説明

分光内視鏡装置

【課題】正確な分光画像を簡易な装置構成でかつ高い実効効率で撮影することが可能な分光内視鏡装置を提供すること。
【解決手段】分光内視鏡装置が、電子内視鏡と、電子内視鏡に照明光を供給する光源装置と、入射される光を所定の波長範囲の光に制限して出射するバンドパスフィルタと、一対の透過基板の一方に入射される光をフィルタリングして所定の波長範囲内にそれぞれ異なるピーク波長を有する複数の帯域制限光を出射する波長フィルタユニットと、所定の波長範囲内にそれぞれ異なる透過波長範囲を有し入射される光のうち該透過波長範囲の光のみを出射する複数のカラーフィルタとを備え、波長フィルタユニットは、複数の帯域制限光のピーク波長のそれぞれが、少なくとも1つの透過波長範囲に含まれ、かつ、互いに隣接する帯域制限光のピーク波長が、それぞれ異なる透過波長範囲に含まれるように一対の透過基板間の間隔を変更する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子内視鏡と光源装置とを備え、特に分光画像を撮像可能な分光内視鏡装置に関する。
【背景技術】
【0002】
近年、病変部の診断をより効果的に行うため、分光画像を撮像可能な電子内視鏡装置が提案されている。分光画像とは、狭波長帯域の光を病変部に照射して得られる画像である。例えば、ヘモグロビンに吸収されるような波長帯域の光を照射した時の分光画像から、生体組織の血管の状態を診断することができる。
【0003】
また、生体組織に照射する光の波長を変えながら分光画像を撮像することにより生体組織の反射スペクトルを求め、これによって健常部と病変部(例えば、腫瘍部や癌部)とを識別する研究もなされている。例えば、健常部と病変部(腫瘍部及び癌部)とを識別するために、波長540nm〜580nmの反射スペクトル強度、波長490nm〜520nmの反射スペクトルの傾き、510nm〜530nmの反射スペクトルの傾き等を健常部と病変部とを識別するためのパラメータとして用いることが提案されている(非特許文献1)。
【0004】
このような生体組織の反射スペクトルは、例えば特許文献1に示されるような、任意の波長帯域の光を照射して分光画像を撮像可能な電子内視鏡装置を用いることによって得られる。特許文献1に記載の電子内視鏡装置は、ファブリペロー型の干渉フィルタを波長フィルタとして用いることにより、任意の波長帯域の光を照射可能に構成している。ファブリペロー型の干渉フィルタは、一面に反射膜が形成された一対の透過基板を反射膜同士が向かい合わせとなるように平行に並べたものであり、透過基板に入射した光を反射膜間で繰り返し反射及び干渉させて、特定の波長帯域にピークを持つような光(帯域制限光)を出射するフィルタである。ファブリペロー型の干渉フィルタから出射される帯域制限光のピーク波長(共振周波数)及び自由スペクトル領域(隣接する共振ピーク周波数の差)は、反射膜同士の間隔、すなわち透過基板同士の間隔によって決まる。そのため、一方の透過基板を他方に対して離接可能に構成し、圧電アクチュエータ等によって一方の透過基板を移動させることによって、帯域制限光のピーク波長をスキャンさせることが可能となる。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】Urs Utzinger, Molly Brewer, Elvio Silva, et al. “ReflectanceSpectroscopy for In Vivo Characterization of Ovarian Tissue”, Lasers in Surgeryand Medicine, 28:56-66, 2001
【特許文献】
【0006】
【特許文献1】特開2008−183350号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
上述したように、生体組織の反射スペクトルによって健常部と病変部とを識別するためには、波長450〜600nmの範囲の分光情報を得ることが極めて重要である。そして、これを実現するためには、例えば特許文献1に記載の電子内視鏡装置を用いて、1つのピーク波長を有する帯域制限光を波長450〜600nmの範囲で所定のスキャンピッチでスキャンさせる構成とすることが考えられる。しかし、この場合、1つの反射スペクトルを得るためにはスキャンピッチに応じた回数の分光画像の撮像が必要となり、正確な反射スペクトルを得るためには、少なくとも16回(スキャンピッチを10nmとした場合)以上の分光画像の撮像が必要となる。このため、リアルタイムな処理は難しく、反射スペクトルに基づいて(すなわち、健常部と病変部とを識別した情報に基づいて)診断を行うには長時間を要することとなる。
【0008】
本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、特定の波長帯域の正確な分光画像を簡易な装置構成でかつ高い実効効率で撮影することが可能な分光内視鏡装置を提供することである。
【課題を解決するための手段】
【0009】
上記の目的を達成するため、本発明の分光内視鏡装置は、撮像素子を有する電子内視鏡と、白色光を出射する光源を有し、電子内視鏡に照明光を供給する光源装置と、光源から撮像素子までの照明光の光路中に配置され、入射される光を所定の波長範囲の光に制限して出射するバンドパスフィルタと、互いに対向する面部に反射膜が形成された一対の透過基板と、該一対の透過基板間の間隔を変更することによって該一対の透過基板を通過する光の波長帯域を変更する駆動手段とを備え、光源から撮像素子までの照明光の光路中に配置され、一対の透過基板の一方に入射される光をフィルタリングして所定の波長範囲内にそれぞれ異なるピーク波長を有する複数の帯域制限光を出射する波長フィルタユニットと、光源から撮像素子までの照明光の光路中に配置され、所定の波長範囲内にそれぞれ異なる透過波長範囲を有し、入射される光のうち該透過波長範囲の光のみを出射する複数のカラーフィルタとを備え、波長フィルタユニットは、複数の帯域制限光のピーク波長のそれぞれが、少なくとも1つの透過波長範囲に含まれ、かつ、互いに隣接する帯域制限光のピーク波長が、それぞれ異なる透過波長範囲に含まれるように一対の透過基板間の間隔を変更することを特徴とする。
【0010】
このような構成により、波長の異なる複数の分光画像を、異なるカラーフィルタを通して同時に得ることが可能となるため、分光画像を取得するのにかかる時間が短縮される。
【0011】
また、所定の波長範囲は、425〜650nmであり、波長フィルタユニットは、一対の透過基板間の間隔を875nm〜1250nmの範囲内で変更するように構成することが好ましい。
【0012】
また、複数のカラーフィルタの透過波長範囲のそれぞれが、少なくとも一部において他の透過波長範囲と重なるように構成することができる。この場合、複数のカラーフィルタは、赤色の成分の光を透過するように透過波長範囲が設定されたRフィルタと、緑色の成分の光を透過するように透過波長範囲が設定されたGフィルタと、青色の成分の光を透過するように透過波長範囲が設定されたBフィルタで構成することができる。このような構成によれば、一般的なカラー画像撮影用の撮像素子を利用することが可能となるため、従来の分光内視鏡装置の画像データ処理技術を利用することができる。
【0013】
また、バンドパスフィルタは、所定の波長範囲の光よりも長い波長の光をカットするローパスフィルタと、所定の波長範囲の光よりも短い波長の光をカットするハイパスフィルタと、を備える構成とすることができる。
【0014】
また、反射膜は、透過基板側から酸化チタンの薄膜と酸化ケイ素の薄膜を交互に3層又は4層ずつ蒸着して形成されていることが望ましい。このような構成によれば、所定の波長範囲内において一様な強度の帯域制限光を得ることができるため、正確な分光画像を得ることができる。
【0015】
また、酸化チタンの薄膜の膜厚は、略54nmであり、酸化ケイ素の薄膜の膜厚は、略84nmであることが望ましい。
【発明の効果】
【0016】
以上のように、本発明によれば、特定の波長帯域の正確な分光画像を簡易な装置構成でかつ高い実効効率で撮影することが可能な分光内視鏡装置が実現される。
【図面の簡単な説明】
【0017】
【図1】図1は、本発明の実施の形態に係る分光内視鏡装置のブロック図である。
【図2】図2は、本発明の実施の形態に係る分光内視鏡装置に内蔵されるカラーフィルタの分光特性図である。
【図3】図3は、本発明の実施の形態に係る分光内視鏡装置に内蔵される分光フィルタ及びバンドパスフィルタの側面図である。
【図4】図4は、分光フィルタの光学薄膜の間隔dと帯域制限光のピーク波長の関係を示した表である。
【図5】図5は、分光フィルタの分光特性図である。
【図6】図6は、分光フィルタの分光特性とバンドパスフィルタの分光特性の関係を示す図である。
【図7】図7は、分光フィルタの分光特性、バンドパスフィルタの分光特性及びカラーフィルタの分光特性の関係を示す図である
【図8】図8は、光学薄膜の間隔d、帯域制限光のピーク波長及びR、G、Bフィルタの関係を示したルックアップテーブルの一例である。
【図9】図9は、実施例1に係る分光フィルタの分光特性である。
【図10】図10は、実施例2に係る分光フィルタの分光特性である。
【図11】図11は、参考例に係る分光フィルタの分光特性である。
【発明を実施するための形態】
【0018】
以下、本発明の実施の形態について、図面を用いて詳細に説明する。
【0019】
図1は、本発明の実施形態の分光内視鏡装置のブロック図である。本実施形態の分光内視鏡装置1は、電子内視鏡100と、プロセッサ200と、モニタ300と、を有する。また、プロセッサ200には、光源部400と、画像処理部500が内蔵されている。
【0020】
電子内視鏡100は、体腔内に挿入される挿入管110を有し、挿入管110の先端部(挿入管先端部)111に、対物光学系121が設けられている。挿入管先端部111の周囲の生体組織Tの対物光学系121による像は、挿入管先端部111に内蔵されている撮像素子141の受光面に結像する。撮像素子141は、その受光面にカラーフィルタ141aを備えたカラー画像撮像用の撮像素子であり、例えば、CCD(Charge Coupled Device)である。カラーフィルタ141aは、赤色の成分の光を透過させるRフィルタと、緑色の成分の光を透過させるGフィルタと、青色の成分の光を透過させるBフィルタとが市松状に配列された、いわゆるオンチップフィルタであり、R、G、Bの各フィルタは、図2に示すような分光特性を有している。図2に示すように、本実施形態のRフィルタは、波長約570nm以上の光を透過させるフィルタであり、Gフィルタは、波長約470nm〜620nmの光を透過させるフィルタであり、Bフィルタは、波長約530nm以下の光を透過させるフィルタである。
【0021】
撮像素子141は、受光面に結像した像に対応する映像信号を、周期的に(例えば1/30秒おきに)出力している。撮像素子141から出力された映像信号は、ケーブル142を介してプロセッサ200の画像処理部500に送られる。
【0022】
画像処理部500は、A/D変換回路510、一時記憶メモリ520、コントローラ530、ビデオメモリ540及び信号処理回路550を有する。A/D変換回路510は、電子内視鏡100の撮像素子141からケーブル142を介して入力される映像信号をA/D変換してデジタル画像データを出力する。A/D変換回路510から出力されるデジタル画像データは、一時記憶メモリ520に送られ記憶される。コントローラ530は、一時記憶メモリ520に記憶された任意の単数又は複数の画像データを処理して一枚の表示用画像データを生成し、これをビデオメモリ540に送る。例えば、コントローラ530は、単一の画像データから生成された表示用画像データ、複数の画像データの画像が並べられた表示用画像データ、或いは複数の画像データを演算して生体組織の反射スペクトルを求め、これによって健常部と病変部とを識別した表示用画像データや、画像演算の結果得られる生体組織の反射スペクトルのグラフを表示する表示画像データ等を生成して、これをビデオメモリ540に記憶させる。信号処理回路550は、ビデオメモリ540に記憶されている表示用画像データを所定の形式(例えばNTSC形式)のビデオ信号に変換し、出力する。信号処理回路550から出力されたビデオ信号は、モニタ300に入力される。この結果、電子内視鏡100によって撮像された内視鏡画像等が、モニタ300に表示される。
【0023】
また、電子内視鏡100にはライトガイド131が設けられている。ライトガイド131の先端部131aは挿入管先端部111の近傍に配置されており、一方ライトガイド131の基端部131bはプロセッサ200に接続されている。プロセッサ200は、キセノンランプ等の光量の大きい白色光WLを生成する光源430等を有する光源部400(後述)を内蔵しており、この光源部400によって生成された光は、ライトガイド131の基端部131bに入射するようになっている。ライトガイド131の基端部131bに入射した光は、ライトガイド131を通ってその先端部131aに導かれ、先端部131aから放射される。電子内視鏡100の挿入管先端部111の、ライトガイド131の先端部131aの近傍には、レンズ132が設けられており、ライトガイド131の先端部131aから放射される光は、レンズ132を透過して、挿入管先端部111の近傍の生体組織Tを照明する。
【0024】
このように、プロセッサ200は、電子内視鏡100の撮像素子141から出力される映像信号を処理するビデオプロセッサとしての機能と、電子内視鏡100の挿入先端部111近傍の生体組織Tを照明するための照明光を電子内視鏡100のライトガイド131に供給する光源装置としての機能を兼ね備えるものである。
【0025】
プロセッサ200の光源部400は、光源430と、コリメータレンズ440と、分光フィルタ410と、フィルタ制御部420と、集光レンズ450と、バンドパスフィルタ460とを有している。光源430から出射される白色光WLは、コリメータレンズ440によって平行光となり、分光フィルタ410及びバンドパスフィルタ460を通過した後、集光レンズ450によってライトガイド131の基端部131bに入射する。
【0026】
図3は、分光フィルタ410及びバンドパスフィルタ460の側面図である。本実施形態においては、分光フィルタ410は、ファブリペロー型の干渉フィルタである。具体的には、分光フィルタ410は、向かい合わせに配置された一対の透過基板411及び412を有する。なお、図3に示されるように、透過基板411は光源430側に位置しており、透過基板412はバンドパスフィルタ460側に位置している。透過基板411及び412の、互いに向かい合わせとなる面には、それぞれ光学薄膜411a及び412aが設けられている。なお、透過基板411及び412は、その面部がコリメータレンズ440及び集光レンズ450の光軸axに垂直となるよう位置決めされている。
【0027】
光学薄膜411a及び412aは、共にDBR(Distributed Bragg Reflector)反射層である。本実施形態のDBR反射層は、屈折率の異なる2種類の薄膜を互い違いに3層又は4層ずつ(すなわち、計6層又は8層)重ね合わせたものであり、光学薄膜411a及び412aを所定の距離で対面させた干渉条件においては、所定の波長に対して極めて高い(90%以上)透過率を有するバンドパスフィルタを構成することができる。
【0028】
このような構成の干渉フィルタにおいては、入射した光が向かい合わせの光学薄膜411a及び412aの間で繰り返し反射され、その過程で、特定の複数の波長域を除く成分が干渉によって打ち消され、複数の波長域を主成分とする(複数のピーク波長を有する)帯域制限光LLが生成される。生成された帯域制限光LLは、透過基板412を介してバンドパスフィルタ460に向かって出射される。
【0029】
ファブリペロー型の干渉フィルタを透過する帯域制限光LLのピーク波長は、光学薄膜411aと412aの間隔dによって定まり、次式(数1)が成立することが知られている。
【数1】

【0030】
ここで、nは光学薄膜411aと412aの間の物質の屈折率、θは干渉フィルタに入射される光の入射角(すなわち、光学薄膜411aと412aの間で測った内部入射角)、kは干渉の次数(ゼロでない正数)、そしてλは特定の共振透過波長(すなわち、帯域制限光LLのピーク波長)を示す。数1は、単層近似とも呼ばれ、数1を満たす次数kと波長λの組み合わせは一義的ではなく多数存在し、複数のピーク波長が観察される。なお、詳細な設計は、光学薄膜のシミュレーションにより、透過波長λと、半値幅、ピークトップの透過率、光学薄膜411aと412aの間隔dの関係を把握しながら行われる。
【0031】
数1に示されるように、干渉フィルタを透過する波長λは、光学薄膜411aと412aとの間隔dに比例した大きさとなる。本実施形態の分光フィルタ410は、フィルタ制御部420によって、一方の透過基板411を、他方の透過基板412に対して離接させるよう駆動することによって、間隔dを変更することが可能となっている。具体的には、本実施形態においては、光学薄膜411aと412aとの間隔dは、875nm〜1250nmの範囲内で所定のステップ(例えば、10nmのステップ)で変更される。そして、この条件においては、波長400nm〜750nmの範囲内に2〜4つのピーク波長を有する帯域制限光LLが生成される。
【0032】
図4は、光学薄膜411aと412aとの間隔dと帯域制限光LLのピーク波長との関係を示した表である。図5は、分光フィルタ410の分光特性(すなわち、帯域制限光LLのピーク波長)を示しており、図5(a)は、間隔dを875nmに設定した場合の分光特性であり、図5(b)は、間隔dを1000nmに設定した場合の分光特性であり、図5(c)は、間隔dを1150nmに設定した場合の分光特性である。図4及び図5に示したように、本実施形態においては、干渉次数k=11、9、7、5の光を利用しており、光学薄膜411aと412aとの間隔dを所定の距離に設定することにより、数1で求まる波長λの位置にピークを有する複数の帯域制限光LLを得ている。図5の「k=7」の帯域制限光LLに注目すると判るように、間隔dを広げることによって、複数の帯域制限光LLのピーク波長(λ)が高波長側にシフトしていく。本実施形態の分光内視鏡装置1は、分光フィルタ410の分光特性のこのような特徴を利用したものである。すなわち、本実施形態の分光内視鏡装置1は、複数の帯域制限光LLが生成されるように構成し、さらにこれらをシフトさせることで効率よく分光画像を取得することができるように構成されている。
【0033】
分光フィルタ410によって生成された帯域制限光LLは、バンドパスフィルタ460に向かって出射される(図3)。バンドパスフィルタ460は、所定の波長よりも長い波長の光を透過させるハイパスフィルタ460aと、所定の波長よりも短い波長の光を透過させるローパスフィルタ460bとを備えており、分光フィルタ410から入射される帯域制限光LLをフィルタリングして集光レンズ450に出射する。なお、本実施形態においては、ハイパスフィルタ460aは、425nmよりも長い波長の光を透過させ、ローパスフィルタ460bは、650nmよりも短い波長の光を透過させるように構成されている。従って、分光フィルタ410から入射される帯域制限光LLのうち、波長425nm〜650nmの範囲の帯域制限光LLだけが抽出されて集光レンズ450に出射されることとなる。
【0034】
図6は、図5の分光フィルタ460の分光特性にバンドパスフィルタ460の分光特性を加えて示したものである。図6に示すように、分光フィルタ410から入射される帯域制限光LLのうち、425nmよりも短い波長と650nmよりも長い波長がバンドパスフィルタ460によってカットされるため(図6中点線で示した部分の分光特性)、図6中実線で示した特性を有する帯域制限光LLだけがバンドパスフィルタ460から集光レンズ450に入射することとなる。
【0035】
上述したように、集光レンズ450に入射した光は、ライトガイド131の基端部131bに集光され、ライトガイド131によってその先端部131aに導光され、レンズ132を介して生体組織Tに照射される。そして、生体組織Tに照射された光の反射光(すなわち、生体組織Tの像)が、カラーフィルタ141aを介して撮像素子141の受光面に結像して、内視鏡画像(映像信号)が得られる。すなわち、撮像素子141で得られる内視鏡画像は、バンドパスフィルタ460から出射された光をさらにカラーフィルタ141aでフィルタリングして得られるものとなる。
【0036】
図7は、図6の分光フィルタ460の分光特性及びバンドパスフィルタ460の分光特性に図2のカラーフィルタ141aの分光特性を加えて示したものである。図7に示すように、本実施形態においては、波長425nm〜650nmの範囲に離散的に生成される複数の帯域制限光LLは、それぞれカラーフィルタ141aのR、G、Bフィルタのいずれかの透過波長帯域に属するように構成されている。例えば、図7(a)で示すように、光学薄膜411aと412aとの間隔dを875nmに設定した場合、波長451nmと563nmとにピークを有する2つの帯域制限光LLが撮像素子141に入射するが、波長451nmのピークはBフィルタの透過波長範囲に属し、波長563nmのピークはGフィルタの透過波長帯域に属する。従って、この状態で内視鏡画像を得る(撮像することにより)ことにより、Bフィルタに対応する撮像素子141の画素からは、波長451nmの分光画像を得ることができ、Gフィルタに対応する撮像素子141の画素からは、波長563nmの分光画像を得ることができる。
【0037】
また、例えば、図7(b)で示すように、光学薄膜411aと412aとの間隔dを1000nmに設定した場合、波長500nmと619nmとにピークを有する2つの帯域制限光LLが撮像素子141に入射するが、波長500nmのピークはBフィルタ及びGフィルタの透過波長範囲に属し、波長619nmのピークはRフィルタの透過波長帯域に属する。従って、この状態で撮像することにより、Bフィルタ及びGフィルタに対応する撮像素子141の画素からは、波長500nmの分光画像を得ることができ、Rフィルタに対応する撮像素子141の画素からは、波長619nmの分光画像を得ることができる。
【0038】
また、例えば、図7(c)で示すように、光学薄膜411aと412aとの間隔dを1150nmに設定した場合、波長467nmと560nmとにピークを有する2つの帯域制限光LLが撮像素子141に入射するが、波長467nmのピークはBフィルタの透過波長範囲に属し、波長560nmのピークはGフィルタの透過波長帯域に属する。従って、この状態で撮像することにより、Bフィルタに対応する撮像素子141の画素からは、波長467nmの分光画像を得ることができ、Gフィルタに対応する撮像素子141の画素からは、波長560nmの分光画像を得ることができる。
【0039】
このように、本実施形態においては、複数の帯域制限光LLを波長425nm〜650nmの範囲に離散的に生成し、帯域制限光LLのそれぞれを、カラーフィルタ141aのR、G、Bフィルタのいずれかを通して撮像素子141で検出できるように構成している。そして、複数の帯域制限光LLによって得られる像(すなわち、複数の分光画像)を1回の撮像動作で同時に取り込むことで、効率よく分光画像を取得している。上述したように、帯域制限光LLの波長は、光学薄膜411aと412aの間隔dを変更することにより、シフトさせることが可能である。本実施形態においては、コントローラ530がフィルタ制御部420を制御し、光学薄膜411aと412aの間隔dを徐々に変更しながら順次分光画像を取得することで、波長450〜650nmの範囲の分光画像を、例えば10nmステップで取得している。具体的には、コントローラ530は、光学薄膜411aと412aの間隔d、帯域制限光LLのピーク波長及びカラーフィルタ141aのR、G、Bフィルタの関係を示したルックアップテーブルを用いて、波長450〜650nmの範囲の分光画像を取得している。
【0040】
図8は、コントローラ530によって制御する、光学薄膜411aと412aの間隔d、帯域制限光LLのピーク波長及びカラーフィルタ141aのR、G、Bフィルタの関係を示したルックアップテーブルの一例である。図8に示すように、本実施形態のルックアップテーブルは、図4に示した、光学薄膜411aと412aの間隔dと、帯域制限光LLのピーク波長との関係を示した表に、バンドパスフィルタ460の分光特性の情報及びカラーフィルタ141aのR、G、Bフィルタの分光特性の情報を加えたものである。ここで、図8において「×」印は、帯域制限光LLのピーク波長のうち、バンドパスフィルタ460によってカットされるために撮像素子141によって検出されない波長を示し、「−」印は、撮像素子141によって検出されるものの、データとしては使用しない(記憶しない)ものを示している。また、「B」はBフィルタに対応する画素によって取得される帯域制限光LLの波長を示し、「G」はGフィルタに対応する画素によって取得される帯域制限光LLの波長を示し、「R」はRフィルタに対応する画素によって取得される帯域制限光LLの波長を示している。このルックアップテーブルは、コントローラ530内の不揮発性メモリ(不図示)に記憶されており、コントローラ530は、分光画像の撮像(取得)時にルックアップテーブルを参照しながら光学薄膜411aと412aの間隔dを変更し、R、G、Bの各フィルタを通して得られた画像をそれぞれ所定波長の分光画像として一次記憶メモリ520に記憶する。
【0041】
図8に示すように、例えば、コントローラ530が、フィルタ制御部420を制御して、光学薄膜411aと412aの間隔dを875nmに設定した場合、撮像素子141によって撮像された画像のうち、Bフィルタに対応する画素によって得られた画像は451nmの分光画像として一次記憶メモリ520に記憶され、Gフィルタに対応する画素によって得られた画像は563nmの分光画像として一次記憶メモリ520に記憶される。
【0042】
また、例えば、コントローラ530が、フィルタ制御部420を制御して、光学薄膜411aと412aの間隔dを1000nmに設定した場合、撮像素子141によって撮像された画像のうち、Gフィルタに対応する画素によって得られた画像は500nmの分光画像として一次記憶メモリ520に記憶され、Rフィルタに対応する画素によって得られた画像は619nmの分光画像として一次記憶メモリ520に記憶される。ここで、この例の場合、波長500nmにピークを有する帯域制限光LLはBフィルタに対応する画素にも入射することとなるが(図7(b))、波長421nmにピークを有する帯域制限光LLの一部がバンドパスフィルタ460によってカットされずBフィルタを通して撮像素子141に入射されるため、Bフィルタに対応する画素によって得られる画像には波長500nmにピークを有する帯域制限光LL以外の光によって得られた画像も含まれてしまうこととなる。そこで、このように隣接する2つの帯域制限光LLがR、G、Bフィルタのいずれか1つに入射するような場合には、R、G、Bフィルタの分光特性が互いに一部重複していることを利用して、必ず1つの帯域制限光LLがR、G、Bフィルタの1つに割り当てられるように構成している。なお、BとGフィルタの分光特性及びGとRフィルタの分光特性は、それぞれ波長方向に50%程度オーバーラップしているのが望ましい。
【0043】
また、例えば、コントローラ530が、フィルタ制御部420を制御して、光学薄膜411aと412aの間隔dを1025nmに設定した場合、撮像素子141によって撮像された画像のうち、Gフィルタに対応する画素によって得られた画像は511nmの分光画像として一次記憶メモリ520に記憶され、Rフィルタに対応する画素によって得られた画像は629nmの分光画像として一次記憶メモリ520に記憶される。ここで、波長428nmにピークを有する帯域制限光LLもBフィルタに対応する画素に入射することとなるが、この帯域制限光LLの一部がバンドパスフィルタ460によってカットされている可能性が高いため、データとしては使用せず破棄している。このように、本実施形態においては、バンドパスフィルタ460によってカットされない波長425nm以上の波長であっても450nmよりも短い波長にピークを有する帯域制限光LLについては、Bフィルタで得られた分光画像のデータを使用せず、破棄している。
【0044】
このように、コントローラ530が、図8に示すルックアップテーブルを参照しながら光学薄膜411aと412aの間隔dを875nm〜1250nmの範囲で変更し、R、G、Bの各フィルタを通して得られた画像をそれぞれ所定波長の分光画像として一次記憶メモリ520に記憶することで、波長450〜650nmの範囲において約10nmステップごとの分光画像を取得することができる。そして、コントローラ530は、取得した分光画像から反射スペクトルを求め、健常部と病変部とを識別した表示画像データをビデオメモリ540に出力する。なお、図8のルックアップテーブルによれば、2つの帯域制限光LLによって得られる像(すなわち、2つの分光画像)を1回の撮像動作で同時に取り込むことができるため、分光画像の取得時間は約半分となる。
【実施例】
【0045】
次に、上述した本発明の実施形態に係る分光フィルタ410のDBR反射層の構成について、以下に幾つかの実施例及び参考例を示し、さらに詳細に説明する。
【0046】
<分光フィルタ410の製造方法>
各実施例及び参考例に係る分光フィルタ410の製造方法について説明する。先ず、ホウケイ酸塩クラウンガラス(HOYA株式会社製:BK7)を所定のサイズに加工し、基材(透過基板411及び412)を製造する。次いで、基材の上面に、真空蒸着装置を用いて、酸化チタンの薄膜と酸化ケイ素の薄膜を互い違いに3層又は4層ずつ(参考例においては、5層ずつ)蒸着してDBR反射層を形成する。そして、一対の基材をDBR反射層が対向するように配置し、基材同士が空気層を挟んで平行となるように調整する。なお、酸化チタンの他に酸化ジルコニウムや五酸化ニオブなどを、酸化ケイ素の他にフッ化マグネシウムなどを用いることができる。
【0047】
<実施例及び参考例の説明>
【実施例1】
【0048】
本実施例1の分光フィルタ410のDBR反射層の構成は、表1に示す通りである。表1に示すように、本実施例1の分光フィルタ410のDBR反射層は、基材(透過基板411及び412)の上面に酸化チタンの薄膜と酸化ケイ素の薄膜を交互に3層ずつ蒸着して形成されている。ここで、基材の屈折率は、1.519(λ=550nm)であり、酸化チタンの屈折率は、2.320(λ=550nm)であり、酸化ケイ素の屈折率は、1.486(λ=550nm)である。また、酸化チタンの各薄膜の膜厚は、53.89nmであり、酸化ケイ素の各薄膜の膜厚は、84.12nmである。
【0049】
【表1】

【0050】
図9は、本実施例1の分光フィルタ410の分光特性である。図9に示すように、本実施例1の構成によれば、波長444nm、501nm、575nmにそれぞれピークを有する3つの帯域制限光LLが出射される。ここで、各ピーク波長における透過率は、それぞれ96.60%(λ=444nm)、95.17%(λ=501nm)、96.58%(λ=575nm)であった。すなわち、各ピーク波長における透過率は全て90%以上であって、透過率のバラツキ(最大透過率―最小透過率=1.43%)が小さい理想的な可変波長フィルタが実現できた。
【実施例2】
【0051】
本実施例2の分光フィルタ410のDBR反射層の構成は、表2に示す通りである。表2に示すように、本実施例2の分光フィルタ410のDBR反射層は、基材(透過基板411及び412)の上面に酸化チタンの薄膜と酸化ケイ素の薄膜を交互に4層ずつ蒸着して形成した点で実施例1と異なる。
【0052】
【表2】

【0053】
図10は、本実施例2の分光フィルタ410の分光特性である。図10に示すように、本実施例2の構成によれば、波長445nm、501nm、573nmにそれぞれピークを有する3つの帯域制限光LLが出射される。そして、各ピーク波長における透過率は、それぞれ97.18%(λ=445nm)、92.31%(λ=501nm)、94.61%(λ=573nm)であった。すなわち、本実施例2においても、各ピーク波長における透過率は全て90%以上であって、透過率のバラツキ(4.87%)も10%以内であった。
【参考例】
【0054】
本参考例の分光フィルタ410のDBR反射層の構成は、表3に示す通りである。表3に示すように、本参考例の分光フィルタ410のDBR反射層は、基材(透過基板411及び412)の上面に酸化チタンの薄膜と酸化ケイ素の薄膜を交互に5層ずつ蒸着して形成した点で実施例1及び実施例2と異なる。
【0055】
【表3】

【0056】
図11は、本参考例の分光フィルタ410の分光特性である。図11に示すように、本参考例の構成によれば、波長447nm、501nm、570nmにそれぞれピークを有する3つの帯域制限光LLが出射される。そして、各ピーク波長における透過率は、それぞれ94.34%(λ=447nm)、69.25%(λ=501nm)、92.46%(λ=570nm)であった。このように本参考例では、半値幅が狭まるために、特定の波長(本参考例の場合、λ=501nm)において透過率が低下するが、フィルタ効果(波長選択効果)をより峡帯域の波長に絞り込むことができる。なお、特定の波長における透過率の低下に対しては、必要とする波長情報や撮像素子141の感度に応じてフィルタの特性を変更したり、撮像素子141による撮像時間(積分時間)を長くしたりすることで対処することが可能である。
【0057】
以上が本発明の実施形態および該実施形態の具体的実施例の説明であるが、本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲内において様々な変形が可能である。例えば、本実施形態の光源部400においては、分光フィルタ410をバンドパスフィルタ460の光源430側に配置する構成として説明したが、分光フィルタ410とバンドパスフィルタ460の配置を入れ換えても良い。また、分光フィルタ410とバンドパスフィルタ460は、光源430から出射される光が撮像素子141によって受光されるまでの光路中にあればよく、例えば、挿入管先端部111に内蔵する構成としてもよい。
【0058】
また、本実施形態の撮像素子141は、その前面にR、G、Bの原色系カラーフィルタを備えたカラー画像撮像用の撮像素子であるとして説明したが、この構成に限定されるものではなく、例えば、Y、Cy、Mg、Gの補色系カラーフィルタを備えたカラー画像撮像用の撮像素子を用いてもよい。なお、この場合、一般的に補色系カラーフィルタの各色の分光特性は、原色系カラーフィルタの各色の分光特性に比較して広い特性(波長方向にブロードな特性)を有するため、複数の帯域制限光LLが複数のカラーフィルタを通して撮像素子に入射されることとなる。このため、1つの帯域制限光LLによって得られた分光画像を得るためには各カラーフィルタを通して得られた画像データを用いて演算する必要がある。
【0059】
また、本実施形態のRフィルタは、波長約570nm以上の光を透過させるフィルタであり、Gフィルタは、波長約470nm〜620nmの光を透過させるフィルタであり、Bフィルタは、波長約530nm以下の光を透過させるフィルタであるとして説明したが、隣接する帯域制限光LLのピーク波長がそれぞれ異なるフィルタを透過するように構成すれば、この構成に限定されるものではなく、必要とされる分光画像の波長範囲(例えば、波長450〜650nm)に少なくとも異なる2つの分光特性を有するフィルタがあればよい。なお、この場合、各帯域制限光LLのピーク波長と使用するフィルタの分光特性に応じて図8のルックアップテーブルを変更する。
【0060】
また、本実施形態においては、波長450〜650nmの分光画像を得ることができるように構成したが、生体組織の反射スペクトルによって健常部と病変部とを識別するためには、波長450〜600nmの範囲の分光画像が得られればよいため、BフィルタとGフィルタによって得られる分光画像を用いて構成することも可能である。この場合、Rフィルタによって得られる分光画像を処理する必要がなくなるため、処理は更に高速化される。
【0061】
また、本実施形態の撮像素子141は、オンチップのカラーフィルタ141aを備えたカラー画像撮像用の撮像素子であるとして説明したが、この構成に限定されるものではなく、例えば、白黒画像撮像用の撮像素子を用い、いわゆる面順次方式のカラーフィルタを備えた構成としてもよい。また、カラーフィルタ141aは、オンチップの構成に限定されるものではなく、光源430から撮像素子141までの光路中であれば、どこに配置されても構わない。
【符号の説明】
【0062】
1 診断システム
100 電子内視鏡
110 挿入管
111 挿入管先端部
121 対物光学系
131 ライトガイド
131a 先端部
131b 基端部
132 レンズ
141 撮像素子
141a カラーフィルタ
142 ケーブル
200 電子内視鏡用プロセッサ
300 モニタ
400 光源部
410 分光フィルタ
420 フィルタ制御部
430 光源
440 コリメータレンズ
450 集光レンズ
460 バンドパスフィルタ
500 画像処理部
510 A/D変換回路
520 一時記憶メモリ
530 コントローラ
540 ビデオメモリ
550 信号処理回路

【特許請求の範囲】
【請求項1】
撮像素子を有する電子内視鏡と、
白色光を出射する光源を有し、前記電子内視鏡に照明光を供給する光源装置と、
前記光源から前記撮像素子までの照明光の光路中に配置され、入射される光を所定の波長範囲の光に制限して出射するバンドパスフィルタと、
互いに対向する面部に反射膜が形成された一対の透過基板と、該一対の透過基板間の間隔を変更することによって該一対の透過基板を通過する光の波長帯域を変更する駆動手段とを備え、前記光源から前記撮像素子までの照明光の光路中に配置され、前記一対の透過基板の一方に入射される光をフィルタリングして前記所定の波長範囲内にそれぞれ異なるピーク波長を有する複数の帯域制限光を出射する波長フィルタユニットと、
前記光源から前記撮像素子までの照明光の光路中に配置され、前記所定の波長範囲内にそれぞれ異なる透過波長範囲を有し、入射される光のうち該透過波長範囲の光のみを出射する複数のカラーフィルタと、
を備え、
前記波長フィルタユニットは、前記複数の帯域制限光のピーク波長のそれぞれが、少なくとも1つの前記透過波長範囲に含まれ、かつ、互いに隣接する帯域制限光のピーク波長が、それぞれ異なる前記透過波長範囲に含まれるように前記一対の透過基板間の間隔を変更すること
を特徴とする分光内視鏡装置。
【請求項2】
前記所定の波長範囲は、425〜650nmであり、
前記波長フィルタユニットは、前記一対の透過基板間の間隔を875nm〜1250nmの範囲内で変更することを特徴とする請求項1に記載の分光内視鏡装置。
【請求項3】
前記複数のカラーフィルタの前記透過波長範囲のそれぞれが、少なくとも一部において他の透過波長範囲と重なっていることを特徴とする請求項1又は請求項2に記載の分光内視鏡装置。
【請求項4】
前記複数のカラーフィルタは、赤色の成分の光を透過するように前記透過波長範囲が設定されたRフィルタと、緑色の成分の光を透過するように前記透過波長範囲が設定されたGフィルタと、青色の成分の光を透過するように前記透過波長範囲が設定されたBフィルタであることを特徴とする請求項3に記載の分光内視鏡装置。
【請求項5】
前記バンドパスフィルタは、前記所定の波長範囲の光よりも長い波長の光をカットするローパスフィルタと、前記所定の波長範囲の光よりも短い波長の光をカットするハイパスフィルタと、を備えることを特徴とする請求項1から請求項4のいずれか一項に記載の分光内視鏡装置。
【請求項6】
前記反射膜は、前記透過基板側から酸化チタンの薄膜と酸化ケイ素の薄膜を交互に3層又は4層ずつ蒸着して形成されていることを特徴とする請求項1から請求項5のいずれか一項に記載の分光内視鏡装置。
【請求項7】
前記酸化チタンの薄膜の膜厚は、略54nmであり、前記酸化ケイ素の薄膜の膜厚は、略84nmであることを特徴とする請求項6に記載の分光内視鏡装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2013−106692(P2013−106692A)
【公開日】平成25年6月6日(2013.6.6)
【国際特許分類】
【出願番号】特願2011−252409(P2011−252409)
【出願日】平成23年11月18日(2011.11.18)
【出願人】(000113263)HOYA株式会社 (3,820)
【Fターム(参考)】