説明

多結晶シリコン製造方法

【課題】多結晶シリコン析出後の回収に於いて、電極ユニットなどの材質からの汚染を防ぎ、回収するシリコンの収量を十分に確保できる多結晶シリコン製造方法を提供する。
【解決手段】反応炉内で加熱された上下方向に沿うシリコン芯棒に原料ガスを接触させることにより前記シリコン芯棒の表面に多結晶シリコンを析出させる多結晶シリコン製造方法であって、導電材からなる芯棒保持部の上端部に形成された保持孔に、前記シリコン芯棒の下端部を挿入し、挿入された前記シリコン芯棒を前記保持孔の内面に対して押圧して固定する固定手段を、その一部が前記芯棒保持部の前記外面から突出するように設けておき、前記シリコン芯棒の表面に前記多結晶シリコンを析出させ、前記固定手段の形状に応じて形成される前記多結晶シリコンの凸部よりも上方で、前記シリコン芯棒とともに前記多結晶シリコンを切断する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は加熱したシリコン芯棒の表面に多結晶シリコンを析出させて多結晶シリコンのロッドを製造する多結晶シリコン製造方法に関する。
【背景技術】
【0002】
一般に、半導体材料となる高純度の多結晶シリコンの製造方法として、シーメンス法が知られている。シーメンス法は、クロロシランと水素との混合ガスからなる原料ガスを加熱したシードに接触させ、その表面に原料ガスの熱分解および水素還元によって生じた多結晶シリコンを析出させる製造方法である。この製造方法を実施する装置として、密閉した反応炉の炉底に設置された電極ユニットに多数のシリコン芯棒(スタータフィラメント)を立設した多結晶シリコン反応炉が用いられている(特許文献1参照)。
【0003】
従来、反応炉において、上下方向に沿って設けられた2本の棒状のシリコン芯棒と、これらシリコン芯棒の上端同士を接続する連結部材とによりΠ字状に形成されたシード組立体が固定されている。このシード組立体は、電極ユニットを通じて電流が供給されてジュール熱が発生することにより、高温に加熱される。電極ユニットはカーボン等の導電材からなる芯棒保持部を備え、反応炉の底部に固定されて、シリコン芯棒の下端部を保持している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平5−213697号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
この方法の場合、多結晶シリコンは、シリコン芯棒や連結部材を覆うように析出する一方、シリコン芯棒を立設固定している電極ユニットの芯棒保持部にもシリコン芯棒からの熱の影響等により付着する。シリコン芯棒上に析出したシリコンは、シリコン芯棒と共に切断(折る場合も含む)されて回収される。このように多結晶シリコンを回収する際に、電極ユニットの芯棒保持部を切断してしまうと電極ユニットを形成するカーボン等の不純物が多結晶シリコンに取り込まれたり付着したりしてしまうおそれがあるため、電極ユニットの芯棒保持部を切断しないように多結晶シリコンを切断しなければならない。一方で、回収する多結晶シリコンの収量を十分に確保するため、多結晶シリコンを電極ユニットの芯棒保持部の上端近傍で切断することが求められる。
【0006】
しかしながら、上述したように、多結晶シリコンは電極ユニットの表面にも付着するため、電極ユニットおよびシリコン芯棒が多結晶シリコンによって厚く覆われた場合、電極ユニットの上端位置を正確に確認することは困難である。このため、電極ユニットを切断してしまって電極ユニットの一部が回収した多結晶シリコンに取り込まれたり付着したりすることで、汚染を招いたりするおそれがある。また、電極ユニットの上端から離れた位置で切断する場合、多結晶シリコンの収量を十分に確保できないという問題があった。
【0007】
本発明は、このような事情に鑑みてなされたもので、多結晶シリコン析出後の回収に於いて、電極ユニットなどの材質からの汚染を防ぎ、回収するシリコンの収量を十分に確保できる多結晶シリコン製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記目的を達成するために本発明は、反応炉内で加熱された上下方向に沿うシリコン芯棒に原料ガスを接触させることにより前記シリコン芯棒の表面に多結晶シリコンを析出させる多結晶シリコン製造方法であって、導電材からなる芯棒保持部の上端部に形成された保持孔に、前記シリコン芯棒の下端部を挿入し、挿入された前記シリコン芯棒を前記保持孔の内面に対して押圧して固定する固定手段を、その一部が前記芯棒保持部の外面から突出するように設けておき、前記シリコン芯棒の表面に前記多結晶シリコンを析出させ、前記固定手段の形状に応じて形成される前記多結晶シリコンの凸部よりも上方で、前記シリコン芯棒とともに前記多結晶シリコンを切断する。
【0009】
この発明によれば、シリコン芯棒を固定する固定手段の一部が芯棒保持部の外面から突出しているので、芯棒保持部およびシリコン芯棒を覆うように析出した多結晶シリコンの表面にも、固定手段の位置に応じたところに凸部が形成される。したがって、多結晶シリコン析出後の外形から電極ユニット(芯棒保持部)の上端位置を推測でき、適切な位置で多結晶シリコンを切断し、回収することができる。
【0010】
この多結晶シリコン製造方法において、前記固定手段は、前記芯棒保持部の前記外面から前記保持孔の内部に連通するねじ穴に螺合する固定ねじであってもよい。また、前記固定手段は、前記保持孔の開口部に嵌入される嵌入部と、この嵌入部から伸びる突出部とを有する略L字状の楔部材であってもよい。
【0011】
この多結晶シリコン製造方法において、前記芯棒保持部の前記外面からの前記固定手段の突出長さは10mm以上であることが好ましい。固定手段の突出長さを10mmとした場合、析出した多結晶シリコンに明確な凸部が形成され、電極ユニットの上端の位置をより正確に推測することができ、切断時の電極ユニットの取り込みや付着を確実に防止することができる。
【発明の効果】
【0012】
本発明の多結晶シリコン製造方法によれば、析出した多結晶シリコンの表面に電極ユニットの上端に備えられた固定手段の位置に凸部を形成することができるので、多結晶シリコン回収時の切断をする際に、凸部の位置より電極ユニット(芯棒保持部)の上端部位置を正確に推測することができることから、予め決められた位置で正確に切断することが可能となり、電極ユニットの取り込みや付着を防止するとともに、できるだけ多くの多結晶シリコンの収量を確保して、多結晶シリコンの製造をすることができる。
【図面の簡単な説明】
【0013】
【図1】反応炉のベルジャを一部切欠いた斜視図である。
【図2】図1に示す反応炉の概略断面図である。
【図3】図2に示す反応炉中の電極ユニットおよびシード組立体を示す図である。
【図4】図3のIV−IV線に沿う断面図である。
【図5】析出した多結晶シリコンの形状を示す側面図である。
【図6】芯棒保持部における支持構造の一例を示す部分断面図である。
【図7】シリコン芯棒の固定構造の一例を示す部分断面図である。
【図8】シリコン芯棒の固定構造の別の例を示す部分断面図である。
【発明を実施するための形態】
【0014】
以下、本発明の多結晶シリコン製造方法の一実施形態について、図面に基づいて説明する。
図1は多結晶シリコン製造装置の全体図である。多結晶シリコン製造装置の反応炉10は、炉底を構成する底板部12と、この底板部12上に脱着自在に取り付けられた釣鐘形状のベルジャ14とを具備している。底板部12の上面はほぼ平坦な水平面に形成される。ベルジャ14は、全体として釣鐘形状をしていて、天井がドーム型であって、その内部空間は中央部が最も高く外周部が最も低く形成されている。また、底板部12及びベルジャ14の壁はジャケット構造(図示略)とされ、冷却水によって冷却される。
【0015】
底板部12には、多結晶シリコンの種棒(シード)となるシリコン芯棒20が取り付けられる電極ユニット30と、クロロシランガスと水素ガスとを含む原料ガスを炉内に噴出するための噴出ノズル(ガス供給口)16と、反応後のガスを炉外に排出するためのガス排出口18とがそれぞれ複数設けられている。
【0016】
原料ガスの噴出ノズル16は、各シリコン芯棒20に対して均一に原料ガスを供給するように、反応炉10の底板部12の上面のほぼ全域に分散して適宜の間隔をあけながら複数設置されている。これら噴出ノズル16は、反応炉10の外部の原料ガス供給源50に接続されている。また、ガス排出口18は、底板部12の上の外周部付近に周方向に適宜の間隔をあけて複数設置され、外部の排ガス処理系52に接続されている。電極ユニット30には、電源回路54が接続されている。
【0017】
シリコン芯棒20は、下端部が電極ユニット30内に差し込まれた状態に固定され、上方に延びて立設されている。各シリコン芯棒20の上端部には、二本のシリコン芯棒20を対として連結する連結部材22が取り付けられている。この連結部材22は、その両端に形成された円筒状の貫通孔22aを、各シリコン芯棒20の上端に形成された円柱状のボス部20aに係合させている(図3参照)。この連結部材22もシリコン芯棒20と同じシリコンによって形成されている。二本のシリコン芯棒20とこれらを連結する連結部材22とによって、全体としてΠ字状をなすシード組立体24が構成されている。シード組立体24は、電極ユニット30が反応炉10の中心から同心円状に配置されていることにより、全体としてほぼ同心円状に配置されている。
【0018】
電極ユニット30についてより具体的には、図2に示すように、反応炉10内に、1本のシリコン芯棒20を保持する電極ユニット30(30A)と、2本のシリコン芯棒20を保持する電極ユニット30(30B)とが配設されている。各シード組立体24は、複数個の電極ユニット30A,30Bの間をまたぐように複数組設けられている。これら電極ユニット30A,30Bは、1個の電極ユニット30A、複数個の電極ユニット30B、1個の電極ユニット30Aの順に並べられ、複数のシード組立体24を直列に接続している。つまり、一つのシード組立体24の両シリコン芯棒20は、隣接する異なる電極ユニット30A,30Bによってそれぞれ保持されている。
【0019】
つまり、電極ユニット30Aにはシード組立体24の2本のシリコン芯棒20のうちの1本が保持され、電極ユニット30Bには2組のシード組立体24のシリコン芯棒20が1本ずつ保持されている。そして、列の両端の電極ユニット30Aに接続された電源ケーブルを通じて、電流が流れるように構成されている。
【0020】
このように構成される多結晶シリコン製造装置において、各電極ユニット30からシリコン芯棒20に通電することにより、シリコン芯棒20を電気抵抗による発熱状態とする。さらに、各シリコン芯棒20は、隣接するシリコン芯棒20からの輻射熱を受けて加熱される。そして、ジュール熱と輻射熱とが相乗して高温状態となったシリコン芯棒20の表面で、原料ガスが反応して、多結晶シリコンが析出する。
【0021】
ここで、電極ユニット30(30A,30B)にシリコン芯棒20を保持する構造について説明する。
電極ユニット30Aは、図3に示すように、反応炉10の底板部12に形成された貫通孔12a内に挿入状態に設けられたホルダ部32と、ホルダ部32の上部に取り付けられてシリコン芯棒20を保持する芯棒保持部34とを備えている。同様に、電極ユニット30Bは、反応炉10の底板部12に形成された貫通孔12a内に挿入状態に設けられたホルダ部33と、ホルダ部33の上部に取り付けられてシリコン芯棒20を保持する芯棒保持部34とを備えている。
【0022】
芯棒保持部34は、シリコン芯棒20が挿入される保持孔34aが上端部に形成され、外周面に螺条が形成された略円柱状の部材であり、導電材(たとえばカーボン)から形成されている。ホルダ部32,ホルダ部33は、導電材から形成され、その上部には芯棒保持部34を螺合させる雌ネジ穴32a,33aが形成されている。この雌ネジ穴32a,33aに螺合した芯棒保持部34に対して、ナット35が取り付けられている。
【0023】
図4に示すように、芯棒保持部34の保持孔34aは、上下方向に対して交差する水平方向の断面が四つの角部を有する矩形である。この保持孔34aにおいて対向する2つの角部に、外面から連通するねじ穴34bが保持孔34aに直交して形成されている。これら2つのねじ穴34bのうちの一方に、シリコン芯棒20を固定する固定ねじ36が螺合されている。
【0024】
固定ねじ36は芯棒保持部34と同じくカーボン製であり、その一端部に+形状または−形状のドライバー工具溝が形成されている。また、この固定ねじ36は、シリコン芯棒20を固定した状態で芯棒保持部34の外面から突出する長さを有している。固定ねじ36の芯棒保持部34の外面からの突出長さLは、たとえば10mm以上であることが好ましい。
【0025】
なお、芯棒保持部34は熱伝導率が高く電気抵抗率が低い押出成形カーボン材を切削して形成されることが好ましく、固定ねじ36は、シリコン芯棒20を固定するため、シリコン芯棒20の押さえ付け時の強度や芯棒保持部34との嵌合性が必要なため、芯棒保持部よりも、硬さやかさ比重が大きく、熱伝導率が低いものを使用している。
【0026】
保持孔34aに挿入されるシリコン芯棒20は、保持孔34aよりも小さい略矩形断面を有する棒状部材である。したがって、シリコン芯棒20は、芯棒保持部34に対して、保持孔34aとの寸法差の範囲で移動可能であり、図4に示すように、固定ねじ36が締め込まれて固定ねじ36の先端部がシリコン芯棒20の角部(稜線)を保持孔34aの内面F,Gに向けて押圧することにより、固定ねじ36に対向する保持孔34aの内面F,Gに押しつけられて固定され、この2面の接触によってシリコン芯棒20と芯棒保持部34とが電気的に導通する。なお、固定ねじ36は、いずれのねじ穴34bにも螺合させてもよく、両方のねじ穴34bにそれぞれ螺合させてもよい。
【0027】
この芯棒保持部34において、固定ねじ36によってシリコン芯棒20が保持孔34aの内面F,Gに押圧されることにより、シリコン芯棒20の熱が内面F,Gを通じて芯棒保持部34に伝えられる。このため、芯棒保持部34においては、シリコン芯棒20が当接する内面F,G側で高温となりやすく、この芯棒保持部34において、固定ねじ36によってシリコン芯棒20が保持孔34aの内面F,Gに押圧されることにより、電流は電極ユニット30を通じてシリコン芯棒20に通電され、シリコン芯棒20は加熱される。そしてシリコン芯棒20の熱が芯棒保持部34にも伝えられる。反応初期段階においては通電による電流値も小さいが、シリコンの析出を促進させるため、シリコン芯棒20の径が太くなるにつれ電流値を上げていくと、シリコン芯棒20の表面積も増えることより、シリコン芯棒20からの輻射熱も増える(析出したシリコンへの通電による自己加熱も増える。)ため、その熱の影響により芯棒保持部34の上部表面にも多結晶シリコンが析出するようになる。一方、固定ねじ36にも輻射熱の影響でシリコンの析出が進むが、芯棒保持部34上部でのシリコンの析出も進むことで、固定ねじ36の上面側の方がその下面側よりも輻射熱の影響が大きく、固定ねじ36下面側よりも上面側に多結晶シリコンが析出しやすくなり、下端部に比べて突出割合が増す。さらに芯棒保持部34表面にシリコンの析出が進んで固定ねじ36周辺もシリコンで覆われた場合(図5参照)、析出するシリコンは固定ねじ36の位置を反映しながら、固定ねじ36の上面側(上部)がその下面側(下部)よりも突出する形状を呈する状態となり、シリコン析出後には凸部が形成されるものと判断される。さらにシリコンの析出が進むことにより固定ねじ36上面側への輻射熱が増し、固定ねじ36下面よりも温度が上がりやすくなることで、固定ねじ36下面側よりも上面側に多結晶シリコンが析出しやすくなり、下端部に比べて突出割合が増す。これにより、さらに芯棒保持部34表面にシリコンの析出が進んでシリコンで覆われた場合(図5参照)、芯棒保持部34の上部側が熱の影響により優先的にシリコンの析出が進むが、シリコン芯棒20の上部側が下部側よりも突出する形状を呈する状態となり、シリコン析出後には固定ねじ36の位置に対応する凸部が形成されるものと思われる。
【0028】
このように構成された多結晶シリコン製造装置の反応炉10内において、電極ユニット30を通じてシリコン芯棒20に電力を供給し、加熱状態のシリコン芯棒20に原料ガスを接触させることにより、シリコン芯棒20の表面に多結晶シリコンSを析出させることができる。多結晶シリコンSは、図5に示すように、シリコン芯棒20や連結部材22を覆うように析出する一方、シリコン芯棒20を立設固定している電極ユニット30の芯棒保持部34にもシリコン芯棒からの熱の影響等により付着する。シリコン芯棒20上に析出した多結晶シリコンSは、シリコン芯棒20と共に切断されて回収される。このように多結晶シリコンSを回収する際に、電極ユニット30を切断してしまうと電極ユニット30を形成するカーボン等の不純物が多結晶シリコンSに取り込まれたり付着したりしてしまうおそれがあるため、電極ユニット30を切断しないように多結晶シリコンSを切断しなければならない。一方で、回収する多結晶シリコンSの収量を十分に確保するため、多結晶シリコンSを電極ユニット30の上端近傍で切断することが求められる。このため、芯棒保持部34の上端のやや上方を水平方向に切断する。
【0029】
このとき、芯棒保持部34の上端や固定ねじ36周辺は、析出した多結晶シリコンSに厚く覆われているため、芯棒保持部34の上面部を判別しにくい状態となっている。しかしながら、芯棒保持部34の外面から固定ねじ36が突出していることにより、この位置が析出後の多結晶シリコンSの突出位置に反映され、多結晶シリコンSの外面に凸部Pとなって形成される。したがって、多結晶シリコンSの凸部Pを基準にして芯棒保持部34の上端位置を推測し、芯棒保持部34の上方で多結晶シリコンSを切断できる。
【0030】
特に、上述したように、芯棒保持部34の固定ねじ36においては、多結晶シリコンS析出時において、芯棒保持部34外面より一定の長さにおいて突出していることや、固定ねじ36を固定しているシリコン芯棒20からの熱の伝達や熱伝導率の違いにより、芯棒保持部34よりも多結晶シリコンが析出しやすくなっているかと思われるが、多結晶シリコンSの外面に凸部Pがはっきりと形成されている。したがって、凸部Pの位置を基準として芯棒保持部34の上面位置を容易に推測できることより、正確に切断位置を特定することができる。
【0031】
以上説明したように、本発明の多結晶シリコン製造方法によれば、シリコン芯棒20を固定する固定ねじ36が芯棒保持部34の外面から突出している状態で多結晶シリコンSを析出させることにより、突出した固定ねじ36の位置が多結晶シリコンSの外形に反映して凸部Pが形成されるので、多結晶シリコンに覆われた芯棒保持部34の上端位置を正確に推測でき、芯棒保持部34を切断することによる汚染を防止し、回収する多結晶シリコンSの収量を確保することができる。
【0032】
なお、本発明は前記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。たとえば、シリコン芯棒が断面矩形である場合、ねじ穴は前記実施形態のように対向する2カ所に限らず、保持孔の角部全て(4カ所)にねじ穴が設けられていてもよい。この場合、固定ねじは少なくともいずれか1カ所のねじ穴に螺合してシリコン芯棒を固定するが、複数のねじ穴に固定ねじを取り付けてもよい。また、取り付けた固定ねじの全てがシリコン芯棒の固定に寄与している必要はない。
【0033】
また、前記実施形態の電極ユニット30Aにおいては、芯棒保持部34はホルダ部32の雌ネジ穴32aに螺合してナット35を取り付けられることにより支持されているが、芯棒保持部の支持構造はこのようなものに限定されない。
たとえば、図6に示す芯棒保持部40は、前記実施形態と同様にシリコン芯棒20が挿入される保持孔40aが上部40bに形成されているが、前記実施形態とは異なり外周面に螺条が形成されておらず、下部40cの外径が上部40bの外径よりも大きい段付円柱状に形成されている。保持孔40aに挿入されたシリコン芯棒20は、芯棒保持部40の上部に水平方向に設けられたねじ穴40dに螺合して、芯棒保持部40の外面から突出する固定ねじ36によって固定されている。
【0034】
この芯棒保持部40を支持するホルダ本体41は、芯棒保持部40の下部40cが回転可能な状態で挿入保持される円筒状の保持孔41aを有し、外周面には雄ねじが形成されている。この雄ねじに螺合するナット部材42は、内向きフランジ42aを上端部に有している。この内向きフランジ42aの中心に形成された貫通孔42bは、芯棒保持部40の上部40bを通過させるが下部40cを通過させない内径を有している。なお、ホルダ本体41の保持孔41aは、芯棒保持部40の下部40cの高さよりも深さが浅く、芯棒保持部40の上端部をホルダ本体41の上端面から突出させるように形成されている。
【0035】
つまり、図6に示す構造によれば、ホルダ本体41の保持孔41aに芯棒保持部40の下部40cを挿入し、ナット部材42をホルダ本体41に締結することにより、芯棒保持部40を底板部12に対して回転可能に支持させることができる。
【0036】
また、固定ねじ36の位置は、前記実施形態のように芯棒保持部34の上端のテーパ部分に限らず、図7に示すようにテーパ部分より下方の円柱部分であってもよい。この場合も、固定ねじ36の芯棒保持部34の外面からの突出長さLは、10mm以上であることが好ましい。突出長さが10mm以下であると固定ねじ36の先端部が析出するシリコンで覆われやすくなり、凸部Pが形成されにくくなる。
【0037】
また、固定ねじ36を用いる代わりに、図8に示すように、保持孔34aの開口部に嵌入される嵌入部43aと、この嵌入部43aから伸びる突出部43bとを有する略L字状の楔部材43を用いてシリコン芯棒20を芯棒保持部34に固定してもよい。この場合、先端よりも基端が太く形成された嵌入部43を、保持孔34aとシリコン芯棒20との間に押し込むことにより、保持孔34aに対してシリコン芯棒20を固定することができる。また、突出部43bの芯棒保持部34の外面からの突出長さLも、10mm以上であることが好ましい。
【0038】
また、固定ねじ36は、ドライバー工具溝が形成される形状としたが、固定ねじ36の突出側の先端に固定ねじ36のねじ径よりも径が大きい先端形状を設けて、一体型とした固定ねじを用いてもよい。
【実施例】
【0039】
多結晶シリコン製造方法において、図6に示す構造を用いて、芯棒保持部の外面から突出する固定手段の突出長さL(図4参照)を変化させて多結晶シリコンをほぼ同じ反応時間で析出させ、凸部Pが形成されるかどうかを確認した。突出長さLを10mm,12mmとした場合、凸部Pが明確に視認でき、この凸部Pの位置を基準として所定の寸法で多結晶シリコンロッドを切断したところ、芯棒保持部の上方で切断でき、不純物の混入を防止できた。一方、突出長さLを7mmとした場合、検査した64本中5本については凸部Pの有無が不明確であり、芯棒保持部の位置を特定することは困難であった。
【符号の説明】
【0040】
10 反応炉
12 底板部
12a 貫通孔
14 ベルジャ
16 噴出ノズル(ガス供給口)
18 ガス排出口
20 シリコン芯棒
20a ボス部
22 連結部材
22a 貫通孔
24 シード組立体
30(30A,30B) 電極ユニット
32 ホルダ部
33 ホルダ部
32a,33a 雌ネジ穴
34,40 芯棒保持部
34a,40a 保持孔
34b,40d ねじ穴
35 ナット
36 固定ねじ(固定手段)
40b 上部
40c 下部
41 ホルダ本体
41a 保持孔
42 ナット部材
42a 内向きフランジ
42b 貫通孔
43 楔部材(固定手段)
43a 嵌入部
43b 突出部
50 原料ガス供給源
52 排ガス処理系
54 電源回路
L 突出長さ
P 凸部

【特許請求の範囲】
【請求項1】
反応炉内で加熱された上下方向に沿うシリコン芯棒に原料ガスを接触させることにより前記シリコン芯棒の表面に多結晶シリコンを析出させる多結晶シリコン製造方法であって、導電材からなる芯棒保持部の上端部に形成された保持孔に、前記シリコン芯棒の下端部を挿入し、挿入された前記シリコン芯棒を前記保持孔の内面に対して押圧して固定する固定手段を、その一部が前記芯棒保持部の外面から突出するように設けておき、前記シリコン芯棒の表面に前記多結晶シリコンを析出させ、前記固定手段の形状に応じて形成される前記多結晶シリコンの凸部よりも上方で、前記シリコン芯棒とともに前記多結晶シリコンを切断することを特徴とする多結晶シリコン製造方法。
【請求項2】
前記固定手段は、前記芯棒保持部の前記外面から前記保持孔の内部に連通するねじ穴に螺合する固定ねじであることを特徴とする請求項1に記載の多結晶シリコン製造方法。
【請求項3】
前記固定手段は、前記保持孔の開口部に嵌入される嵌入部と、この嵌入部から伸びる突出部とを有する略L字状の楔部材であることを特徴とする請求項1に記載の多結晶シリコン製造方法。
【請求項4】
前記芯棒保持部の前記外面からの前記固定手段の突出長さは10mm以上であることを特徴とする請求項1から3のいずれかに記載の多結晶シリコン製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−82128(P2012−82128A)
【公開日】平成24年4月26日(2012.4.26)
【国際特許分類】
【出願番号】特願2011−202452(P2011−202452)
【出願日】平成23年9月15日(2011.9.15)
【出願人】(000006264)三菱マテリアル株式会社 (4,417)
【Fターム(参考)】