説明

地震衝撃力の測定システムおよび測定方法

【課題】構造物の地下埋設物に加わる地震の衝撃力を可視化して測定する。
【解決手段】染料或いは顔料を破壊強度の異なる複数種類のマイクロカプセル9に封入し、該マイクロカプセルを配して形成される感圧発色体5を、地下埋設物である地下壁2や地下杭11に垂直方向及び水平方向に略等間隔なマトリクス状に複数配設して、地下壁が受けた地震衝撃力に応じてマイクロカプセルが破壊され、該マイクロカプセルに封入された染料或いは顔料が放出されることによって発現する発色の状態によって地下壁が受けた地震衝撃力を二次元的或いは三次元的に測定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、地震の発生によって地下壁、地下杭(基礎杭)、トンネル等の地下構造物(地下埋設物)が受ける衝撃力を測定する地震衝撃力の測定システムおよび測定方法の技術分野に関するものである。
【背景技術】
【0002】
構造物が地震の発生によって強い衝撃を受けた場合、該構造物の地下部分に埋設された地下壁や地下杭等の地下埋設物がどれ程の衝撃力を受けたかを知ることは、構造物における亀裂や破壊等の地震被害の可能性を判断したり、或いは被害発生の場合における補修方法を決定したりする上でとても重要である。
ところで地下埋設物の地震被害の程度については、目視等によっては知ることが難しく、そこで地下杭として埋設された鉄筋に導線を接続し該導線を電気抵抗測定器に接続して、通常時における電気抵抗値を予め測定しておき、地震が発生した場合は地震後の電気抵抗値を測定して前記通常時の測定値と比較し、異なる測定値を得た場合には基礎杭が破壊若しくは損傷を受けたと評価するように構成したもの(特許文献1)や、地下埋設物に振動装置で振動を与え、該振動によって発生する反射波の状態を地震前と地震後とで比較することによって基礎杭の破壊の有無や程度を評価するようにしたものが提唱されている(特許文献2)。しかしながらこれらのものは、地下埋設物の破壊の有無や程度を評価するものであって、構造物がどれ程の衝撃力を受けたかを知るものではない。
また、受けた外力によって生じる応力に比例して発光する応力発光材料を用い、該応力発光材料の発光状態を観測することで応力測定をするようにしたもの(特許文献3)や、二液反応により発光する発光前駆体を、所定の応力で破壊される脆性材料に封入して基礎杭内部に挿入し、地震により基礎杭に生じた応力によって脆性材料が破壊されると二液が反応して発光するよう構成し、該発光の有無を観測することで所定以上の応力を受けたか否かを検知するようにしたものが知られている(特許文献4)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平10−183658号公報
【特許文献2】特開平10−183659号公報
【特許文献3】特開2001−215157号公報
【特許文献4】特開2003−262554号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、前記特許文献3のものを地震による衝撃力の測定に用いようとした場合、該応力発光材料の発光は絶えず変動する地震の応力に対する追従性が悪く、正確な応力測定ができないという問題がある。また特許文献4のものは、所定応力を超えたか否かという一点検知であって、どれくらいの大きさの応力がはたして発生したか、ということの測定ができないという問題がある。しかも前者のものは応力の大きさに比例する発光であり、また後者のものは化学発光であるため発光時間に制限があり、このため、殆どリアルタイムでの観測が必要であるが、地震発生時に伴い停電になったりパソコン等の観測機械が故障したりすると、電気の供給や観測機械が復旧するまで事実上の観測ができないという問題があり、これらに本発明が解決しようとする課題がある。
【課題を解決するための手段】
【0005】
本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、請求項1の発明は、地下埋設物の被検体が地震によって受ける衝撃力を可視化して測定する地震衝撃力の測定システムであって、該地震衝撃力の測定システムは、染料或いは顔料が破壊強度の異なる複数種類のカプセルに封入されて形成される感圧発色体が前記被検体の衝撃力測定部位に複数マトリクス状に配され、被検体が受けた地震衝撃力に応じてカプセルが破壊されて染料或いは顔料が放出されることによる発色の状態によって被検体が受けた地震衝撃力を測定することを特徴とする地震衝撃力の測定システムである。
請求項2の発明は、感圧発色体は、染料が染料前駆体であるとともに、該染料前駆体と反応して染料前駆体を発色せしめる顕色剤が含有され、カプセルの破壊によって放出される染料前駆体が顕色剤と反応することによる発色の濃度によって被検体が受けた地震衝撃力を測定することを特徴とする請求項1記載の地震衝撃力の測定システムである。
請求項3の発明は、感圧発色体は、カプセルの破壊によって発現する染料或いは顔料の発色の濃度によって被検体が受けた地震衝撃力を測定することを特徴とする請求項1記載の地震衝撃力の測定システムである。
請求項4の発明は、感圧発色体は、カプセルが破壊強度別に区分されて配され、該カプセルの破壊によって発現する染料或いは顔料の発色の区分によって被検体が受けた地震衝撃力を測定することを特徴とする請求項1記載の地震衝撃力の測定システムである。
請求項5の発明は、感圧発色体は、破壊強度別に色相の異なる染料或いは顔料が封入されたカプセルが破壊強度別に配され、該カプセルの破壊によって発現する染料或いは顔料の発色の色相によって被検体が受けた地震衝撃力を測定することを特徴とする請求項1記載の地震衝撃力の測定システムである。
請求項6の発明は、被検体の衝撃力測定部位は、地下壁の外面部であることを特徴とする請求項1乃至5の何れか1項記載の地震衝撃力の測定システムである。
請求項7の発明は、被検体の衝撃力測定部位は、地下杭の外面部であることを特徴とする請求項1乃至5の何れか1項記載の地震衝撃力の測定システムである。
請求項8の発明は、被検体の衝撃力測定部位は、地下杭の外面部全周であることを特徴とする請求項1乃至5の何れか1項記載の地震衝撃力の測定システムである。
請求項9の発明は、感圧発色体は、担体に担持されていることを特徴とする請求項1乃至8の何れか1項記載の地震衝撃力の測定システムである。
請求項10の発明は、地下埋設物の被検体が地震によって受ける衝撃力を可視化して測定する地震衝撃力の測定方法であって、該地震衝撃力の測定方法は、染料或いは顔料を破壊強度の異なる複数種類のカプセルに封入して形成する感圧発色体を前記被検体の衝撃力測定部位に複数マトリクス状に配し、被検体が受けた地震衝撃力に応じてカプセルが破壊されて染料或いは顔料が放出されることによる発色の状態によって被検体が受けた地震衝撃力を測定することを特徴とする地震衝撃力の測定方法である。
【発明の効果】
【0006】
請求項1または10の発明とすることにより、地震が発生して地下埋設物の被検体が衝撃を受けると、衝撃力に応じた破壊強度のカプセルが破壊され、これらカプセルの破壊によって放出される染料或いは顔料の発色の状態によって地震の衝撃力を測定することができるため、測定作業を、感圧発色体を目視するだけの簡単な作業でおこなうことができる。
しかも、該感圧発色体は、衝撃力が最大となった時に該最大の衝撃力に応じてカプセルが破壊され、染料或いは顔料が放出することになるから、染料或いは顔料の発色状態を目視することで衝撃力の最大値を知ることが出来て、構造物が受けた最大衝撃力を簡単に測定することができる。
また、大地震が発生した場合、リアルタイムでの測定は困難である場合も多いが、該感圧発色体は時間が経過しても変色や退色が少ない上、仮令変色や退色があったとしても、一度カプセルから放出された染料或いは顔料は未放出のものとは明瞭に異なる発色状態を呈するため、地震発生の後に測定を行っても正確な測定データを得ることができる。従って、停電等の事故が発生した場合であってもデータが消失してしまうといったようなトラブルがなく、確実に衝撃力を測定することができる。
そして、衝撃力測定部位に感圧発色体を設けるだけで衝撃力測定をおこなうことができるため、設置が簡単であり、地震による衝撃力の測定システムを簡単なものとすることができる。しかも、設置が簡単であることから、測定地点を広範囲に設けることができて、より正確な地震衝撃力の測定をおこなうことができる。
さらに本発明によれば、複数の感圧発色体がマトリクス状に被検体に配されるため、地震の衝撃力が被検体に作用した様子を面で測定することができて、一点での測定に比べ、被検体が受けた地震の衝撃の様子を正確に知ることができる。 つまり、地震の衝撃力を測定するにあたっては、測定地点における地形や地層等の状況により正確な測定値が得られない場合があり、また、被検体の測定部位によって受けた衝撃力が異なる場合があるので、地震衝撃力の測定地点を一箇所のみとした場合、被検体全体が受けた衝撃力の測定としては正しい測定結果が得られない可能性がある。しかしながら、複数の感圧発色体をマトリクス状に配することによって、地震の衝撃力測定を、被検体の面部が受けた衝撃力として二次元的、三次元的に測定することができて、より正確な地震衝撃力の測定が行える。
請求項2の発明とすることにより、感圧発色体は、地震の衝撃力を受けてカプセルが破壊されることで、染料前駆体と顕色剤とが反応し、これによって発色する染料の発色の濃度によって地震の衝撃力が測定されるため、既に発色している染料或いは顔料をカプセルに封入するものに比べて染料の変色や退色を抑えることができる。
請求項3の発明とすることにより、感圧発色体に顕色剤を含有させる必要がないため、感圧発色体の材料数の削減、製造工程数の削減に貢献できる。
請求項4の発明とすることにより、地震の衝撃力測定にあたっては、感圧発色体の発色した区分を調べれば良いため、測定を簡単かつ正確に行うことができる。
請求項5の発明とすることにより、地震の衝撃力測定は、感圧発色体の発色した色相のうち、最大破壊強度のカプセルに封入されていた染料或いは顔料の色相を調べれば良いため、測定を簡単かつ正確に行うことができる。
請求項6の発明とすることにより、地下壁を有する被検体が受ける地震の衝撃力を二次元的、三次元的に測定することができて、より正確な地震衝撃力の測定が行える。
請求項7の発明とすることにより、地下杭を有する被検体が受ける地震の衝撃力を二次元的、三次元的に測定することができて、より正確な地震衝撃力の測定が行える。
請求項8の発明とすることにより、被検体が受けるあらゆる方向からの地震衝撃力を測定することができて、地震衝撃力がどの方向から伝播したかを知ることができる。
請求項9の発明とすることにより、感圧発色体を地中から取り出す場合、担体に担持されている感圧発色体を担体から抜き出すせば良く、掘削して感圧発色体を地中から取り出したりする必要のない測定システムとすることができる。
【図面の簡単な説明】
【0007】
【図1】構造物および担体の概略図である。
【図2】(A)、(B)は、それぞれ担体に感圧発色体が取付けられた様子を示す斜視図および発色体取付けプレートの縦断面図である。
【図3】(A)、(B)、(C)は、それぞれ感圧発色体の実施の形態を示す要部拡大図及び平面図である。
【図4】感圧発色体の相対濃度と地震の衝撃力によって発生する応力の相関関係を示す図である。
【図5】本発明の第一の実施の形態であって、被検体である地下壁に感圧発色体が配設された様子を示す斜視図である。
【図6】本発明の第二の実施の形態であって、被検体である地下杭に感圧発色体が配設された様子を示す斜視図である。
【図7】本発明の第三の実施の形態であって、被検体である地下杭に感圧発色体が配設された様子を示す斜視図である。
【発明を実施するための形態】
【0008】
以下、本発明の実施の形態について、図面に基づいて説明する。
図1に示すように、1は被検体である構造物であって、該構造物1は、地下部分に地下埋設物である地下壁2が垂直状に形成されている。そして、該地下壁2の外壁面側には、長尺の板材である担体3が、長尺方向を上下にして複数本(本実施の形態では7本)が略等間隔となるように地下壁2に沿って埋設されている。該担体3は、例えば熱硬化性プラスチック或いはステンレス板等の硬性部材によって形成されており、図2(A)に示すように、担体3の表面中央部位には、担体3の上端部3aから下端部3bに至る溝部3cが形成されている。そして、該溝部3cの左右両側面には、それぞれ上端部3aから下端部3bに至る凹溝3d、3eが対向して形成されている。
【0009】
一方、4は、担体3に形成された溝部3cにスライド嵌合する長尺の板材である発色体取付けプレートであって、担体3と同様に熱硬化性プラスチック或いはステンレス板等の硬性部材で形成されている。該発色体取付けプレート4の表面には、後述する正方形状のシート体である感圧発色体5が上下方向略等間隔に貼着される貼着部4aが形成されており、左右両端部には、前記担体3の凹溝3d、3eにスライド嵌合する凸条4b、4cが形成されている。そして、担体3の凹溝3d、3eに発色体取付けプレート4の凸条4b、4cをスライド嵌合させることで発色体取付けプレート4が担体3に対して抜き差し自在に取付けられるようになっている。尚、図2(B)に示すように、感圧発色体5が貼着された発色体取付けプレート4の表面には軟性樹脂材等からなる被膜4dが一様に被覆されており、これによって感圧発色体5が発色体取付けプレート4から脱落したり、地中の水分等によって変質したりすることのないようになっている。
【0010】
前述の感圧発色体5は、図3(A)に示すように、基材6と、該基材6上に塗布される顕色剤層7と、該顕色剤層7の上側に塗布される発色剤層8とから構成され、正方形状のシート体に形成されている。上記基材6は板状であって、例えば、紙、合成紙、プラスティックフィルム等のある程度の硬性を有したもので形成され、裏側面(反顕色剤層側面)には貼着剤6aが塗布されて、該貼着剤6aによって発色体取付けプレート4に貼着されるようになっている。
【0011】
また、発色剤層8には、発色前の染料前駆体が封入された多数のマイクロカプセル9(本発明のカプセルに相当する)が含有されているが、該染料前駆体としては、例えばロイコ染料が用いられる。該ロイコ染料は、例えばトリフェニルメタンフタリド系、フルオラン系、フェノチアジン系、フェノキシジン系、インドリルフタリド系、スピロピラン系、ローダミンラクタム系、ジフェニルメタン系、トリフェニルメタン系、クロメノインドール系の化合物やこれらの混合物を使用することができる。尚、発色剤層8には、マイクロカプセル9の保護材料として、アラビアゴムやゼラチン、でんぷん粒子等が配合されている。
【0012】
マイクロカプセル9は、圧力を受けることにより破壊されてマイクロカプセル9内に封入された染料前駆体を流出させるが、該マイクロカプセル9の破壊強度は均一ではなく、地震によって発生する様々な圧力に応じて破壊されるよう種々の異なる破壊強度を有するものが混在した状態となって発色剤層8を形成している。例えば、地震によって発生する外力(kN/cm)が、5kN/cmから250kN/cmであったとすると、該マイクロカプセル9は、圧縮応力(kN/cm)が5kN/cmで破壊されるものから250kN/cmで破壊されるものまで例えば10kN/cm或いは50kN/cm刻み等任意の異なる破壊強度を有するものに形成されている。この様な破壊強度の異なるマイクロカプセル9の製造については、既に周知となっているため説明は省略するが、マイクロカプセル9の粒径や膜厚を異ならしめることによって破壊強度を調節することができる。因みに、このような壁膜を形成する樹脂としては、例えばポリ尿素樹脂、尿素−ホルムアルデヒド樹脂、メラニン−ホルムアルデヒド樹脂、飽和ポリエステル、ポリウレタン系、エポキシ系、シリコーン系等の樹脂が用いられる。
【0013】
一方、顕色剤層7は、前記マイクロカプセル9が破壊されることで流出する染料前駆体と反応して発色せしめる顕色剤を含有する層であって、該顕色剤としては、例えば、活性白土、有機酸(フェノール樹脂系、サリチル酸誘導体金属塩系)等が用いられる。
【0014】
このように構成される感圧発色体5は、圧力を受けることによりマイクロカプセル9が破壊され、該マイクロカプセル9から流出した染料前駆体と顕色剤との反応によって発色することになるが、この場合、前述したように、マイクロカプセル9は異なる破壊強度を有したものが混在しているため、圧力の大きさに応じてマイクロカプセル9の破壊量が増減する、つまりは圧力の大きさに応じて染料前駆体と顕色剤との反応量が増減することになる。従って、該反応量の増減に基づいて発色濃度が濃淡変化し、これによって感圧発色体5が受けた地震の衝撃力の大きさを可視化して測定できるようになっている。
尚、発色濃度を測定するにあたっては、目視による測定であっても良いし、或いは濃度計等を用いて定量的な測定としても良い。
【0015】
ここで、感圧発色体5の発色の相対濃度と被検体に作用する応力との関係について、図4に示すように、予め実験によって検量線を作成しておく。これにより、感圧発色体5の発色濃度によって地震による応力(衝撃力)の大きさが測定できるようになっている。
【0016】
尚、本実施の形態では、感圧発色体5を、染料前駆体がマイクロカプセル9に封入され、マイクロカプセル9が地震の衝撃力によって破壊されることで顕色剤と反応して発色するものとして構成したが、これに限定されるものではなく、図3(B)に示すように、既に発色している染料或いは顔料をマイクロカプセル9に封入し、地震の衝撃力によってマイクロカプセル9が破壊されることで染料或いは顔料が発現して感圧発色体5が発色するように構成しても良く、このように構成した場合、顕色剤層7は不要となる。
【0017】
この場合に使用される染料としては、例えば、キサンテン系、チアジン系、フェニルメタン系、インジゴイド系、アゾ系、クマリン系、アジン系、ポリメチン系、シアニン系、フタロシアニン系、アントラキノン系、ピラゾリン系、スチルベン系、キノリン系等の化合物やこれらの混合物を使用することができ、また、顔料としては、例えば、カーボンブラック、鉛丹、酸化鉄赤、黄鉛、亜鉛黄、ウルトラマリン青、フェロシアン化鉄カリ等の無機顔料、或いはアゾ系、フタロシニアン系、インジゴイド系、アントラキノン系等の有機顔料を使用することができる。
【0018】
そして、この場合のマイクロカプセル9の壁膜は白色不透明であって、マイクロカプセル9の破壊前に、封入された染料或いは顔料の色が透けないようになっていると共に、破壊前のマイクロカプセル9と破壊後のマイクロカプセル9とが混在している状態では、破壊されたマイクロカプセル9から放出された染料或いは顔料の色が明瞭に顕れるようになっている。この様な白色不透明のマイクロカプセル9としては、例えば、ポリ尿素樹脂、尿素−ホルムアルデヒド樹脂、メラニン−ホルムアルデヒド樹脂、飽和ポリエステル、ポリウレタン系、エポキシ系、シリコーン系等を用いて形成することができる。
【0019】
或いは、図3(C)に示すように、感圧発色体5は、染料或いは顔料が封入されたマイクロカプセル9を破壊強度別に区分して配されるカプセル層10が設けられたものとして構成しても良い。このように構成することで、該感圧発色体5が地震の衝撃を受けると、該衝撃力よりも弱い破壊強度を有するマイクロカプセル9のみが破壊されることで、該マイクロカプセル9に封入された染料或いは顔料が発現するため、衝撃力を測定するにあたっては、該発現した染料或いは顔料の発現区分だけを目視すれば良いのであって、このように構成することによって、地震の衝撃力を簡単かつ正確に測定することができる。
【0020】
さらには、カプセル層10に破壊強度別に区分されて配されているマイクロカプセル9に破壊強度別に異なる色相の染料或いは顔料を封入したものとして構成しても良い。この場合、感圧発色体5が地震の衝撃を受けると、該衝撃力よりも弱い破壊強度を有するマイクロカプセル9のみが破壊されて、マイクロカプセル9に封入されていた染料或いは顔料が発現するが、発現する染料或いは顔料は、マイクロカプセル9の破壊強度に応じて異なった色相となっているため、感圧発色体5に発現した色相を調べることによって地震の衝撃力を測定することができる。
【0021】
このように構成される感圧発色体5が貼着した担体3は、図5に示すように、構造物1の地下室の外面部である地下壁2に沿うようにして、長尺方向を上下にした状態で水平方向に等間隔置きに複数埋設されるが、このとき各担体3に設けられた感圧発色体5の水平方向および垂直方向に隣接するもの同士は等距離の間隔となるように設定されており、このように担体3を配設することで、感圧発色体5は、地下壁2において垂直方向及び水平方向に等間隔のマトリクス状となって配設される。尚、本実施の形態においては、担体3は地下壁2の四面全てに埋設され、地震による衝撃力がどの方向から作用しても測定できるようになっているが、一面のみに配設しても良いことは勿論である。この場合、一面の地下壁2だけを観測した場合には、地震により受けた衝撃力の垂直方向および水平方向の状態を二次元的に知ることができるが、二面以上の地下壁2について観測した場合には、地震により受けた衝撃力の状態を三次元的に知ることができ、衝撃を受けた方向や伝播の様子等、今まで観測が難しかった衝撃力について詳しい測定ができることになる。
【0022】
叙述の如く構成された本実施の形態において、構造物1の地下壁2が受けた地震の衝撃力を測定するにあたり、まず感圧発色体5が貼着された発色体取付けプレート4を担体3にスライド嵌合させた後、該担体3を地下壁2の外壁面部に沿って長尺方向が上下となるようにして複数並行状に埋設するが、ここで担体3は、担体3に設けられた感圧発色体同士が水平方向及び垂直方向に略等間隔なマトリクス状となるように配して埋設する。そして、地震発生後には発色体取付けプレート4を担体3から抜き出し、該発色体取付けプレート4に貼着された感圧発色体5の発色濃度を目視或いは濃度計等で定量することで地震の衝撃力を測定すればよく、該測定が終了した後は、発色体取付けプレート4の貼着部4aに新たな感圧発色体5を再び貼着した後、該発色体取付けプレート4を担体3にスライド嵌合することで担体3に再び担持させて感圧発色体5を地下に埋設し、引き続き地震の衝撃力を測定する。
【0023】
ここで、感圧発色体5は、破壊強度の異なる複数種類のマイクロカプセル9に発色前の染料前駆体が封入され、マイクロカプセル9が地震による衝撃力に応じて破壊されることで染料前駆体と顕色剤とが反応して発色するよう構成されているため、感圧発色体5は地震による衝撃力に応じた発色濃度で発色し、該発色濃度を目視或いは色濃度計で発色濃度を定量することによって感圧発色体が埋設された位置における衝撃力を測定することができる。
【0024】
従って、地震衝撃力を測定するにあたり、衝撃力を視覚化させて測定することになって、地震衝撃力の測定を簡単におこなうことができる。しかも、測定にあたっては特別な装置や知識を必要としないため汎用性に優れた地震衝撃力の測定システムとすることができる。
【0025】
また、本実施の形態における地震衝撃力の測定システムは、染料或いは顔料の発色が時間の経過による退色の少ないものである上、仮令変色や退色があったとしても一度カプセルから放出された染料或いは顔料は未放出のものとは明瞭に異なる発色状態となることから、地震発生後の測定であっても正確な測定データを得ることができる。つまり、例えば停電等の事故が発生した場合であってもデータが消失してしまうといったようなトラブルがなく、このため地震や余震が確実に治まってから感圧発色体5を地中から取出して測定すれば良いことになって、確実に衝撃力を測定することができるとともに、安全を確保した上での測定ができる。
【0026】
しかも、該感圧発色体5は、衝撃力が最大となった時に該最大衝撃力に応じてカプセルが破壊されて染料或いは顔料が放出するものであるから、染料或いは顔料の発色濃度は衝撃力の最大値を示していることになって、構造物が受けた最大衝撃力の測定ができる。
【0027】
その上、感圧発色体5は、シート体であるため、容易に着脱することが出来て交換も簡単である。また、貼着する場所を選ばないため、広範囲での測定が可能となり、測定地点を増やすことで正確な測定結果を得ることができる。
【0028】
そして、このように埋設される感圧発色体5を少なくとも二次元のマトリクス状に配したことにより、地震衝撃力を測定するにあたっては、測定地点が一点或いは数点とした場合のように、地形や地層等の特殊な状況によって正確な測定値が得られなかったり、被検体の特定部位のみを測定することによって被検体全体が受けた衝撃力を正しく測定できなかったりといったような問題が生じることなく、被検体に加わった衝撃力がどのような状態で働いたか、ということを総合的に測定することができる。
【0029】
尚、前述の第一の実施の形態においては、担体3を構造物1の地下壁2に沿うようにして埋設し、地下壁2における全方向からの衝撃力を測定するものとして構成したが、図6に示す第二の実施の形態のように、被検体を地下杭11としても実施することができる。この場合において、感圧発色体5を地下杭11の周囲に沿って全面状に埋設することで周回り方向と垂直方向にマトリクス状に配しているが、地下杭11が複数本ある場合には、該複数本の全てあるいは選択された複数本の地下杭11の各外周面11aに沿って感圧発色体5をマトリクス状に配してもよい。
【0030】
このように地下杭11の周囲に全体的に担体3を埋設することで、地震の衝撃力を測定するにあたって、地下埋設物における垂直方向に受けた衝撃力を測定するだけでなく、周回り方向に受けた衝撃力も測定できることになって三次元的なマトリクス状の測定ができる。さらに複数本の地下杭11のそれぞれについて三次元的なマトリクス状の測定をすることができ、この結果、測定領域を立体的に広くした状態での地震衝撃力の方向、大きさ、分布、伝播状態等をより詳細に知ることができる。
【0031】
尚、感圧発色体5を地中に埋設するにあたっては、発色体取付けプレート4のみを地中に埋設して、測定時には該発色体取付けプレート4を地中から引き抜くように構成しても良いし、発色体取付けプレート4がスライド嵌合した担体3を直接地下壁2或いは地下杭11に取付けても良い。
或いは、図7に示すように、感圧発色体5を大きな一枚のシート体として構成し、該感圧発色体5によって地下杭11の外周面11aを覆うようにして貼り付けても良い。この場合、隙間のない状態で地震の衝撃力を測定することが出来るため、より一層緻密な地震衝撃力の分布の測定を行うことができると共に、感圧発色体5を直接地下杭11に貼着することで担体3および発色体取付けプレート4が不要となり、部品点数の減少を図ることができる。
【産業上の利用可能性】
【0032】
本発明は、地震の発生によって地下壁や地下杭等の地下埋設物が受ける衝撃力を測定する地震による衝撃力測定の分野に利用可能である。
【符号の説明】
【0033】
1 構造物
2 地下壁
5 感圧発色体
9 マイクロカプセル
11 地下杭

【特許請求の範囲】
【請求項1】
地下埋設物の被検体が地震によって受ける衝撃力を可視化して測定する地震衝撃力の測定システムであって、該地震衝撃力の測定システムは、染料或いは顔料が破壊強度の異なる複数種類のカプセルに封入されて形成される感圧発色体が前記被検体の衝撃力測定部位に複数マトリクス状に配され、被検体が受けた地震衝撃力に応じてカプセルが破壊されて染料或いは顔料が放出されることによる発色の状態によって被検体が受けた地震衝撃力を測定することを特徴とする地震衝撃力の測定システム。
【請求項2】
感圧発色体は、染料が染料前駆体であるとともに、該染料前駆体と反応して染料前駆体を発色せしめる顕色剤が含有され、カプセルの破壊によって放出される染料前駆体が顕色剤と反応することによる発色の濃度によって被検体が受けた地震衝撃力を測定することを特徴とする請求項1記載の地震衝撃力の測定システム。
【請求項3】
感圧発色体は、カプセルの破壊によって発現する染料或いは顔料の発色の濃度によって被検体が受けた地震衝撃力を測定することを特徴とする請求項1記載の地震衝撃力の測定システム。
【請求項4】
感圧発色体は、カプセルが破壊強度別に区分されて配され、該カプセルの破壊によって発現する染料或いは顔料の発色の区分によって被検体が受けた地震衝撃力を測定することを特徴とする請求項1記載の地震衝撃力の測定システム。
【請求項5】
感圧発色体は、破壊強度別に色相の異なる染料或いは顔料が封入されたカプセルが破壊強度別に配され、該カプセルの破壊によって発現する染料或いは顔料の発色の色相によって被検体が受けた地震衝撃力を測定することを特徴とする請求項1記載の地震衝撃力の測定システム。
【請求項6】
被検体の衝撃力測定部位は、地下壁の外面部であることを特徴とする請求項1乃至5の何れか1項記載の地震衝撃力の測定システム。
【請求項7】
被検体の衝撃力測定部位は、地下杭の外面部であることを特徴とする請求項1乃至5の何れか1項記載の地震衝撃力の測定システム。
【請求項8】
被検体の衝撃力測定部位は、地下杭の外面部全周であることを特徴とする請求項1乃至5の何れか1項記載の地震衝撃力の測定システム。
【請求項9】
感圧発色体は、担体に担持されていることを特徴とする請求項1乃至8の何れか1項記載の地震衝撃力の測定システム。
【請求項10】
地下埋設物の被検体が地震によって受ける衝撃力を可視化して測定する地震衝撃力の測定方法であって、該地震衝撃力の測定方法は、染料或いは顔料を破壊強度の異なる複数種類のカプセルに封入して形成する感圧発色体を前記被検体の衝撃力測定部位に複数マトリクス状に配し、被検体が受けた地震衝撃力に応じてカプセルが破壊されて染料或いは顔料が放出されることによる発色の状態によって被検体が受けた地震衝撃力を測定することを特徴とする地震衝撃力の測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2011−94976(P2011−94976A)
【公開日】平成23年5月12日(2011.5.12)
【国際特許分類】
【出願番号】特願2009−246106(P2009−246106)
【出願日】平成21年10月27日(2009.10.27)
【出願人】(000173784)財団法人鉄道総合技術研究所 (1,666)
【Fターム(参考)】