説明

力覚センサチップ

【課題】陽極接合の際に、陽極接合の不具合や、センサ回路の損傷が起きない力覚センサチップを提供する。
【解決手段】外力作用領域部4Aを有する作用部4と、この作用部4を支持する支持部3と、作用部4と支持部3とを連結する連結部と、を備える半導体基板からなるベース部材2と、連結部の変形発生部に設けられた歪み検出用抵抗素子Sと、を備え、作用部4の表面又は作用部4が形成された面の裏面に、陽極接合する際に電流が供給される電極である陽極接合用電極8が配置されていることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、工作機械やポインティングデバイス等の力覚センサに用いられる力覚センサチップに関する。
【背景技術】
【0002】
工作機械等の自動作業機械では、その作業動作上で、作業対象物に対して力を加えたり、外界から力の作用を受けたりする。この場合、自動作業機械では、自身に加わる外部からの力やモーメント(力のモーメント)を検出し、力やモーメントに対応した制御を行うことが要求される。力やモーメントに対応する制御を高精度で行うためには、外部から加わる力(以下、外力という)とモーメントを正確に検出することが必要となる。
【0003】
そこで従来から、各種の力覚センサが提案されている。通常、力覚センサは、検出方式の観点で大別すると、弾性式力覚センサと平衡式力覚センサがある。弾性式力覚センサは外力に比例した変形量に基づき力を測定する。平衡式力覚センサは既知の力との釣り合わせによって力を測定する。
【0004】
また力覚センサは、原理的な構造として、外力に応じて弾性変形する起歪体の部分に複数の歪み検出用抵抗素子を設けた構造を有するものが知られている。力覚センサの起歪体に外力が加わると、起歪体の変形度合い(応力)に応じた電気信号が複数の歪み検出用抵抗素子から出力される。そして、これらの電気信号に基づいて起歪体に加わった2成分以上の力等を検出することができる。また、力覚センサで生じる応力の測定は、上記電気信号に基づいて算出される。
【0005】
力覚センサの一種としては、6軸力センサが知られている。6軸力センサは上記弾性式力センサの一種であって、起歪体部分に複数の歪み検出用抵抗素子を備えている。6軸力センサは、外力を、直交座標系の3軸(X軸、Y軸、Z軸)の各軸方向の応力成分(力:Fx,Fy,Fz)と、各軸方向のトルク成分(モーメント:Mx,My,Mz)に分け、6軸成分として検出するものである。このような6軸力センサの一例として、例えば特許文献1には、多軸力センサ用チップ(力覚センサチップ)を利用して組み立てられる多軸力センサおよびこれに用いる多軸力センサ用チップが開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2006−125873号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、従来の力覚センサチップを用いた力覚センサには、以下の点で改善の余地がある。
力覚センサの組み立ての際には、力覚センサチップと、外力を伝達するための連結ロッド等の伝達部とを陽極接合することで、力覚センサチップと伝達部とを接合することが行われている。この陽極接合においては、力覚センサチップおよび伝達部に電圧が印加されることで行われる。
しかし従来の力覚センサチップにおいては、その表面又は裏面側に力覚センサチップと伝達部とを陽極接合するための陽極接合専用の電極は設けられていなかった。このため、力覚センサチップは、陽極接合の際に力覚センサチップの表面又は裏面側において、電圧の印加に伴う陽極接合電流の経路を確保することができなかった。すなわち、力覚センサチップは、チップ表面又は裏面に流れる電流の経路が定まらず、作用部の所定領域と伝達部との接合領域において、電流経路が定まらなかった。この結果、力覚センサチップは、陽極接合における接合不良等の接合品質の低下が避けられず、また陽極接合ができない場合があった。さらには、力覚センサチップは、チップのセンサ回路の損傷が起きる場合があった。なお、このようなセンサ回路の損傷を避けるには、チップ側面等の表面又は裏面以外からの電流経路を確保するしかなかった。しかし、力覚センサチップは、チップ表面又は裏面以外から電流経路を確保しても電流経路が安定せず、やはり接合品質の低下が起きる場合があった。
【0008】
本発明は前記問題点に鑑みてなされたものであり、陽極接合の際に、陽極接合の不具合や、センサ回路の損傷が起きない力覚センサチップを提供することを課題とする。
【課題を解決するための手段】
【0009】
すなわち本発明に係る力覚センサチップは、外力作用領域部を有する作用部と、この作用部を支持する支持部と、前記作用部と前記支持部とを連結する連結部と、を備える半導体基板からなるベース部材と、前記連結部の変形発生部に設けられた歪み検出用抵抗素子と、を備え、前記作用部の表面又は前記作用部が形成された面の裏面に、陽極接合する際に電流が供給される電極である陽極接合用電極が配置されていることを特徴とする。
【0010】
このような構成によれば、力覚センサチップは、作用部の表面又は作用部が形成された面の裏面(以下、適宜、作用部の裏面という)に、陽極接合用電極を備えることで、作用部の所定領域と力覚センサの伝達部とが陽極接合される際に陽極接合用電極が電流の経路となるため、チップ表面又は裏面に流れる電流経路が定まり、作用部の所定領域と伝達部との接合領域において電流経路が定まる。これにより、力覚センサチップは、陽極接合における接合品質の低下が起きない。さらに、力覚センサチップは、力覚センサチップにおける薄膜材料の残留応力の影響が小さくなり、また、力覚センサチップは、力覚センサチップの材料間の熱膨張係数の差異による温度変化時のチップ変化量が小さくなる。
【0011】
前記陽極接合用電極は、前記作用部の面積に比して小さく形成され、前記作用部の表面又は前記作用部が形成された面の裏面に複数配置されていることが好ましい。例えば、前記作用部に互いに離間させて格子状に配置する。
このような構成によれば、力覚センサチップは、陽極接合用電極を小さくして複数とすることで、力覚センサチップにおける薄膜材料の残留応力の影響がより小さくなる。また力覚センサチップは、力覚センサチップの材料間の熱膨張係数の差異による温度変化時のチップ変形量がより小さくなる。
【0012】
前記陽極接合用電極は、その配置として、陽極接合用電極のうち前記作用部の中心となる位置に設けられた電極である中心電極を起点に、例えば、線対称、点対称、放射状、十字状、同心円状等に配置してもよい。また、陽極接合用電極を正方形とし、前記作用部の表面又は前記作用部が形成された面の裏面に縦列横列に整列して等間隔で配置してもよい。
さらに、陽極接合用電極のうち前記作用部の中心となる位置に設けられた電極である中心電極を起点に、前記作用部の縦方向および横方向のそれぞれの一対の辺に沿って線対称となるように一列ずつ配置してもよい。
その他、陽極接合用電極のうち前記作用部の中心となる位置に設けられた電極である中心電極を起点に、複数の弧状の陽極接合用電極を円状に、あるいは、同心円状に配置してもよい。
なお、「作用部の中心となる位置」とは、作用部の表面の場合は、作用部の中心であり、作用部の裏面の場合は、作用部の裏面での中心、すなわち作用部の裏面における、作用部の中心に対応する位置(例えば、後記する陽極接合用電極載置部の中心)を意味する。
【0013】
このような構成によれば、力覚センサチップは、作用部の中心となる位置に中心電極を配置することで陽極接合がチップ中央から始まり均等に広がるため、接合不良が生じにくくなる。また、力覚センサチップは、力覚センサチップの中心に対して対称性を考慮して陽極接合用電極を配置することにより、残留応力の影響が小さくなり、力覚センサチップにおける予想外の変形を避けることができる。
【0014】
また、前記作用部と前記支持部と前記連結部とは、前記半導体基板を貫通する複数の孔によって機能的に分離されていることが好ましい。
このような構成によれば、力覚センサチップは、作用部と支持部とを複数の孔で分離することにより、作用部に印加された外力を支持部等に分散させずに、歪み検出用抵抗素子に集中させることができる。従って、作用部に印加された外力をより正確に検出することができる。
【0015】
さらに、前記連結部は、剛性の高い領域と、剛性の低い領域を有するように形成され、前記剛性の高い領域の一方が前記作用部に接続され、前記剛性の高い領域の他方が前記剛性の低い領域に接続されていることが好ましい。
このような構成によれば、力覚センサチップは、作用部に外力が印加された際に、剛性の低い領域である弾性部が剛性の高い領域である橋梁部にかかる余分な歪みを吸収し、一方向への力またはモーメントの印加による力覚センサチップ全体の歪みの発生を抑制することができる。従って、特定の方向の力またはモーメントに対応する歪み検出用抵抗素子に選択的に歪みを発生させることができ、他軸干渉を大幅に抑制することができる。
【0016】
また、前記剛性の低い領域は、前記複数の孔における前記支持部に沿って設けられた長穴の孔により長尺状に形成されており、前記剛性の低い領域の両端が前記支持部に接続されていることが好ましい。
このような構成によれば、力覚センサチップは、力覚センサチップ全体の歪みの発生をさらに抑制することができる。
【発明の効果】
【0017】
本発明に係る力覚センサチップによれば、力覚センサチップは、電流経路が定まり、陽極接合品質の低下を防止することができる。また、センサ回路の損傷を防止することができる。
また、力覚センサチップは、力覚センサチップの表面又は裏面側から容易に電流経路を確保することができる。そのため、残留応力の影響を小さくすることができ、また、材料間の熱膨張係数の差異による温度変化時のチップ変化量を小さくすることができる。
【図面の簡単な説明】
【0018】
【図1】(a)は本発明に係る力覚センサチップを示す平面図、(b)は陽極接合用電極の配置を説明するための平面図である。
【図2】図1(a)について配線パターンを省略して示した力覚センサチップの平面図である。
【図3】(a)、(b)は本発明に係る力覚センサチップを用いた力覚センサの概略構成を説明するための模式図であり、断面をとって内部構造を示した斜視図である。
【図4】本発明に係る力覚センサチップの作用部と、力覚センサの伝達部との陽極接合について説明するための模式図である。
【図5】(a)〜(d)は陽極接合用電極の配置についての他の実施形態について説明するための模式図である。
【図6】(a)〜(d)は陽極接合用電極の配置についての他の実施形態について説明するための模式図である。
【図7】本発明に係る力覚センサチップの形状についての他の実施形態について説明するための模式図である。
【図8】本発明に係る力覚センサチップの形状についての他の実施形態について説明するための模式図である。
【図9】本発明に係る力覚センサチップの形状についての他の実施形態について説明するための模式図である。
【発明を実施するための形態】
【0019】
以下、本発明に係る力覚センサチップの形態について、図面を参照しながら説明する。この実施形態では力覚センサチップとして6軸力センサチップの例を説明する。なお本発明に係る力覚センサチップは6軸力センサチップに限定されるものではない。また、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については、原則として同一もしくは同質の部材を示しており、詳細説明を適宜省略する。また、以下に用いる縦方向とは、紙面を正対視したときに、紙面に対して縦の方向(矢印Yの前後方向)であり、横方向とは、紙面を正対視したときに、紙面に対して横の方向(矢印Xの左右方向)である。
【0020】
図1、2に示すように、本発明の力覚センサチップ(6軸力センサチップ)1は、半導体基板からなるベース部材2と、歪み検出用抵抗素子S(Sxa1〜Sxa3,Sxb1〜Sxb3,Sya1〜Sya3,Syb1〜Syb3)と、を主に備える。このベース部材(半導体基板)2は、外力作用領域部4Aを有する作用部4と、この作用部4を支持する支持部3と、作用部4と支持部3を連結する連結部5A〜5Dとを備える。また、歪み検出用抵抗素子Sは、連結部5A〜5Dの変形発生部に設けられている。そして、作用部4には陽極接合用電極8(8aも含む)が配置されている。なお、陽極接合用電極8は、作用部4の表面又は作用部4が形成された面の裏面に配置されるが、ここでは説明の便宜上、作用部4の表面に配置された場合を例に説明する。
以下、各構成について説明する。
【0021】
<ベース部材>
ベース部材(半導体基板)2は、力覚センサチップ1の土台となる部材であり、作用部4と、支持部3と、連結部5A〜5Dとを備える。
【0022】
力覚センサチップ1を形成する半導体基板2は、中央部に位置する正方形に類似する平面形状を有した作用部4と、この作用部4を囲むような位置にあるほぼ正方形状の支持部3と、作用部4と支持部3の間に位置して四辺の各部分に対応して両者を連結するT字形状の4つの連結部5A,5B,5C,5Dとから構成されている。作用部4は孔K,L,M,Nによって形成される。T字形状の4つの連結部5A,5B,5C,5Dは、孔A,B,C,Dと孔K,L,M,Nとの間に形成される。
【0023】
半導体基板2は、板材の厚み方向に貫通して形成された孔A,B,C,D,K,L,M,Nを有している。孔A,B,C,D,K,L,M,Nのいずれも相対的に狭い幅を有するスリット状の形状を有している。孔A,B,C,Dはほぼ直線状スリットの形状を有し、孔K,L,M,NはL字に類似したスリット形状を有している。なお孔A〜D,K〜Nの形状は本実施形態のものに限定されない。そして力覚センサチップ1は、孔A,B,C,D,K,L,M,Nにより複数の領域に機能的に分離されている。すなわち、作用部4と支持部3と連結部5A〜5Dとは、これらの複数の孔A〜D,K〜Nによって機能的に分離されている。なお、機能的に分離とは、作用部4、支持部3、連結部5A〜5Dが、それぞれ目的に応じた機能や役割を有するように分離されていることをいう。力覚センサチップ1は、作用部4と支持部3とを孔A〜D,K〜Nで分離することにより、作用部4に印加された外力を支持部3等に分散させずに、歪み検出用抵抗素子Sに集中させることができる。従って、力覚センサチップ1は、作用部4に印加された外力をより正確に検出することができる。
【0024】
(作用部)
作用部4は、外力が印加(または入力)される領域であり、外力作用領域部4Aを有する。外力作用領域部4Aとは、作用部4の中央部であって、外力を受ける領域である。作用部4は、通常、その中央部である外力作用領域部4Aで外力を受けるように構成される。
【0025】
作用部4は、外力が印加される中央部、すなわち外力作用領域部4Aと、外力作用領域部4Aの周囲に位置する4隅に相当する4つの角部4Bとから形成される。破線で示した円4Cは、後述するように、外力等を伝達する伝達部(連結ロッド等)が接続される連結領域である。すなわち、連結領域4Cは外力作用領域部4Aとなる。作用部4における4つの角部4Bの外縁部は、孔K,L,N,Mによって自由端として形成されている。従って4つの角部4Bの自由端近傍の領域は、外力作用領域部4Aに外力が加わったときでも、その部分自体に変形を生じない非変形領域部となっている。
【0026】
[陽極接合用電極]
次に、作用部4に設けられた陽極接合用電極8(8,8a)について説明する。
陽極接合用電極8は、力覚センサのユニットに組み付けられるとき、連結領域4Cと外力を伝達する伝達部を陽極接合する際に接合の起点となるものである。
すなわち、この陽極接合用電極8が電流の経路となり、連結領域4Cと伝達部との間で陽極接合がなされる。なお、陽極接合については後記する。この陽極接合用電極8は作用部4の陽極接合用電極載置部7に載置される。すなわち、陽極接合用電極8は半導体基板2の最上層(例えばn層)に直接接触できるものである。
【0027】
図1(b)に示すように、陽極接合用電極8は作用部4の面積に比して小さく形成され、作用部4(陽極接合用電極載置部7)に複数配置されている。ここでは、複数の陽極接合用電極8が互いに離間して、作用部4に平面視で格子状に配置されている。具体的には、長方形の陽極接合用電極8が、等間隔で縦方向に5個配置されるとともに、等間隔で横方向に5個配置され、計25個の陽極接合用電極8が作用部4に配置されている。なお、ここでの格子状に配置するとは、複数の陽極接合用電極8を縦横に整列して配置することで、作用部4における陽極接合用電極8が配置されていない部位が列毎に一定間隔で形成され、平面視したときに、格子状に見えるように配置することをいう。すなわち、25個の陽極接合用電極8が二次元マトリックスパターンで配置されている。
【0028】
図1(b)に示すように、陽極接合用電極8は、作用部4の中心に中心電極8aが配置されている。陽極接合においては、陽極接合はチップ中央から始まり均等に広がることが好ましい。仮に、連結領域4Cの不特定の箇所から接合が始まると、接合の際に不均等に応力がかかるため、接合不良を生じる恐れがある。よって、少なくとも作用部4の中心に陽極接合用電極8が配置されていることが好ましい。
【0029】
また、力覚センサチップ1の表面側に積層された薄膜材料の残留応力の影響で、チップ形状が表面側に凸の形状となっている場合、表面側からの接触が最も容易、かつ確実であるのは、チップの中央部である。すなわち、力覚センサチップ1は、薄膜材料の残留応力の影響により、わずかに中央が盛り上がるように起伏を持っている。よって、その起伏をそのまま利用して最も接触しやすい部分を起点とさせるように、作用部4の中心に陽極接合用電極8を配置することが好ましい。
【0030】
また、陽極接合用電極8は、表面側に凸状とすることが好ましい。具体的には、陽極接合用電極8の形状そのものを凸状となるように構成してもよいし、バンプ構造等を陽極接合用電極8の表面に付加することで凸状としてもよい。陽極接合用電極8を表面側に凸状とすることで、作用部4と伝達部がより接触しやすくなり、陽極接合が行いやすくなる。
【0031】
また、陽極接合用電極8の面積は、通電可能なレベルでできるだけ小さく分割し、複数とすることが好ましい。陽極接合用電極8の面積をできるだけ小さくするほうが薄膜材料の残留応力の影響を小さくすることができる。また力覚センサチップ1の材料間の熱膨張係数の差異による温度変化時のチップ変形量を小さくすることができる。そのため、力覚センサチップ1における予想外の変形を避けることができる。
【0032】
陽極接合用電極8の材質としては、例えばAlSi,Au等が挙げられるが、これらに限定されるものではない。また、厚さは0.1〜10μmが好ましい。陽極接合用電極8は、力覚センサチップ1の配線部分に触れないように配置する。陽極接合用電極8は、蒸着、スパッタ等の方法により作用部4に形成することができる。
【0033】
(連結部)
連結部5A,5B,5C,5Dは、作用部4と支持部3とを連結する領域である。連結部5A〜5Dは、作用部4が外力を受けて変形や位置の変化を生じたとき、これに連動して変形や位置変化を顕著に生じ、支持部3、作用部4、連結部5A〜5D等の中で最も応力が生じる部分(起歪部)である。
【0034】
4つの連結部5A〜5Dは、図2に示すように、それぞれ、ほぼT字梁となっており、橋梁部5Aaおよび弾性部5Ab、橋梁部5Baおよび弾性部5Bb、橋梁部5Caおよび弾性部5Cb、橋梁部5Daおよび弾性部5Dbを備えている。連結部5A〜5Dの橋梁部5Aa,5Ba,5Ca,5Daは、剛性の高い領域であり、それぞれ、長手方向における一方の端部(内側端部)が、作用部4の一辺に相当する部分に接続され、また、他方の端部(外側端部)が対応する弾性部に接続されている。
【0035】
連結部5A〜5Dの弾性部5Ab,5Bb,5Cb,5Dbは、剛性の低い領域であり、それぞれ、孔A,B,C,Dの内側領域において、支持部3に対して、その長手方向における両端部で接続されている。すなわち、剛性の低い領域である弾性部5Ab〜5Dbは、複数の孔A〜D,K〜Nにおける支持部3に沿って設けられた長穴の孔A〜Dにより長尺状に形成されており、弾性部5Ab〜5Dbのそれぞれの両端が支持部3に接続されている。橋梁部5Aa〜5Daと弾性部5Ab〜5Dbからなる連結部5A〜5D、連結部5A〜5Dと作用部4との間の接続部分、連結部5A〜5Dと支持部3との間の接続部分は、半導体基板2として一体的に形成されている。
【0036】
このように、連結部5A〜5Dを剛性の低い領域と剛性の高い領域とに分けて形成することで、作用部4に外力が印加された際に、弾性部5Ab〜5Dbが、橋梁部5Aa〜5Daにかかる余分な歪みを吸収し、一方向への力またはモーメントの印加による力覚センサチップ1全体の歪みの発生を抑制することができる。従って、特定の方向の力またはモーメントに対応する歪み検出用抵抗素子Sに選択的に歪みを発生させることができ、他軸干渉を大幅に抑制することができる。
【0037】
橋梁部5Aa,5Ba,5Ca,5Daと、弾性部5Ab,5Bb,5Cb,5Dbおよび作用部4との各接続部は、作用部4に印加される外力による応力を分散させ、印加される外力に対する強度を持たせるため、円弧状に加工、好ましくはR加工されている。また、図1および図2に示した構造例では、半導体基板2において、貫通状態で形成される孔A,B,C,D,K,L,M,Nによって連結部5A〜5DがほぼT字状(T字型ビーム)に形成されているが、所要の弾性機能が満足されるのであれば、Y字状等にすることもでき、形状を問わない。
【0038】
(支持部)
支持部3は、作用部4を支持する領域である。上記の形態を有する半導体基板2に関して、周囲の支持部3は、例えば6軸力センサのユニットに組み付けられるとき、下面から支持台座で支持される部分である。また作用部4は、外部から連結ロッド等を介して外力が伝達されるとき、当該外力の作用を直接に受ける部分である。
【0039】
<歪み検出用抵抗素子>
歪み検出用抵抗素子Sは、外力の大きさや方向を検出するための素子であり、力覚センサチップ(6軸力センサチップ)1において、6軸力センサとして6軸成分を検出する機能を有するものである。なお、歪み検出用抵抗素子はピエゾ抵抗素子であってもよい。そして以下において「歪み抵抗素子」あるいは「抵抗素子」と記し、歪み検出用抵抗素子を意味するものとする。
【0040】
力覚センサチップ(6軸力センサチップ)1において、6軸力センサとして6軸成分を検出する機能部分は、半導体基板2の一方の表面にイオン注入された活性層(または熱拡散層)より成る12個の歪み抵抗素子Sxa1〜Sxa3,Sxb1〜Sxb3,Sya1〜Sya3,Syb1〜Syb3によって形成される。総計12個の抵抗素子は、3個ずつの組(Sxa1,Sxa2,Sxa3),(Sxb1,Sxb2,Sxb3),(Sya1,Sya2,Sya3),(Syb1,Syb2,Syb3)で、T字形状の4つの連結部5A〜5Dの各々における作用部4との境界縁近傍に沿って配置されている。
【0041】
歪み抵抗素子Sは、作用部4と連結部5A〜5Dとの接続部分に設けられている。具体的には、図2に示すように、例えば抵抗素子Sya1,Sya2,Sya3は、連結部5Aにおいて、作用部4と橋梁部5Aaとの接続部近傍である変形発生部に配置するように形成されている。変形発生部とは、連結部5Aの表面において、作用部4に印加される外力に対応して応力が生じ、それにより歪みが最も顕著に発生する部分(起歪部)である。
【0042】
他の抵抗素子Syb1〜Syb3、抵抗素子Sxa1〜Sxa3、抵抗素子Sxb1〜Sxb3についても、前記した抵抗素子Sya1〜Sya3と同様に、それぞれ、作用部4および橋梁部5Caの接続部近傍(変形発生部)、作用部4および橋梁部5Baの接続部近傍(変形発生部)、作用部4および橋梁部5Daの接続部近傍(変形発生部)に配置するよう形成されている。なお、連結部5A〜5D上において歪み抵抗素子Sが配置される場所は、必ずしも連結部5A〜5Dで最も応力が生じる場所とは限らない。歪み抵抗素子Sはその形成プロセスや配線ルート等、他の様々な要件をも考慮して、最適位置に配置される。
【0043】
(その他)
力覚センサチップ1には、例えば、12個の抵抗素子Sxa1〜Sxa3,Sxb1〜Sxb3,Sya1〜Sya3,Syb1〜Syb3のそれぞれに対応して、個別に、活性層(熱拡散層)より成る温度補償用抵抗素子11が抵抗素子Sと同数形成されている。なお、この例では12個の抵抗素子Sが形成されているが、例えば8個の抵抗素子Sを形成してもよいしこれらに限定されるものではない。温度補償用抵抗素子11は歪み抵抗素子Sの温度補償を行なうための素子である。温度補償用抵抗素子11は、作用部4における4ヶ所の非変形領域部に配置されている。なお、温度補償用抵抗素子11は本発明の構成の上で必須のものではない。
【0044】
半導体基板2の周縁には、各辺に沿って所要の幅にてほぼ正方形リング状のGND(接地(GROUND))配線13が形成されている。GND配線13には2個のGND電極パッド14が接続されている。さらにこのGND配線13には、センサ回路のGND側配線となる、より細幅の複数の他のGND配線15が接続される。半導体基板2では、さらに、対向する一対の辺のそれぞれに沿って総計で26個の信号電極パッド16が形成されている。すなわち、辺ごとに13個の信号電極パッド16が並べて設けられている。また残りの2個の電極パッド17は追加用の電極パッドである。追加用の電極パッド17は、外部のGND電位またはバイアス電位に接続することで、半導体基板面内の電位を均一にするために設けられている。なお追加用の電極パッド17は2個に限定されず、3個以上設けてもよい。なお図1に示す正方形リング状のGND配線13は一例に過ぎず、一定電位にするものであれば、その機能を果たす。
【0045】
力覚センサチップ1は、基板上に半導体デバイスを形成する場合、好ましくは、一方の表面に半導体製造プロセス技術(フォトリソグラフィによるレジストパターン形成、イオン注入、P−CVD、スパッタリング等の成膜処理、RIE等のエッチング処理)を適用して、正方形の半導体基板2の平面形状や所要の孔の形成等それ自体に加工を施すと共に、半導体基板2の一方の表面の所定領域に成膜処理等を行って製作される。このように、本実施形態に係る力覚センサチップ1は、半導体センサデバイスとして形成されている。なお、半導体基板2の表面の一部は低抵抗な通電接触層が形成されている。この低抵抗部の通電接触層は高濃度ドープ低抵抗の半導体層からなる。通電接触層上に配置する電極材料は一般に金属材料が用いられるが、半導体材料でもよい。また、これらの無機系材料に限らない。
【0046】
次に、本発明の力覚センサチップを用いた力覚センサについて説明するとともに、力覚センサチップの陽極接合について説明する。
【0047】
図3(a)に示すように、力覚センサ100は、前記説明した力覚センサチップ1と、減衰装置(緩衝装置)120とによって構成される。なお、ここでの力覚センサ100においては、力覚センサチップ1の上面がチップ表面であり、回路が形成されている。一方、力覚センサチップ1の下面がチップ裏面であり、回路は形成されておらず、陽極接合用電極が形成されている。減衰装置120は、外部から与えられる外力Fが直接に印加される円柱棒状の入力部101と、力覚センサ100を所要の場所に固定するための軸方向の長さが短い比較的扁平な有底円筒形状の固定部102と、力覚センサチップ1を取り付けるための環形状のチップ台座103と、減衰機能(または緩衝機能)を有する円盤形状の減衰機構部104と、入力部101と力覚センサチップ1の作用部4(図1参照)とを結合する伝達部(連結ロッド)105とから構成されている。
【0048】
固定部102は底部102aと円筒部102bを有する。力覚センサチップ1を固定するチップ台座103は、固定部102の底部102aの上面にリング状突部102a−1を介して固定されている。円盤形状の減衰機構部104と円板形状のチップ台座103とは、比較的に接近した位置にて平行の位置関係で配置されている。円盤形状の減衰機構部104とチップ台座103は、共に、中心部に孔が形成されている。別部品として作られた入力部101、固定部102、および減衰機構部104は組み合わせて結合されている。円柱棒状の入力部101は円盤形状の減衰機構部104の中心部の孔に挿入され、固定されている。円盤形状の減衰機構部104は、固定部102の円筒部102bの上側の開口部に固定されている。
【0049】
円形状のチップ台座103の中心部の孔の部分には、チップ台座103の上側の位置に力覚センサチップ1が固定されている。棒状の伝達部105は、入力部101の下面と力覚センサチップ1の作用部4とを連結している。円盤形状の減衰機構部104は、図3(a)での上面(表面)と下面(裏面)に、溝加工によって好ましくは円形のリング状の溝106,107が形成されている。円形リング状の2つの溝106,107は、入力部101および減衰機構部104の共通の中心軸108の周りに同心円的な位置関係で形成されている。
【0050】
力覚センサチップ1の作用部4と減衰装置120の伝達部105との接合においては、陽極接合用電極が形成された面の反対側の面と伝達部105とが陽極接合により接合されている。また、チップ台座103と、センサ固定部102のリング状突部102a−1とにおいても、陽極接合により接合されている。なお、陽極接合部分は面が均一に仕上げられていることが望ましい。
【0051】
また、図3(b)に示すように、力覚センサ200は、前記説明した力覚センサチップ1と、減衰装置(緩衝装置)220とによって構成される。なお、ここでの力覚センサ200においては、センサチップ1の上面がチップ裏面であり、回路も陽極接合用電極も形成されていない。一方、センサチップ1の下面がチップ表面であり、回路も陽極接合用電極も形成されている。減衰装置220は、外観が偏平な円盤状の形状に構成され、外力Fが印加される入力部201と、入力部201に加えられた外力Fを減衰して力覚センサチップ1の作用部4に伝達する伝達部(連結ロッド)202と、力覚センサチップ1を固定する固定部203と、固定部203と入力部201とを連結している円板部204とから構成されている。そして、円板部204には、平面視で円弧状の長穴形状に形成された緩衝穴205が設けられている。
【0052】
減衰装置220において、固定部203および伝達部202の下面には、蒸着法またはスパッタリング法によりガラス薄膜210が成膜されているか、または、ガラス部材が設けられており、このガラス薄膜210、または、ガラス部材と力覚センサチップ1の裏面との接合部211,212は、陽極接合により接合されている。接合部211は力覚センサチップ1の作用部4と減衰装置220の伝達部202との接合部であり、陽極接合用電極が形成された面の反対側の面を介して接合されている。接合部212は力覚センサチップ1の支持部3(図1参照)と減衰装置220における固定部203との接合部である。
【0053】
次に、前記説明した力覚センサ100を例に、力覚センサチップ1の作用部4と、減衰装置120におけるガラス薄膜またはガラス部材が設けられた伝達部105との陽極接合について、説明する。
図4に示すように、力覚センサチップ1と、ガラス薄膜またはガラス部材を介した伝達部105の陽極接合において、まず、力覚センサチップ1の作用部4における外力作用領域部4Aに伝達部105を密着させる。この際、作用部4の裏面の陽極接合用電極載置部7には陽極接合用電極8が設けられているため、陽極接合用電極8と、図示しない陽極接合電圧印加電極が密着する。次に、ガラス薄膜またはガラス部材側(伝達部105側)に負電圧をかけ、力覚センサチップ1の裏面側に正電圧をかける。これにより、伝達部105と力覚センサチップ1とがガラス薄膜またはガラス部材を介して陽極接合により接合される。また、チップ台座103と、センサ固定部102のリング状突部102a−1とにおいても、陽極接合により接合される。この陽極接合の際に、力覚センサチップ1は、陽極接合用電極8を備えるため、陽極接合用電極8が電流の経路となり、チップ表面に流れる電流経路が定まり、外力作用領域部4Aにおいて電流経路が定まる。そのため、陽極接合が問題なく行なわれる。
【0054】
なお、力覚センサ200の場合は、減衰装置220に成膜されたガラス薄膜210と力覚センサチップ1とが陽極接合により接合される。また、固定部203と力覚センサチップ1との接合部も陽極接合により接合される(図3(b)参照)。
また、陽極接合については、力覚センサチップ1が陽極接合用電極8を備えること以外は、従来公知の陽極接合と同様である。
【0055】
[力覚センサの動作]
次に、力覚センサの動作について、前記説明した力覚センサ100を例に概略を説明する。
上記の実施形態に係る力覚センサ100において、まず、外力Fが入力部101に与えられる。そして、入力部101に与えられた外力Fは、主たる部分は減衰機構部104に伝達し、その一部が伝達部105を介して力覚センサチップ1の作用部4に伝達する。この外力Fの一部の伝達により、力覚センサチップ1の作用部4に外力Fの一部が印加される。力覚センサチップ1は、外力Fの減衰された一部に感応して変形状態を生じ、前記した歪み抵抗素子により外力Fを検知する。なお、力覚センサ100による外力Fの検知については、例えば特開2006−125873号公報に詳細に記載されているので、以下ではその概要について説明する。また、温度補償用抵抗素子における温度補償についても例えば特開2006−125873号公報に詳細に記載されているので、その説明を省略する。
【0056】
力覚センサチップ1では、作用部4に印加される外力によって橋梁部5Aa,5Ba,5Ca,5Daに形成された抵抗素子Sxa1〜Sxa3,Sxb1〜Sxb3,Sya1〜Sya3,Syb1〜Syb3の各々の箇所に歪みが発生する場合、弾性部5Ab,5Bb,5Cb,5Dbが、作用部4と各橋梁部5Aa,5Ba,5Ca,5Daとの間にかかる力の関係に基づき前記外力に起因する半導体基板2の全体での歪みの発生を防止する。このため、力覚センサチップ1によれば、特定の方向の力またはモーメントに対する選択的な歪みを各抵抗素子に発生させることができ、作用部4に加えられる外力を力およびモーメントの各成分に分離することができる。
【0057】
例えば図1に示すように、力覚センサチップ(6軸力センサチップ)1の作用部4の中心点でX軸、Y軸、Z軸から成る3次元直交座標系を定義すると、当該直交座標系の3軸(X軸、Y軸、Z軸)に関して、図3に示すように、X軸方向の力Fx、Y軸方向の力Fy、Z軸方向の力Fz、X軸に対して回転方向に与えられるモーメントMx、Y軸に対して回転方向に与えられるモーメントMy、Z軸に対して回転方向に与えられるモーメントMzがそれぞれ定義される。前記構造の半導体基板2で形成される6軸力センサチップ1によれば、作用部4に加えられる外力に起因して変形が生じたとしても、当該外力を、力Fx,Fy,FzとモーメントMx,My,Mzの各成分に分離でき、他軸干渉の影響を低下させることができる。
【0058】
ここで6軸力センサチップ1に加わる力とモーメントの各成分を検出するセンサ特性を説明する。前述した6軸成分(軸力)、すなわちFx[N],Fy[N],Fz[N],Mx[N・cm],My[N・cm],Mz[N・cm]が単体の6軸力センサチップ1に印加された場合に、これらの6軸成分と6軸力センサチップ1に基づく検出信号との関係は次の通りである。
【0059】
実際の6軸力センサは、上記の6軸力センサチップ1と、6軸力センサチップ1の12個の歪み抵抗素子のそれぞれから得られる抵抗変化率に係る信号を演算する外部の測定機器とから構成される。外部の測定機器の演算を経て6軸力センサから最終的に出力される信号(演算抵抗変化率)は6つの信号Sig1,Sig2,Sig3,Sig4,Sig5,Sig6である。6軸力センサチップ1における12個の抵抗素子Sxa1〜Sxa3,Sya1〜Sya3,Sxb1〜Sxb3,Syb1〜Syb3のそれぞれから得られる抵抗変化率の値の信号変化率を、R'Sxa1,R'Sxa2,R'Sxa3,R'Sya1,R'Sya2,R'Sya3,R'Sxb1,R'Sxb2,R'Sxb3,R'Syb1,R'Syb2,R'Syb3と表現すると、上記の6つの信号Sig1〜Sig6は下記の式(1)〜(6)に基づいて決められる。
【0060】
Sig1=((R'Sya1-R'Sya3)+(R'Syb3-R'Syb1))/4 …(1)
Sig2=((R'Sxa3-R'Sxa1)+(R'Sxb1-R'Sxb3))/4 …(2)
Sig3=(R'Sxa2+R'Sya2+R'Sxb2+R'Syb2)/4 …(3)
Sig4=(R'Sya2-R'Syb2)/2 …(4)
Sig5=(R'Sxb2-R'Sxa2)/2 …(5)
Sig6=((R'Sxa3-R'Sxa1)+(R'Sya3-R'Sya1)+(R'Sxb3-R'Sxb1)
+(R'Syb3-R'Syb1))/8 …(6)
【0061】
12個の抵抗素子での各々の抵抗変化率の変化の量に基づいて上記式(1)〜(6)に従って決まる6軸力センサの6つの出力信号Sig1〜Sig6と、6軸力センサチップ1に印加される6つの軸力Fx,Fy,Fz,Mx,My,Mzとは、特定成分の軸力に対する6軸力センサの出力信号を求めて両者の関係を実験的に求めると、特定の行列テーブルで関係付けられる(本出願人が先に出願した特開2003−207405号公報の図13に示される行列テーブル)。この行列テーブルでは、行列の非対角成分が「0」または対角成分に比較して小さな数値となるように抵抗素子が選択されて用いられている。すなわち、上記式(1)〜(6)は、各軸の力またはモーメントを測定するとき、他軸干渉を防止するため、特定軸以外の力またはモーメントでの抵抗変化率が各々打ち消しあうように、抵抗素子を選択し、演算抵抗変化率の演算を行うように構成されている。
【0062】
6軸力センサで得られた上記の6つの出力信号Sig1〜Sig6に対して、上記の行列テーブルで与えられる行列を掛けることにより、6つの軸力Fx,Fy,Fz,Mx,My,Mzを求めることができる。
【0063】
上記において、6軸力センサで得られる6つの出力信号Sig1〜Sig6を算出するために用いられる、12個の抵抗素子Sxa1〜Sxa3,Sya1〜Sya3,Sxb1〜Sxb3,Syb1〜 Syb3の抵抗変化率の値、R'Sxa1,R'Sxa2,R'Sxa3,R'Sya1,R'Sya2,R'Sya3,R'Sxb1,R'Sxb2,R'Sxb3,R'Syb1,R'Syb2,R'Syb3は、既に温度補償が行われた信号を用いて算出されている。
【0064】
以上、本発明について実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて広く解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することが可能であることはいうまでもない。
【0065】
例えば、力覚センサチップの作用部に設けた陽極接合用電極について、前記した実施形態では、長方形の陽極接合用電極を所定の格子状に配置したが、陽極接合用電極の配置および形状は任意でよく、その他の配置および形状としてもよい。例えば、陽極接合用電極のうち作用部の中心となる位置に設けられた中心電極を起点に線対称に配置されていてもよく、また中心電極を起点に点対称に配置されていてもよい。あるいは、中心電極を起点に放射状に配置されていてもよく、また中心電極を起点に同心円状に配置されていてもよい。
【0066】
なお、ここでの「線対称に配置」とは、中心電極を通る対称軸を境に折り曲げたときに、中心電極を起点に対称となる陽極接合用電極が完全に重なり合うように配置されていることをいう。また、ここでの「点対称に配置」とは、中心電極を中心として所定角度(チップ形状が正方形の場合、45度、90度、135度、180度などがありうる)回転させたときに、中心電極を起点に対称となる陽極接合用電極が完全に重なり合うように配置されていることをいう。また、ここでの「放射状に配置」とは、中心電極を中心として複数の所定方向に伸びた線上に位置するように配置されていることをいう。また、ここでの「同心円状に配置」とは、中心電極を中心とする径の異なる複数の円上に位置するように配置されていることをいう。
なお、力覚センサチップの中心に対して対称性を考慮して陽極接合用電極を配置することにより、残留応力の影響を小さくすることができ、力覚センサチップにおける予想外の変形を避けることができる。
【0067】
以下、陽極接合用電極の配置および形状における他の形態について具体的に説明する。
ここでは、代表として図5(a)〜(d)、図6(a)〜(d)に示す形態を取り上げて説明する。
図5(a)に示すように、陽極接合用電極8(8,8a)は、陽極接合用電極8のうち作用部4の陽極接合用電極載置部7の中心に設けられた電極である中心電極8aを起点に十字状に配置されている(中心電極8aを起点に線対称、点対称でもある)。具体的には、中心電極8aを中心とし、縦方向に2個、横方向に2個、それぞれ対称となるように陽極接合用電極8が配置されている。なお、十字を形成する点線は、十字形状を示すため便宜上記載しているものであり、この点線上に陽極接合用電極8が配置されていればよい。
【0068】
図5(b)に示すように、陽極接合用電極8(8,8a)は、陽極接合用電極8のうち作用部4の陽極接合用電極載置部7の中心に設けられた電極である中心電極8aを起点に同心円状に配置されている(中心電極8aを起点に線対称、点対称でもある)。具体的には、中心電極8aを中心とし、この中心電極8aを円の中心とした3つの円周上に、それぞれ対称となるように陽極接合用電極8が配置されている。なお、円を形成する点線は、同心円状を示すため便宜上記載しているものであり、この点線上に陽極接合用電極8が配置されていてればよい。
【0069】
図5(c)に示すように、陽極接合用電極8(8,8a)は正方形からなり、作用部4の陽極接合用電極載置部7上に縦列横列に整列して等間隔で配置されている(中心電極8aを起点に線対称、点対称でもある)。具体的には、正方形の陽極接合用電極8が、等間隔で縦方向に5個配置されるとともに、等間隔で横方向に5個配置され、計25個の陽極接合用電極8が作用部4に配置されている。また、25個の陽極接合用電極8,8aからなる形状が平面視で正方形となるように陽極接合用電極8,8aが配置されている。
【0070】
図5(d)に示すように、陽極接合用電極8(8,8a)は、陽極接合用電極8のうち作用部4の陽極接合用電極載置部7の中心に設けられた電極である中心電極を起点に、作用部4の縦方向および横方向のそれぞれの一対の辺に沿って線対称となるように一列ずつ配置されている(中心電極8aを起点に線対称、点対称でもある)。具体的には、中心電極8aを中心とし、縦方向に対向する一対の辺に沿って、および、横方向に対向する一対の辺に沿って、縦方向にそれぞれ3個ずつ、横方向にそれぞれ3個ずつ陽極接合用電極8が配置されている。
【0071】
図6(a)に示すように、陽極接合用電極8(8,8a)は、陽極接合用電極8のうち作用部4の陽極接合用電極載置部7の中心に設けられた電極である中心電極8aを起点に放射状に配置されている(中心電極8aを起点に線対称、点対称でもある)。具体的には、中心電極8aを中心とし、縦方向にそれぞれ1個ずつ、横方方向にそれぞれ1個ずつ陽極接合用電極8が配置されている。さらに、縦方向に対して+45°の方向、および、縦方向に対して−45°の方向に、それぞれ2個ずつ陽極接合用電極8が配置されている。
【0072】
図6(b)に示すように、陽極接合用電極8(8,8a)は、陽極接合用電極8のうち作用部4の陽極接合用電極載置部7の中心に設けられた電極である中心電極8aを起点に、複数の弧状の陽極接合用電極8aが円状に配置されている。具体的には、作用部4の中心に円状の中心電極8aが配置されている。さらに、弧状の陽極接合用電極8が、縦方向に対して+45°の方向、および、縦方向に対して−45°の方向に、それぞれ1個ずつ配置されている。そして、中心電極8aの周囲の4つの弧状の陽極接合用電極8において、陽極接合用電極8同士が隣りあう部分(陽極接合用電極8が無い部分)が、縦方向、および、横方向に向いている。
【0073】
図6(c)に示すように、陽極接合用電極8a,8b,8cは、陽極接合用電極8a,8b,8cのうち作用部4の陽極接合用電極載置部7の中心に設けられた電極である中心電極8aを起点に、複数の弧状の陽極接合用電極8b、8cが同心円状に配置されている。具体的には、作用部4の中心に円状の中心電極8aが配置されている。さらに、弧状の陽極接合用電極8b、8cが同心円状に、縦方向に対して+45°の方向、および、縦方向に対して−45°の方向に、それぞれ2個ずつ配置されている。すなわち、同心円の内側の円周を形成する4つの弧状の陽極接合用電極8bと、同心円の外側の円周を形成する4つの弧状の陽極接合用電極8cが配置されている。そして、内側の陽極接合用電極8b同士が隣りあう部分(陽極接合用電極8bが無い部分)と、外側の陽極接合用電極8c同士が隣ある部分(陽極接合用電極8cが無い部分)が同一方向、ここでは、縦方向、および、横方向に向いている。すなわち、内側の4つの陽極接合用電極8bと、外側の4つの陽極接合用電極8cとはそれぞれ円周方向において同一の角度に対応する箇所に形成されている。
【0074】
図6(d)に示すように、陽極接合用電極8a,8b,8cは、陽極接合用電極8a,8b,8cのうち作用部4の陽極接合用電極載置部7の中心に設けられた電極である中心電極8aを起点に、複数の弧状の陽極接合用電極8b、8cが同心円状に配置されている。具体的には、作用部4の中心に円状の中心電極8aが配置されている。さらに、弧状の陽極接合用電極8b、8cが同心円状に、陽極接合用電極8bでは縦方向および横方向にそれぞれ1個ずつ配置され、陽極接合用電極8cでは縦方向に対して+45°の方向、および、縦方向に対して−45°の方向に、それぞれ1個ずつ配置されている。すなわち、同心円の内側の円周を形成する4つの弧状の陽極接合用電極8bと、同心円の外側の円周を形成する4つの弧状の陽極接合用電極8cが配置されている。そして、内側の陽極接合用電極8b同士が隣りあう部分(陽極接合用電極8bが無い部分)と、外側の陽極接合用電極8c同士が隣ある部分(陽極接合用電極8cが無い部分)が異なる方向に向いている。ここでは、内側の陽極接合用電極8b同士が隣りあう部分が縦方向に対して+45°の方向、および、縦方向に対して−45°の方向に向いており、外側の陽極接合用電極8c同士が隣ある部分が縦方向、および、横方向に向いている。すなわち、外側の4つの陽極接合用電極8cは、内側の4つの陽極接合用電極8bに対して円周方向に45°ずれた箇所に形成されている。
【0075】
その他、陽極接合用電極の配置および形状としては、例えば、中心電極を備えるとともに、複数の陽極接合用電極がその周囲にランダムに配置されたものであってもよい。また、陽極接合用電極の形状は、長方形、正方形、円形の他、楕円形、三角形、六角形等であってもよい。
【0076】
また、力覚センサチップの形状として、図1、2に示す形状のものについて説明したが、力覚センサチップの形状は、他の形状であってもよい。以下、力覚センサチップの形状における他の形態について、図7〜9に示す形態を取り上げて説明する。なお、前記した力覚センサチップと同一構成のものについては同一の符号を付して、あるいは適宜符号を省略して説明を省略し、ここでは主に異なる箇所について説明する。
【0077】
図7に示すように、力覚センサチップ1aにおける半導体基板2は、板材の厚み方向に貫通して形成された8つの孔A,B,C,D,K,L,M,Nを有している。孔A,B,C,Dはほぼ直線状スリットの形状を有し、孔K,L,M,NはL字に類似したスリット形状を有している。なお、前記の力覚センサチップ1では、孔K,L,M,Nは両端で内側に向かって湾曲形状に折り曲げられていたが、力覚センサチップ1aでは、さらに、両端の手前の所定位置において、同じ形状でかつ折曲げ形状が同じ向きとなるように折曲げ形状部が形成されている。また、半導体基板2の横方向の側面に沿って、信号電極パッド16が形成されている。
【0078】
そして、作用部4に図示しない陽極接合用電極8(図1(b)参照)が形成されている。なお、陽極接合用電極8の配置や形状等については、前述したとおりであるので、ここでは説明を省略する。また、その他詳細については、特開2008−145342号公報に詳細に記載されているので、その説明を省略する。
【0079】
図8に示すように、力覚センサチップ1bにおける半導体基板2は、板材の厚み方向に貫通して形成された8つの孔A,B,C,D,K,L,M,Nを有している。孔A,B,C,Dはほぼ直線状スリットの形状を有し、外側に位置する4つの孔K,L,M,Nは、内側に向かって巻き込むように4箇所で折り曲げられた形状を有している。
【0080】
力覚センサチップ1bを形成する半導体基板2は、4つの直線状スリットの孔A〜Dで形成される正方形の形状を有する中央領域2Aと、この中央領域2Aの各辺に対応して4つの孔K〜Nによって形成される4つの作用部4と、中央領域2Aと4つの作用部4を囲むように外側位置に存するほぼ正方形リング形状の支持部3と、作用部4と支持部3の間に位置しかつ中央領域2Aの各辺の部分に対応して両者を連結するT字形状の4つの連結部5A,5B,5C,5Dとから構成されている。4つの作用部4の各々は孔K,L,M,Nを半導体基板2に穿設することによって形成される。T字形状の4つの連結部5A,5B,5C,5Dは、孔A,B,C,Dと孔K,L,M,Nとの間に形成される。4つの連結部5A,5B,5C,5Dの各々は、弾性部5Aa,5Ba,5Ca,5Daと橋梁部5Ab,5Bb,5Cb,5Dbとを備えている。
【0081】
そして、作用部4の陽極接合用電極載置部7に図示しない陽極接合用電極8(図1(b)参照)が形成されている。すなわち、力覚センサチップ1bでは、8つの陽極接合用電極載置部7に陽極接合用電極8が形成されている。なお、陽極接合用電極8の配置や形状等については、前述したとおりであるので、ここでは説明を省略する。また、その他詳細については、特開2008−58106号公報に詳細に記載されているので、その説明を省略する。
【0082】
図9に示すように、力覚センサチップ1cにおける半導体基板2は、板材の厚み方向に貫通して形成された12個の弧状の孔A1,B1,C1,D1,A2,B2,C2,D2,A3,B3,C3,D3が形成されている。
【0083】
孔A1,B1,C1,D1,A2,B2,C2,D2,A3,B3,C3,D3のいずれも相対的に狭い幅を有するスリット状でかつ弧状の形状を有している。4つの同形の孔A1,B1,C1,D1は全体として最内周側のほぼ円形状の孔を形成する。4つの同形の孔A3,B3,C3,D3は全体として最外周のほぼ円形形状の孔を形成する。4つの同形の孔A2,B2,C2,D2は、最内周と最外周の円形孔の中間に位置するほぼ円形形状の孔を形成する。最内周の円形孔、中間の円形孔、最外周の円形孔は同心円的な位置関係で形成されている。最内周の孔A1,B1,C1,D1と最外周の孔A3,B3,C3,D3とはそれぞれ円周方向において同一の角度に対応する箇所に形成されている。中間の孔A2,B2,C2,D2は、最内周の孔A1,B1,C1,D1および最外周の孔A3,B3,C3,D3に対して円周方向に45°ずれた箇所に形成されている。
【0084】
前記のように、孔A1,B1,C1,D1,A2,B2,C2,D2,A3,B3,C3,D3を形成したため、半導体基板2は、中央部に位置するほぼ円形の平面形状を有した作用部4と、この作用部4を囲むような位置にある内周縁がほぼ円形のリング形状を有する支持部3と、作用部4と支持部3の間に位置して両者を連結する連結部5とから構成されている。
【0085】
そして、作用部4の陽極接合用電極載置部7に図示しない陽極接合用電極8(図1(b)参照)が形成されている。すなわち、力覚センサチップ1cでは、円形の陽極接合用電極載置部7に陽極接合用電極8が形成されている。なお、陽極接合用電極8の配置や形状等については、前述したとおりであるので、ここでは説明を省略する。また、その他詳細については、特開2008−39646号公報に詳細に記載されているので、その説明を省略する。
【0086】
その他、力覚センサチップの形状は前記したものに限られず、本発明の要件を満たすものであれば、どのような形状であってもよい。また、力覚センサチップにおいて残留応力の小さい材料や、熱膨張率の差が小さい材料の組み合わせの場合、あるいは、残留応力を小さくできるプロセスが採用できた場合等は、陽極接合用電極を分割しなくてもよい。また、回路や作用部は、チップの表面に形成されている場合の他、チップの裏面に形成されていてもよい。なお、実施形態においては、主に、陽極接合用電極が作用部の表面に配置された場合について説明したが、図3(a)力覚センサ100のように作用部の裏面に配置された場合についても、基本的に同様である。
【符号の説明】
【0087】
1,1a,1b,1c 力覚センサチップ
2 半導体基板
3 支持部
4 作用部
4A 外力作用領域部(中央部)
4B 角部(非変形領域部)
5A,5B,5C,5D 連結部
7 陽極接合用電極載置部
8 陽極接合用電極
10 配線パターン
11 温度補償用抵抗素子
13 GND配線
15 GND配線
16 信号電極パッド
A〜D 孔
K〜N 孔
S 歪み検出用抵抗素子
Sxa1〜Sxa3 歪み検出用抵抗素子
Sya1〜Sya3 歪み検出用抵抗素子
Sxb1〜Sxb3 歪み検出用抵抗素子
Syb1〜Syb3 歪み検出用抵抗素子
100,200 力覚センサ

【特許請求の範囲】
【請求項1】
外力作用領域部を有する作用部と、この作用部を支持する支持部と、前記作用部と前記支持部とを連結する連結部と、を備える半導体基板からなるベース部材と、
前記連結部の変形発生部に設けられた歪み検出用抵抗素子と、
を備え、
前記作用部の表面又は前記作用部が形成された面の裏面に、陽極接合する際に電流が供給される電極である陽極接合用電極が配置されていることを特徴とする力覚センサチップ。
【請求項2】
前記陽極接合用電極は、前記作用部の面積に比して小さく形成され、前記作用部の表面又は前記作用部が形成された面の裏面に複数配置されていることを特徴とする請求項1に記載の力覚センサチップ。
【請求項3】
前記陽極接合用電極は、互いに離間して格子状に配置されていることを特徴とする請求項2に記載の力覚センサチップ。
【請求項4】
前記陽極接合用電極は、当該陽極接合用電極のうち前記作用部の中心となる位置に設けられた電極である中心電極を起点に線対称に配置されていることを特徴とする請求項2に記載の力覚センサチップ。
【請求項5】
前記陽極接合用電極は、当該陽極接合用電極のうち前記作用部の中心となる位置に設けられた電極である中心電極を起点に点対称に配置されていることを特徴とする請求項2に記載の力覚センサチップ。
【請求項6】
前記陽極接合用電極は、当該陽極接合用電極のうち前記作用部の中心となる位置に設けられた電極である中心電極を起点に放射状に配置されていることを特徴とする請求項2に記載の力覚センサチップ。
【請求項7】
前記陽極接合用電極は、当該陽極接合用電極のうち前記作用部の中心となる位置に設けられた電極である中心電極を起点に十字状に配置されていることを特徴とする請求項2に記載の力覚センサチップ。
【請求項8】
前記陽極接合用電極は、当該陽極接合用電極のうち前記作用部の中心となる位置に設けられた中心電極を起点に同心円状に配置されていることを特徴とする請求項2に記載の力覚センサチップ。
【請求項9】
前記陽極接合用電極が正方形からなり、前記作用部の表面又は前記作用部が形成された面の裏面に縦列横列に整列して等間隔で配置されていることを特徴とする請求項2に記載の力覚センサチップ。
【請求項10】
前記陽極接合用電極は、当該陽極接合用電極のうち前記作用部の中心となる位置に設けられた電極である中心電極を起点に、前記作用部の縦方向および横方向のそれぞれの一対の辺に沿って線対称となるように一列ずつ配置されていることを特徴とする請求項2に記載の力覚センサチップ。
【請求項11】
前記陽極接合用電極は、当該陽極接合用電極のうち前記作用部の中心となる位置に設けられた電極である中心電極を起点に、複数の弧状の陽極接合用電極が円状に配置されていることを特徴とする請求項2に記載の力覚センサチップ。
【請求項12】
前記陽極接合用電極は、当該陽極接合用電極のうち前記作用部の中心となる位置に設けられた電極である中心電極を起点に、複数の弧状の陽極接合用電極が同心円状に配置されていることを特徴とする請求項2に記載の力覚センサチップ。
【請求項13】
前記作用部と前記支持部と前記連結部とは、前記半導体基板を貫通する複数の孔によって機能的に分離されていることを特徴とする請求項1から請求項12のいずれか一項に記載の力覚センサチップ。
【請求項14】
前記連結部は、剛性の高い領域と、剛性の低い領域を有するように形成され、前記剛性の高い領域の一方が前記作用部に接続され、前記剛性の高い領域の他方が前記剛性の低い領域に接続されていることを特徴とする請求項1から請求項13のいずれか一項に記載の力覚センサチップ。
【請求項15】
前記剛性の低い領域は、前記複数の孔における前記支持部に沿って設けられた長穴の孔により長尺状に形成されており、前記剛性の低い領域の両端が前記支持部に接続されていることを特徴とする請求項14に記載の力覚センサチップ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate