ、第1バンドの伝搬光4aと第2バンドの伝搬光4bの重なりによって生じる、電場パターンの山と谷の周期Λは、以下の(4)式により求めることができる。
Λ=(λz・λz)/(λz−λz) (4)
上述した、フォトニック結晶1中で伝搬光に「ブリルアンゾーン境界上における伝搬」を行わせる方法を以下に説明する。
第1の方法として、1次元フォトニック結晶の端面に、斜めに入射光を入射する方法がある。具体的には、図6に示すように、入射光2bをフォトニック結晶1の入射端面1aに対して傾斜させ(1)式(または(2)式)、近似的には(3)式の条件を満たす入射角θで入射させる。
また、第2の方法として、1次元フォトニック結晶の端面に、回折格子を用いて入射光を斜めに入射させる方法がある。図11は、フォトニック結晶においてブリルアンゾーン境界上における伝搬を実現する回折格子を用いる方法を示す断面図である。具体的には、図11に示すように、回折格子7をフォトニック結晶1の入射端面1aの直前に配置する。回折格子7に、フォトニック結晶1の入射端面1aに対して垂直な入射光2cを入射し、入射光2cの向きを回折格子7により変化させる。回折格子7から出射される入射光2bが、(1)式(または(2)式)、近似的には(3)式の条件を満たす入射角θで入射端面1aに入射するようにする。
また、第3の方法として、1次元フォトニック結晶の端面に、位相格子を用いて±1次回折光を入射させる方法がある。図12は、フォトニック結晶においてブリルアンゾーン境界上における伝搬を実現する位相格子を用いる方法を示す断面図である。具体的には、図12に示すように、位相格子8をフォトニック結晶1の入射端面1aの前面に近接あるいは接触して配置する。この位相格子8は、異なる屈折率を有する物質8aと物質8bとが、交互に積層されて構成されている1次元フォトニック結晶であって、その周期方向は、フォトニック結晶1の周期方向と等しい。位相格子8は、入射光の波面を±1次回折光に分割する。位相格子8に、フォトニック結晶1の入射端面1aに対して垂直な入射光2dを入射すると、交差する二つの平面波2e(±1次光)が生じる。これら±1次光の干渉により節と腹のある電場パターンが形成される。そこで、腹および節の部分に高屈折率層である物質5aがくるようにフォトニック結晶1と位相格子8とを設置すると、第1バンドによる伝搬光のみが発生する(後述の計算例1の第1参考例および図26参照)。また、腹および節の部分に低屈折率層である物質5bがくるようにフォトニック結晶1と位相格子8とを設置すると、第2バンドによる伝搬光のみが発生する(後述の計算例1の第2参考例および図27参照)。
ここで、腹および節の部分に高屈折率層である5aと低屈折率層である5bの両方がかかるようにフォトニック結晶1と位相格子8との配置を調整して設置すると、第1バンドと第2バンドの両方による伝搬光が発生する。ここで、位相格子8の周期はフォトニック結晶1の周期の2倍の2aである。
ところで、ブリルアンゾーン境界上のバンドを利用してZ軸方向へ伝搬した第1バンドの伝搬光と第2バンドの伝搬光がフォトニック結晶1の出射端面1bから出射される出射光の方向は、特異な電場パターンによる見かけの波面により決定する。
図13は、フォトニック結晶中にブリルアンゾーン境界上のバンドである第1バンドおよび第2バンドの伝搬光が伝搬している伝搬形状を示す断面図である。図13に示すように、各バンドの伝搬光の山901および谷902により、実線911で示した各バンド伝搬光により生じた伝搬光の山と、破線912で示した各バンド伝搬光により生じた伝搬光の谷とが存在している。図13には、伝搬光の山の位置921と、谷の位置922と、谷と山の中間位置923と、山と谷の中間位置924とが図示されている。出射端面の位置が、山の位置921または谷の位置922の場合と、谷と山の中間位置923の場合と、山と谷の中間位置924の場合とでは、出射光の状態がそれぞれ異なる。
各出射端面の位置による各出射光の状態について、図14A、図14Bおよび図14Cを用いて説明する。図14Aは図13に示すフォトニック結晶において出射端面の位置が、伝搬光の山または谷の位置である場合の出射光を示す断面図であり、図14Bは図13に示す出射端面の位置が、伝搬光の谷と山の中間位置である場合の出射光を示す断面図であり、図14Cは図13に示す出射端面の位置が、伝搬光の山と谷の中間位置である場合の出射光を示す断面図である。
図14A、図14Bおよび図14Cにおいて、フォトニック結晶1中で伝搬光に「ブリルアンゾーン境界上における伝搬」を行わせる方法は、上記第1の方法によるものであるが、第2または第3の方法を用いてもよい。
図14Aに示すように、フォトニック結晶1の出射端面1bの位置を、図13に示す伝搬光の山の位置921となるようにした場合について説明する。高屈折率層(物質5a)および低屈折率層(物質5b)を伝搬してきた第1バンドの伝搬光および第2バンドの伝搬光が出射端面1bで回折し、それぞれ0次光9および1次回折光10の2つの異なる向きの出射光が出射端面1bより放射される。回折方向は1次元フォトニック結晶1の物質5aと物質5bの周期aによって決定されるため、第1のバンドの伝搬光および第2のバンドの伝搬光はともに回折方向が等しくなる。そのため、2つの方向に出射光が現れる(後述の計算例3および図31参照)。なお、出射端面1bを伝搬光の谷の位置922となる位置にした場合も同様に、2つの方向に出射光が現れる。
また、図14Bに示すように、フォトニック結晶1の出射端面1bの位置を、伝搬光の谷と山の中間位置923にした場合について説明する。図14Bでは、第1バンドの伝搬光および第2バンドの伝搬光が出射端面1bで回折して出射される。第1バンドの伝搬光および第2バンドの伝搬光それぞれの1次回折光はお互いに半波長ずれるために打ち消しあい、0次光10同士が強め合う状態になって出射される。(後述の計算例4および図32参照)。
また、図14Cに示すように、フォトニック結晶1の出射端面1bの位置を、伝搬光の山と谷の中間位置924にした場合について説明する。第1バンドの伝搬光および第2バンドの伝搬光が出射端面1bで回折して出射される。図14Cでは、第1バンドの伝搬光および第2バンドの伝搬光それぞれの0次光は半波長ずれるため互いに打ち消しあい、1次回折光9同士が強め合う状態になって出射される。(後述の計算例5および図33参照)。
このように、出射端面1bの位置に応じて、出射光の放射方向は大きく異なることになる。すなわち、例えば、図14Bに示した状態と図14Cに示した状態とを切り換えることができれば、光路変換素子が実現できる。図14Aに示した状態と図14Cに示した状態とを切り換える方法としては、次の2つが考えられる。
まず、フォトニック結晶1のフォトニックバンド構造を変化させる方法が考えられる。フォトニックバンド構造の変化は、「周期構造体であるフォトニック結晶を構成する媒質の屈折率を変化させる」または「周期構造体であるフォトニック結晶の周期を直接変化させる」ことによって引き起こすことができる。フォトニックバンド構造が変化すると、フォトニック結晶1内を伝搬する第1バンドの伝搬光および第2バンドの伝搬光のそれぞれの伝搬周期に変化が生じる。その結果、これら2つの波動の重なりによって生じる特徴的な伝搬形状の山と谷の周期Λが変化し、出射端面1bにおける伝搬光の電場パターンが変化する。この変化を制御することにより、実質的に例えば図14Bと図14Cの状態とを選択的に切り換えることができる。したがってフォトニック結晶1の出射端面1bにおける出射光の放射方向を切り換えることができ、光路変換素子に利用することができる。
次に、フォトニック結晶1中の伝搬光路長(入射端面1aから出射端面1bまでの距離)を変化させる外部制御手段が考えられる。フォトニックバンド構造を変化させず、入射光2bが伝搬するフォトニック結晶1内の伝搬光路長を変化させることができれば、図14Bの状態および図14Cの状態を選択的に形成することができる。つまり、フォトニック結晶1中の光の伝搬方向(Z軸方向)の寸法を変化させることで、図14Bの状態および図14Cの状態を形成することができる。フォトニック結晶1は光路に沿った方向には周期性を有さないので、光路の方向に外力を加えてフォトニック結晶の寸法を変化させてもフォトニックバンド構造自体は変化しない。なお、圧縮による屈折率変化は無視できる。
上記方法を用いた、本実施の形態の光路変換素子について、図を用いてさらに具体的に説明する。
(実施の形態1)
本発明の実施の形態1に係る光路変換素子について説明する。図15は、実施の形態1に係る光路変換素子の構成を示す平面図である。
図15に示しているように、実施の形態1の光路変換素子150において、基板15上にフォトニック結晶11が形成されている。フォトニック結晶11は、基板15の表面に平行な方向に周期構造を有する1次元フォトニック結晶である。フォトニック結晶11を構成する媒質のうち少なくとも1つは、電気光学効果を有する材料からなることとする。電気光学効果を有する材料とは、電界を印加することで屈折率が変化する材料である。外部エネルギーである電界をフォトニック結晶11に印加するため、フォトニック結晶11の両面(周期方向に垂直な面)に電圧印加部である平行電極12が設置されている。基板15上には、平行電極12と電気的に接している配線用パッド13が設置されている。配線パッド13を介して、平行電極12間には直流電圧を印加することができる。平行電極12間に直流電圧を印加することにより、フォトニック結晶11の内の電気光学効果を有する材料の屈折率を変化させることができる。
フォトニック結晶11の入射端面11a側には、入射部である位相格子8が設置されている。位相格子8の入射端側には入射側レンズ14aおよび入射側光ファイバ16aが設置されている。フォトニック結晶11の出射端面11b側には、第1出射側集光レンズ14bおよび第1出射側光ファイバ16bと、第2出射側集光レンズ14cおよび第2出射側光ファイバ16cとがそれぞれ出射光の方向に対応して設置されている。なお、位相格子8、入射側レンズ14a、入射側光ファイバ16a、第1出射側集光レンズ14b、第1出射側光ファイバ16b、第2出射側集光レンズ14cおよび第2出射側光ファイバ16cは、基板15上に設置されている。
このようなフォトニック結晶11を作製するには、例えば特開2002−169022号公報に開示されているように、基板15を直接加工して、周期的多層構造体を作製すればよい。具体的には、例えば、厚さ1mmのSi基板(基板15)にフォトリソグラフィ技術により、ストライプ状パターンをパターニングし、エッチング用マスクを形成する。次にこのマスクを介して反応性イオンエッチングを行う。この方法により、Si基板に、側壁がSi基板表面に対してほぼ垂直な深溝を形成することができる。この溝の深さと幅の比は例えば10程度とする。この溝の外周のSi基板をエッチングして、溝間の壁部分のみが凸部とすることで、Siと空気の周期的多層構造体を得ることができる。この空気層(溝)部分に電気光学効果をもつ流動性有機分子材料を注入し、加熱硬化することにより、フォトニック結晶11を得ることができる。
なお、入射側レンズ14a、第1出射側集光レンズ14b、第2出射側集光レンズ14cおよび位相格子8も予めそれぞれに対応するマスクをSi基板(基板15)上に形成し、周期的多層構造体の形成と同時にSi基板をエッチングし、凸部を形成することによって作製できる。また、基板15に入射側光ファイバ16a、第1出射側光ファイバ16bおよび第2出射側光ファイバ16c用のガイド溝(図示せず)を形成しておけば、それらを所定位置に固定することができる。
本実施の形態1の光路変換素子150の動作について説明する。入射側光ファイバ16a中を伝搬してきた入射光2dは入射側レンズ14aを介して、位相格子8に入射する。位相格子8から出射された入射光2eがフォトニック結晶11に入射される。フォトニック結晶11には、平行電極12および配線パッド13を介して、適当な電圧が印加され、その電圧によりフォトニックバンド構造を変化させることができる。つまり、その電圧を制御することにより、出射端面1bから出射される出射光を、0次光9または1次回折光10のどちらかに選択的に切り換えることができる。出射光が0次光9である場合は、第1出射側集光レンズ14bにより0次光9は集光され、第1出射側光ファイバ16bに結合する。また、出射光が1次回折光10である場合は、第2出射側集光レンズ14cにより1次回折光10は集光され、第2出射側光ファイバ16cに結合する。
フォトニック結晶11中を伝搬する伝搬光は、上述したように、ブリルアンゾーン境界上における伝搬を実現し、第1バンドおよび第2バンドがZ軸方向に沿って進行するようにする。印加電圧を適当な値に制御することで、図14Bに示すように出射端面1bが伝搬光の谷と山の中間位置、または図14Cに示すように出射端面1bが伝搬光の山と谷の中間位置となるようにする。このようにすることで、実施の形態1の光路変換素子150は、選択的に光路を変換することができる。また、例えば、第1および第2出射側光ファイバ16bおよび16cの代わりに、受光素子を設置し、入射光を選択的に電気信号に変換することもできる。
また、フォトニック結晶11を構成する媒質のうち少なくとも1つを半導体材料とし、残りを導電性を有する材料としてもよい。配線パッド13から電流注入部である平行電極12に電流を流し、フォトニック結晶11に平行電極12から電流を流すことにより、キャリアをフォトニック結晶11に注入することができ、それによってフォトニック結晶11を構成する媒質の屈折率を変化させて、フォトニックバンド構造を変化させることができる。
またフォトニック結晶11を構成する媒質のうち少なくとも1つを音響光学材料としてもよい。なお、音響光学材料とは超音波等の音波により屈折率が変化する材料である。この場合には、フォトニック結晶11に外部エネルギーとして超音波を印加することによって屈折率を変化させることができる。つまり、図15において、平行電極12の代わりに、フォトニック結晶11に超音波を印加するための圧電素子等の超音波印加部を設置し、配線パッド13よりこれに電圧を印加するようにしてやればよい。圧電素子としては、例えば、PZT(Pb(Zr0.52Ti0.48)O)のような圧電セラミックスを用いればよい。それにより、フォトニック結晶11のフォトニックバンド構造を変化させることができる。
また、フォトニック結晶11を構成する媒質のうち少なくとも1つの1部または全部を非線形光学物質としてもよい。その場合には、フォトニック結晶11に外部エネルギーとして制御光を照射することによって屈折率を変化させることができる。なお、制御光を照射する個所のみ非線形光学物質とすればよいので、フォトニック結晶11を構成する媒質のうち少なくとも1つの1部または全部を非線形光学物質とすればよい。
図16は、実施の形態1に係る他の光路変換素子の構成を示す平面図である。図16の光路変換素子151は、図15に示した光路変換素子150から平行電極12および配線パッド13を取り除き、代わりに制御用光ファイバ16dおよび制御用レンズ14dを備えた構成である。また、フォトニック結晶11を構成する媒質のうち少なくとも1つの1部または全部を非線形光学物質とする。フォトニック結晶11は、Si基板(基板15)をエッチングして溝を形成し、溝の中に3次の非線形光学効果が大きい高分子材料を部分的に、あるいは溝全体に注入することで容易に作製することができる。制御用光ファイバ16dからの制御光2fが、制御用レンズ14dを介して、フォトニック結晶11のうち非線形光学効果が大きい材料に照射されるように、制御用光ファイバ16dおよび制御用レンズ14dが基板15上に設置されている。このように構成された光路変換素子151において、制御光2fの強度を調整することで、フォトニック結晶11のフォトニックバンド構造を変化させ、選択的に、出射光の光路を変換することができる。なお、フォトニック結晶11に制御光2fを照射する方向は図示以外の方向からであってもよい。
また上述の方法以外にも、フォトニック結晶11を構成する媒質の屈折率を変化させる外部エネルギーとしては、例えば、磁場の印加、加熱等がある。フォトニック結晶11の構成材料に応じて、フォトニックバンド構造を変化させる外部エネルギーを選択し、その外部エネルギーによりフォトニック結晶11のフォトニックバンド構造を変化させることで、フォトニック結晶11の出射光の光路の変換を行えばよい。
1次元フォトニック結晶を構成する媒質の屈折率変化が0.01〜1%程度であれば、フォトニック結晶11に必要な長さは、伝搬ベクトルkzの変化が小さな領域であっても、数10μm程度、伝搬ベクトルkzの変化が大きな領域であれば数μm程度ですむ。したがって、実施の形態1の光路変換素子150または151は、小型化および集積化が可能である(後述の計算例6、7および図33参照)。
なお、実施の形態1では、フォトニック結晶11中でブリルアンゾーン境界上のバンドによる伝搬光を生じさせるために、位相格子8を用いたが、他に回折格子を用いたり、光を斜め入射させたりすることで、ブリルアンゾーン境界上のバンドによる伝搬光を生じさせてもよい。
(実施の形態2)
本発明の実施の形態2に係る光路変換素子について説明する。実施の形態2に係る光路変換素子は、外力によりフォトニック結晶の周期構造の周期を直接変化させることで、フォトニック結晶のフォトニックバンド構造を変化させる。
図17は、フォトニック結晶の周期を直接変化させる方法を説明するための模式図である。図17において、1次元フォトニック結晶21は、物質25aと物質25bが一定周期で交互に積層されて構成されている。フォトニック結晶21の、周期方向の寸法(各層(物質25aと物質25a)の厚さ)を変化させる場合には、直接的には積層方向に力学的な外力26を印加してやればよい。具体的には、フォトニック結晶21の周期方向に垂直な面同士から、フォトニック結晶21に向かって外力26を印加すればよい。外力26を印加することにより、フォトニック結晶21の周期方向の厚さDが減少する。それにより、フォトニック結晶21中を伝搬する第1バンドおよび高次バンドの伝搬光の波数ベクトルkzが変化する。そのため、上述した、第1バンドの伝搬光と第2バンドの伝搬光との重なりによって生じる伝搬光の電場パターンの山と谷の周期Λも変化するので、出射端面における伝搬光の電場パターンも変化する。したがって、フォトニック結晶21を伝搬して出射される光の方向を選択的に制御することができる。
以下に、具体的な構成を示し、実施の形態2に係る光路変換素子について説明する。図18Aは、実施の形態2に係る第1の光路変換素子の構成を示す平面図である。また、図18Bは、実施の形態2に係る第1の光路変換素子の光路変換部の構成を示す斜視図である。また、図18Cは、実施の形態2に係る第1の光路変換素子の構成を模式的に説明するための断面図である。図18Cにおいては、基板35は省略している。
図18Aに示しているように、実施の形態2の光路変換素子153は、基板35上に光路変換部30、入射側レンズ34a、入射側光ファイバ36a、第1出射側集光レンズ34b、第1出射側光ファイバ36b、第2出射側集光レンズ34cおよび第2出射側光ファイバ36cが設置された構成である。
図18Bに示すように、光路変換部30は、周期構造を有する1次元フォトニック結晶31と、フォトニック結晶31の各層と平行となるようにフォトニック結晶31に貼り付けられた圧電素子33と、フォトニック結晶31の入射端面31aと出射端面31bとが露出し、それ以外の面を覆う支持筐体32とを備えている。支持筐体32は剛性をもち、かつ熱膨張が小さいことが望ましく、例えばインバー合金等を用いることが好ましい。支持筐体32の内面は、フォトニック結晶31の周期方向には伸縮しない。つまり、圧電素子33およびフォトニック結晶31の周期方向の長さは、支持筐体32により固定されている。
光路変換部30は、フォトニック結晶31の積層膜の周期方向が基板35の表面に平行になるように、基板35上に固定設置されている。フォトニック結晶31の入射端面31a側には、入射部である入射側レンズ34aおよび入射側光ファイバ36aが設置されている。フォトニッ結晶31の出射端面31b側には、第1出射側集光レンズ34bおよび第1出射側光ファイバ36bと、第2出射側集光レンズ34cおよび第2出射側光ファイバ36cとがそれぞれ出射光の方向に対応して設置されている。
本実施の形態2の光路変換素子153の動作について説明する。入射側光ファイバ36a中を伝搬してきた入射光2bは入射側レンズ34aを介して、フォトニック結晶31に入射される。圧電素子33は、電圧供給部(図示せず)から電圧を供給される。圧電素子33は電圧を供給されると、その体積が増加し、フォトニック結晶31の周期方向の長さは増加する。する。フォトニック結晶31の、圧電素子33と接している面の反対面は、支持筐体32に接していて固定されている。それにより、圧電素子33およびフォトニック結晶31の周期方向の長さが固定されているため、圧電素子33の周期方向の長さが増加すれば、フォトニック結晶31のその周期方向の長さが減少する。つまり、圧電素子33は、電圧を印加されることでフォトニック結晶31に外力37を印加する(図18C参照)。したがって、圧電素子33に供給する電圧を制御することにより、フォトニック結晶31のフォトニックバンド構造を変化させることができる。すなわち、圧電素子33に供給する電圧により、フォトニック結晶31の出射端面31bから出射される出射光を、0次光9または1次回折光10のどちらかに選択的に切り換えることができる。出射光が0次光9である場合は、第1出射側集光レンズ34bにより0次光9は集光され、第1出射側光ファイバ36bに結合する。また、出射光が1次回折光10である場合は、第2出射側集光レンズ34cにより1次回折光10は集光され、第2出射側光ファイバ36cに結合する。
例えば、圧電素子33に電圧が供給されていない場合、0次光9である出射光が得られるように各部材を配置しておき、圧電素子33に電圧が供給されると出射光の方向が変化して1次回折光10である出射光が得られるような構造とすればよい。
具体的に説明すると、まず、フォトニック結晶31中を伝搬する伝搬光は、上述したように、ブリルアンゾーン境界上における伝搬を実現し、図6に示したように第1バンドおよび第2バンドがZ軸方向に沿って進行するようにしておく。また、その状態で、図14Bに示すように出射端面1b(31b)が伝搬光の谷と山の中間位置または図14Cに示すように出射端面1b(31b)で伝搬光の山と谷の中間位置となるようにする。さらに、圧電素子33に供給する電圧を適当な値に制御することで、前述の状態とは異なる、図14Cに示すように出射端面1b(31b)で伝搬光の山と谷の中間位置または図14Bに示すように出射端面1b(31b)が伝搬光の谷と山の中間位置となるようにする。このようにすることで、実施の形態2の光路変換素子153は、選択的に光路を変換することができる。また、例えば、第1および第2出射側光ファイバ36bおよび36cの代わりに、受光素子を設置し、入射光を選択的に電気信号に変換することもできる。
また、図18Aで示した光路変換素子153は、フォトニック結晶31の入射端面31aに対して入射光2bが斜めに入射する構造としたが、例えば、入射側レンズ34aと入射端面1aとの間に位相格子を設置することで垂直に入射させることもできる。図19は、実施の形態2に係る第2の光路変換素子の構成を示す平面図である。図19に示す光路変換素子154は、図18Aに示す光路変換素子153において、入射側レンズ34aと入射端面31aとの間に位相格子38が設置されている。入射光2dが入射端面31aに対して垂直に入射される。入射光2dは、位相格子38により、入射光2eに変換され、フォトニック結晶31内において、ブリルアンゾーン境界上における伝搬が可能となる。すなわち、光路変換が可能である。同様に、回折格子を用いて、フォトニック結晶31中において、ブリルアンゾーン境界上のバンドによる伝搬光を生じさせてもよい。
以下に、上述以外の構成の本実施の形態2に係る光路変換素子について説明する。図20Aは、実施の形態2に係る第3の光路変換素子の構成を模式的に説明するための断面図である。図20Aに示されているように、光路変換素子153aは、フォトニック結晶31が、剛性のある2枚の平板状部材39で挟まれている。平板状部材39は、フォトニック結晶31の周期方向に垂直な面にそれぞれ接して設置される。平板状部材39のフォトニック結晶31と接している面と対向する面には、外部から厚みを制御できる伸縮部材40が接して設置されている。伸縮部材40の外側には、支持筐体32が設置されている。支持筐体32の内面は、フォトニック結晶31の周期方向には伸縮しない。伸縮部材40としては、例えば水圧、空気圧および油圧等によるピストン等を用いればよい。伸縮部材40の厚みを増加させることで、フォトニック結晶31には外力37aが印加され、周期方向の長さが減少する。つまり、伸縮部材40の厚みを制御することで、フォトニック結晶31の周期方向の長さを制御することができる。それにより、フォトニック結晶31のフォトニックバンド構造を変化させて、フォトニック結晶31の出射光の向きを制御することができる。なお、伸縮部材40として、前述の圧電素子を用いてもよい。また、伸縮部材40を2つ用いたが、フォトニック結晶31に外力を印加できれば1つであってもかまわない。
また、電磁石を用いて外力をフォトニック結晶31に印加するような光路変換素子153bを構成してもよい。図20Bは、実施の形態2に係る第4の光路変換素子の構成を模式的に説明するための断面図である。図20Bに示すように、フォトニック結晶31が、剛性のある2枚の平板状部材39で挟まれている。平板状部材39は、フォトニック結晶31の周期方向に垂直な面にそれぞれ接して設置される。それぞれの平板状部材39のフォトニック結晶31と接している面と対向する面には、電磁石41が接して設置されている。これらの電磁石41間に電流を流し、互いに引力が発生するようにすることで、フォトニック結晶31に外力37aを印加することができる。なお、電磁石41は片側だけに設置し、反対側には鉄等の磁性体を設置してもよい。
以上により、フォトニック結晶31に外力を加えることで、フォトニック結晶31の周期を変化させて、フォトニック結晶31からの出射光の光路を変換させる、実施の形態2に係る光路変換素子153、153aおよび153bを実現できる。この光路変換素子153、153aおよび153bは、小型化および集積化が可能である。
(実施の形態3)
本発明の実施の形態3に係る光路変換素子について図面を用いて説明する。実施の形態3の光路変換素子は、フォトニック結晶の周期を熱により変化させることで、フォトニックバンド構造を変化させ、出射光の光路変換を行う。図21Aは、実施の形態3に係る光路変換素子の構成を模式的に説明するための断面図である。図21Aに示すように、実施の形態3に係る光路変換素子160は、高熱膨張率を有する材料である基板45の下に、冷却装置または加熱装置等である温度可変装置43が設置され、基板45上には1次元フォトニック結晶31が設置された構成である。フォトニック結晶31の周期は、基板45の表面に対して垂直方向である。フォトニック結晶31の入射端面31a側には、入射側レンズ34aおよび入射側光ファイバ36aが設置され、出射端面31b側には、第1出射側集光レンズ34bおよび第1出射側光ファイバ36bと、第2出射側集光レンズ34cおよび第2出射側光ファイバ36cとが設置されている。入射側光ファイバ36aを伝搬してきた入射光2bは、入射側レンズ34aを介して入射端面31aに入射する。
温度可変装置43により、基板45の温度を変化させることで、基板45は、熱膨張によって寸法の伸縮変化を起こす。フォトニック結晶31は基板45上に形成されているので、その影響を受けフォトニック結晶31が変形し周期方向に伸縮する。そのため、フォトニックバンド構造が変化する。なお、温度可変装置43としてはヒータあるいはペルチエ素子等を用いることができる。なお、基板45の設置位置は、図示した位置に限られるわけではなく、フォトニック結晶31が基板45の伸縮により、周期方向に伸縮するような位置であれば、これ以外の位置であってもよい。
本実施の形態3の光路変換素子160の動作について説明する。入射側光ファイバ36a中を伝搬してきた入射光2bは入射側レンズ34aを介して、フォトニック結晶31に入射される。フォトニック結晶31中では、ブリルアンとゾーン境界上のバンドによる伝搬光が伝搬している。温度可変装置43により基板45を伸縮させることで、フォトニック結晶31の周期方向の長さが制御され、フォトニックバンド構造が変化させられる。それにより、図14Bまたは図14Cの状態が選択的に形成される。つまり、フォトニック結晶31の出射端面31bから出射される出射光を、0次光9または1次回折光10のどちらかに選択的に切り換えることができる。出射光が0次光9である場合は、第1出射側集光レンズ34bにより0次光9は集光され、第1出射側光ファイバ36bに結合する。また、出射光が1次回折光10である場合は、第2出射側集光レンズ34cにより1次回折光10は集光され、第2出射側光ファイバ36cに結合する。
また、フォトニック結晶31を構成している媒質のうち少なくとも1つの媒質を高熱膨張率を有する材料としてもよい。図21Bは、実施の形態3に係る他の光路変換素子の構成を模式的に説明するための側面図である。フォトニック結晶31を構成している媒質のうち少なくとも1つの媒質を高熱膨張率を有する材料とする。図21Bに示すように、フォトニック結晶31は基板45上に設置され、フォトニック結晶31に近接または接するように温度可変装置43が設置されている。温度可変装置43によって、フォトニック結晶31を加熱または冷却することで、フォトニック結晶31は周期方向に伸縮する。それにより、フォトニックバンド構造が変化する。
図21Aおよび図21Bで示した実施の形態3の光路変換素子160および160aは、機械的な外力をフォトニック結晶31に加えることなく、熱により、フォトニック結晶31の周期方向における寸法を直接的に変化させることができる。それにより、実施の形態2の光路変換素子と同様に、フォトニック結晶31にブリルアンゾーン境界上のバンドによる伝搬光を伝搬させておき、フォトニックバンドを変化させることで、図14Bおよび図14Cの状態を選択的に形成できる。それにより、出射光の光路を変化させることができ、小型化および集積化が可能な光路変換素子を実現できる。
(実施の形態4)
本発明の実施の形態4に係る光路変換素子について図を用いて説明する。図22は、フォトニック結晶の伝搬光路長を変化させる方法を説明するための模式図である。図22において、1次元フォトニック結晶51は、物質50aと物質50bが一定周期で交互に積層されて構成されている。フォトニック結晶51の、伝搬光路長Lの長さを変化させる場合には、伝搬光の伝搬方向に外力46を印加すればよい。それにより、フォトニック結晶51を、図14Bの状態および図14Cの状態に選択的に変形することができる。それにより、出射光の光路を選択的に変換することができる。
図23Aは、実施の形態4に係る光路変換素子の構成を模式的に説明するための断面図である。図23Aに示しているように、実施の形態4の光路変換素子170は、光路変換部50、入射側レンズ34a、入射側光ファイバ36a、第1出射側集光レンズ34b、第1出射側光ファイバ36b、第2出射側集光レンズ34cおよび第2出射側光ファイバ36cを備えている。
光路変換部50は、周期構造を有する1次元フォトニック結晶51と、フォトニック結晶51の出射端面51bの一部に貼り付けられた圧電素子53と、支持筐体52とを備えている。支持筐体52は、圧電素子33のフォトニック結晶51と接する面と対向する面に接続され、かつ、入射端面51aの一部とも接続されている。支持筐体52の内部は、フォトニック結晶51を構成する各層と平行な方向である、フォトニック結晶51中の伝搬光の伝搬方向(伝搬光路長方向)には伸縮しない。つまり、フォトニック結晶51と圧電素子53との伝搬光路長方向の長さは固定されている。ここで、圧電素子53に電圧を供給すると圧電素子53の体積が増加する。それにより、フォトニック結晶51にその伝搬光路長方向に外力46が印加される。それにより、フォトニック結晶51の伝搬光路長Lが短くなる。このように、実施の形態4に係る光路変換素子170は、フォトニック結晶51の伝搬光路長を変化させることができる。つまり、図14Bまたは図14の状態を選択的に形成することができる。
なお、圧電素子53が出射端面51bの一部に設置されることとしたが、これは出射光が出射される個所を確保するためである。
本実施の形態4の光路変換素子170の動作について説明する。入射側光ファイバ36a中を伝搬してきた入射光2bは入射側レンズ34aを介して、フォトニック結晶31に入射される。フォトニック結晶31中では、ブリルアンとゾーン境界上のバンドによる伝搬光が伝搬している。圧電素子53に供給する電圧を制御することで、フォトニック結晶51の伝搬光路長が制御される。それにより、図14Bまたは図14Cの状態が選択的に形成される。つまり、フォトニック結晶51の出射端面51bから出射される出射光を、0次光9または1次回折光10のどちらかに選択的に切り換えることができる。出射光が0次光9である場合は、第1出射側集光レンズ34bにより0次光9は集光され、第1出射側光ファイバ36bに結合する。また、出射光が1次回折光10である場合は、第2出射側集光レンズ34cにより1次回折光10は集光され、第2出射側光ファイバ36cに結合する。
図23Bは、実施の形態4に係る他の光路変換素子の構成を模式的に説明するための断面図である。図23Bに示されているように、光路変換素子170aにおいて、フォトニック結晶51の出射端面51bの一部に、剛性のある平板状部材59が設置され、さらに平板状部材59に接して、外部からその厚みを制御できる伸縮部材60が設置されている。伸縮部材60の外側には、支持筐体52が設置されている。支持筐体52の内面は、フォトニック結晶51の伝搬光路長方向には伸縮しない。伸縮部材60としては、例えば水圧、空気圧および油圧等によるピストン等を用いればよい。伸縮部材60の厚みを制御することにより、フォトニック結晶51の伝搬光路長方向に外力46aを印加することができる。したがって、フォトニック結晶51の伝搬光路長Lを伸縮させることができる。それにより、フォトニック結晶51の出射端面51bから出射される出射光の向きを制御することができる。なお、伸縮部材60として、前述した圧電素子を用いてもよい。なお、平板状部材59が出射端面51bの一部に設置されることとしたが、これは出射光が出射される個所を確保するためである。
また、電磁石を用いて外力をフォトニック結晶51に印加するような光路変換素子170bを構成してもよい。図23Cは、実施の形態4に係るさらに他の光路変換素子の構成を模式的に説明するための断面図である。図23Cに示すように、フォトニック結晶51が、剛性のある2枚の平板状部材59で挟まれている。平板状部材59は、フォトニック結晶51の入射端面51aおよび出射端面51bにそれぞれ接して設置される。それぞれの平板状部材59のフォトニック結晶51と接している面と対向する面には、電磁石61が接して設置されている。これらの電磁石61に電流を流し、互いに引力が発生するようにすることで、フォトニック結晶51に外力46bを印加することができる。なお、電磁石61は入射端面51aおよび出射端面51bのどちらか片側だけに設置し、反対側には鉄等の磁性体を設置してもよい。
以上により、フォトニック結晶51に外力を加えることで、フォトニック結晶51の伝搬光路長を変化させて、フォトニック結晶51からの出射光の光路を変換させる、実施の形態4に係る光路変換素子170、170aおよび170bを実現できる。この光路変換素子170、170aおよび170bは、小型化および集積化が可能である。
図21Aに示している、実施の形態3に係る光路変換素子160のような構成であっても、フォトニック結晶31の伝搬光路長方向に外力が印加され、その長さを制御するような構成とすることができる。このような光路変換素子は、実施の形態4の光路変換素子と同様に、伝搬光路長を制御して、出射光の光路変換を行う光路変換素子として用いることもできる。
なお、実施の形態2〜実施の形態4の光路変換素子においては、フォトニック結晶の入射端面に斜めに光を入射しているが、回折格子または位相格子を用いることで、入射端面に対して垂直に入射することもできる。
以下に、上述した光路変換素子について、電磁波シミュレーション(有限要素法による)を行った結果を示す。なお、以下の計算例では、長さはすべてフォトニック結晶の周期aを基準として規格化している。計算はいずれも有限な領域で行った。
(計算例1)
1次元フォトニック結晶の端面に(1)式を満足する入射角θで平面波を入射させた場合の計算例1について説明する。計算例1においては図6を参照して説明する。フォトニック結晶1の構造条件と、入射光2bの条件は以下のとおりである。
(1)フォトニック結晶1の構造条件
フォトニック結晶1は、物質5aと物質5bとを周期的に交互に重ね、12周期積層したものである。
(物質5a) 厚さt=0.5a 屈折率n=1.4578
(物質5b) 厚さt=0.5a 屈折率n=1.00
フォトニック結晶1の周囲は、屈折率n=1.0の空気層とした。
このフォトニック結晶1のTE偏光に対するバンド図を図24に示す。なお、図24において矢印510は入射光2bの波数ベクトルを示し、矢印511は第1バンドにおける伝搬光4aのエネルギー進行方向を示し、矢印512は第2バンドにおける伝搬光4bのエネルギー進行方向を示している。
(2)入射光2bの条件
(真空中の波長) λ=0.9091a(a/λ=1.10)
(偏光) TE偏光(電場の向きがX軸方向)
(入射角) θ=27.04°
以上の入射光2bの条件は(1)式の条件を満足している。
図25は、計算例1におけるシミュレーション結果である電場の強度分布図である。図24のバンド図からも判断できるように、計算例1の条件では第1バンドと第2バンドによるブリルアンゾーン境界上における伝搬が生じている。そのため、これら2つの波動が重なり、電場形状が山と谷を繰り返す特徴的な伝搬形状が出現している。
また、計算例1の第1参考例として、入射光2bが、入射角θ=±27.04°の2方向からフォトニック結晶1に入射した場合も計算した。他の条件は、上記と同様とし、2つの光を入射して交叉させ、干渉波の腹の位置が高屈折率層(物質5a)の位置と一致させた。計算は有限な領域で行ない、入射端面における入射光2bの入射部分の幅は約13周期とした。
図26は、計算例1の第1参考例におけるシミュレーション結果である電場の強度分布図である。フォトニック結晶1において、高屈折率層(物質5a)に電場が局在した第1バンドによる伝搬光のみが発生していることが図26よりわかる。
また、計算例1の第2参考例として、入射光2bが、入射角θ=±27.04°の2方向からフォトニック結晶1に入射した場合であって、2つの光を入射して交叉させ、干渉波の腹の位置が低屈折率層(物質5b)の位置と一致させた場合を計算した。他の条件は、第1の参考例と同じ条件とした。図27は、計算例1の第2参考例におけるシミュレーション結果である電場の強度分布図である。フォトニック結晶1において、低屈折率層(物質5b)に電場が局在した第2バンドによる伝搬光のみが発生していることが図27よりわかる。
(計算例2)
1次元フォトニック結晶の端面に、位相格子を介して平面波を入射させた場合の計算例2について説明する。計算例2においては図12を参照して説明する。フォトニック結晶1の入射端面1a側に位相格子8設置して、平面波である入射光2dを位相格子8に対して垂直入射させた場合の計算例である。
(1)フォトニック結晶1の構造条件
フォトニック結晶1は、物質5aと物質5bとを周期的に交互に重ねたものである。
(物質5a) 厚さt=0.30a 屈折率n=2.1011
(物質5b) 厚さt=0.70a 屈折率n=1.4578
このフォトニック結晶1のTE偏光に対するバンド図を図28に示す。なお、図28において矢印610は入射光の波数ベクトルを示し、矢印611は第1バンドにおける伝搬光のエネルギー進行方向を示し、矢印612は第2バンドにおける伝搬光のエネルギー進行方向を示している。
(2)入射光(平面波2d)の条件
(真空中の波長) λ=1.321a(a/λ=0.7571)
(偏光) TE偏光(電場の向きがX軸方向)
(3)位相格子8の構造
位相格子8は、物質8aおよび物質8bを交互に周期的に積層した構造である。位相格子8の形状は、±1次回折光が強くなるように最適化した。
(物質8a) Y軸方向厚さt=0.7358a 屈折率n=1.45
(物質8b) Y軸方向厚さt=1.2642a 屈折率n=1.00
位相格子8の周期(t+t) 2a
位相格子8のZ軸方向厚さt 1.5094a
位相格子8と空気層の間隔t(層8c(図29参照)の幅) 0.9434a
位相格子8と空気層との間の屈折率 1.4578
以上、位相格子8の形状は、±1次回折光が強くなるように最適化した。
(4)位相格子8の配置
位相格子8は、フォトニック結晶1の入射端面1aに接するように設置した。また、位相格子8の各層(物質8aおよび物質8b)の中心がフォトニック結晶1の高屈折率層(物質5a)の中心から0.2aだけY方向にずれた位置に配置されている。入射光2dは、屈折率1.00(空気)の自由空間から層8cを介して、位相格子8に入射する。
図29は、計算例2におけるシミュレーション結果である電場の強度分布図である。計算例2において、位相格子8の設置により入射光2dが位相変調された光波の腹の部分に、高屈折率層(物質5a)および低屈折率層(物質5b)の両方がくるような配置である。これにより、第1バンドによる伝搬光と第2バンドによる伝搬光が発生し、これら2つの波動が重なり、電場形状が山と谷を繰り返す特徴的な伝搬形状が出現していることが図29よりわかる。
(計算例3)
導波層部分である1次元フォトニック結晶の上下両面に、閉じ込め層部分である1次元フォトニック結晶が設置された1次元フォトニック結晶に(1)式を満足する入射角θで平面波を入射させた場合の計算例3について説明する。なお、計算方法は、時間領域有限差分法を用いた。
まず、計算例3で用いるフォトニック結晶の構造について説明する。図30は、計算例3で用いるフォトニック結晶の構成を示す断面図である。図30に示すように、計算例3のフォトニック結晶100は、導波層部分であるフォトニック結晶1の周期方向に垂直な2つの面に閉じ込め層部分であるフォトニック結晶101がそれぞれ設置された構成である。これらの周期方向は同一方向である。このように、導波層部分であるフォトニック結晶1を挟むように、閉じ込め層部分であるフォトニック結晶101を設けたので、フォトニック結晶1の周期方向に垂直な方向から、光が漏れることはない。また、フォトニック結晶1およびフォトニック結晶101は周期方向が同じであるため、容易に作製することができる。各フォトニック結晶101の構造条件と、入射光2gの条件は以下のとおりである。
(1)導波層部分であるフォトニック結晶1の構造条件
フォトニック結晶1は、物質5aと物質5bとを周期的に交互に重ね、15周期積層したものである(図30参照)。
(物質5a) 厚さt=0.3a 屈折率n=2.1011
(物質5b) 厚さt=0.7a 屈折率n=1.4578
(2)閉じ込め層部分であるフォトニック結晶101の構造条件
各フォトニック結晶101は、物質101aと物質101bとを周期的に交互に重ね、10周期積層したものである。なお、物質101aおよび物質101bの厚さはtおよび厚さtであり、屈折率はnおよび屈折率nである。
(物質101a) 厚さt=0.15a 屈折率n=2.1011
(物質101b) 厚さt=0.35a 屈折率n=1.4578
このフォトニック結晶1のバンド図は図28に示すものと同一である。なお、上側(Y軸の+方向)のフォトニック結晶101の外側の媒質は屈折率1.00であり、下側(Y軸の−方向)のフォトニック結晶101の外側の媒質は屈折率1.4578とする。
(3)入射光2gの条件
(真空中の波長) λ=1.4a(a/λ=0.7142)
(偏光) TE偏光(電場の向きがX軸方向)
(入射角) θ=44.43°
以上の入射光2gの条件は(1)式の条件を満足している。
このようなフォトニック結晶1中の電場形状は、山と谷を繰り返す特徴的な伝搬形状である。ここで、出射端面1bがこの電場の谷部分の位置となるように、フォトニック結晶のZ方向の長さ(伝搬光路長)を1.1733aとしてシミュレーションを行った。図31は、計算例3におけるシミュレーション結果である電場の強度分布図である。出射光は0次光9方向と1次回折光10方向の2方向へ出現している。
(計算例4)
計算例3のフォトニック結晶において、伝搬光の電場形状の谷と山部分の中間に出射端面が設置されるような、伝搬光路長を有するフォトニック結晶とした場合の計算例4について説明する。
計算例4のフォトニック結晶100および入射光2gの構成は、計算例3のフォトニック結晶と同一であるが、伝搬光路長が異なる。つまり、出射端面1bが、伝搬光の電場形状の谷と山部分の中間位置となるような伝搬光路長とする。具体的には、フォトニック結晶100の伝搬光路長は、9.0666aとしてシミュレーションを行った。図32は、計算例4におけるシミュレーション結果である電場の強度分布図である。出射光は1次回折方向の伝搬がなく、0次光9方向のみが出現していることが図32よりわかる。
(計算例5)
計算例3のフォトニック結晶において、伝搬光の電場形状の山と谷部分の中間位置に出射端面が設置されるような、伝搬光路長を有するフォトニック結晶とした場合の計算例5について説明する。
計算例5のフォトニック結晶100および入射光2gの構成は、計算例3のフォトニック結晶と同一であるが、伝搬光路長が異なる。つまり、出射端面1bが、伝搬光の電場形状の山と谷部分の中間位置となるような伝搬光路長とする。具体的には、フォトニック結晶100の伝搬光路長は、1.0666aとしてシミュレーションを行った。図33は、計算例5におけるシミュレーション結果である電場の強度分布図である。出射光は0次光方向の伝搬がなく、1次回折光10方向のみ出現していることが図33よりわかる。
(計算例6)
図6を参照して、フォトニック結晶1の入射端面1aに平面波を入射させた場合について計算した。
(1)フォトニック結晶1の構造条件
フォトニック結晶1は、物質5aと物質5bとを周期的に交互に重ね15周期積層したものである。
(物質5a) 厚さt=0.30a 屈折率n=2.1011
(物質5b) 厚さt=0.70a 屈折率n=1.4578
このフォトニック結晶1のバンド図は図28と同一である。なお、フォトニック結晶1の上側(Y軸の+方向)の媒質は屈折率1.00であり、下側(Y軸の−方向)の媒質は屈折率1.4578とする。
(2)入射光2bの条件
(真空中の波長) λ=1.4286a(a/λ=0.7)
(偏光) TE偏光(電場の向きがX軸方向)
(入射角) θ=45.58°
以上の入射光2bの条件は(1)式の条件を満足している。
このフォトニック結晶1中においては、電場形状が山と谷を繰り返す特徴的な伝搬形状が出現している。また、このときの、周期Λ(=(λz・λz)/(λz−λz))の値から、出射光が1次回折光9方向へ出射されるフォトニック結晶1の伝搬光路長を求めた。この伝搬光路長が約50μmであるので、フォトニック結晶1の伝搬光路長を50μmとして計算を行った。図34Aは、計算例6におけるシミュレーション結果である電場の強度分布図である。図34Aより、出射光が1次回折光10方向へ伝搬しているのが確認できる。
(計算例7)
計算例6のフォトニック結晶1の高屈折率層(物質5a)の屈折率が1%増加した場合の計算例7を説明する。
(1)フォトニック結晶1の構造
フォトニック結晶1は、物質5aと物質5bとを周期的に交互に重ね15周期積層したものである。
(物質5a) 厚さt=0.30a 屈折率n=2.122111
(物質5b) 厚さt=0.70a 屈折率n=1.4578
なお、フォトニック結晶1の上側(Y軸の+方向)の媒質は屈折率1.00であり、下側(Y軸の−方向)の媒質は屈折率1.4578とする。
(2)入射光2bの条件
(真空中の波長) λ=1.4286a(a/λ=0.7)
(偏光) TE偏光(電場の向きがX軸方向)
(入射角) θ=45.58°
以上の入射光の条件は(1)式の条件を満足している。
以上の条件は、屈折率nの値が計算例6の条件と異なるだけで、あとは計算例6の条件と同一である。
図34Bは、計算例7におけるシミュレーション結果である電場の強度分布図である。図34Bより、出射光が0次光9方向へ伝搬しているのが確認できる。
計算例6および計算例7のように、規格化周波数a/λ=0.7とすると、屈折率変化による伝搬ベクトルkzの変化が小さいため、フォトニック結晶1の長さを50μm程度とすると、フォトニック結晶1を構成している少なくとも1つの媒質の屈折率変化が大きいことが必要になる。具体的には、1%の屈折率変化が必要である(計算例6および計算例7参照)。しかし、a/λの値がこれより小さい値であれば、屈折率変化による伝搬ベクトルkzの変化が大きくなるため、小さな屈折率変化であっても必要なフォトニック結晶1の長さは数μm程度で済むことになる。
以上説明したように、本実施の形態の光路変換素子によれば、ブリルアンゾーン境界上の第1バンドおよび高次バンド(第2バンド)を利用してフォトニック結晶内を伝搬させた光を、フォトニック結晶のフォトニックバンド構造あるいは伝搬光路長を変化させることで、出射光の方向を変換する。つまり、フォトニック結晶内における、第1あるいは第2バンド光の波動の重なりによって生じる特徴的な伝搬形状の周期を変化させることで、出射光の方向を変換する。あるいは、伝搬方向におけるフォトニック結晶の長さ(伝搬光路長)を変化させ、出射端面における伝搬光の伝搬形状を変化させることで出射光の方向を変換する。したがって、スイッチング機能を有する光路変換素子を実現できる。
この、本実施の形態に係る光路変換素子は、小型化および集積化することができる。また、伝搬光の損失が低い。
【産業上の利用可能性】
本発明の光路変換素子は、光通信、光交換システムあるいは光インタコネクションなどの分野に用いる光集積回路等の部品として用いることができる。
【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】


【図10】

【図11】

【図12】

【図13】


【図15】

【図16】

【図17】



【図19】



【図22】



【図24】

【図25】

【図26】

【図27】

【図28】

【図29】

【図30】

【図31】

【図32】

【図33】



【特許請求の範囲】
【請求項1】
1方向に屈折率周期性を有し、前記屈折率周期方向と略平行である端面の1つを入射端面とし、前記入射端面に対向する端面を出射端面とするフォトニック結晶と、
前記フォトニック結晶中にブリルアンゾーン境界上のバンドによる伝搬光を生じさせるように入射光を前記入射端面から入射する入射部と、
前記フォトニック結晶のフォトニックバンド構造を変化させる手段および/または前記入射端面から前記出射端面までの距離である伝搬光路長を変化させる手段とを備えた光路変換素子。
【請求項2】
前記入射光の真空中における波長をλとし、前記入射端面と接触している媒質の屈折率をnとし、前記フォトニック結晶の周期をaとした場合に、前記入射部は、前記入射光を前記入射端面に対して、以下の式を満たす入射角θで入射する請求項1に記載の光路変換素子。
0.45<n・sinθ・(a/λ)<0.55
【請求項3】
前記入射部は、前記入射端面に近接もしくは接触して配置された回折格子または位相格子を備えている請求項2に記載の光路変換素子。
【請求項4】
前記フォトニックバンド構造を変化させる手段は、前記フォトニック結晶にエネルギーを供給することで、前記フォトニック結晶を構成する材料のうち少なくとも1つの屈折率を変化させ、前記フォトニック結晶の前記フォトニックバンド構造を変化させる請求項1に記載の光路変換素子。
【請求項5】
前記フォトニック結晶を構成する材料のうち少なくとも1つは電気光学効果を有する材料であり、
前記フォトニックバンド構造を変化させる手段は、前記フォトニック結晶に電界を印加する電界印加部である請求項4に記載の光路変換素子。
【請求項6】
前記フォトニック結晶を構成する材料のうち少なくとも1つは半導体材料であり、
前記フォトニックバンド構造を変化させる手段は、前記フォトニック結晶に電流を注入する電流注入部である請求項4に記載の光路変換素子。
【請求項7】
前記フォトニック結晶を構成する材料のうち少なくとも1つは音響光学材料であり、
前記フォトニックバンド構造を変化させる手段は、前記フォトニック結晶に超音波を印加する超音波印加部である請求項4に記載の光路変換素子。
【請求項8】
前記フォトニック結晶を構成する材料のうち少なくとも1つの1部または全部は非線形光学材料であり、
前記フォトニックバンド構造を変化させる手段は、前記フォトニック結晶に光を照射する光源である請求項4に記載の光路変換素子。
【請求項9】
前記フォトニックバンド構造を変化させる手段は、前記フォトニック結晶に外力を印加することで前記フォトニック結晶の周期を変化させて、前記フォトニックバンド構造を変化させる周期変化手段である請求項1に記載の光路変換素子。
【請求項10】
前記周期変化手段は、前記フォトニック結晶の前記屈折率周期方向に垂直な端面の少なくともどちらか一方に接続された外力印加部と、
前記外力印加部および前記フォトニック結晶における、前記フォトニック結晶の前記屈折率周期方向の長さを固定する支持筐体とを備え、
前記外力印加部の体積が変化することで、前記フォトニック結晶に外力を印加する請求項9に記載の光路変換素子。
【請求項11】
前記外力印加部は圧電素子である請求項10に記載の光路変換素子。
【請求項12】
前記周期変化手段は、前記フォトニック結晶を挟んで前記フォトニック結晶の前記屈折率周期方向に対向配置された一対の電磁石を備え、
前記電磁石同士の引力を用いて前記フォトニック結晶に外力を印加する請求項9に記載の光路変換素子。
【請求項13】
前記周期変化手段は、前記フォトニック結晶を挟んで前記フォトニック結晶の前記屈折率周期方向に対向配置された電磁石および磁性体を備え、
前記電磁石と前記磁性体との引力を用いて前記フォトニック結晶に外力を印加する請求項9に記載の光路変換素子。
【請求項14】
前記周期変化手段は、前記フォトニック結晶に接続された基板と、前記基板を加熱あるいは冷却できる温度可変装置とを備え、
前記温度可変装置によって加熱あるいは冷却された前記基板の膨張あるいは収縮を用いて、前記フォトニック結晶に外力を印加する請求項9に記載の光路変換素子。
【請求項15】
前記伝搬光路長を変化させる手段は、前記入射端面および前記出射端面の少なくともどちらか一方に接続された外力印加部と、
前記外力印加部および前記フォトニック結晶における、前記フォトニック結晶の前記伝搬光路長方向の長さを固定する支持筐体とを備え、
前記外力印加部の体積が変化することで、前記フォトニック結晶に外力を印加する請求項1に記載の光路変換素子。
【請求項16】
前記外力印加部は圧電素子である請求項15に記載の光路変換素子。
【請求項17】
前記伝搬光路長を変化させる手段は、前記フォトニック結晶を挟んで前記フォトニック結晶の前記伝搬光路長方向に対向配置された一対の電磁石を備え、
前記電磁石同士の引力を用いて前記フォトニック結晶に外力を印加する請求項1に記載の光路変換素子。
【請求項18】
前記伝搬光路長を変化させる手段は、前記フォトニック結晶を挟んで前記フォトニック結晶の前記伝搬光路長方向に対向配置された電磁石および磁性体を備え、
前記電磁石と前記磁性体との引力を用いて前記フォトニック結晶に外力を印加する請求項1に記載の光路変換素子。
【請求項19】
前記伝搬光路長を変化させる手段は、前記フォトニック結晶に接続された基板と、前記基板を加熱あるいは冷却できる温度可変装置とを備え、
前記温度可変装置によって加熱あるいは冷却された前記基板の膨張あるいは収縮を用いて、前記フォトニック結晶に外力を印加する請求項1に記載の光路変換素子。

【国際公開番号】WO2004/109383
【国際公開日】平成16年12月16日(2004.12.16)
【発行日】平成18年7月20日(2006.7.20)
【国際特許分類】
【出願番号】特願2005−506841(P2005−506841)
【国際出願番号】PCT/JP2004/008160
【国際出願日】平成16年6月4日(2004.6.4)
【出願人】(000004008)日本板硝子株式会社 (853)
【Fターム(参考)】