説明

周囲環境の屈折率の影響を受けない光学システム

【課題】周囲環境の条件の変化に影響を受けない光学システムの提供
【解決手段】屈折性光学システムは、コリメータ、集束光学システム、縮小器又は拡大器とすることができ、入口光学素子(25)、出口光学素子(35)、並びに入口及び出口光学素子(25,35)間に配置された容積(45)を含む。容積(45)は、周囲環境の環境条件の変化に影響を受けない屈折率を有するように構成される。入口光学素子(25)の入力表面の湾曲の表面は、入力光ビームの波面の湾曲に平行であり、出口光学素子35の出力表面は、出射光ビームの波面の湾曲に平行である。従って、出射光ビームの波面の湾曲は、周囲環境に影響を受けず、製造及び動作環境が、光学システムの性能に変化を持たせずに、変動することを許容する。

【発明の詳細な説明】
【背景技術】
【0001】
多くの光学システムは、1つ又は複数の屈折性光学素子を使用する。これら光学素子は、いくつかの標準的な形態、例えばレンズ及びプリズムに分類され、2つ以上の屈折率のとぎれ(不連続部)を含む。その結果として、屈折性光学素子は、コリメータ、集束光学システム、顕微鏡、望遠鏡、映写レンズ、及び干渉計のような屈折性光学システムを形成するように組み合わせられ得る。これら素子は、システムの機能を達成し、且つ性能要件を満たすように選択される。精密屈折性光学システムは、計測のような平行レーザの用途、及びフォトリソグラフィのようなイメージングの用途に使用され得る。例えば、屈折型望遠鏡は一般に、2つ以上のレンズ要素を含み、イメージング用途における集光および光の拡大、又は平行レーザの用途におけるビームの拡大又は縮小を達成するために設計される。また、精密な光学的動作のために、コリメータ、集束光学システム、拡大器、又は縮小器のような高性能システムは、その意図された目的のために動作することを保証するように製造プロセス中に較正および試験を必要とする。製造および較正は、一般的に及び最も望ましくは、標準大気条件である周囲環境で実施される。しかしながら、システムの動作は、真空又はほぼ真空の状態(例えば、宇宙空間)で、或いは水中のような液体の環境内においてのような、異なる周囲条件のもとで行われる可能性がある。当業者ならば理解されるように、その周囲環境の屈折率は、圧力、温度、気体の組成等の変化で変化する。従って、標準大気でない可能性がある意図された動作の周囲条件と比べた場合、標準大気である、製造、試験及び較正の周囲条件のもとでコリメータが異なるように機能するという残念な状況が結果として生じる。
【0002】
製造と動作との間の異なる周囲条件に対する既存の解決策は、製造と動作の周囲条件間の予想される差異を補正する補正光学部品を、製造、試験及び較正中に提供することである。補正光学部品は製造中に使用され、次いで意図された動作の前に取り外される。この解決策は、補正の測定がないので非常に好ましいが、それは間接的であり、より多くの不確実性をもたらす。
【0003】
更に、いくつかのシステムは、動作環境の変化にさえも非常に敏感なので、許容できない摂動を生じる。
【発明の開示】
【発明が解決しようとする課題】
【0004】
従って、周囲環境の条件の変化に影響を受けないコリメータが依然として必要とされている。
【課題を解決するための手段】
【0005】
本発明の一態様によれば、装置が提供され、その装置は、入力表面及び出力表面を有する入口光学素子と、入力表面及び出力表面を有する出口光学素子と、入口光学素子の出力表面と出口光学素子の入力表面との間に配置された容積を含み、容積の屈折率が、環境の屈折率の変化に影響を受けず、入口光学素子の入力表面の湾曲の表面が、入力光ビームの波面の湾曲に平行になるように構成され、出口光学素子の出力表面の湾曲の表面が、出射光ビームの波面の湾曲に平行になるように構成されている。
【0006】
本発明の理解は、添付図面に関連してなされる以下の詳細な説明から得ることができる。異なる図面において、同じ参照符号は同じ又は類似した要素を指す。
【発明の効果】
【0007】
本発明によれば、周囲環境の条件の変化に影響を受けない光学システムが提供される。
【発明を実施するための最良の形態】
【0008】
説明のため、及び限定しないための以下の詳細な説明において、特定の細部を開示する例示的な実施形態は、本発明による実施形態の理解を提供するために記載されている。しかしながら、本発明の開示を利用できる当業者には明らかなように、本明細書に開示された特定の細部から逸脱する、本発明による他の実施形態は、添付の特許請求の範囲内に依然としてある。更に、良く知られた装置及び方法の説明は、例示的な実施形態の説明を不明瞭にしないように省かれている場合がある。係る方法及び装置は明らかに、本発明の範囲内にある。
【0009】
図面のうち、特に図1を参照すると、本発明による光学システム20の実施形態が示され、この場合、平行になっていない入力光(以降、非平行入力光と称する)15が受け入れられ、入力光15から生じる出力光17へと平行にされる。周囲環境の屈折率はnとして表される。屈折率nは、周囲環境の圧力、温度、及び気体組成の変化で変化する。図1の実施形態は、入力光15を受け入れ、nの値に関係なく、それ故に周囲環境の圧力、温度、及び気体組成の任意の変化に関係なく平行になった出力光(以降、平行出力光と称する)17を生じさせる。従って、図1の実施形態は、屈折率の環境に対する不感受性(Ambient Index of Refraction Insensitivity)(以降、屈折率の環境不感受性、又は「AIRI」と称する)を示す。
【0010】
図面のうち、特に図2を参照すると、本発明による光学システム20の別の実施形態が示され、この場合、平行になった入力光(以降、平行入力光と称する)15を受け入れ、平行出力光17の拡大されたビームが生成される。図1及び図2の双方の実施形態は、受動的な光学システムであり、AIRIを示す。各光学システム20は、ハウジングを形成し、そのハウジングは、十分に剛性が高く、その幾何学的形状が周囲環境の変化に実質的に影響を受けない。更に、光がハウジング内を進むコンポーネントの屈折率は、環境の屈折率nが変化する場合に、変化しない。
【0011】
図面のうち、特に図3及び図4を参照すると、異なる屈折率n及びnを有する第1と第2の材料との間の接合部における光の挙動の図が示される。図3及び図4の双方における光路は、スネルの法則、即ち、nsinθ=nsinθに従う。ここで、nは第1の材料の屈折率であり、θは、接合部において入射する光線の入射角であり、nは第2の材料の屈折率であり、θは、接合部において放射される光線の屈折角である。図3は、90°又はゼロでない入射角θにおける光の挙動を示す。図3において、屈折角θは、2つの材料の屈折率の間における関係の関数である。
【0012】
スネルの法則は以下のように書き換えられ得る。
【0013】
【数1】

【0014】
図面のうち、特に図4を参照すると、入射角が、第1と第2の材料との間の接合部に対して90°又は0°である場合のスネル法則の図を示す。当業者には理解されるように、スネルの法則に基づいて、入射角が0°の場合、屈折角θも、第1及び第2の材料の双方の屈折率の値に関係なく0°である。従って、0°の入射角は、屈折率が屈折角において有する任意の影響を無効にする。この原理を役に立つ目的に使用して、光学システム20は0°の入射角で光を受け入れる。
【0015】
図1及び図2を参照すると、入力光15が平行にされていない場合、入力表面26の湾曲の表面は、入力光15の波面の湾曲に平行になるように構成される。湾曲の表面が波面の湾曲に平行である場合、図面に示されるように、その表面も入射する光の波面に平行である。同様に、出力表面37の湾曲の表面が、出力光17の波面の湾曲に平行になるように構成される。従って、平行出力光17は平坦な出力表面37を必要とし、平行入力光15は平坦な入力表面26を必要とする。非平行入力光15は、平坦でない形状を有する入力表面26を必要とする。所望の出力波面が収束又は発散する場合、出力表面は、入射する光線に直交するように、収束又は発散する外形(profile:形状、輪郭)に一致する。
【0016】
図面のうち、特に図5を参照すると、本発明による光学システム20が示されており、その特定の実施形態は、入口光学素子25、出口光学素子35、及びそれらの間に配置された容積(volume:塊、要素)45を有するコリメータである。入口光学素子25は、入力表面26及び出力表面27を有する。同様に、出口光学素子35は入力表面36及び出力表面37を有する。特定の実施形態において、入口及び出口光学素子25、35の双方は、ガラスである。代替の実施形態は、材料の屈折率が環境の屈折率の変化で変化しない場合には、入口及び出口光学素子25、35に異なる材料を使用することができる。容積45は、周囲環境から切り離されるので、気体、液体、固体、真空、又はそれらの任意の組合せを含むことができる。
【0017】
容積45の入力表面は、入口光学素子25の出力表面27と同じ形状を有する。同様に、容積45の出力表面は、出口光学素子35の入力表面36と同じ形状を有する。特定の実施形態において、入口光学素子25の出力表面27は、定量化できる曲率半径を有する。容積45は、光学システム20が配置される周囲環境の屈折率の変化に対して、容積の屈折率nvolが影響を受けないように、封止され且つ十分に剛性が高い。従って、入口光学素子25と容積45の接合部、及び容積45と出口光学素子35の接合部における光の屈折は、周囲環境の屈折率の変化に関係なく特定の態様で生じる。特定の例において、容積45は簡単な空隙である。光学システムの製造中に、容積45の空気が真空にされ、次いで容積45が気密封止されて内部が真空に維持される。ハーメチックシールは、環境の屈折率nが変化する場合に、容積の屈折率nvolが一定の状態を維持することを保証する。
【0018】
図5のコリメータ20において、入力光15は、環境の屈折率nを有する環境から入射し、出力光17は同じ環境に出射する。入口光学素子25はnentの屈折率を有する。光は、光源10を出射して、光源10と入口光学素子25の入力表面26との間の周囲環境の空間に発散する。光学システム20は、入力光15が入力表面26に当たる場所で、入力光15の波面の湾曲16が入口光学素子25の入力表面26の湾曲の表面に平行になるように構成されて、光源10から間隔をおいて配置される。言い換えれば、光線として表される場合の入力光15は、入口表面(入力表面)26に垂直である。入力光15の光線が入口光学素子25の入力表面26に垂直であり、且つ入力光15の波面の湾曲が周囲環境の屈折率と共に変化しないので、スネルの法則は、これらの環境のもとで、周囲環境の屈折率n、又は入口光学素子25の屈折率nentの任意の値に対して入力光15の屈折が存在しないことを決定づける。ひとたび光が入口光学素子25に入射すると、それは、入口光学素子25と容積45との間の接合部である、入口光学素子25の出力表面27における屈折を通じて操作される。また、その光は、容積45と出口光学素子35との間の接合部である、出口光学素子35の入力表面36における屈折を通じて操作される。入射角は、入口光学素子25の出力表面27においてゼロでない。それ故に、スネルの法則に従って、入口光学素子25の出力表面27における屈折角は、入口光学素子25と容積45の屈折率の比の関数である。同様に、出口光学素子35の入力表面36における入射角はゼロでない。従って、出口光学素子35の入力表面36における屈折角は、容積45と出口光学素子35の屈折率の比の関数である。
【0019】
容積がレンズとしての役割を果たすと仮定する場合、光学システム20の容積45内の光の屈折は、以下の修正された薄肉レンズの式に従う。
【0020】
【数2】

【0021】
ここで、fはレンズの焦点距離であり、nvolは容積45の屈折率であり、nは入口及び出口光学素子25、35の屈折率であり、rentは入口光学素子25の出力表面27の曲率半径であり、rexは出口光学素子35の入力表面36の曲率半径である。曲率半径は、湾曲の中心及び光源が頂点の両側にある場合に、正であるように選択される。図5のコリメータの実施形態において、光は、出力光17の波面の湾曲18が出口光学素子35の出力表面37の湾曲の表面に平行になるように、出力光17が出口光学素子35の出力表面37を出射するように、薄肉レンズの式に従って容積45内で操作される。図5の特定のコリメータの実施形態において、出口光学素子35の出力表面37は、公称では、環境の屈折率nの変化から生じる出力光17の任意の屈折を無効にする平面である。入口光学素子25の入力表面26と出口光学素子35の出力表面37との間の光学素子の屈折率は、光学システム20が配置される環境に関係なく一定の状態を維持するので、出力光17は、予測可能で反復可能に平行にされ、周囲環境の屈折率nの変化する値に影響を受けない。
【0022】
本発明によるコリメータに関する図5の特定の実施形態に対する代替の構成は、様々な屈折率、厚み、及び湾曲の表面を有する異なる入口光学素子25及び出口光学素子35を含む。しかしながら、当業者には理解されるように、コリメータは出口光学素子35の平坦な出力表面37を有する。この場合、異なる薄肉レンズの式を用いて、異なる入口光学素子と出口光学素子の屈折率を適合させる。他の代替の実施形態は、内部に1つ又は複数の接触面を形成する2つ以上の光学素子を含む容積45を有することができる。その場合、光は、異なる屈折率の間で複数の接合部を通じて操作され、各接合部の屈折率はスネルの法則に従う。真空を包含する空隙として図面の図5に示されたような単一の容積45は、より単純で、且つより簡単な実現可能な実施形態の1つである。
【0023】
当業者には理解されるように、図5の光学システム20は受動的であるので、光が反対方向にそれを通過する場合、それは集束要素又は光カプラーとして働くこともできる。集束光学システム又は光カプラーの実施形態において、出口光学素子35の入力表面37は、平行入力光17を受け入れ、入口光学素子25の出力表面26の曲率半径により示されるような焦点に集束された出力光15を生成する。
【0024】
入口光学素子25及び出口光学素子35はそれぞれ、外周を有する。フレーム要素55は、入口及び出口光学素子の外周を包み込むように構成された内周を有する。フレーム要素55と光学素子25、35との間のシールは、環境大気の条件が容積45と関連した屈折率に影響を及ぼさないように適合される。代替の実施形態は、空気、ガス、液体、固体、又はこれらの任意の組合せからなることができる、容積45内に複数の構成要素を含み、この場合、シールは周囲環境の屈折率に関係なく容積内の各構成要素の一定の屈折率を維持する。
【0025】
図面のうち、特に図6を参照すると、本発明によるビーム拡大器の実施形態が示されており、この場合、入力光15が平行にされ、出力光17が平行にされて入力光15に対して拡大される。図示された特定の実施形態において、入力光15の波面の湾曲16が入口光学素子25の入力表面26の湾曲の表面に平行になるように、入力光15は平行にされて、入口光学素子25の公称では平坦な入力表面26に当たる。光は、入口光学素子25、容積45、及び出口光学素子35を通じて、図5のコリメータの実施形態に関して説明されたような類似した態様で、且つ薄肉レンズの式に従って操作される。図示された特定の実施形態において、入口光学素子25の出力表面27は、凸面であり光を拡大する。出口光学素子35の入力表面36は、所望のビーム拡大の量に従って入口光学素子25の出力表面27から間隔をおいて配置される。入口光学素子25、容積45、及び出口光学素子35の屈折率は、平行入力光15から所望のビーム直径を有する平行出力光17に光を操作するように選択される。出口光学素子35の出力表面37の湾曲の表面は、平坦であり、且つ平行出力光17の波面の湾曲18に平行になるように構成される。出力光17の波面の湾曲18が出力表面37の湾曲の表面に平行であるので、出力光17の光学的挙動は、環境の屈折率nに無関係である。入口光学素子25の出力表面27と出口光学素子35の入力表面との間の距離は、ビーム拡大の量を制御することができる。
【0026】
本発明によるビーム拡大器に関する図6の特定の実施形態に対する代替の構成は、様々な屈折率、厚み、及び湾曲の表面を有する異なる入口光学素子25及び出口光学素子35を含む。入力光学表面26及び出力光学表面37は、凹面又は凸面とすることができる。有利な点は、入口光学素子25の入力表面26と出口光学素子35の出力表面37との間の構成要素の屈折率が周囲環境の変化に関して一定の状態を維持する場合には、光学システム20の内部の屈折面は、任意のレベルの複雑性を呈することができ、依然としてAIRIを呈することができる。しかしながら、当業者には理解されるように、平行出力光17を生成するビーム拡大器は、出口光学素子35の公称では平坦な出力表面37を有する。代替の実施形態は、内部に2つ以上の接触面を形成する2つ以上の光学素子を含む容積45を有することができる。図面の図6に示されたような単一の容積45は、より単純で、且つより簡単な実現可能な実施形態の1つである。当業者には理解されるように、図6の実施形態は、反対方向からの光を受け入れることにより、ビーム縮小機能も実行することができる。特に、平行入力光17は、出口光学素子35の平坦な入力表面37により受け取られ、より小さいビーム直径を有する平行出力光15が入口光学素子25の出力表面26を通じて生成される。
【0027】
本発明の実施形態は、周囲環境の屈折率の変化に影響を受けずに、光を平行にする、光を縮小又は拡大するための光学システムを記述する添付図面に関連して、一例として本明細書で説明されている。本発明は、周囲環境の屈折率から光学システムを切り離すことにより、既製品としての光学システムにAIRIを提供するように適合され得る。特に、既製品としての光学システムは、入射する入力光15の波面の湾曲に平行である入力表面26を有する入口光学素子25と、出力光17の波面の湾曲に平行である出力表面37を有する出口光学素子35との間に配置される。本発明の他の変形、他の改作、及び他の実施形態については、本発明の教示の利益を与えられる当業者が思い付くであろう。
【0028】
本発明を要約すると、以下の通りである。屈折性光学システムは、コリメータ、集束光学システム、縮小器又は拡大器とすることができ、入口光学素子(25)、出口光学素子(35)、並びに入口及び出口光学素子(25、35)間に配置された容積(45)を含む。容積(45)は、周囲環境の環境条件の変化に影響を受けない屈折率を有するように構成される。入口光学素子(25)の入力表面の湾曲の表面は、入力光ビームの波面の湾曲に平行であり、出口光学素子35の出力表面は、出射光ビームの波面の湾曲に平行である。従って、出射光ビームの波面の湾曲は、周囲環境に影響を受けず、製造及び動作環境が、光学システムの性能に変化を持たせずに、変動することを許容する。
【0029】
以下においては、本発明の種々の構成要件の組合せからなる例示的な実施形態を示す。
1.入力表面及び出力表面を有する入口光学素子と、
入力表面及び出力表面を有する出口光学素子と、
前記入口光学素子の出力表面と前記出口光学素子の入力表面との間に配置された容積を含み、前記容積の屈折率が、環境の屈折率の変化に影響を受けず、前記入口光学素子の入力表面の湾曲の表面が、入力光ビームの波面の湾曲に平行になるように構成され、前記出口光学素子の出力表面の湾曲の表面が、出射光ビームの波面の湾曲に平行になるように構成されている、装置。
2.前記入口光学素子、前記出口光学素子、及び前記容積が、前記入力光ビームを平行にするように構成されて、空間的に配列されている、上記1項に記載の装置。
3.前記入口光学素子、前記出口光学素子、及び前記容積が、前記入力光ビームを集束するように構成されて、空間的に配列されている、上記1項に記載の装置。
4.前記入口光学素子、前記出口光学素子、及び前記容積が、前記入力光ビームを拡大するように構成されて、空間的に配列されている、上記1項に記載の装置。
5.前記入口光学素子、前記出口光学素子、及び前記容積が、前記入力光ビームを縮小するように構成されて、空間的に配列されている、上記1項に記載の装置。
6.前記入口光学素子が外周を有し、前記出口光学素子が外周を有し、前記装置が、前記入口及び出口光学素子の前記外周を包み込むように構成された内面を有するフレームと、環境大気の条件が前記容積に関連した屈折率に影響を及ぼさないように適合されたシールとを更に含む、上記1項に記載の装置。
7.前記容積が気体を包含する、上記1項に記載の装置。
8.前記容積が液体を包含する、上記1項に記載の装置。
9.前記容積がほぼ真空を包含する、上記1項に記載の装置。
10.前記容積が一定の屈折率を呈する、上記1項に記載の装置。
11.前記容積が少なくとも1つの屈折率の変わり目(transition:遷移)を含む、上記1項に記載の装置。
12.光学システムを設計する方法であって、
入力光の波面の湾曲に平行になるように入口光学素子の入力表面の湾曲の表面を決定するステップと、
所望の光路に従って前記入口光学素子、容積、及び出口光学素子の屈折率及び幾何学的形状を決定するステップと、
出力光の波面の湾曲に平行になるように出口光学素子の出力表面の湾曲の表面を決定するステップと、
決定された屈折率及び幾何学的形状に従って前記入口光学素子、前記容積、及び前記出口光学素子を製造するステップを含み、前記容積の屈折率が周囲環境の大気条件で変化しない、光学システムを設計する方法。
13.前記製造するステップが、前記容積を真空にし、内部を真空に維持するために前記容積を封止することを含む、上記12項に記載の方法。
14.前記容積が、気体、液体、固体、気体と液体の組合せ、液体と固体の組合せ、気体と固体の組合せ、又は気体と液体と固体の組合せからなるグループから選択された物質を収容する、上記12項に記載の方法。
15.前記容積が少なくとも1つの屈折率の変わり目を含む、上記12項に記載の方法。
16.前記入口光学素子がレンズである、上記12項に記載の方法。
17.前記出口光学素子がレンズである、上記12項に記載の方法。
【図面の簡単な説明】
【0030】
【図1】本発明による光学システムの実施形態の概念図である。
【図2】本発明による光学システムの実施形態の概念図である。
【図3】本発明による光学システムの実施形態において使用される光学特性の図である。
【図4】本発明による光学システムの実施形態において使用される光学特性の図である。
【図5】本発明によるコリメータの実施形態の断面図である。
【図6】本発明によるビーム拡大器の実施形態の断面図である。
【符号の説明】
【0031】
10 光源
15 入力光
17 出力光
20 光学システム
25 入口光学素子
26、36 入力表面
27、37 出力表面
35 出口光学素子
45 容積
55 フレーム要素

【特許請求の範囲】
【請求項1】
入力表面(26)及び出力表面(27)を有する入口光学素子(25)と、
入力表面(36)及び出力表面(37)を有する出口光学素子(35)と、
前記入口光学素子(25)の出力表面(27)と前記出口光学素子(35)の入力表面(36)との間に配置された容積(45)を含み、前記容積の屈折率が、環境の屈折率の変化に影響を受けず、前記入口光学素子の入力表面の湾曲の表面が、入力光ビームの波面の湾曲に平行になるように構成され、前記出口光学素子の出力表面の湾曲の表面が、出射光ビームの波面の湾曲に平行になるように構成されている、装置。
【請求項2】
前記入口光学素子(25)、前記出口光学素子(35)、及び前記容積(45)が、前記入力光ビームを平行にするように構成されて、空間的に配列されている、請求項1に記載の装置。
【請求項3】
前記入口光学素子(25)、前記出口光学素子(35)、及び前記容積(45)が、前記入力光ビームを集束するように構成されて、空間的に配列されている、請求項1に記載の装置。
【請求項4】
前記入口光学素子(25)、前記出口光学素子(35)、及び前記容積(45)が、前記入力光ビームを拡大するように構成されて、空間的に配列されている、請求項1に記載の装置。
【請求項5】
前記入口光学素子(25)、前記出口光学素子(35)、及び前記容積(45)が、前記入力光ビームを縮小するように構成されて、空間的に配列されている、請求項1に記載の装置。
【請求項6】
前記入口光学素子が外周を有し、前記出口光学素子が外周を有し、前記装置が、前記入口及び出口光学素子(25、35)の前記外周を包み込むように構成された内面を有するフレーム(55)と、環境大気の条件が前記容積に関連した屈折率に影響を及ぼさないように適合されたシールとを更に含む、請求項1に記載の装置。
【請求項7】
前記容積(45)が気体を包含する、請求項1に記載の装置。
【請求項8】
前記容積(45)が液体を包含する、請求項1に記載の装置。
【請求項9】
前記容積(45)がほぼ真空を包含する、請求項1に記載の装置。
【請求項10】
前記容積(45)が一定の屈折率を呈する、請求項1に記載の装置。
【請求項11】
前記容積(45)が少なくとも1つの屈折率の変わり目を含む、請求項1に記載の装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2008−176323(P2008−176323A)
【公開日】平成20年7月31日(2008.7.31)
【国際特許分類】
【出願番号】特願2008−5510(P2008−5510)
【出願日】平成20年1月15日(2008.1.15)
【出願人】(399117121)アジレント・テクノロジーズ・インク (710)
【氏名又は名称原語表記】AGILENT TECHNOLOGIES, INC.
【Fターム(参考)】