説明

地盤改良用注入管

【課題】 二重管のシンプル構造の小口径の注入管で、モニター機構も小口径の簡単構造でありながら、切削撹拌能力が高く、注入管の回転速度および引き上げ速度を上げての施工が可能で、工期短縮ができる地盤改良用注入管を提供する。
【解決手段】 噴射ノズルが設けられたモニター機構を下部に有し、該モニター機構の噴射ノズルは、固化材液噴射ノズルが中心に位置し、その外側にエア噴射ノズルが同心的に二重ノズルの格好で設けられ、固化材液噴射ノズルから噴射する固化材液の周囲に同時に同方向にエアが噴射可能となっており、該注入管のモニター機構の噴射ノズルは、複数を組として、その互いの噴射方向の中心軸を平行して設けられている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固化材液噴射ノズルおよびエア噴射ノズルが設けられたモニター機構を下部に有する注入管を地盤中に挿入し、該注入管の上部にスイベルを連結し、該スイベルより固化材液およびエアを高圧供給し、注入管を通しモニター機構の固化材液噴射ノズルから固化材液を管外方(例えば、水平方向)へ連続的に噴射させるとともに、エア噴射ノズルから固化材液噴射ノズルの周囲にエアを高圧で連続的に噴射させて注入管を回転させつつ地盤中より引き上げることにより、主に固化材液の噴射力で周囲の地盤を切削し、その切削領域に固化材液を注入撹拌して地盤改良体を築造する地盤改良用注入管に関する。
【背景技術】
【0002】
従来、固化材液を高圧噴射撹拌して軟弱地盤を固化改良する軟弱地盤改良工法は、よく知られている。この軟弱地盤改良工法は、下部にモニター機構を有する注入管の上部にスイベルを連結し、この注入管を地上から地盤中の所定深さまで挿入し、その後、注入管の上部に設けたスイベルの固化材液供給口から固化材液を高圧で供給し、注入管下部のモニター機構の固化材液噴射ノズルから固化材液を管外方水平方向へ連続的に噴射させ、注入管を回転させつつ引き上げることにより、連続的に噴射する固化材液の噴射力(噴流)でその周囲の地盤を切削するとともに、その切削領域に固化材液を注入撹拌して地盤改良体を築造するものである。
【0003】
この地盤改良工法では、図7に示すような内管32内が固化材液の供給通路34となり、内管32と外管33の間がエアの供給通路35となっている二重管の注入管31を用い、この注入管31は下部に固化材液噴射ノズル41と、この固化材液噴射ノズル41の周囲からエアを噴射するエア噴射ノズル42が設けられたモニター機構39を有し、この注入管31の上部には固化材液供給口37とエア供給口38が設けられたスイベル36が連結され、該スイベル36の固化材液供給口37より高圧供給した固化材液を固化材液の供給通路34を介しモニター機構39の固化材液噴射ノズル41より噴射させると同時に、スイベル36のエア供給口38より高圧供給したエアをエアの供給通路35を介しエア噴射ノズル42より固化材液噴射ノズル41の周囲に噴射させて地盤改良するものと、
図8に示すような内管32内が固化材液の供給通路34となり、内管32と中間管40の間が水の供給通路43となり、中間管40と外管33の間がエアの供給通路35となっている三重管の注入管45を用い、この注入管45は、下部に固化材液噴射ノズル41と、この固化材液噴射ノズル41の周囲からエアを噴射するエア噴射ノズル42と、固化材液噴射ノズル41より上方の180度対称位置に設けられた水噴射ノズル44とが設けられたモニター機構39を有し、この注入管45の上部には、固化材液供給口37と、エア供給口38と、水供給口46とを有するスイベル36が連結され、該スイベル36の固化材液供給口37より高圧供給した固化材液を固化材液の供給通路34を介しモニター機構39の固化材液噴射ノズル41より噴射させると同時に、スイベル36のエア供給口38より高圧供給したエアをエアの供給通路35を介しエア噴射ノズル42より固化材液噴射ノズル41の周囲に噴射させるとともに、スイベル36の水供給口46より高圧供給した水を水噴射ノズル44から噴射させて地盤改良するものと、がある(例えば、特許文献1参照)。
【0004】
また、上部にスイベル36を、下部にモニター機構39を備える注入管31、45の地盤中への挿入は、スイベル36の固化材液供給口37から水を高圧供給し、固化材液の供給通路34を介しモニター機構39の先端の開口47より下向き吐き出しつつ地盤を削孔し挿入する場合と、ボーリングマシン等で先行して削孔した後に、この削孔に挿入する場合とがある。
【0005】
そして、従来の地盤改良用注入管のモニター機構では、単口の固化材液噴射ノズルが1個のもの、単口の固化材液噴射ノズルが180度対称位置に配置されて2個が存在するもの及び単口の固化材液噴射ノズルが1個で、該固化材液噴射ノズルより上方の180度反対側に水噴射ノズルが1個設けられているもの、等がある。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特公平04−48894
【発明の概要】
【発明が解決しようとする課題】
【0007】
従来の地盤改良用注入管のモニター機構は、個々の噴射ノズル(噴射口)が個々に分散配置され、各噴射ノズルが互いに相乗効果を発揮する構成となっていないために、切削撹拌能力が高いとはいえず、そのために注入管の1回の回転では同一深度の地盤を拡径できないため、数回の回転で少しずつ拡径して所定の径にしている。従って、地盤改良用注入管の回転速度、引き上げ速度を遅くしなければならず、長時間を要するから、工期も長くかかるし、施工費用も多くかかることになる。
そこで、切削撹拌効率を向上させるために、噴射圧力を上昇させたり、大型大容量ポンプによる噴射用量を増大させたりしているが、これでは、高エネルギー使用の大規模なプラント設備が必要になるので、大型工事でないと経済的にも困難となる。
また、地盤改良用注入管として三重管を用いるものは、固化材液、エアおよび水のそれぞれの供給装置および高圧ポンプを使用するため、消費エネルギーも多く、設備も大型化する課題がある。
【0008】
本発明は、このような課題を解決せんと提案されたものであり、その目的は、二重管のシンプル構造の小口径の注入管で、モニター機構も小口径の簡単構造でありながら、切削撹拌能力が高く、注入管の回転速度および引き上げ速度を上げての施工が可能で、工期短縮ができる地盤改良用注入管の提供にある。
【課題を解決するための手段】
【0009】
前記目的を達成するために、本発明の請求項1にかかる地盤改良用注入管は、噴射ノズルが設けられたモニター機構を下部に有し、該モニター機構の噴射ノズルは、固化材液噴射ノズルが中心に位置し、その外側にエア噴射ノズルが同心的に二重ノズルの格好で設けられ、固化材液噴射ノズルから噴射する固化材液の周囲に同時に同方向にエアが噴射可能となっている地盤改良用注入管であり、該注入管の上部にスイベルを連結し、この注入管を地上から地盤中の所定深度まで挿入し、その後スイベルより固化材液およびエアを高圧供給し、注入管下部のモニター機構の固化材液噴射ノズルおよびエア噴射ノズルより固化材液およびエアを噴射しつつ注入管を回転させて引き上げることにより、固化材液およびエアの噴射力で、周囲の地盤を切削し、その切削領域に固化材液を注入して地盤改良体を築造する地盤改良用注入管であって、
該注入管のモニター機構の噴射ノズルは、複数を組として、その互いの噴射方向の中心軸を平行して設けたことを特徴とする。
【0010】
この構成により平行する組の噴射ノズルから平行(並行)して噴射流体(固化材液およびエア)を噴射できるため、噴射流体の地盤切削過程での減衰を最小限に抑え、多軸流体派生による相乗効果で地盤の切削撹拌機能を向上させることができる。従って、地盤改良用注入管の回転速度および引き上げ速度を速めることができるため、結果として施工速度を速めることができ、改良時間の短縮による改良速度の向上による工期短縮が可能となる。また、流体(固化材液およびエア)の噴射エネルギーの効率がよくなる結果、従来工法用のポンプが使用できるため、高価な大容量のポンプの必要もなく、標準的消耗品、配管装備で施工でき、費用が低減できる。
【0011】
また、本発明の請求項2に係る地盤改良用注入管は、前記地盤改良用注入管が、内管と外管の二重管で、内管内が固化材液供給通路となり、内管と外管との間がエア供給通路となっており、固化材液供給通路がモニター機構の固化材液噴射ノズルに連通し、エア供給通路がエア噴射ノズルに連通していることを特徴とする。
【0012】
これにより二重管のシンプル構造の小口径の注入管で、モニター機構も小口径の簡単構造とすることができ、設備も標準的なものが使用できる。しかも、二重管のシンプル構造の小口径の注入管で、そのモニター機構も小口径の簡単構造でありながら、地盤の切削撹拌能力は高い。
【0013】
また、本発明の請求項3に係る地盤改良用注入管は、前記モニター機構の噴射ノズルが複数の組で設けられ、この組の噴射ノズルが水平円周方向の対称位置に設けられていることを特徴とする。
これにより噴射流体(固化材液およびエア)を平行(並行)して噴射できる組の噴射ノズルが、対称位置に設けられているので、多軸流体派生(例えば、噴射ノズルが対の組である場合は、2軸流体派生)による相乗効果での地盤の切削撹拌機能はさらに向上する。
【0014】
また、本発明の前記モニター機構の噴射ノズルの組は、噴射ノズルが水平円周方向に並列して組となっていることを特徴とし(請求項4)、
また、本発明の前記モニター機構の噴射ノズルの組は、噴射ノズルが上下方向に並列して組となっていることを特徴とし(請求項5)、
また、本発明の前記モニター機構の噴射ノズルの組は、噴射ノズルが上下方向に並列して組となっており、この組の噴射ノズルが水平円周方向の対称位置に設けられ、一方側の組の噴射ノズルと他方側の対称位置の組の噴射ノズルとは、互いに上下に位置がずれて設けられていることを特徴とし(請求項6)、
また、本発明の前記モニター機構の噴射ノズルの組は、噴射ノズルが斜め上下に並列して組となっていることを特徴とする(請求項7)。
【0015】
また、本発明の前記モニター機構の噴射ノズルは、噴射ノズルの組が、水平円周方向の対称位置に設けられ、一方側が水平円周方向に並列した組であり、他方側の対称位置が上下に並列した組であることを特徴とし(請求項8)、
また、本発明の前記モニター機構の噴射ノズルは、噴射ノズルの組が、水平円周方向の対称位置に設けられ、一方側が水平円周方向に並列した組であり、他方側の対称位置が斜め上下に並列した組であることを特徴とし(請求項9)、
また、本発明の前記モニター機構の噴射ノズルは、噴射ノズルの組が、水平円周方向の対称位置に設けられ、一方側が上下に並列した組であり、他方側の対称位置が斜め上下に並列した組であることを特徴とする(請求項10)、
【0016】
また、本発明の前記モニター機構の噴射ノズルは、水平円周方向の対称位置に設けられ、少なくとも対称位置のいずれか一方側の噴射ノズルは、複数を組としてその互いの噴射方向の中心軸を平行して設け、かつ噴射ノズルは対称位置で噴射ノズルの数および噴射ノズルの口径を異にするが、相対する噴射反力は近似値になるよう設定されていることを特徴とする(請求項11)。
この構成により、対称位置で噴射ノズルの数および口径を異にしても、相対する噴射反力は近似値となるので、注入管の撓みを防止することができる。
【0017】
また、本発明の前記モニター機構の組の噴射ノズルは、噴射ノズルの噴射中心軸間の間隔が、5〜10cmの間隔で並び組となっていることを特徴とする(請求項12)。
これにより多軸噴流による相乗効果を向上させることができる。組内での各噴射ノズルの間隔が、5cm未満だと互いの距離が近すぎて互いに噴射する噴流が接触して噴射流体の減衰が生じ、10cmを超えると互いの距離が開きすぎ、噴射流体の地盤への到達位置も開くため相乗効果が低下する。従って、組内での各噴射ノズルの間隔は、5〜10cmの範囲が好ましい。
【0018】
さらに、本発明の前記モニター機構の噴射ノズルは、噴射角度を水平方向より斜め下方に5度〜10度傾斜させたことを特徴とする(請求項13)。
これにより噴射流体に下向きに傾斜した噴射角度が付与されるため、切削した土砂が地盤から剥離して下方に移動しやすくなり、切削機能が向上する。
【発明の効果】
【0019】
本発明の地盤改良用注入管によれば、次のような効果を奏する。
(1)複数が組となっている噴射ノズルから平行(並行)して噴射流体(固化材液およびエア)を噴射できるため、噴射流体の地盤切削過程での減衰を最小限に抑えられ、多軸流体派生(例えば、噴射ノズルが対の組である場合は、2軸流体派生)による相乗効果で地盤の切削撹拌機能を向上させることができる。
(2)従って、施工時には地盤改良用注入管の回転速度および引き上げ速度を速めることができるため、結果として施工速度を速めることができ、工期を大幅に短縮することができる。
(3)施工速度を速め地盤改良速度が向上するため、それに伴い余剰液(廃泥)の発生も少なくて済む。
(4)噴射流体(固化材液およびエア)の噴射エネルギーの効率がよくなる結果、従来の標準工法用のポンプが使用できるため、高価な大容量ポンプや大規模なプラント設備は必要なく、標準的消耗品、配管設備で施工でき、費用も安く済む。
【0020】
(5)二重管のシンプル構造の小口径の注入管で、モニター機構も小口径の簡単構造とすることができ、設備も標準的なものが使用できる。しかも、二重管のシンプル構造の小口径の注入管で、そのモニター機構も小口径の簡単構造でありながら、地盤の切削撹拌能力は高い。
(6)噴射流体(固化材液およびエア)を平行(並行)して噴射できる組の噴射ノズルが、水平円周方向の対称位置に設けられているので、多軸流体派生(例えば、噴射ノズルが対の組である場合は、2軸流体派生)による相乗効果での地盤の切削撹拌機能は、さらに向上し、施工速度もさらに速くすることができる。
(7)水平円周方向の対称位置で噴射ノズルの数および口径を異にしても、相対する噴射反力は近似値となるので、注入管の撓みを防止することができる。
【0021】
(8)組内の各噴射ノズルは、噴射ノズルの噴射中心軸間の間隔を5〜10cmとしたので、多軸噴流(例えば、噴射ノズルが対の組である場合は、2軸流体派生)による相乗効果が向上し、施工速度をさらに高めることができる。
(9)噴射流体(固化材液およびエア)に下向きに傾斜した噴射角度を付与できるため、切削した土砂が地盤から剥離して下方に移動しやすくなり、切削撹拌機能が向上する。
【図面の簡単な説明】
【0022】
【図1】本発明の実施の形態を示す地盤改良用注入管の中央縦断面図である。
【図2】本発明の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図である。
【図3】本発明の他の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図である。
【図4】本発明のさらに他の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図である。
【図5】本発明のまた更に他の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図(a)およびその中央縦断面図(b)である。
【図6】本発明の地盤改良用注入管を使用しての地盤改良工法を、施工工程順(a)(b)(c)(d)に示す説明図である。
【図7】従来の地盤改良用注入管を示す断面図である。
【図8】従来の他の地盤改良用注入管を示す断面図である。
【発明を実施するための形態】
【0023】
以下、本発明の実施の形態を図面を参照して詳細に説明する。図1は、本発明の実施の形態を示す地盤改良用注入管の中央縦断面図、図2は、本発明の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図、図3は、本発明の他の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図、図4は、本発明の更に他の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図、図5は、本発明のまた更に他の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図(a)およびその中央縦断面図(b)である。
【0024】
図1は、上部にスイベル6が連結され、下部にモニター機構9を備える地盤改良用注入管1(単に、注入管と称することもある。)を示している。地盤改良用注入管1は、内管2と外管3の二重管で形成され、内管2内が固化材液の供給通路4となり、内管2と外管3との間がエアの供給通路5となっている。
スイベル6は、固化材液の供給口7と、エアの供給口8を備え、固化材液の供給口7は、通路7aを介し注入管1の固化材液の供給通路4に連通し、エアの供給口8は、通路8aを介し注入管1のエアの供給通路5に連通している。
【0025】
モニター機構9には、噴射ノズル10が設けられている。該モニター機構9の噴射ノズル10は、固化材液噴射ノズル11が中心に位置し、その外側にエア噴射ノズル12が同心的に二重ノズルの格好で設けられ、固化材液噴射ノズル11から噴射する固化材液の周囲に同時に同方向にエアが噴射可能になっている。固化材液噴射ノズル11には注入管1の固化材液供給通路4が連通し、エア噴射ノズル12には注入管1のエア供給通路5が連通し、スイベル6の固化材液供給口7より高圧供給された固化材液は、注入管1の固化材液供給通路4を介し固化材液噴射ノズル11から噴射でき、スイベル6のエア供給口8より高圧供給されたエアは、注入管1のエア供給通路5を介しエア噴射ノズル12から噴射できるようになっている。
【0026】
この固化材液噴射ノズル11とエア噴射ノズル12とで構成される噴射ノズル10は、複数を組として、その互いの噴射方向の中心軸を平行にして設けられる。この実施の形態では、噴射ノズル12の組は、対の場合で示しているが、対に制限されるものではない。例えば、噴射ノズル10は3個とか4個を組としてもよい。この噴射ノズル10の対は、モニター機構9の水平円周方向の対称位置に設けられる。これにより互いの噴射ノズル10より噴射される固化材液とエアの噴射反力が均衡し、注入管1の撓みを防止することができる。
【0027】
図2は、固化材液噴射ノズル11とエア噴射ノズル12で構成する噴射ノズル10が、モニター機構9の水平円周方向に並列し対となって設けられている場合を示している。
本例では、注入管1を回転させたとき、同一円周線上を4個の噴射ノズル10が通過することになり、しかも、一方側の噴射ノズル10と対称位置の他方側の噴射ノズル10は、対となり、相乗効果で地盤の切削撹拌機能を高める構成となっているので、地盤の切削撹拌能力が高くなる。
【0028】
図3は、固化材液噴射ノズル11とエア噴射ノズル12で構成する噴射ノズル10が、モニター機構9の上下方向に並列して対となって設けられている場合を示している。
この構成では、対の噴射ノズル10による切削撹拌機能の相乗効果とともに、噴射ノズル10が上下方向に並列して対となっているので、注入管1の回転による噴射流体の地盤(削孔壁面)への切削幅が広くなる。また、噴射ノズル10を上下に並列して対とする構成だと、注入管1(モニター機構9)が小口径のものでも対応可能となる。
【0029】
図4は、固化材液噴射ノズル11とエア噴射ノズル12で構成する噴射ノズル10が、互いに水平円周方向にずれた上下であり、互いに斜め位置で並列して対となって設けられている場合である。
この構成では、対の噴射ノズル10による切削撹拌機能の相乗効果とともに、噴射ノズル10が上下の斜め位置に並列して対となっているので、注入管1を回転して流体を噴射すると、噴射流体は地盤の孔壁面に時間差を持って切削撹拌するので切削撹拌能力は更に向上する。また、噴射ノズル10を上下の斜め位置に並列して対となっているので、水平円周方向に並列して対とするものより小口径の注入管1(モニター機構9)で対応可能となる。
【0030】
図5(a)(b)は、固化材液噴射ノズル11とエア噴射ノズル12で構成する噴射ノズル10が、モニター機構9の上下方向に並列して対となって設けられている場合で、一方側と対称位置の他方側とで、上下にずれている場合である。本例では、例えば、正面側より見て、一方側の噴射ノズル10、10と対称位置の他方側の噴射ノズル10、10を垂直方向に縦列したとき、一方側の噴射ノズル10、10は最上位と3番目に位置し、対称位置の他方側の噴射ノズル10、10は、上から2番目と4番目(最下位)に位置するように配置したものを例示している。
この構成では、対の噴射ノズル10による地盤の切削撹拌機能の相乗効果と共に噴射ノズル10は、例えば、正面側より見ると垂直方向に一列に4個が縦列した格好となるので、地盤の削孔壁面の切削幅が広いものとなる。
【0031】
なお、対の噴射ノズル10、10の構成は、前記図2乃至図5(a)(b)に示すものに限定されるものではない。例えば、図2に示すような噴射ノズル10が水平円周方向に並列して対となって設けられている構成、図3に示すような噴射ノズル10が上下方向に並列して対となっている構成および図4に示すような噴射ノズル10が上下の斜め位置に並列して対となっている構成を、モニター機構9の一方側と対称位置の他方側とで組み合わせる構成であってもよい。
即ち、固化材液噴射ノズル11とエア噴射ノズル12で構成する噴射ノズル10が、モニター機構9の一方側では水平円周方向に並列して対となっており、対称位置の他方側では上下方向に並列して対となっている場合、噴射ノズル10が、モニター機構9の一方側では水平円周方向に並列して対となっており、対称位置の他方側では上下の斜め位置に並列して対となっている場合、噴射ノズル10が、モニター機構9の一方側では上下方向に並列して対となっており、対称位置の他方側では上下の斜め位置に並列して対となっている場合、である。
このような組合せによって、それぞれ異なる対の噴射ノズルの特長で、地盤の切削撹拌機能の相乗効果を期待できる。
【0032】
また、図示は省略したが前記モニター機構9の噴射ノズル10は、水平円周方向の対称位置に設けられ、少なくとも対称位置のいずれか一方側の噴射ノズル10は、複数を対とし、その互いの噴射方向の中心軸を平行して設け、しかも噴射ノズル10は対称位置で噴射ノズル10の数および噴射ノズル10の口径を異にして設けてもよい。この場合は、一方側の噴射ノズル10と対称位置の他方側の噴射ノズル10での、相対する噴射反力を近似値になるように設定する。これによりモニター機構9の対称位置で噴射ノズル10の数および口径を異にしても、相対する噴射反力は近似値となるので、注入管1の撓みを防止することができる。
【0033】
また、前記モニター機構9の対の噴射ノズル10、10は、噴射ノズル10、10の噴射中心軸間の間隔hが、5〜10cmの間隔で並び対となっているのが好ましい。
噴射ノズル10、10の対の間隔hが、5cm未満だと互いの間隔hが近すぎて互いに噴射する流体噴流が接触(衝突)して噴射流体の噴射力の減衰が生じ、10cmを超えると互いの間隔hが開きすぎ、噴射流体の地盤孔壁面への到達位置も開くため相乗効果が低下する。従って、噴射ノズル10、10の対の間隔hは、5〜10cmの範囲が好ましい。
【0034】
また、前記モニター機構9の噴射ノズル10の噴射角度は、水平方向から斜め下方に10度の範囲がよい。
噴射ノズル10の噴射角度が水平方向(注入管1に直交する方向)だと、地盤孔壁面との距離が最も近いために、噴射ノズル10からの噴射流体の減衰を小さく押さえて地盤の切削撹拌が可能となるので好ましい。しかし、噴射ノズル10の噴射角度を水平方向より斜め下方とすると、噴射ノズル10と地盤孔壁面との距離が離れるため、その分噴射流体の減衰も生ずるが、噴射流体に下向きに傾斜した噴射角度が付与されるため、地盤の切削した土砂が地盤から剥離して下方に移動しやすくなり、切削機能が向上するので、水平方向より斜め下方10度までの噴射角度は許容される。噴射角度が、水平方向より斜め下方10度を超えると、噴射流体の地盤孔壁面への到達距離が長くなるし、流体噴流の減衰が生じ、しかも地盤孔壁面への流体の衝突が斜めになりすぎ、切削能力が低下するので好ましくない。
【0035】
次に、前記実施の形態に係る地盤改良用注入管1を用いて、地盤改良する方法の施工手順を、図6について説明する。
まず、この地盤改良方法で使用する施工装置20の一例を説明する。施工装置20はリーダ21を備え、このリーダ21にはスライド板22がリーダ21に沿って摺動自在(進退自在)に設けられ、このスライド板22にはドリルヘッド23が固設され、スライド板22には給進装置(図示省略)が連結され、リーダ21に沿って進退移動できるようになっている。下部にモニター機構9を有する地盤改良用注入管1は、ドリルヘッド23に取り付けられ、注入管1にはこのドリルヘッド23の駆動で回転を与えられることができ、また、スライド板22にはドリルヘッド23が固設されているので、給進装置(図示省略)でスライド板22をリーダ21に沿って進退させることで、注入管1はドリルヘッド23と共に進退させることができる。給進装置としては、シリンダまたはリーダ21の上端乃至下端に設けられたスプロケットに懸回されて駆動するチェーン、を例示することができる。
【0036】
そこで、まず、図6(a)に示すように施工装置20のドリルヘッド23に注入管1を取付け、施工装置20を地盤改良する位置にセットする。この時の注入管1の上部には、スイベル6が連結される。
次に図6(b)に示すように地盤改良する位置に注入管1を、地盤の所定の深度まで挿入する。この注入管1の地盤への挿入は、スイベル6の固化材液供給口7から水を高圧供給し、固化材液の供給通路4を介しモニター機構9の先端の開口13より下向きに吐出しつつ地盤を削孔し挿入するか、ボーリングマシン等で先行して削孔し、その削孔に挿入する。前者の方法で注入管1を挿入した場合には、所定の深度に到達した後に固化材液供給通路4よりボール15を投入し、開口13を閉塞する。なお、14は逆止弁である。
次に、図6(c)に示すようにスイベル6より固化材液およびエアを高圧供給し、注入管1下端のモニター機構9の固化材液噴射ノズル11およびエア噴射ノズル12より固化材液およびエアを噴射しつつ注入管1を回転させて引き上げる。すると固化材液およびエアの噴射力が周辺地盤の削孔壁面に衝突し、周囲の地盤を切削し、その噴射された固化材液で切削領域が充填され地盤改良体16が築造される。従って、図6(c)から(d)に示すように注入管1を引き上げるにつれて下方より順次上方に亘って地盤改良体16が築造される。図6(d)は、注入管1が地上に引き上げられ、地盤の所定区間に地盤改良体6が築造された様子を示している。
【0037】
前記固化材液およびエアの供給は、施工装置20が固化材液およびエアのそれぞれの供給用のポンプ(図示省略)を備え、それぞれのポンプが配管によりスイベル6の固化材液供給口7およびエアの供給口8に連結している。従って、固化材液は、スイベル6の固化材液供給口7より高圧供給され、通路7aおよび固化材液供給通路4を介し固化材液噴射ノズル11に供給され、エアは、スイベル6のエア供給口8より高圧供給され、通路8aおよびエア供給通路5を介してエア噴射ノズル12に供給される。
【符号の説明】
【0038】
1 地盤改良用注入管
2 内管
3 外管
4 固化材液供給通路
5 エア供給通路
6 スイベル
7 固化材液供給口
8 エア供給口
9 モニター機構
10 噴射ノズル
11 固化材液噴射ノズル
12 エア噴射ノズル



【特許請求の範囲】
【請求項1】
噴射ノズルが設けられたモニター機構を下部に有し、該モニター機構の噴射ノズルは、固化材液噴射ノズルが中心に位置し、その外側にエア噴射ノズルが同心的に二重ノズルの格好で設けられ、固化材液噴射ノズルから噴射する固化材液の周囲に同時に同方向にエアが噴射可能となっている地盤改良用注入管であり、該注入管の上部にスイベルを連結し、この注入管を地上から地盤中の所定深度まで挿入し、その後スイベルより固化材液およびエアを高圧供給し、注入管下部のモニター機構の固化材液噴射ノズルおよびエア噴射ノズルより固化材液およびエアを噴射しつつ注入管を回転させて引き上げることにより、固化材液およびエアの噴射力で、周囲の地盤を切削し、その切削領域に固化材液を注入して地盤改良体を築造する地盤改良用注入管であって、
該注入管のモニター機構の噴射ノズルは、複数を組として、その互いの噴射方向の中心軸を平行して設けたことを特徴とする地盤改良用注入管。
【請求項2】
前記注入管は、内管と外管の二重管で、内管内が固化材液供給通路となり、内管と外管との間がエア供給通路となっており、固化材液供給通路がモニター機構の固化材液噴射ノズルに連通し、エア供給通路がエア噴射ノズルに連通していることを特徴とする請求項1記載の地盤改良用注入管。
【請求項3】
前記モニター機構の噴射ノズルは、噴射ノズルの組が、水平円周方向の対称位置に設けられていることを特徴とする請求項1または2記載の地盤改良用注入管。
【請求項4】
前記モニター機構の噴射ノズルの組は、噴射ノズルが水平円周方向に複数並列して組となっていることを特徴とする請求項1乃至3のいずれか1項に記載の地盤改良用注入管。
【請求項5】
前記モニター機構の噴射ノズルの組は、噴射ノズルが上下方向に複数並列して組となっていることを特徴とする請求項1乃至3のいずれか1項に記載の地盤改良用注入管。
【請求項6】
前記モニター機構の噴射ノズルの組は、噴射ノズルが上下方向に複数並列して組となっており、この組の噴射ノズルが水平円周方向の対称位置に設けられ、一方側の組の噴射ノズルと他方側の対称位置の組の噴射ノズルとが、互いに上下に位置がずれて設けられていることを特徴とする請求項1、2、3および5のいずれか1項に記載の地盤改良用注入管。
【請求項7】
前記モニター機構の噴射ノズルの組は、噴射ノズルが斜め上下に複数並列して組となっていることを特徴とする請求項1乃至3のいずれか1項に記載の地盤改良用注入管。
【請求項8】
前記モニター機構の噴射ノズルは、噴射ノズルの組が、水平円周方向の対称位置に設けられ、一方側が水平円周方向に複数並列した組であり、他方側の対称位置が上下に複数並列した組であることを特徴とする請求項1乃至3のいずれか1項に記載の地盤改良用注入管。
【請求項9】
前記モニター機構の噴射ノズルは、噴射ノズルの組が、水平円周方向の対称位置に設けられ、一方側が水平円周方向に複数並列した組であり、他方側の対称位置が斜め上下に複数並列した組であることを特徴とする請求項1乃至3のいずれか1項に記載の地盤改良用注入管。
【請求項10】
前記モニター機構の噴射ノズルは、噴射ノズルの組が、水平円周方向の対称位置に設けられ、一方側が上下に複数並列した組であり、他方側の対称位置が斜め上下に複数並列した組であることを特徴とする請求項1乃至3のいずれか1項に記載の地盤改良用注入管。
【請求項11】
前記モニター機構の噴射ノズルは、水平円周方向の対称位置に設けられ、少なくとも対称位置のいずれか一方側の噴射ノズルは、複数を組としてその互いの噴射方向の中心軸を平行して設け、かつ噴射ノズルは対称位置で噴射ノズルの数および噴射ノズルの口径を異にするが、相対する噴射反力は近似値になるよう設定されていることを特徴とする請求項1乃至3のいずれか1項に記載の地盤改良用注入管。
【請求項12】
前記モニター機構の組の噴射ノズルは、噴射ノズルの噴射中心軸間の間隔が、5〜10cmの間隔で並び組となっていることを特徴とする請求項1乃至11のいずれか1項に記載の地盤改良用注入管。
【請求項13】
前記モニター機構の噴射ノズルは、噴射角度を水平方向より斜め下方に5度〜10度傾斜させたことを特徴とする請求項1乃至12のいずれか1項に記載の地盤改良用注入管。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−144539(P2011−144539A)
【公開日】平成23年7月28日(2011.7.28)
【国際特許分類】
【出願番号】特願2010−5410(P2010−5410)
【出願日】平成22年1月14日(2010.1.14)
【出願人】(594074252)
【出願人】(591247798)原工業株式会社 (20)
【Fターム(参考)】