説明

圧力勾配型プラズマ発生装置およびそれを用いた成膜装置

【課題】第1中間電極の損傷を防止でき、磁界強度を容易に変更できる圧力勾配型プラズマ発生装置を提供する。
【解決手段】順に配置された、陰極と、第1および第2中間電極と、陽極とを有する圧力勾配型プラズマ発生装置であって、第1および第2中間電極は、所定の大きさのオリフィスを備える。第1中間電極2は、内部に電磁石が配置されている。この電磁石は、オリフィス2aを取り囲むように周方向に沿って配置した複数のコイル51〜54を含む。これにより、環状の永久磁石を配置した場合と同様に、外側のループ状の磁力線55と内側のループ状の磁力線56とを形成することができ、オリフィス2a内に磁界を形成するとともに、陰極側の側面に平行な磁界57,58を広範囲に形成できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、アーク放電を用いる圧力勾配型プラズマ発生装置に関する。
【背景技術】
【0002】
直流放電によって高密度のプラズマを発生しつつも、陰極近傍を不活性ガスの高い圧力で保護し、プラズマ中のイオン衝突による陰極損傷を防止した圧力勾配型のプラズマガンをアシスト源に利用した成膜装置が、特許文献1、2に記載されている。
【0003】
従来、ホローカソード方式等のアーク放電を利用したプラズマ源は、熱陰極の損傷が激しく短寿命であるという問題があった。特許文献1および2に記載の圧力勾配型プラズマガンでは、中心部に小さな貫通孔(オリフィス)を備えた第1および第2中間電極を陰極と陽極との間に配置し、通過するガスのコンダクタンスを小さくすることにより、陰極領域と陽極領域との間に圧力差(圧力勾配)を形成するとともに、陰極と陽極との電位勾配を緩やかに形成することにより、この問題を解決している。
【0004】
すなわち、圧力勾配型プラズマガンは、上記中間電極により、陰極領域の圧力を10Pa前後、陽極領域の圧力を0.1Pa前後に圧力勾配をつけて保つことができる。このため、陰極領域でのイオンの平均自由行程を極めて短くでき、陽極領域からのイオン逆流衝突による陰極の損傷を避けることができる。また、陽極領域に化学的活性化気体(O、N等)を導入して混合プラズマを形成する場合にも、陰極領域に満たす不活性気体の圧力が陽極領域より10倍程度高いため、化学的活性気体が陰極領域に流入するのを防止ででき、陰極の化学的損傷が避けられる。
【0005】
第1および第2中間電極を配置した構造で放電を維持するためには、十分な量の電子が小さなオリフィスを通過する必要がある。そのため、陰極側に位置する第1中間電極内には、リング状の永久磁石が配置され、陽極側に位置する第2中間電極内には円筒コイル状の電磁石が配置され、オリフィス内に陰極から陽極に向かう磁界を形成している。電子は、この磁界に沿って進むことによりオリフィス内で収束し、十分な量の電子が中間電極を通過できる。
【0006】
このような圧力勾配型プラズマガンを利用することにより、多くの金属や誘電体を蒸発させ、または蒸発させた原料を活性化させることができ、すぐれた薄膜が得られることが特許文献2等により報告されている。ペロブスカイト型酸化物であるPZT(Pb(ZrxTi1-x)O3)等に代表される強誘電体や圧電体を、比較的低い成膜温度で結晶性の良い薄膜に成膜することができる。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2007−305336号公報
【特許文献2】特許第4138196号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
従来の圧力勾配型プラズマガンにおいて、陰極に最も近い第1中間電極内にリング状の永久磁石を配置し、陽極側の第2中間電極内には電磁石を用いる理由は、第1中間電極の損傷を防ぐためである。第1中間電極の陰極側の空間には、10Pa程度の高い圧力で熱電子が大量に存在するため、熱電子により発生したイオンにより第1中間電極の陰極側の面がスパッタリングされ損傷する。このとき、第1中間電極の陰極側の側面に平行な磁界が存在すると、磁界に沿ってイオンが移動するため、第1中間電極の側面の損傷を低減することができる。永久磁石を用いることにより、第1中間電極の陰極側の側面の広い範囲に、側面に平行な磁界を形成できる。このような理由により第1中間電極には、磁界発生手段として永久磁石が用いられている。
【0009】
第1中間電極のオリフィス(貫通孔)内の磁界の強さは、ガス種、ガス流量、放電電流の大きさ等によって最適値が異なる。従来、第2中間電極内には電磁石(コイル)が用いられているので、コイルに流す電流の大きさを変更することにより容易に磁界の強さを変更できる。しかしながら、第1中間電極の場合は、永久磁石を交換しなければ磁界の強さを変更することができない。
【0010】
第1中間電極の永久磁石の交換方法は、具体的には、成膜装置およびプラズマガンを停止させて内部を大気圧にし、プラズマガンから第1中間電極を取り出し、永久磁石を交換し、再びプラズマガンに第1中間電極を取り付け、成膜装置およびプラズマガン内を真空にしてプラズマを発生させ、プラズマの様子を見て最適な磁界の強さになったかどうかを判断するという手順になる。この手順を繰り返し、最適なプラズマの状態が得られるまで、磁界強度の異なる永久磁石に順次交換していく必要がある。このため、磁界強度の調整に非常に時間がかかるという問題がある。また、予め磁界強度の異なる複数の永久磁石を用意しておかなければならない。さらに、成膜工程の途中でガス種やガス流量を変更した場合であっても、工程の途中では磁界強度を変更できない。
【0011】
本発明の目的は、第1中間電極の損傷を防止でき、磁界強度を容易に変更できる圧力勾配型プラズマ発生装置を提供することにある。
【課題を解決するための手段】
【0012】
上記目的を達成するために、本発明の第1の態様によれば、以下のようなプラズマ発生装置が提供される。すなわち、順に配置された、陰極と、第1および第2中間電極と、陽極とを有する圧力勾配型プラズマ発生装置であって、第1中間電極および第2中間電極はいずれも、陰極側から陽極側に貫通する所定の大きさのオリフィスを備える。第1中間電極は、内部に電磁石が配置され、電磁石は、オリフィスを取り囲むように周方向に沿って配置した複数のコイルを含む。
【0013】
これら複数のコイルは、扁平な形状にコイル線を巻回したものを用いることができる。また、複数のコイルはそれぞれ、オリフィスを取り囲む所定の円周を分割した円弧の周囲に、周方向に沿ってコイル線を巻回した形状のものを用いることができる。
【0014】
また、本発明の別の態様によれば、以下のようなプラズマ発生装置が提供される。すなわち、順に配置された、陰極と、第1および第2中間電極と、陽極とを有する圧力勾配型プラズマ発生装置であって、第1中間電極および第2中間電極はいずれも、陰極側から陽極側に貫通する所定の大きさのオリフィスを備える。第1中間電極は、内部に電磁石が配置され、電磁石は、オリフィスを取り囲む円周を分割した1以上の円弧の周囲に、それぞれ周方向に沿ってコイルを巻回した形状の1以上のコイルを含む。
【0015】
コイルの形成する磁界は、コイルの外周側領域を通ってコイルの内部を戻るループを描く磁力線と、コイルのオリフィス側の領域を通ってコイルの内部を戻るループを描く磁力線とを形成することが望ましい。また、電磁石は、第1中間電極のオリフィス内に陰極から陽極に向かう磁界を形成するとともに、第1中間電極の陰極に対向する側面に、側面の表面に平行な磁界であって、外周領域ではオリフィスから外周に向かい、内側領域では外周からオリフィスに向かう磁界を形成することが望ましい。
【発明の効果】
【0016】
本発明では、第1中間電極内に複数のコイルを周方向に沿って配置したことにより、永久磁石を配置した場合と同様の磁力線を電磁石で形成することができ、電流強度の調整により磁界強度を容易に調整できる。また、第1中間電極の陰極側の側面に広範囲に表面に平行な磁界を形成できるため、第1中間電極の陰極側側面の損傷を防止できる。
【図面の簡単な説明】
【0017】
【図1】第1実施形態のアーク放電イオンプレーティング装置の全体構成を示すブロック図。
【図2】図1の装置のプラズマガン10の構成を示すブロック図。
【図3】図2の装置のプラズマガンの第1中間電極2内のコイルを(a)軸101を含む断面方向から見た配置を示すブロック図、(b)陰極から見た配置を示すブロック図。
【図4】図2の第1中間電極2内のコイルの配置と磁力線の形状を示す説明図。
【図5】比較例1の第1中間電極120内の永久磁石の形状と磁力線の形状を示す説明図。
【図6】比較例2の第1中間電極220内のソレノイドコイルと磁力線の形状を示す説明図。
【図7】第2の実施形態の第1中間電極のコイルとコアを陰極から見た配置を示す説明図。
【図8】第3の実施形態の第1中間電極のコイルとヨークを陰極から見た配置を示す説明図。
【発明を実施するための形態】
【0018】
以下、本発明の一実施の形態について説明する。
【0019】
(第1の実施形態)
まず、第1の実施形態のプラズマガンを用いた成膜装置として、アーク放電イオンプレーティング装置を図1および図2を用いて説明する。図1は、このアーク放電イオンプレーティング装置の全体図であり、図2は、プラズマガン10の拡大図である。プラズマガン10は、電子流を反射させる反射型でかつ圧力勾配型である。
【0020】
図1のように、真空容器11内には、成膜すべき基板14を支持する基板ホルダー13と、蒸発源12と、蒸発源12に電子ビームを照射するための電子ビームガン(不図示)が配置されている。基板ホルダー13には、基板14を加熱するためのヒーターが内蔵されている。また、基板14と蒸発源12との間の空間に反応ガスを供給するための反応ガス導入管15が配置されている。
【0021】
真空容器11の側面にはプラズマガン10が備えられている。プラズマガン10は、図1および図2のように、筒状のプラズマガン容器103に、陰極1、第1中間電極2、第2中間電極3、陽極4をプラズマ引き出し軸101に沿って順に配置した構造である。陰極1、第1中間電極2、第2中間電極3、陽極4は不図示のガイシによって相互に絶縁されている。陽極4の外周側には、プラズマをガイドするための空芯コイル5が配置されている。
【0022】
陰極1は、アーク放電に適した公知の陰極構造である。陰極1には放電ガスの導入口102が備えられている。
【0023】
陰極1と陽極4には、図1、図2に示したように、直流電源16が接続されている。第1および第2中間電極2、3は適切な抵抗値のホーロー抵抗20、21を介して直流電源16の正極と接続されている。ホーロー抵抗20、21の値は、第1および第2中間電極2、3が、陰極1側から陽極4側に近いほど高い電位になるように設定する。これにより、真空容器11にプラズマを引き出すことができる。
【0024】
第1および第2中間電極2、3は、それぞれ中央に所定の径の貫通孔(オリフィス)2a,3aを有しており、このオリフィス2a,3aが、プラズマガン容器103の圧力を真空容器11よりも陽圧に維持し、圧力勾配を形成する。第1および第2中間電極2,3には、それぞれ電磁石50,60がそれぞれ内蔵されている。これらは、プラズマを収束させて貫通孔2a,3aを通過させるための磁場を発生する。従来技術では、第1中間電極2には永久磁石が内蔵されているが、本実施形態は電磁石50を用いることにより、電流強度の調節で磁界強度を可変にする。
【0025】
具体的には、電磁石50は、図3(a),(b)および図4に示すように、第1中間電極2の本体2b内の空間に、2以上のコイルをオリフィス2aを取り囲むように周方向に沿って配置した構造である。2以上のコイルが扁平な形状である場合には、少ない数のコイルでオリフィスを取り囲むことができるため好ましい。特に、円周を複数に分割した円弧の周囲に、円弧の外側および内側に沿うように、コイル線を周方向に巻回した鞍型構造のコイルを用いた場合には、電磁石50の外周側領域および内側(オリフィス2a側領域)にそれぞれ周方向に広い範囲で一様な磁界を形成できるため好ましい。
【0026】
図3および図4の例では、4つの鞍型コイル51〜54をオリフィス2aを取り囲むように配置している。鞍型コイル51〜54はいずれも、第1中間電極2の周方向を4分割した約90度の円弧の周囲に、円弧の外側および内側に沿うように、コイル線を周方向に巻回した鞍型構造の空芯コイルである。
【0027】
なお、電磁石50を構成するコイルは、4つに限定されるものではなく、任意の数にすることができる。また、一つのコイルで電磁石50を構成することも可能である。例えば、円周のごく一部を切り欠いた、360°よりもわずかに小さい円弧の周囲に、円弧の外側および内側に沿うようにコイル線を周方向に巻回した鞍型構造のコイルを用いることができる。
【0028】
以下、図3(a),(b)および図4の構造のコイル51〜54を用いる場合を例に説明する。図3(b)に示すように、4つの鞍型コイル51〜54に、陰極1側から見て、外周側のコイル線に反時計まわりに電流が流れるように電流を供給することにより、それぞれのコイル51〜54の周囲には、図3(a),(b)、図4のように磁界が発生する。これらの磁界は、各コイル51〜54の外周側の空間を陰極1から陽極4の方向に進み、各コイルの空芯部を陽極4から陰極1方向に戻る外側ループの磁力線55と、各コイル51〜54のオリフィス2a側の空間を陰極1から陽極4の方向に進み、各コイルの空芯部を陽極4から陰極1方向に戻る内側ループの磁力線56を形成する。
【0029】
これにより、オリフィス2aには、陰極1から陽極4の方向に軸101に平行な磁界が形成され、プラズマ105を収束させてオリフィス2aを通過させることができる。
【0030】
また、第1中間電極2の陰極1側の側面には、外側の磁力線55と内側の磁力線56のそれぞれにより、第1中間電極2の本体2bの表面に平行な磁界57,58が形成される。すなわち、第1中間電極2の本体2bの陰極1側の側面には、外周側領域に中心軸101から外向きの磁界57が形成され、オリフィス2aの周囲領域には中心軸101向きの磁界58が形成され、これらの磁界57,58は、第1中間電極2の本体2bの表面に平行である。
【0031】
このように、本実施形態では、内側ループおよび外側ループの磁力線55,56が形成されるため、第1中間電極2の陰極1側の表面に平行な磁界57,58を広い領域にわたって形成することができる。よって、陰極1の発生する熱電子により生じるイオンを、磁界57,58により第1中間電極2の表面に平行に移動させることができ、イオンが第1中間電極2の表面に衝突してスパッタリングにより損傷する現象を防止することができる。
【0032】
鞍型コイル51〜54が形成する上述の磁力線55、56の形状は、比較例1として図5に示す従来のリング状の永久磁石150を内蔵した中間電極120の磁力線155,156と同様の形状である。よって、第1中間電極2aの表面に平行に形成される磁界57,58の形状も、永久磁石150が形成する磁界157,158と同様の形状である。
【0033】
これらのことから本実施形態の第1中間電極2は、扁平なコイルを用いたことにより、電磁石50を用いた構造でありながらリング状の永久磁石150と同様に、陰極1側の表面の損傷を防止できる。
【0034】
また、本実施形態の第1中間電極2に内蔵する磁界発生手段は、電磁石であるため、供給する電流量を調整することにより、容易に磁界強度を調整できる。よって、ガス種、ガス流量、放電電流の大きさ等に応じて、最適な大きさの磁界をオリフィス2a内に形成できる。また、磁界の大きさを容易に変更でき、プラズマ105を発生させた状態を維持しながら、オリフィス2a内の磁界を調整することも可能である。よって、永久磁石と異なり、短時間で容易に、真空を破ることなく、また、プラズマ105を生じさせた状態であっても、オリフィス2a内の磁界を調整でき、製造効率を向上させることができる。
【0035】
図6に比較例2として、円筒形状にコイルを巻回したソレノイドコイル250を中心軸がオリフィス2aに一致するように第1中間電極内220に配置した場合の磁界を示す。一つのソレノイドコイル250を第1中間電極220内に配置した場合、磁力線250としては、ソレノイドコイル250の内側を陰極1から陽極4の方向に進み、外側を陽極4から陰極1の方向に戻る1種類のループが形成される。よって、第1中間電極220のオリフィス2a内に陰極1から陽極4方向へ向かう磁界を形成することができる。また、第1中間電極220の陰極1側の側面には、表面に平行な磁界258が形成されるが、磁力線250のループが本実施形態と異なり1種類のみであるため、表面に平行な磁界258が形成される面積が小さい。このため、平行な磁界258が形成されている第1中間電極220の表面領域は、陰極1からのイオンによるスパッタリングによる損傷を防ぐことができるが、平行な磁界258が形成されていない表面領域は損傷を防止できない。
【0036】
このように、本実施形態では、扁平なコイルを周方向に沿って配置した電磁石50を内蔵した第1中間電極2を用いることにより、永久磁石を内蔵した第1中間電極と同様の磁界を形成して、プラズマをガイドし、かつ、第1中間電極の陰極側表面を保護することができる。しかも、電磁石50は、永久磁石とは異なり、供給する電流の大きさを調整することにより、容易に形成される磁界強度を変更できる。
【0037】
一方、第2中間電極3に内蔵されている電磁石60としては、従来と同様に、中心軸がオリフィス3aの中心軸101と一致したソレノイドコイルを用いる。これにより、オリフィス3a内に陰極1から陽極4に向かう磁界を形成し、プラズマ105をガイドする。第2中間電極3は、陰極1とは直接対向していないので、陰極1側からのイオンによる損傷の恐れがなく、平行な磁界を形成する必要はない。
【0038】
以下、図1のアーク放電イオンプレーティング装置を用いて、プラズマを発生させ、基板上に成膜を行うことにより薄膜素子を製造する際の各部の動作について説明する。
【0039】
基板ホルダー13には基板14を取り付け、蒸発源12には、所定の固体原料を配置する。プラズマガン10の内部および真空容器11内を所定の圧力まで排気する。プラズマガン10に放電ガスを供給する。ここでは、最終的な放電ガスとして、電離電圧の高いHeガスを用いるが、グロー放電を安定して生じさせるために、グロー放電開始時には、電離電圧の低いArガスまたはArガスとHeガスの混合ガスを供給し、グロー放電が安定したならば、Heガスの割合を増加させていき、Heガスのみでグロー放電を生じさせる。その後、アーク放電に移行させる。
【0040】
プラズマガン10のアーク放電は、一旦真空容器11内に引き出され、放電電子が空間電荷によって反射されて陽極4に戻る。これにより非常に均質なプラズマ105を真空容器11内に発生させることができる。
【0041】
このとき、中心部にオリフィス2a、2bを備えた第1および第2中間電極2,3は、通過するガスのコンダクタンスを小さくすることにより、陰極領域と陽極領域との間に圧力差(圧力勾配)を形成するとともに、陰極と陽極との電位勾配を緩やかに形成する。これにより、陰極1領域の圧力を高い圧力、陽極4領域を低圧力に保ち、陰極1領域でのイオンの平均自由行程を短くする。よって、陽極領域からのイオン逆流衝突による陰極1の損傷を避けることができる。また、陰極1領域に、真空容器11側から化学的活性気体が流入するのを防止ででき、陰極の化学的損傷が避けられる。
【0042】
また、第1および第2中間電極1内の電磁石50、60は、オリフィス2a,3a内に陰極1から陽極4に向かう磁界を形成することにより、プラズマ105をオリフィス2a,3a内で収束させ、十分な量の電子を通過させ、プラズマ105を維持する。
【0043】
さらに、第1中間電極1内の電磁石50は、第1中間電極2の陰極1側の側面に平行な磁界57,58を広範囲に形成し、陰極1の熱電子が形成したイオンが第1中間電極1に衝突して損傷するのを防止する。
【0044】
プラズマ105が生成された状態で、反応ガス導入管15から酸素ガスを供給することにより、プラズマ105は、Heと酸素の混合プラズマとなる。Arよりも電離電圧の高いHeを放電ガスとして用いるため、Arを用いた場合よりも酸素ガスに大きなエネルギーを供給でき、高密度の酸素プラズマを得ることができる。よって、加熱した蒸発源12から蒸発した蒸気がプラズマ105を通過することにより高効率で酸化され、基板14上に到達し、酸化物膜を効率よく形成することができる。
【0045】
例えば、蒸発源12の材料として、Pb,Zr,Tiの各金属を用い、電子ビーム加熱により各々独立に蒸発させることにより、ペロブスカイト型酸化物であって、強誘電体および圧電体の特性を示すチタン酸ジルコン酸鉛(PZT: Pb(ZrxTi1-x)O3)薄膜の基板上に形成することができる。
【0046】
成膜工程における第1および第2中間電極2、3のオリフィス2a、3a内の磁界の強さの最適値は、ガス種、ガス流量、放電電流の大きさ等によって異なる。したがって、成膜工程の途中でガス種をArからHeに変更する際や、ガス流量を変更した場合や、ガス流量ならびに放電電流の大きさ等を変更した場合には、オリフィス2a,3a内の磁界の大きさを最適値に調整する必要がある。本実施形態では、第2中間電極3のみならず第1中間電極2にも磁界発生手段として電磁石50,60を用いているため、これらに供給する電流値をそれぞれ調整することによりオリフィス2a,3a内の磁界の大きさを容易に、かつ、瞬時に変更することができる。
【0047】
したがって、従来の永久磁石を用いた場合と異なり、磁界の大きさを変更する際にプラズマガン容器103の真空状態を大気圧に開放する必要がない。これにより第1中間電極の磁界強度の最適化のための調整に必要な時間を従来よりも大幅に短縮できる。プラズマ発生中に、ガス種やガス流量等を変更した場合にも、プラズマ105を発生させた状態を維持しながら磁界の大きさを調整することができる。
【0048】
なお、上記実施形態では、放電ガスとしてHeガスを用いる場合について述べたが、Ar、Ne、Xe、Kr等のガスを使用することも可能である。
【0049】
(第2の実施形態)
第2の実施形態について説明する。
【0050】
第1の実施形態では、第1中間電極2に内蔵される電磁石50を構成するコイル51〜54として空芯コイルを用いたが、第2の実施形態では、図7のように各コイル51〜54の巻き線の内側にコア71を配置する。
【0051】
コア71として、所望の透磁率のものを用いることにより、磁力線55,57の分布を変化させることができ、電磁石50の磁界強度や分布を制御することができる。これにより、第1中間電極2の陰極1側の側面の磁界57,58の分布や、オリフィス2a内の磁界強度を制御することが可能である。
【0052】
他の構成および作用は、第1の実施形態と同様である。
【0053】
(第3の実施形態)
第3の実施形態について説明する。
【0054】
第3の実施形態では、図8のように各コイル51〜54とオリフィス2aとの間に、リング状のヨーク80を配置する。ヨーク80として、空気よりも透磁率の高いもの、例えば強磁性体材料ヨークを用いることにより、磁力線56がヨーク80内に高密度に通過する。よって、ヨーク80の大きさや形状を調整することにより、オリフィス2a内および周辺の磁力線56の分布を制御できる。これにより、オリフィス2a内に所望の分布の磁界を発生させることができる。
【0055】
他の構成および作用は、第1の実施形態と同様である。
【0056】
また、第2および第3の実施形態を組み合わせてコア71およびヨーク80を備える第1中間電極2の構成にすることも可能である。
【符号の説明】
【0057】
1…陰極、2…第1中間電極、3…第2中間電極、4…陽極、5…空芯コイル、11…真空容器、12…蒸発源、13…基板ホルダー、14…基板、15…反応ガス導入管、16…直流電源、20,21,22…ホーロー抵抗、101…プラズマ引き出しの中心軸、102…放電ガス導入口、103…プラズマガン容器

【特許請求の範囲】
【請求項1】
順に配置された、陰極と、第1および第2中間電極と、陽極とを有する圧力勾配型プラズマ発生装置であって、
前記第1中間電極および第2中間電極はいずれも、前記陰極側から陽極側に貫通する所定の大きさのオリフィスを備え、
前記第1中間電極は、内部に電磁石が配置され、該電磁石は、前記オリフィスを取り囲むように周方向に沿って配置した複数のコイルを含むことを特徴とする圧力勾配型プラズマ発生装置。
【請求項2】
請求項1に記載の圧力勾配型プラズマ発生装置であって、前記複数のコイルは、扁平な形状にコイル線を巻回したものであることを特徴とする圧力勾配型プラズマ発生装置。
【請求項3】
請求項1または2に記載の圧力勾配型プラズマ発生装置であって、前記複数のコイルはそれぞれ、前記オリフィスを取り囲む所定の円周を分割した円弧の周囲に、周方向に沿ってコイル線を巻回した形状であることを特徴とする圧力勾配型プラズマ発生装置。
【請求項4】
順に配置された、陰極と、第1および第2中間電極と、陽極とを有する圧力勾配型プラズマ発生装置であって、
前記第1中間電極および第2中間電極はいずれも、前記陰極側から陽極側に貫通する所定の大きさのオリフィスを備え、
前記第1中間電極は、内部に電磁石が配置され、該電磁石は、前記オリフィスを取り囲む円周を分割した1以上の円弧の周囲に、それぞれ周方向に沿ってコイルを巻回した形状の1以上のコイルを含むことを特徴とする圧力勾配型プラズマ発生装置。
【請求項5】
請求項1ないし4のいずれか1項に記載の圧力勾配型プラズマ発生装置であって、前記コイルの形成する磁界は、該コイルの外周側領域を通って該コイルの内部を戻るループを描く磁力線と、該コイルの前記オリフィス側の領域を通って該コイルの内部を戻るループを描く磁力線とを形成することを特徴とする圧力勾配型プラズマ発生装置。
【請求項6】
請求項1ないし5のいずれか1項に記載の圧力勾配型プラズマ発生装置であって、
前記第1中間電極内の前記電磁石は、前記第1中間電極のオリフィス内に前記陰極から陽極に向かう磁界を形成するとともに、前記第1中間電極の前記陰極に対向する側面に、該側面の表面に平行な磁界であって、外周領域では前記オリフィスから外周に向かい、内側領域では外周からオリフィスに向かう磁界を形成することを特徴とする圧力勾配型プラズマ発生装置。
【請求項7】
請求項1ないし6のいずれか1項に記載の圧力勾配型プラズマ発生装置であって、前記コイルの内部にコアを配置したことを特徴とする圧力勾配型プラズマ発生装置。
【請求項8】
請求項1ないし7のいずれか1項に記載の圧力勾配型プラズマ発生装置であって、前記コイルと前記オリフィスとの間の空間には、前記オリフィスを囲むリング状のヨークが配置されていることを特徴とする圧力勾配型プラズマ発生装置。
【請求項9】
基板と成膜材料が配置される真空容器と、前記真空容器に接続された圧力勾配型プラズマ発生装置とを有する成膜装置であって、
前記圧力勾配型プラズマ発生装置として、請求項1ないし6のいずれか1項に記載のものを備えることを特徴とする成膜装置。
【請求項10】
圧力勾配型アーク放電プラズマ発生装置を用いてプラズマを発生させ、該プラズマを用いて薄膜を形成する薄膜素子の製造方法であって、
前記プラズマ発生装置は、順に配置された、陰極と、第1および第2中間電極と、陽極とを有し、
前記第1中間電極および第2中間電極はいずれも、前記陰極側から陽極側に貫通する所定の大きさのオリフィスを備え、
前記第1中間電極は、内部に電磁石が配置され、該電磁石は、前記オリフィスを取り囲むように周方向に沿って配置した複数のコイルを含み、
前記第1中間電極の複数のコイルに供給する電流の大きさを変更することにより、前記第1中間電極の前記オリフィス内の磁界の大きさを調整することを特徴とする薄膜素子の製造方法。
【請求項11】
請求項10に記載の薄膜素子の製造方法であって、前記プラズマ発生装置の前記陰極と、前記第1および第2中間電極と、前記陽極に、所定の電位を印加してプラズマを形成し、プラズマを維持したまま、前記第1中間電極の複数のコイルに供給する電流の大きさを変更して前記オリフィス内の磁界の大きさを調整することを特徴とする薄膜素子の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−199017(P2012−199017A)
【公開日】平成24年10月18日(2012.10.18)
【国際特許分類】
【出願番号】特願2011−61256(P2011−61256)
【出願日】平成23年3月18日(2011.3.18)
【出願人】(000002303)スタンレー電気株式会社 (2,684)
【Fターム(参考)】