説明

改善されたオフ速度(off−rate)を持つアプタマーを生成するための方法

本開示は、ターゲット分子に結合可能なアプタマーを産生するための改善されたSELEX法、およびターゲット分子に結合し、そしてかつ共有的に架橋することが可能な光反応性アプタマーを産生するための改善された光SELEX法を開示する。特に、本開示は、以前のSELEX法および光SELEX法を用いて得られるものよりも遅い解離速度定数を有するアプタマーおよび光アプタマーを産生するための方法を記載する。本開示はさらに、以前の方法を用いて得られるものよりも遅い解離速度定数を有するアプタマーおよび光アプタマーを記載する。さらに、本開示は、切断可能要素、検出要素、および捕捉または固定化要素を含む、多様な官能性を含むアプタマー構築物を記載する。

【発明の詳細な説明】
【技術分野】
【0001】
[0001]本開示は、一般的に、改善された特性を有するアプタマーおよび光アプタマーの生成のための方法、ならびにそれによって生成された、改善されたアプタマーおよび光アプタマーに関する。特に、本開示は、関心対象のターゲットに非常に特異的な、オフ速度(off−rate)が遅いアプタマーを記載する。本開示は、これらのオフ速度が遅いアプタマーの組成物、ならびにその選択のための方法を記載する。さらに、本開示は、検出法のための改善された官能性を持つアプタマー構築物を記載する。さらに、本開示は、これらの改善されたアプタマーによって可能になる適用を記載する。
【背景技術】
【0002】
[0002]以下の説明は、本開示に関連する情報の要約を提供し、そして本明細書に提供する情報または引用する刊行物のいずれかが、請求する発明に対する先行技術であることの容認ではない。
【0003】
[0003]SELEX法は、ターゲット分子に非常に特異的に結合可能な核酸分子のin vitro選択のための方法であり、そして各々、本明細書に特に援用される、米国特許第5,475,096号、表題“Nucleic Acid Ligands”および米国特許第5,270,163号(WO 91/19813も参照されたい)、表題“Nucleic Acid Ligands”に記載される。これらの特許は、本明細書において、集合的にSELEX特許と称され、任意の所望のターゲット分子に対するアプタマーを作製するための方法を記載する。
【0004】
[0004]基本的なSELEX法が修飾されて、いくつかの特定の目的が達成されてきた。例えば、米国特許第5,707,796号、表題“Method for Selecting Nucleic Acids on the Basis of Structure”は、屈曲(bent)DNAなどの特定の構造特性を持つ核酸分子を選択するための、ゲル電気泳動と組み合わせたSELEX法の使用を記載する。米国特許第5,580,737号、表題“High−Affinity Nucleic Acid Ligands That Discriminate Between Theophylline and Caffeine”は、カウンターSELEXと呼ばれる、緊密に関連する分子間を区別することが可能な非常に特異的なアプタマーを同定するための方法を記載する。米国特許第5,567,588号、表題“Systematic Evolution of Ligands by Exponential Enrichment: Solution SELEX”は、ターゲット分子に対する高いアフィニティおよび低いアフィニティを有するオリゴヌクレオチド間の非常に効率的な分配を達成する、SELEXに基づく方法を記載する。米国特許第5,496,938号、表題“Nucleic Acid Ligands to HIV−RT and HIV−1 Rev”は、SELEXを実行した後に、改善されたアプタマーを得るための方法を記載する。米国特許第5,705,337号、表題“Systematic Evolution of Ligands by Exponential Enrichment: Chemi−SELEX”は、アプタマーをそのターゲットに共有結合させるための方法を記載する。
【0005】
[0005]SELEX法は、改善されたin vivo安定性または改善された送達特性など、リガンドに改善された特性を与える修飾ヌクレオチドを含有する高アフィニティ・アプタマーの同定を含む。こうした修飾の例には、リボース位および/またはリン酸位および/または塩基位での化学的置換が含まれる。修飾ヌクレオチドを含有する、SELEX法で同定されたアプタマーが、米国特許第5,660,985号、表題“High Affinity Nucleic Acid Ligands Containing Modified Nucleotides”に記載され、該特許は、ピリミジンの5’位および2’位で化学的に修飾されたヌクレオチド誘導体を含有するオリゴヌクレオチドを記載する。上記の米国特許第5,580,737号は、2’−アミノ(2’−NH)、2’−フルオロ(2’−F)、および/または2’−O−メチル(2’−OMe)で修飾された1以上のヌクレオチドを含有する非常に特異的なアプタマーを記載する。
【0006】
[0006]SELEX法のさらなる修飾は、米国特許第5,763,177号、米国特許第6,001,577号、および米国特許第6,291,184号、各々、表題“Systematic Evolution of Nucleic Acid Ligands by Exponential Enrichment: Photoselection of Nucleic Acid Ligands and Solution SELEX”に記載され;例えば、米国特許第6,458,539号、表題“Photoselection of Nucleic Acid Ligands”もまた参照されたい。これらの特許は、本明細書において、集合的に「光SELEX特許」と称され、ターゲット分子に結合し、そして/またはターゲット分子と光架橋し、そして/またはターゲット分子を光不活性化することが可能な、光反応性官能基を含有するアプタマーを選択するための多様なSELEX法を記載する。生じる光反応性アプタマーは、光架橋アプタマーまたは光アプタマーと称される。
【0007】
[0007]これらのSELEXおよび光SELEX法は有用であるが、in vitro選択技術から生じる、アプタマーの改善された特性を導くプロセスに関する必要性が常にある。例えば、天然存在DNAまたはRNAヌクレオチドを用いて達成されるよりも優れた結合アフィニティで分子をターゲッティングするアプタマー、ならびにこうしたアプタマーを産生するための方法に関する必要性が存在する。例えばin vitroアッセイ、診断、療法、または画像化適用などの多くの適用のため、アプタマー/ターゲット・アフィニティ複合体からの遅いオフ速度を持つアプタマーを産生することに関心が持たれる。こうした試薬を産生するため、いくつかの技術が提唱されてきている(例えば、WO99/27133およびUS2005/0003362を参照されたい)。しかし、これらの選択法は、ターゲットとの速い会合動力学(すなわち速いオン速度(on−rate))を有する試薬の選択およびターゲットとの遅い解離(dissociation)動力学(例えば遅いオフ速度)を有する試薬の選択間を区別しない。したがって、オフ速度が遅いアプタマーの選択を支持する一方、単にターゲットとの会合速度が速いアプタマーの選択を阻害する、新規プロセスおよび技術に関する必要性がある。
【0008】
[0008]最後に、異なるビルトイン官能性を含むアプタマー構築物に関する必要性がある。これらの官能性には、固定化のためのタグ、検出用の標識、分離を促進するかまたは制御する手段等も含まれうる。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】米国特許第5,475,096号
【特許文献2】米国特許第5,270,163号
【特許文献3】WO 91/19813
【特許文献4】米国特許第5,707,796号
【特許文献5】米国特許第5,580,737号
【特許文献6】米国特許第5,567,588号
【特許文献7】米国特許第5,496,938号
【特許文献8】米国特許第5,705,337号
【特許文献9】米国特許第5,660,985号
【特許文献10】米国特許第5,763,177号
【特許文献11】米国特許第6,001,577号
【特許文献12】米国特許第6,291,184号
【特許文献13】米国特許第6,458,539号
【特許文献14】WO99/27133
【特許文献15】US2005/0003362
【発明の概要】
【0010】
[0009]本開示は、新規アプタマー、およびこうしたアプタマーを産生しそして使用する方法を記載する。特に、本開示は、オフ速度が遅い(解離速度が遅い)アプタマー、C−5修飾ピリミジンを含有する、オフ速度が遅いアプタマー、および希釈によって、競合剤の添加によって、または両方のアプローチの組み合わせによって、オフ速度が遅いアプタマーを選択するためのプロセスを記載する。さらに、タンパク質およびペプチドなどの多様なターゲットに対する、オフ速度が遅いアプタマーを記載する。ユニークな構造特徴および融点を持つ、オフ速度が遅いアプタマーもまた記載する。本開示はまた、光反応性官能基を持つ、オフ速度が遅いアプタマー、ポリアニオン性物質の存在に対して難分解性であるアプタマー、およびこれらのアプタマーに関する選択プロセス、ならびに多様な適用において、その有用性を改善させる多様な他の官能性を伴って構築されたアプタマーも記載する。
【0011】
[0010]本開示は、ターゲット分子に結合可能なアプタマーを生成するための改善されたSELEX法を記載する。より具体的には、本開示は、以前のSELEX法で得られたアプタマーおよび光アプタマーよりも遅い、それぞれのターゲット分子からの解離速度を有するアプタマーおよび/または光アプタマーを産生するための方法を記載する。一般的に、候補混合物をターゲット分子と接触させ、そして核酸−ターゲット複合体の形成が起こるのを可能にした後、遅いオフ速度の濃縮プロセスを導入し、このプロセスにおいては、解離速度が速い核酸−ターゲット複合体が解離し、そして再形成されない一方、解離速度が遅い複合体は損なわれない(intact)ままである。遅いオフ速度の濃縮プロセスを導入するための方法には、限定されるわけではないが、競合剤分子を、核酸およびターゲット分子の混合物に添加する工程、核酸およびターゲット分子の混合物を希釈する工程、またはこれらの両方の組み合わせが含まれる。本開示はさらに、これらの方法を用いて得られるアプタマーおよび光アプタマーを記載する。
【0012】
[0011]1つの態様において、方法は、核酸の候補混合物を調製し;ターゲット分子と候補混合物を接触させ、ここで、ターゲット分子に対して最高の相対的アフィニティを持つ核酸が、優先的にターゲット分子に結合し、核酸−ターゲット分子複合体を形成し;遅いオフ速度の濃縮プロセスを導入して、比較的速い解離速度を持つ核酸−ターゲット分子複合体の解離を誘導し;候補混合物において、未結合(free)核酸から、残っている結合した核酸−ターゲット分子複合体を分配し;そしてターゲット分子に結合した核酸を同定する工程を含む。プロセスにはさらに、ターゲット分子に結合する核酸を増幅して、ターゲット分子に結合し、さらに、解離速度が遅い核酸−ターゲット分子複合体を産生する核酸が濃縮された核酸混合物を得る、反復工程が含まれてもよい。
【0013】
[0012]別の態様において、核酸の候補混合物には、解離速度が遅い修飾核酸−ターゲット複合体の形成を補助しうる、修飾ヌクレオチド塩基を含有する核酸が含まれる。光活性基または他の官能基を含有するヌクレオチド、あるいは光活性基のための位置維持基(placeholder)を含有するヌクレオチドを含む修飾ヌクレオチドを伴って、SELEXを実行するための改善法は、本出願と同時に出願される、その全体が本明細書に援用され、そして“Improved SELEX and PHOTOSELEX”と題される、2008年7月17日出願の米国出願第12/175,388号に開示される。位置維持ヌクレオチドはまた、光反応性でない修飾ヌクレオチドのSELEX中またはSELEX後導入に用いてもよい。
【0014】
[0013]本明細書記載の多様な方法および工程を用いて、(1)ターゲット分子に結合可能であるかまたは(2)ターゲット分子に結合し、そして続いてUVまたは可視スペクトルの光を照射された際に、ターゲット分子と共有結合を形成可能であるか、いずれかのアプタマーを生成可能である。
【0015】
[0014]別の側面において、本明細書記載の多様な方法および工程を用いて、ターゲット分子への結合および/または架橋を通じて、ターゲット分子の生物活性を修飾することが可能なアプタマーを生成可能である。1つの態様において、特定の疾患プロセスに関係があるかまたは関連するユニークなターゲット分子に対するアプタマーが同定される。このアプタマーをin vitroまたはin vivoのいずれかで診断試薬として用いてもよい。別の態様において、疾患状態と関係があるターゲット分子に対するアプタマーを個体に投与して、そしてこれを用いてin vivoで疾患を治療することも可能である。本明細書で同定されるアプタマーおよび光アプタマーは、限定なしに、アプタマー、オリゴヌクレオチド、抗体およびリガンドを使用可能な、任意の診断、画像化、ハイスループットスクリーニングまたはターゲット検証技術または方法またはアッセイにおいて使用可能である。例えば、本明細書で同定されるアプタマーおよび光アプタマーを、その全体が本明細書に援用される、同時出願された米国出願第___号、表題“Multiplexed Analyses of Test Samples”に詳細に記載される方法にしたがって、用いてもよい。
【0016】
[0015]本発明のアプタマーの遅いオフ速度特性を持たない、以前のアプタマーは、多様な目的に使用されてきている。こうした使用のほぼすべてにおいて、オフ速度が遅いアプタマーは、遅いオフ速度特性を有するように選択されていないアプタマーに比較して、改善された性能を有するであろう。
【0017】
[0016]アプタマーMacugen(登録商標)(例えば、各々、その全体が本明細書に援用される、米国特許第6,168,778号;米国特許第6,051,698号;米国特許第6,426,335号;および米国特許第6,962,784号を参照されたい)は、VEGFに対して特異的アフィニティを持つため、黄斑変性および機能の治療に関して認可されてきている。療法剤として使用するため、他のアプタマーが研究され、そして/または開発中である。遅いオフ速度特性を有するように選択されていないアプタマーはまた、多くの診断および画像化適用(例えば、各々、その全体が本明細書に援用される、米国特許第5,843,653号;米国特許第5,789,163号;米国特許第5,853,984号;米国特許第5,874,218号;米国特許第6,261,783号;米国特許第5,989,823号;米国特許第6,177,555号;米国特許第6,531,286号を参照されたい)、ハイスループットスクリーニング(例えば、各々、その全体が本明細書に援用される、米国特許第6,329,145号;米国特許第6,670,132号;米国特許第7,258,980号を参照されたい)およびPCRキット(例えば、各々、その全体が本明細書に援用される、米国特許第6,183,967号;米国特許第6,020,130号;米国特許第5,763,173号;米国特許第5,874,557号;米国特許第5,693,502号を参照されたい)においても使用されてきている。抗体、アプタマーおよびリガンド結合対が用いられてきた、任意の診断、療法、画像化または任意の他の使用に、本開示のオフ速度が遅いアプタマーを用いてもよい。
【0018】
[0017]別の側面において、本開示は、本明細書に開示する改善法によって同定されるアプタマーおよび光アプタマー、こうしたアプタマーおよび光アプタマーを含む診断キット、ならびにこうしたアプタマーおよび光アプタマーの療法的および診断的使用を提供する。平面アレイ、ビーズ、および他のタイプの固体支持体を用いるアッセイを含む、多様なアッセイにおいて、記載する方法を用いて同定されたオフ速度が遅い新規のアプタマーおよび光アプタマーが使用可能である。生命科学研究適用、臨床診断適用(例えば疾患に関する診断試験、または予防的ヘルスケアのための「健康」試験);ALONAおよびUPSアッセイ、ならびにin vivo画像化適用を含む、多様な関連において、アッセイを使用してもよい。いくつかの適用に関しては、記載するアプタマーおよび光アプタマーを使用する多重化アッセイを用いてもよい。
【0019】
[0018]いくつかの態様において、本明細書記載のオフ速度が遅いアプタマー(または光アプタマー)を、CATスキャンおよび他の画像化適用のための静脈内または経口造影剤として用いてもよい。CATスキャンは、筋肉および骨の障害の診断、凝血の位置決定、内部出血の検出、癌などの疾患の監視等に用いられる。オフ速度が遅いアプタマーを、例えば、ヨウ素、バリウム、またはガストログラフィンなどのCATスキャン検出可能構成要素で標識してもよい。検出可能構成要素を所持するのに加えて、構成要素を特定の組織または所望のターゲットに向けるようにアプタマーを設計してもよい。アプタマーは、検出可能構成要素を濃縮するかまたは局在化させるように働き、そしてこうして、利用可能なシグナルを増加させることによって、シグナル対ノイズ比を改善することも可能である。アプタマーのオフ速度は十分に遅い可能性もあるため、スキャン期間を増加させてもよく、そしてスキャンのシグナル対ノイズ比を改善することも可能である。ターゲットに対するアプタマーの特異性はまた、これらの画像化適用においても、シグナル対ノイズ比を改善可能である。
【0020】
[0019]1つの態様において、オフ速度が遅いアプタマーを反磁性または常磁性物質で標識する。この態様において、標識されたアプタマーを用いて、磁気共鳴画像法(MRI)の性能を改善することも可能である。MRIは、含水量が高い、小さい選択された領域および組織を画像化するか、または血流を監視するのに特によく適している。オフ速度が遅いアプタマーの特異性は、所望の組織部分へのMRI試薬の局在化を改善することも可能である。同様に、PETスキャンで用いるため、オフ速度が遅いアプタマーを、フッ素、炭素11、酸素15、または窒素13などの物質で修飾してもよい。別の態様において、赤外画像化に使用可能なIR活性物質でアプタマーを標識してもよい。他の画像化様式で使用するため、オフ速度が遅いアプタマーを標識化してもよいこともまた意図される。
【0021】
[0020]1つの態様において、多様なin vitro診断法またはキット内に取り込むため、オフ速度が遅いアプタマーを非常に高感度でそして特異的な試薬として用いてもよい。いくつかの態様において、いくつかの感染性のまたは他のタイプの疾患の検出法において、抗体の代用物として、オフ速度が遅いアプタマーを用いるが、この場合、関心対象のターゲットに対するアプタマーは、検出可能物質および固定化または捕捉構成要素のいずれかまたは両方を含む。これらの態様において、キット由来のアプタマーを臨床標本と混合した後、多様なアッセイ形式が利用可能である。1つの態様において、アプタマーにはまた、蛍光団(fluorophore)などの検出可能標識も含まれる。他の態様において、アッセイ形式には、蛍光消光、ハイブリダイゼーション法、フローサイトメトリー、質量分析、阻害または競合法、酵素連結オリゴヌクレオチドアッセイ、SPR、エバネッセント光法等が含まれてもよい。いくつかの態様において、アプタマーは、キットにおいて、溶液中に提供される。他の態様において、キット中のアプタマーは、標本を試験するためのアッセイと組み合わせて用いられる固体支持体上に固定されている。多様な態様において、固体支持体は、1以上の関心対象のターゲットの検出用に設計される。他の態様において、キットには、関心対象のターゲットを抽出するための試薬、アプタマーを増幅するための試薬、洗浄を実行するための試薬、検出試薬等がさらに含まれてもよい。
【0022】
[0021]別の態様において、オフ速度が遅いアプタマーを療法画像化研究において用いてもよい。新規の療法化合物の開発中、化合物の特定の特性、例えば体内分布、洗い出し速度、生物学的利用能、in vivo薬剤/ターゲット相互作用などを評価することはしばしば困難である。多くの場合、適切な検出可能物質を用いて療法化合物を修飾する場合、画像化研究を用いて、これらの特性をすべて評価することも可能である。療法化合物を直接修飾すると、しばしば、ターゲットと相互作用する能力が阻害され、そしてしたがって効能が減少するが、アプタマーはサイズが小さく、そして特異性をカスタマイズ可能であるため、療法化合物(例えば抗体または他のタンパク質に基づく療法剤)と反応するのによく適したものになる一方、化合物の療法的効能に対するいかなる望ましくない効果も最小限にする可能性がある。体内分布および洗い出し速度などのこうした特性を評価するため、アプタマー/療法複合体は、長期間、存続することも可能である。これらのタイプの研究は、療法化合物が、オフ速度が遅いアプタマーである場合に、単純になりうる。多様な態様において、試験試料またはin vivoに存在しうる、多様な構成要素、例えばヌクレアーゼおよび他の試料または体液構成要素への曝露に際して、アプタマーの安定性を増加させるため、療法、画像化、および診断適用において用いられるアプタマーには、例えば、2’フルオロおよび他の修飾などの多様な修飾が含まれてもよい。
【図面の簡単な説明】
【0023】
【図1A】[0022]図1Aは、例示的なSELEX法を例示し、そして図1Bは、単数または複数の遅いオフ速度の濃縮プロセスを取り込む工程を含む例示的なSELEX法を例示する。
【図1B】[0022]図1Aは、例示的なSELEX法を例示し、そして図1Bは、単数または複数の遅いオフ速度の濃縮プロセスを取り込む工程を含む例示的なSELEX法を例示する。
【図2】[0023]図は、本開示中に用いられる、代表的なアプタマー・テンプレート、プライマー、および相補的オリゴヌクレオチド配列を例示する。オリゴヌクレオチドは、標準的固相合成技術によって調製された。B=dT−ビオチン。
【図3】[0024]図3は、実施例2に記載するような、遅いオフ速度の濃縮プロセスを含まず(A)そして含んで(B)選択されたアフィニティ・アプタマーに関する解離速度定数のヒストグラムを例示する。
【図4A】[0025]図4AおよびBは、実施例3および4に記載する選択プロセスにおいて、候補混合物を調製するかまたは多様な工程を実行するために使用されたオリゴヌクレオチドを示す。オリゴヌクレオチドは、標準的固相合成技術によって調製された。この例では、1および2と称される、2つの候補混合物配列を用いた。B=dT−ビオチン。BrdU(5−ブロモ−dUTP)、アントラキノン(AQ)、およびソラレン(Psor)発色団をホスホロアミダイトとして購入し、そして合成中に、順方向プライマーの5’末端に添加した。4−アジド−2−ニトロ−アニリン(ANA)をパラ−ニトロ−フェニルカーボネート誘導体として調製し、そして合成後、5’ヘキシルアミンホスホロアミダイトにカップリングさせた。この例では、1および2と称される、2つの候補混合物配列を用いた。(A)5’−BrdU、AQ、およびANAを含有する候補混合物とともに、テンプレート1を用い、そして(B)5’−Psorを含有する候補混合物とともに、テンプレート2を用いた。
【図4B】[0025]図4AおよびBは、実施例3および4に記載する選択プロセスにおいて、候補混合物を調製するかまたは多様な工程を実行するために使用されたオリゴヌクレオチドを示す。オリゴヌクレオチドは、標準的固相合成技術によって調製された。この例では、1および2と称される、2つの候補混合物配列を用いた。B=dT−ビオチン。BrdU(5−ブロモ−dUTP)、アントラキノン(AQ)、およびソラレン(Psor)発色団をホスホロアミダイトとして購入し、そして合成中に、順方向プライマーの5’末端に添加した。4−アジド−2−ニトロ−アニリン(ANA)をパラ−ニトロ−フェニルカーボネート誘導体として調製し、そして合成後、5’ヘキシルアミンホスホロアミダイトにカップリングさせた。この例では、1および2と称される、2つの候補混合物配列を用いた。(A)5’−BrdU、AQ、およびANAを含有する候補混合物とともに、テンプレート1を用い、そして(B)5’−Psorを含有する候補混合物とともに、テンプレート2を用いた。
【図5−1】[0026]図5は、図4Aおよび4Bに例示するような順方向プライマーの5’末端にカップリングした発色団の化学構造を例示する。
【図5−2】[0026]図5は、図4Aおよび4Bに例示するような順方向プライマーの5’末端にカップリングした発色団の化学構造を例示する。
【図6】[0027]図6は、実施例3に記載する5’固定光SELEXを用いて、TIMP−3 5’ANA/BzdU濃縮ライブラリーの架橋活性のPAGE分析を例示する。ゲルは、未結合アプタマー(A)、分子内架橋アプタマー(A)、および架橋タンパク質:アプタマー複合体(P:A)の分離を例示する。
【図7−1】[0028]図7は、オフ速度が遅いアプタマーが同定されている、500を超えるターゲットのチャートである。
【図7−2】[0028]図7は、オフ速度が遅いアプタマーが同定されている、500を超えるターゲットのチャートである。
【図8】[0029]図8A〜8Dは、固定化タグ、標識、光架橋部分、スペーサー、および遊離可能部分を含む、多様な異なるおよび場合による官能性を含有するアプタマー構築物を例示する。
【図9A】[0030]図9A〜9Fは、切断可能または遊離可能要素、タグ(例えばビオチン)、スペーサー、および標識(例えばCy3)を含むアプタマー構築物の例を例示する。
【図9B】[0030]図9A〜9Fは、切断可能または遊離可能要素、タグ(例えばビオチン)、スペーサー、および標識(例えばCy3)を含むアプタマー構築物の例を例示する。
【図9C】[0030]図9A〜9Fは、切断可能または遊離可能要素、タグ(例えばビオチン)、スペーサー、および標識(例えばCy3)を含むアプタマー構築物の例を例示する。
【図9D】[0030]図9A〜9Fは、切断可能または遊離可能要素、タグ(例えばビオチン)、スペーサー、および標識(例えばCy3)を含むアプタマー構築物の例を例示する。
【図9E】[0030]図9A〜9Fは、切断可能または遊離可能要素、タグ(例えばビオチン)、スペーサー、および標識(例えばCy3)を含むアプタマー構築物の例を例示する。
【図9F】[0030]図9A〜9Fは、切断可能または遊離可能要素、タグ(例えばビオチン)、スペーサー、および標識(例えばCy3)を含むアプタマー構築物の例を例示する。
【図10】[0031]図10は、本開示に記載するアプタマーおよびプライマー構築物を例示する。Cy3はシアニン3色素、PCは光切断可能リンカー、ANAは光反応性架橋基、(AB)はdA残基によって分離されたビオチン残基対、そして(T)はポリdTリンカーを表す。プライマー構築物は、アプタマー構築物の完全3’固定領域に相補的である。
【図11A】[0032]図11A〜11Cは、3つの異なるターゲットに関する伝統的なアプタマーに対する、オフ速度が遅いアプタマーの用量反応曲線を例示する。
【図11B】[0032]図11A〜11Cは、3つの異なるターゲットに関する伝統的なアプタマーに対する、オフ速度が遅いアプタマーの用量反応曲線を例示する。
【図11C】[0032]図11A〜11Cは、3つの異なるターゲットに関する伝統的なアプタマーに対する、オフ速度が遅いアプタマーの用量反応曲線を例示する。
【図12A】[0033]図12Aおよび12Bは、ターゲットがペプチドである、オフ速度が遅いアプタマーの性能曲線を例示する。
【図12B】[0033]図12Aおよび12Bは、ターゲットがペプチドである、オフ速度が遅いアプタマーの性能曲線を例示する。
【図13】[0034]図13は、予測融点に比較した、オフ速度が遅いいくつかのアプタマーの測定融点のプロットを例示する。
【図14−1】[0035]図14は、本開示に含まれるヌクレオチドの塩基修飾を記載する。ヌクレオチド付着点およびR基間で使用可能なリンカー(X)に加えて、使用可能なR基を記載する。ヌクレオチドの修飾位もまた示す。
【図14−2】[0035]図14は、本開示に含まれるヌクレオチドの塩基修飾を記載する。ヌクレオチド付着点およびR基間で使用可能なリンカー(X)に加えて、使用可能なR基を記載する。ヌクレオチドの修飾位もまた示す。
【図15】[0036]図15は、C−5修飾ピリミジンを含有するアプタマーの結合定数の決定において用いたプロットを例示する。
【発明を実施するための形態】
【0024】
[0037]本明細書に開示する本発明の実施は、別に示さない限り、当該技術分野の技術レベル内の化学、微生物学、分子生物学、および組換えDNA技術の慣用法を使用する。こうした技術は文献に完全に説明される。例えば、Sambrookら Molecular Cloning: A Laboratory Manual(現行版); DNA Cloning: A Practical Approach, vol. IおよびII(D. Glover監修); Oligonucleotide Synthesis(N. Gait監修、現行版); Nucleic Acid Hybridization(B. HamesおよびS. Higgins監修、現行版); Transcription and Translation(B. HamesおよびS. Higgins監修、現行版)を参照されたい。
【0025】
[0038]本明細書に引用するすべての刊行物、公開特許文書、および特許出願は、本発明が属する当該技術分野(単数または複数)の技術のレベルを示す。本明細書に引用するすべての刊行物、公開特許文書、および特許出願は、各々の個々の刊行物、公開特許文書、または特許出願が、具体的に、そして個々に、本明細書に援用されると示されるのと同じ度合いまで、本明細書に援用される。
【0026】
[0039]付随する請求項を含めて、本明細書で用いる際、単数形「a」、「an」、および「the」には、内容が明らかに別に指示しない限り、複数の言及も含まれ、そして「少なくとも1つ」および「1以上」と交換可能に用いられる。したがって、「(単数の)アプタマー(an aptamer)」への言及には、アプタマーの混合物が含まれ、「(単数の)プローブ(a probe)」への言及には、プローブの混合物が含まれるなどである。
【0027】
[0040]本明細書において、用語「約」は、数値が関連する項目の基本的な機能が不変であるような、数値の重要でない修飾または変動を示す。
[0041]本明細書において、用語「含む(comprises)」、「含むこと(comprising)」、「含まれる(includes)」、「含まれること(including)」、「含有する(contains)」、「含有すること(containing)」、およびそれらの任意の変形は、非包括的包含を含むと意図され、したがって、要素または要素のリストを含むか、該要素が含まれるか、または該要素を含有する、問題のプロセス、方法、プロセスによる産物、または組成物には、これらの要素のみが含まれるのでなく、問題のこうしたプロセス、方法、プロセスによる産物、または組成物に明確に列挙されていないかまたは本質的でない、他の要素もまた、含まれてもよい。
【0028】
[0042]本明細書において、「核酸リガンド」、「アプタマー」および「クローン」は交換可能に用いられ、ターゲット分子に対して、望ましい作用を有するかまたは有しうる、非天然存在核酸を指す。望ましい作用には、限定されるわけではないが、ターゲットの結合、ターゲットの触媒的変化、ターゲットまたはターゲットの機能的活性を修飾するかまたは改変する方式でのターゲットとの反応、ターゲットへの共有結合(自殺阻害剤におけるようなもの)、ならびにターゲットおよび別の分子間の反応の促進が含まれる。1つの態様において、作用は、ターゲット分子に対する特異的結合アフィニティであり、こうしたターゲット分子は、主にワトソン/クリック塩基対形成または三重鎖らせん結合に依存しない機構を通じてアプタマーに結合するポリヌクレオチド以外の三次元化学構造であり、ここでアプタマーは、ターゲット分子に結合される既知の生理学的機能を有する核酸ではない。アプタマーには:(a)ターゲットと候補混合物を接触させ、ここで、候補混合物中、他の核酸に比較してターゲットに対して増加したアフィニティを有する核酸を、候補混合物の残りから分配してもよく;(b)増加したアフィニティおよび/または遅いオフ速度の核酸を候補混合物の残りから分配し;そして(c)増加したアフィニティの核酸を増幅して、核酸のリガンド濃縮混合物を得て、それによって、ターゲット分子のアプタマーを同定する工程を含む方法によって、核酸の候補混合物から同定される核酸が含まれ、アプタマーは所定のターゲットのリガンドである。アフィニティ相互作用は程度の問題であることが認識される;が、この文脈では、そのターゲットに対するアプタマーの「特異的結合アフィニティ」は、アプタマーが、混合物または試料中の他の非ターゲット構成要素に結合しうるよりも一般的にはるかにより高い度合いのアフィニティで、そのターゲットに結合することを意味する。(単数の)「アプタマー」または「核酸リガンド」は、特定のヌクレオチド配列を有する核酸分子の1つのタイプまたは種のコピーセットである。アプタマーには、いかなる適切な数のヌクレオチドが含まれてもよい。「(複数の)アプタマー」はこうした分子セットの1より多くを指す。異なるアプタマーは、同数かまたは異なる数か、いずれのヌクレオチドを有してもよい。アプタマーは、DNAまたはRNAであってもよいし、そして一本鎖、二本鎖であってもよく、または二本鎖領域を含有してもよい。
【0029】
[0043]本明細書において、「遅いオフ速度」または「解離の遅い速度」または「遅い解離速度」は、アプタマー/ターゲット複合体が解離し始めるのに掛かる時間を指す。これは、半減期、t1/2、またはアプタマー/ターゲット複合体の50%が解離した時点として表されうる。t1/2値として表される、オフ速度が遅いアプタマーのオフ速度または解離速度は、約30分間以上、60分間以上、90分間以上、120分間以上、150分間以上、180分間以上、210分間以上、および約240分間以上であってもよい。
【0030】
[0044]1つの態様において、核酸の合成ライブラリーを産生するための方法は:1)核酸を合成し;2)核酸を脱保護し;3)核酸を精製し;そして4)核酸を分析する工程を含む。合成工程において、単量体混合物を調製し、ここで、混合物中の多様なヌクレオチドの比を最適化して、最終産物において等しい率の各ヌクレオチドを生じる。混合物中の1以上の単量体が修飾ヌクレオチドを含んでもよい。この方法において、アミダイト保護基を用いて、そして1つの態様において、単量体濃度は0.1Mである。合成中、産物核酸において、5’保護基が保持される。固体支持体(調節孔ガラス、CPG)上で合成を行い、そして少なくとも約80サイクルを完了して、最終産物を合成する。
【0031】
[0045]合成プロセス後、核酸産物を脱保護する。1.0M水性リジン緩衝液、pH9.0を使用して、脱プリン塩基部位を切断する一方、産物を支持体(調節孔ガラス、CPG)上に保持する。これらの切断された一部切除(truncated)配列を脱イオン水(dI)で2回洗い流す。2回の洗浄後、脱保護工程の準備中に、500μLのdI水を添加する。この工程には、1.0mLのT−ブチルアミン:メタノール:水、1:1:2での、70℃で5時間の処理が伴い、その後、凍結、ろ過、および蒸発乾固が続く。PRP−3 HPLCカラム(Hamilton)上で、保護基の疎水性に基づいて、核酸産物を精製する。適切なカラム分画を収集し、そしてプールし、脱塩し、そして蒸発乾固して、揮発性溶出緩衝液を除去する。遠心分離プロセスによって、最終産物を水で洗浄し、そして次いで再懸濁する。最後に、再懸濁物質を処理して、最終産物を脱保護する。塩基組成、プライマー伸張、および配列決定ゲルによって、最終産物を性質決定する。
【0032】
[0046]また、固相を用いた酵素的方法によって、核酸の候補混合物を産生してもよい。1つの態様において、この方法は、上記と同じ基本的工程を含む。この場合、目的は、アンチセンスライブラリーの合成であり、そしてこれらのライブラリーは、5’ビオチン修飾を含めて産生される。すべての残りの合成プロセスは上記の通りである。合成ライブラリーを調製したら、1以上の修飾ヌクレオチドを含有するプライマー伸張混合物中で、核酸を用いて、古典的プライマー伸張法において、最終候補混合物を産生してもよい。
【0033】
[0047]ライブラリーの合成に用いられるのと同じ化学反応によって、アプタマーを合成してもよい。しかし、ヌクレオチドの混合物の代わりに、合成の各工程で1つのヌクレオチドを導入して、ルーチンの方法によって生成される最終配列を調節する。配列の所望の位置で、合成プロセス内に修飾ヌクレオチドを導入してもよい。ヌクレオチドの既知の化学的修飾を用いて、必要に応じて、他の官能性を導入してもよい。
【0034】
[0048]本明細書において、「候補混合物」は、そこから所望のリガンドを選択しようとする、異なる配列の核酸の混合物である。候補混合物の供給源は、天然存在核酸またはその断片、化学的に合成された核酸、酵素的に合成された核酸、あるいは前述の技術の組み合わせによって作製された核酸由来であってもよい。光反応基または他の修飾を持つヌクレオチドなどの修飾ヌクレオチドを候補混合物内に取り込んでもよい。さらに、SELEX法を用いて候補混合物を産生してもよく、すなわち、第一のSELEX法実験を用いて、リガンド濃縮核酸混合物を産生可能であり、この混合物を、第二のSELEX法実験において、候補混合物として使用してもよい。候補混合物はまた、1以上の共通の構造モチーフを持つ核酸を含むことも可能である。本明細書において、ときに、候補混合物はまた、「プール」または「ライブラリー」とも称される。例えば、「RNAプール」は、RNAで構成される候補混合物を指す。
【0035】
[0049]多様な態様において、候補混合物中の各核酸は、増幅プロセスを容易にするため、ランダム化領域のいずれかの側に固定端を有してもよい。核酸の候補混合物中の核酸は、増幅プロセス中に高分子量パラサイトの形成を防止するため、その5’末端および3’末端に、各々、固定領域または「テール」配列をさらに含んでもよい。
【0036】
[0050]本明細書において、「核酸」、「オリゴヌクレオチド」、および「ポリヌクレオチド」は、交換可能に用いられ、任意の長さのヌクレオチドのポリマーを指し、そしてこうしたヌクレオチドには、デオキシリボヌクレオチド、リボヌクレオチド、および/または類似体、あるいは化学的に修飾されたデオキシリボヌクレオチドまたはリボヌクレオチドが含まれてもよい。用語「ポリヌクレオチド」、「オリゴヌクレオチド」、および「核酸」には、二本鎖または一本鎖分子、ならびに三重らせん分子が含まれる。
【0037】
[0051]存在する場合、ヌクレオチドの化学的修飾には、単独でまたは任意の組み合わせで、2’位糖修飾、5位ピリミジン修飾(例えば、5−(N−ベンジルカルボキシアミド)−2’−デオキシウリジン、5−(N−イソブチルカルボキシアミド)−2’−デオキシウリジン、5−(N−[2−(1H−インドール−3イル)エチル]カルボキシアミド)−2’−デオキシウリジン、5−(N−[1−(3−トリメチルアンモニウム)プロピル]カルボキシアミド)−2’−デオキシウリジンクロリド、5−(N−ナフチルカルボキシアミド)−2’−デオキシウリジン、または5−(N−[1−(2,3−ジヒドロキシプロピル)]カルボキシアミド)−2’−デオキシウリジン)、8位プリン修飾、環外アミンでの修飾、4−チオウリジンの置換、5−ブロモまたは5−ヨードウラシルの置換、主鎖修飾、メチル化、イソ塩基、イソシチジンおよびイソグアニジンなどの異常な塩基対形成の組み合わせ等が含まれてもよい。修飾には、キャッピングまたはPEG化などの3’および5’修飾もまた含まれてもよい。他の修飾には、類似体での1以上の天然存在ヌクレオチドの置換、ヌクレオチド間修飾、例えば非荷電連結での修飾(例えばメチルホスホネート、ホスホトリエステル、ホスホアミデート、カルバメートなど)、および荷電連結での修飾(例えばホスホロチオエート、ホスホロジチオエートなど)、挿入剤(例えばアクリジン、ソラレンなど)での修飾、キレート剤(例えば金属、放射性金属、ホウ素、酸化金属など)を含有する修飾、アルキル化剤を含有する修飾、および修飾連結での修飾(例えばアルファ・アノマー核酸など)が含まれてもよい。さらに、糖に通常存在する任意のヒドロキシル基を、ホスホン酸基またはリン酸基によって置換するか;標準的保護基によって保護するか;あるいはさらなるヌクレオチドまたは固体支持体へのさらなる連結に備えて活性化してもよい。5’および3’末端OH基をリン酸化するか、あるいは、アミン、約1〜約20炭素原子の有機キャッピング基部分、または約1〜約20のポリエチレングリコール(PEG)ポリマーまたは他の親水性もしくは疎水性生物学的もしくは合成ポリマーの有機キャッピング基部分で置換してもよい。存在する場合、ヌクレオチド構造に対する修飾を、ポリマーの組み立て前または後に行ってもよい。非ヌクレオチド構成要素によって、ヌクレオチド配列を中断してもよい。標識化構成要素とのコンジュゲート化によるなどで、重合後にポリヌクレオチドをさらに修飾してもよい。
【0038】
[0052]ポリヌクレオチドはまた、当該技術分野に一般的に知られるリボースまたはデオキシリボース糖の類似型も含有してもよく、これらには、2’−O−メチル−、2’−O−アリル、2’−フルオロ−または2’−アジド−リボース、炭素環糖類似体、α−アノマー糖、エピマー糖、例えばアラビノース、キシロースまたはリキソース、ピラノース糖、フラノース糖、セドヘプツロース、無環類似体および脱塩基性ヌクレオシド類似体、例えばメチルリボシドが含まれる。上に記載するように、1以上のホスホジエステル連結を、別の連結基によって置換してもよい。これらの別の連結基には、ホスフェートがP(O)S(「チオエート」)、P(S)S(「ジチオエート」)、(O)NR(「アミデート」)、P(O)R、P(O)OR’、COまたはCH(「ホルムアセタール」)によって置換されている態様が含まれ、式中、各RまたはR’は、独立に、H、あるいはエーテル(−O−)連結、アリール、アルケニル、シクロアルキル、シクロアルケニルまたはアラルジル(araldyl)を場合によって含有する、置換または非置換アルキル(1〜20C)である。ポリヌクレオチド中のすべての連結が同一である必要はない。糖、プリン、およびピリミジンの類似型の置換は、最終産物の設計に好都合である可能性もあり、例えばポリアミド主鎖のような別の主鎖構造も好都合でありうる。
【0039】
[0053]1つの態様において、アプタマーの可変領域には、修飾塩基を含むヌクレオチドが含まれる。任意の記載する方法、デバイス、およびキットにおいて、特定の修飾アプタマーを用いてもよい。これらの修飾ヌクレオチドは、それぞれのターゲットからのオフ速度が非常に遅い新規アプタマーを産生する一方、ターゲットに対して高いアフィニティを維持することが示されてきている。1つの態様において、ピリミジン塩基のC−5位を修飾してもよい。修飾塩基を含むヌクレオチドを含有するアプタマーは、天然存在ヌクレオチド(すなわち非修飾ヌクレオチド)のみを含む標準的なアプタマーの特性とは異なる、いくつかの特性を有する。1つの態様において、ヌクレオチドの修飾法には、アミド連結の使用が含まれる。しかし、他の適切な修飾法を用いてもよい。驚くべきことに、同定される、オフ速度が遅いアプタマーの構造が、標準的塩基対形成モデルによって予測される構造と完全には一致しないようであることが観察された。この観察は、オフ速度が遅いアプタマーの測定融解温度が、モデルによって予測される融解温度とは一致しないという事実によって裏付けられる。図13を参照されたい。示すように、オフ速度が遅いアプタマーの測定および予測融解温度間には、まったく相関はないようである。計算融解温度(Tm)は、測定Tmより平均して6℃低い。測定融解温度は、これらの修飾ヌクレオチドを含む、オフ速度が遅いアプタマーが、予測されうるよりも安定であり、そして潜在的に、新規二次構造を所持することを示す。これらの修飾アプタマーはまた、修飾されていないヌクレオチドのみを含む、対応するアプタマーとは異なる円二色性スペクトルを有する。多くのターゲットの場合、ターゲットに対するオフ速度が遅いアプタマーは、最初のライブラリーまたは候補混合物の産生中に修飾ヌクレオチドを用いた場合に、同定される可能性がより高い。
【0040】
[0054]特定の5位ピリミジン修飾には、米国特許第5,719,273号および第5,945,527号に記載するもの、ならびに図14に例示するものが含まれる。
[0055]本明細書において、「修飾核酸」は、1以上の修飾ヌクレオチドを含有する核酸配列を指す。いくつかの態様において、修飾ヌクレオチドがSELEX法と適合することが望ましい可能性もある。
【0041】
[0056]「ポリペプチド」、「ペプチド」、および「タンパク質」は、本明細書において交換可能に用いられ、任意の長さのアミノ酸のポリマーを指す。ポリマーは直鎖でもまたは分枝鎖でもよく、修飾アミノ酸を含んでもよく、そして/または非アミノ酸によって中断されてもよい。該用語はまた、天然にまたは介入によって;例えばジスルフィド結合形成、グリコシル化、脂質化、アセチル化、リン酸化、あるいは他の操作または修飾のいずれか、例えば標識化構成要素とのコンジュゲート化によって修飾されているアミノ酸ポリマーも含む。定義内にやはり含まれるのは、例えば、アミノ酸の1以上の類似体(例えば非天然アミノ酸等を含む)、ならびに当該技術分野に知られる他の修飾を含有するポリペプチドである。ポリペプチドは一本鎖または会合鎖であってもよい。
【0042】
[0057]本明細書において、「光反応性ヌクレオチド」は、特定の波長の光の照射に際して、タンパク質などのターゲットと光架橋可能である、任意の修飾ヌクレオチドを意味する。例えば、光SELEX法によって産生される光アプタマーには、以下の:5−ブロモウラシル(BrU)、5−ヨードウラシル(IU)、5−ブロモビニルウラシル、5−ヨードビニルウラシル、5−アジドウラシル、4−チオウラシル、5−ブロモシトシン、5−ヨードシトシン、5−ブロモビニルシトシン、5−ヨードビニルシトシン、5−アジドシトシン、8−アジドアデニン、8−ブロモアデニン、8−ヨードアデニン、8−アジドグアニン、8−ブロモグアニン、8−ヨードグアニン、8−アジドヒポキサンチン、8−ブロモヒポキサンチン、8−ヨードヒポキサンチン、8−アジドキサンチン、8−ブロモキサンチン、8−ヨードキサンチン、5−ブロモデオキシウリジン、8−ブロモ−2’−デオキシアデニン、5−ヨード−2’−デオキシウラシル、5−ヨード−2’−デオキシシトシン、5−[(4−アジドフェナシル)チオ]シトシン、5−[(4−アジドフェナシル)チオ]ウラシル、7−デアザ−7−ヨードアデニン、7−デアザ−7−ヨードグアニン、7−デアザ−7−ブロモアデニン、および7−デアザ−7−ブロモグアニンより選択される光反応基が含まれてもよい。「光反応性ピリミジン」は、特定の波長の照射に際して、ターゲットと光架橋可能である、任意の修飾ピリミジンを意味する。例示的な光反応性ピリミジンには、5−ブロモ−ウラシル(BrdU)、5−ブロモ−シトシン(BrdC)、5−ヨード−ウラシル(IdU)、および5−ヨード−シトシン(IdC)が含まれる。多様な態様において、光反応性官能基は、ターゲット、またはオリゴヌクレオチドの修飾されていない部分によっては吸収されない波長の光を吸収するであろう。
【0043】
[0058]「SELEX」は、望ましい方式でターゲットと相互作用する(例えばタンパク質に結合する)核酸の選択と、これらの選択された核酸の増幅とを組み合わたプロセスを指す。場合による、選択/増幅工程の反復サイクリングによって、非常に多数の核酸を含有するプールから、ターゲットと最も強く相互作用する1つまたは少数の核酸の選択が可能になる。選択された目的が達成されるまで、選択/増幅法のサイクリングを続ける。SELEX方法論はSELEX特許に記載される。SELEX法のいくつかの態様において、ターゲットに非共有結合するアプタマーを生成する。SELEX法の他の態様において、ターゲットに共有結合するアプタマーを生成する。
【0044】
[0059]本明細書において、用語「増幅」または「増幅すること」は、分子または分子クラスの量またはコピー数を増加させる、任意のプロセスまたはプロセス工程の組み合わせを意味する。
【0045】
[0060]「SELEXターゲット」または「ターゲット分子」または「ターゲット」は、本明細書において、核酸が所望の方式で作用しうる任意の化合物を指す。SELEXターゲット分子は、タンパク質、ペプチド、核酸、炭水化物、脂質、多糖、糖タンパク質、ホルモン、受容体、抗原、抗体、ウイルス、病原体、毒性物質、基質、代謝物、遷移状態類似体、補因子、阻害剤、薬剤、色素、栄養物、増殖因子、細胞、組織、前述の任意のものの任意の部分または断片などであることが可能であり、制限はない。1つの態様において、SELEXターゲットには、核酸に結合することが知られる分子、例えば既知の核酸結合タンパク質(例えば転写因子)などは含まれない。実質的にいかなる化学的または生物学的エフェクターも、適切なSELEXターゲットになりうる。いかなる大きさの分子もSELEXターゲットとして役立ちうる。ターゲットはまた、ターゲットおよび核酸間の相互作用の見込みまたは強度を増進するため、特定の方法で修飾されてもよい。ターゲットにはまた、特定の化合物または分子の任意の重要でない変動も含まれ、例えばタンパク質の場合、例えばアミノ酸配列の重要でない変動、ジスルフィド結合形成、グリコシル化、脂質化、アセチル化、リン酸化、あるいは分子の同一性を実質的に改変しない標識構成要素とのコンジュゲート化などの任意の他の操作または修飾が含まれてもよい。(単数の)「ターゲット分子」または「ターゲット」は、アプタマーに結合可能な分子または多分子構造の1つのタイプまたは種のコピーセットである。「(複数の)ターゲット分子」または「(複数の)ターゲット」は、分子のこうしたセットの1より多くを指す。ターゲットがペプチドであるSELEX法の態様が、その全体が本明細書に援用される、米国特許第6,376,190号、表題“Modified SELEX Processes Without Purified Protein”に記載される。図7は、オフ速度が遅い多様なアプタマーを含めて、アプタマーが産生されている500を超えるターゲットを列挙する。
【0046】
[0061]本明細書において、「競合剤分子」および「競合剤」は、交換可能に用いられ、非ターゲット分子と非特異的複合体を形成可能ないかなる分子も指す。この文脈において、非ターゲット分子には、未結合アプタマーが含まれ、この場合、例えば、競合剤を用いて、アプタマーが別の非ターゲット分子に非特異的に結合する(再結合する)のを阻害することも可能である。(単数の)「競合剤分子」または「競合剤」は、分子の1つのタイプまたは種のコピーセットである。「(複数の)競合剤分子」または「(複数の)競合剤」は、分子のこうしたセットの1より多くを指す。競合剤分子には、限定されるわけではないが、オリゴヌクレオチド、ポリアニオン(例えば、ヘパリン、ニシン精子DNA、サケ精子DNA、tRNA、硫酸デキストラン、ポリデキストラン、脱塩基性ホスホジエステルポリマー、dNTP、およびピロリン酸)が含まれる。多様な態様において、1以上の競合剤の組み合わせを用いてもよい。
【0047】
[0062]本明細書において、「非特異的複合体」は、アプタマーおよびそのターゲット分子以外の2以上の分子間の非共有結合を指す。非特異的複合体は、分子クラス間の相互作用に相当する。非特異的複合体には、アプタマーおよび非ターゲット分子間、競合剤および非ターゲット分子間、競合剤およびターゲット分子間、ならびにターゲット分子および非ターゲット分子間で形成される複合体が含まれる。
【0048】
[0063]本明細書において、用語「遅いオフ速度の濃縮プロセス」は、遅い解離速度を有するアプタマー・アフィニティ複合体の相対濃度が、より速い、より望ましくない解離速度を有するアプタマー・アフィニティ複合体の濃度に比較して増加するように、候補混合物の特定の構成要素の相対濃度を改変するプロセスを指す。1つの態様において、遅いオフ速度の濃縮プロセスは、溶液に基づく遅いオフ速度の濃縮プロセスである。この態様において、混合物中でアプタマー・アフィニティ複合体を形成するターゲットまたは核酸のどちらも、遅いオフ速度の濃縮プロセス中に固体支持体上に固定されないように、溶液に基づく遅いオフ速度の濃縮プロセスは、溶液中で行われる。多様な態様において、遅いオフ速度の濃縮プロセスには、1以上の工程が含まれ、競合剤分子の添加および該分子とのインキュベーション、混合物の希釈、またはこれらの組み合わせ(例えば競合剤分子の存在下での混合物の希釈)が含まれうる。遅いオフ速度の濃縮プロセスの効果は、一般的に、異なるアプタマー・アフィニティ複合体(すなわち候補混合物において、ターゲット分子および異なる核酸間で形成されるアプタマー・アフィニティ複合体)の異なる解離速度に依存するため、遅いオフ速度の濃縮プロセスの期間は、遅い解離速度を有するアプタマー・アフィニティ複合体を高い比率で保持しつつ、速い解離速度を有するアプタマー・アフィニティ複合体の数を実質的に減少させるように選択される。SELEX法中の1以上のサイクルで、遅いオフ速度の濃縮プロセスを用いてもよい。希釈および競合剤の添加を組み合わせて用いる場合、同時にまたは任意の順で連続して、これを行ってもよい。混合物中の総ターゲット(タンパク質)濃度が低い場合、遅いオフ速度の濃縮プロセスを用いてもよい。1つの態様において、遅いオフ速度の濃縮プロセスに希釈が含まれる場合、アプタマーに保持される核酸をSELEX法の続くラウンドのために回収することに留意して、混合物を、現実的である限り、出来るだけ希釈してもよい。1つの態様において、遅いオフ速度の濃縮プロセスには、競合剤ならびに希釈の使用が含まれ、競合剤の使用なしで必要であるよりも、混合物を少なく希釈することが可能になる。
【0049】
[0064]1つの態様において、遅いオフ速度の濃縮プロセスには、競合剤の添加が含まれ、そして競合剤はポリアニオン(例えばヘパリンまたは硫酸デキストラン(デキストラン))である。ヘパリンまたはデキストランは、以前のSELEX選択において、特異的アプタマーの同定において用いられてきている。しかし、こうした方法において、ヘパリンまたはデキストランが平衡工程中に存在し、該工程において、ターゲットおよびアプタマーが結合して複合体を形成する。こうした方法において、ヘパリンまたはデキストランの濃度が増加するにつれて、低アフィニティ・ターゲット/アプタマー複合体に対する高アフィニティ・ターゲット/アプタマー複合体の比が増加する。しかし、ヘパリンまたはデキストランが高濃度であると、核酸および競合剤間のターゲット結合に関する競合のため、平衡時の高アフィニティ・ターゲット/アプタマー複合体の数が減少しうる。対照的に、ここで記載される方法は、ターゲット/アプタマー複合体が形成可能となった後に競合剤を添加して、そしてしたがって、形成される複合体の数には影響を及ぼさない。ターゲットおよびアプタマー間で平衡結合が起こった後に競合剤を添加すると、より少ないターゲット/アプタマー複合体を含む新たな平衡に達するまでの間に展開する、非平衡状態が生じる。速いオフ速度のアプタマーがまず解離するため、新たな平衡に達する前に、ターゲット/アプタマー複合体を捕捉すると、遅いオフ速度に関して試料が濃縮される。
【0050】
[0065]別の態様において、遅いオフ速度の濃縮プロセス中に、ポリアニオン性競合剤(例えば硫酸デキストランまたは別のポリアニオン性物質)を用いて、ポリアニオンの存在に対して難分解性であるアプタマーの同定を容易にする。この文脈では、「ポリアニオン難分解性アプタマー」は、非ポリアニオン難分解性アプタマーを含むアプタマー/ターゲット複合体よりも、溶液中で解離する可能性がより低い、ポリアニオン難分解性物質もまた含有するアプタマー/ターゲット複合体を形成可能なアプタマーである。この方式で、検出法が、ポリアニオン難分解性アプタマーが難分解性であるポリアニオン性物質(例えば硫酸デキストラン)の使用を含む場合、試料中のターゲットの存在または量または濃度を検出する分析法の実行において、該アプタマーを用いることも可能である。
【0051】
[0066]したがって、1つの態様において、ポリアニオン難分解性アプタマーを産生するための方法を提供する。この態様において、核酸の候補混合物とターゲットを接触させた後、候補混合物中のターゲットおよび核酸が平衡に達することを可能にする。溶液中にポリアニオン性競合剤を導入し、そして候補混合物中のオフ速度が速いアプタマーの大部分がターゲット分子から解離することを確実にするのに十分な期間、該競合剤とのインキュベーションを可能にする。また、ポリアニオン性競合剤の存在下で解離しうる、候補混合物中のアプタマーは、ターゲット分子から遊離するであろう。混合物を分配して、ターゲット分子と会合したままである、高アフィニティの、オフ速度が遅いアプタマーを単離し、そして複合体化されていない物質をすべて溶液から除去する。次いで、アプタマーをターゲット分子から遊離させ、そして単離してもよい。単離されたアプタマーをまた、増幅し、そしてさらなる選択ラウンドを適用して、選択されたアプタマーの総合的な性能を増加させてもよい。オフ速度が遅いアプタマーの選択が特定の適用のために必要でない場合、このプロセスはまた、最小限のインキュベーション時間でも使用可能である。
【0052】
[0067]したがって、1つの態様において、オフ速度が遅い(長い)アプタマーの同定または産生のために、修飾SELEX法を提供し、ここで、ターゲット分子および候補混合物を接触させ、そしてターゲット分子および候補混合物中に含有される核酸間の平衡結合が起こるのに十分な期間、一緒にインキュベーションする。平衡結合後、過剰な競合剤分子、例えばポリアニオン競合剤を混合物に添加し、そしてあらかじめ決定された期間、過剰な競合剤分子と一緒にインキュベーションする。このあらかじめ決定されたインキュベーション期間より短いオフ速度を有するアプタマーの有意な割合は、あらかじめ決定されたインキュベーション期間中にターゲットから解離するであろう。過剰な競合剤分子がターゲットに非特異的に結合し、そしてターゲット結合部位を占める可能性もあるため、ターゲットとこれらのオフ速度が「速い」アプタマーの再会合は最小限になる。より長いオフ速度を有するアプタマーの有意な割合は、あらかじめ決定されたインキュベーション期間中、ターゲットに複合体化したままであろう。インキュベーション期間の最後に、核酸−ターゲット複合体を混合物の残りから分配すると、オフ速度が速いものからの、オフ速度が遅いアプタマー集団の分離が可能になる。解離工程を用いて、ターゲットからオフ速度が遅いアプタマーを解離させてもよく、そしてターゲット分子に対する高いアフィニティおよび特異性を有する、オフ速度が遅いアプタマー(個々のアプタマーまたはオフ速度が遅いアプタマー群のいずれか)の単離、同定、配列決定、合成および増幅が可能になる。慣用的なSELEXと同様に、修飾SELEX法の1ラウンドから同定されたアプタマー配列を新規候補混合物の合成に用いてもよく、したがって接触、平衡結合、競合剤分子の添加、競合剤分子とのインキュベーションおよびオフ速度が遅いアプタマーの分配の工程を、必要に応じた回数で反復/繰り返し可能である。
【0053】
[0068]競合剤添加前に、ターゲットと候補混合物の平衡結合を可能にし、その後、過剰な競合剤を添加し、そしてあらかじめ決定された期間、競合剤とインキュベーションする工程を組み合わせることによって、オフ速度が、以前達成されたよりもはるかに長いアプタマーの集団を選択可能になる。
【0054】
[0069]平衡結合を達成するため、候補混合物を少なくとも約5分間、または少なくとも約15分間、約30分間、約45分間、約1時間、約2時間、約3時間、約4時間、約5時間または約6時間、ターゲットとインキュベーションしてもよい。
【0055】
[0070]候補混合物およびターゲット分子の混合物と競合剤分子のあらかじめ決定されたインキュベーション期間は、ターゲットの性質、および(あるとすれば)ターゲットに対する既知のアプタマーの既知のオフ速度などの要因を考慮して、必要に応じて選択可能である。あらかじめ決定されたインキュベーション期間は:少なくとも約5分間、少なくとも約10分間、少なくとも約20分間、少なくとも約30分間、少なくとも約45分間、少なくとも約1時間、少なくとも約2時間、少なくとも約3時間、少なくとも約4時間、少なくとも約5時間、少なくとも約6時間より選択可能である。
【0056】
[0071]他の態様において、オフ速度増進プロセスとして希釈を用いて、そして希釈された候補混合物、ターゲット分子/アプタマー複合体のインキュベーションをあらかじめ決定された期間、行ってもよく、この期間を:少なくとも約5分間、少なくとも約10分間、少なくとも約20分間、少なくとも約30分間、少なくとも約45分間、少なくとも約1時間、少なくとも約2時間、少なくとも約3時間、少なくとも約4時間、少なくとも約5時間、少なくとも約6時間より選択してもよい。
【0057】
[0072]本開示の態様は、オフ速度が遅いアプタマーの同定、産生、合成および使用に関する。これらは、慣用的SELEXによって通常得られるアプタマーのものより高い、非共有アプタマー−ターゲット複合体からの解離速度(t1/2)を有するアプタマーである。アプタマーおよびターゲットの非共有複合体を含有する混合物に関しては、t1/2は、アプタマーの半分がアプタマー−ターゲット複合体から解離するのに掛かる時間に相当する。本開示記載の解離速度が遅いアプタマーのt1/2は:約30分間以上;約30分間〜約240分間;約30分間〜約60分間;約60分間〜約90分間;約90分間〜約120分間;約120分間〜約150分間;約150分間〜約180分間;約180分間〜約210分間;約210分間〜約240分間の1つより選択される。
【0058】
[0073]SELEX法によって同定されるアプタマーに特徴的な特性は、そのターゲットに対する高いアフィニティである。アプタマーは:約1μM未満、約100nM未満、約10nM未満、約1nM未満、約100pM未満、約10pM未満、約1pM未満の1つより選択される、そのターゲットに対する解離定数(k)を有するであろう。
【0059】
[0074]「組織ターゲット」または「組織」は、本明細書において、上述のSELEXターゲットの特定のサブセットを指す。この定義にしたがうと、組織は、不均一環境にある巨大分子である。本明細書において、組織は、単一の細胞種、細胞種の集合、細胞の凝集物、または巨大分子の凝集物を指す。これは、典型的にはタンパク質などの単離された可溶性分子である、より単純なSELEXターゲットとは異なる。いくつかの態様において、組織は、より単純なSELEXターゲットよりも数桁大きい不溶性巨大分子である。組織は、多くの巨大分子で構成される複雑なターゲットであり、巨大分子は各々、多くの潜在的なエピトープを有する。多くのエピトープを含む、異なる巨大分子は、タンパク質、脂質、炭水化物など、またはその組み合わせであることも可能である。組織は、一般的に、構造および組成両方に関して流動的であることも、または強固であることも可能である、巨大分子の物理的アレイである。細胞外マトリックスは、構造的および組成的に、より強固な組織の例であり、一方、膜二重層は、構造および組成がより流動的である。組織は一般的に可溶性でなく、そして固相に留まり、そしてしたがって分配は比較的容易に達成可能である。組織には、限定されるわけではないが、所定の臓器の全体的な細胞基礎構造を示すのに一般的に用いられる構造物質の1つを形成する、細胞間物質を伴う、通常は特定の種類の細胞の凝集物、例えば腎臓組織、脳組織が含まれる。組織の4つの一般的な種類は、上皮組織、結合組織、神経組織および筋組織である。
【0060】
[0075]この定義内に属する組織の例には、限定されるわけではないが、無細胞であるフィブリン塊などの巨大分子の不均一凝集物;細胞の均一または不均一凝集物;臓器、腫瘍、リンパ節、動脈など、特定の機能を有し、細胞を含有する、より高次の構造;および個々の細胞が含まれる。組織または細胞は、天然環境中にあるか、単離されているか、または組織培養中にあることが可能である。組織は、損なわれていないか、または修飾されていることが可能である。修飾には、形質転換、トランスフェクション、活性化などの多くの変化、および下部構造単離、例えば細胞膜、細胞核、細胞小器官などの単離が含まれることが可能である。
【0061】
[0076]組織、細胞または細胞内構造の供給源は、原核生物とともに真核生物から得ることが可能である。これには、ヒト、動物、植物、細菌、真菌、およびウイルス構造が含まれる。
【0062】
[0077]本明細書において、用語「標識化剤」、「標識」、または「検出可能部分」、または「検出可能要素」または「検出可能構成要素」は、アプタマーに結合したターゲット分子を検出するのに使用可能な1以上の試薬を指す。検出可能部分または標識は、直接または間接的に検出可能である。一般的に、検出可能な任意のレポーター分子が標識であってもよい。標識には、例えば、(i)シグナルを生じることによって直接検出可能なレポーター分子、(ii)レポーター分子を含有する同族体(cognate)に、続いて結合することによって、間接的に検出可能な特異的結合対メンバー、(iii)質量分析によって検出可能な質量タグ、(iv)増幅または連結のテンプレートを提供可能なオリゴヌクレオチド・プライマー、および(v)例えばリプレッサータンパク質などのリガンドとして作用可能な特異的ポリヌクレオチド配列または認識配列が含まれ、ここで、最後の2つの例では、オリゴヌクレオチド・プライマーまたはリプレッサータンパク質は、レポーター分子などを有するか、または有することも可能であろう。レポーター分子は、触媒、例えば酵素、触媒をコードするポリヌクレオチド、プロモーター、色素、蛍光分子、量子ドット、化学発光分子、補酵素、酵素基質、放射性基、小有機分子、増幅可能ポリヌクレオチド配列、ラテックスまたは炭素粒子などの粒子、金属ゾル、微結晶、リポソーム、細胞等であってもよく、これらは色素、触媒または他の検出可能基、質量分析目的のために分子にコンジュゲート化される、分子の重量を改変する質量タグ等でさらに標識されていてもまたはいなくてもよい。標識は、電磁または電気化学物質から選択可能である。1つの態様において、検出可能標識は蛍光色素である。本明細書の開示に基づいて、他の標識および標識スキームが、当業者には明らかであろう。
【0063】
[0078]検出可能部分(要素または構成要素)には、上に列挙する任意のレポーター分子が、そして任意の方式で、検出可能シグナルを生じるのに使用可能な任意の他の化学薬品または構成要素も含まれうる。蛍光シグナル、化学発光シグナル、または部分の同一性に応じた、任意の他の検出可能シグナルを介して、検出可能部分を検出してもよい。検出可能部分が酵素(例えばアルカリホスファターゼ)である場合、酵素基質および酵素活性に必要な任意のさらなる因子の存在下で、シグナルを生じさせてもよい。検出可能部分が酵素基質である場合、酵素および酵素活性に必要な任意のさらなる因子の存在下で、シグナルを生じさせてもよい。ターゲット分子に検出可能部分を付着させるのに適した試薬設定には、ターゲット分子への検出可能部分の共有結合、ターゲット分子に共有結合した別の標識化剤構成要素と検出可能部分の非共有結合、およびターゲット分子と非共有結合した標識化剤構成要素への検出可能部分の共有結合が含まれる。普遍的タンパク質染色剤(UPS)は、米国特許出願第10/504,696号、2004年8月12日出願、表題“Methods and Reagents for Detecting Target Binding by Nucleic Acid Ligands”に詳細に記載される。
【0064】
[0079]「固体支持体」は、本明細書において、共有または非共有結合いずれかを通じて、直接または間接的に分子が付着可能な表面を有する、任意の支持体を指す。支持体物質は、天然存在、合成、または天然存在物質の修飾であってもよい。固体支持体物質には、それのみで、または他の物質と組み合わせて用いられるかいずれかの、シリコン、グラファイト、鏡面、ラミネート、セラミックス、プラスチック(例えばポリ(塩化ビニル)、シクロ−オレフィン・コポリマー、ポリアクリルアミド、ポリアクリレート、ポリエチレン、ポリプロピレン、ポリ(4−メチルブテン)、ポリスチレン、ポリメタクリレート、ポリ(エチレンテレフタレート)、ポリテトラフルオロエチレン(PTFEまたはテフロン(登録商標))、ナイロン、ポリ(酪酸ビニル))、ゲルマニウム、ガリウムヒ素、金、銀等が含まれてもよい。シリカを含み、そしてさらに例えばBioglassとして入手可能なガラスを含む、ガラスなどの、さらなる強固な物質を考慮してもよい。使用してもよい他の物質には、例えば、調節孔ガラスビーズなどの多孔物質が含まれる。表面上に取り込まれた、1以上の官能基、例えば任意のアミノ、カルボキシル、チオール、またはヒドロキシル官能基などを有することが可能な、当該技術分野に知られる任意の他の物質もまた、意図される。
【0065】
[0080]固体支持体は、単純から複雑の範囲に渡る、多様な形態のいずれをとってもよく、そしてストリップ、プレート、ディスク、ロッド、ビーズを含む粒子、試験管、ウェル等を含む、いくつかの形状のいずれか1つを有してもよい。表面は、比較的平面(例えばスライド)であっても、球状(例えばビーズ)であっても、筒状(例えばカラム)であっても、または溝型であってもよい。使用可能な例示的な固体支持体には、マイクロタイターウェル、顕微鏡スライド、膜、常磁性ビーズ、帯電紙、ラングミュア−ブロジェット膜、シリコンウェハーチップ、フロースルーチップ、およびマイクロビーズが含まれる。
【0066】
[0081]本明細書において、「分配」は、混合物の1以上の構成要素を、混合物の他の構成要素から分離する任意のプロセスを意味する。例えば、ターゲット分子に結合しているアプタマーを、ターゲット分子に結合していない他の核酸から、そして非ターゲット分子から分配してもよい。より広く言及すると、分配は、ターゲット分子への相対的アフィニティおよび/または解離速度に基づき、候補混合物中のすべての核酸を少なくとも2つのプールに分離することを可能にする。分配は、ろ過、アフィニティクロマトグラフィ、液体−液体分配、HPLC等を含めて、当該技術分野に知られる多様な方法によって達成可能である。例えば、核酸−タンパク質対は、ニトロセルロースフィルターに結合することが可能であるが、未結合核酸はフィルターに結合しない。核酸−ターゲット複合体を特異的に保持するカラムもまた、分配に使用可能である。例えば、カラム上に結合しているターゲット分子と会合可能なオリゴヌクレオチドの場合、最も高いアフィニティのアプタマーを分離しそして単離するのに、カラムクロマトグラフィーを使用することが可能である。ターゲット分子がコンジュゲート化されているビーズもまた、混合物中のアプタマーを分配するのに使用可能である。ビーズが常磁性である場合、磁場の適用によって分配が達成可能である。センサーチップ上にターゲットを固定し、そして該チップ上に混合物を流すことによって、表面プラズモン共鳴技術を用いて混合物中の核酸を分配可能であり、ここでターゲットに対してアフィニティを有する核酸がターゲットに結合可能であり、そして残った核酸を洗い流すことが可能である。液体−液体分配とともに、ろ過ゲル遅延、および密度勾配遠心分離が使用可能である。また、ターゲット分子上のアフィニティタグを用いて、溶液中で未結合であるアプタマーから、タグ化ターゲットに結合した核酸分子を分離してもよい。例えば、ストレプトアビジン常磁性ビーズを用いて、ビオチン化されたターゲット分子を、該分子に結合したアプタマーとともに、未結合核酸配列の溶液から隔離してもよい。調製中に、アフィニティタグもまたアプタマー内に取り込んでもよい。
【0067】
[0082]本明細書において、「光SELEX」は、指数的濃縮によるリガンドの光化学的計画的進化(Photochemical Systematic Evolution of Ligands by Exponential enrichment)の頭文字であり、そして光架橋アプタマーを生成するSELEX法の態様を指す。光SELEX法の1つの態様において、RNAまたはssDNAランダム化オリゴヌクレオチドライブラリーにおいて、天然塩基の代わりに、光の吸収によって活性化される光反応性ヌクレオチドを取り込み、核酸ターゲット分子混合物に光照射して、核酸−ターゲット分子複合体中に取り込まれたいくつかの核酸を、光反応性官能基を介してターゲット分子に架橋させ、そして選択工程は光架橋活性に関する選択である。光SELEX法は、光SELEX特許に非常に詳細に記載されている。
【0068】
[0083]本明細書において、「光アプタマー」、「光反応性アプタマー」、および「光反応性アプタマー」は交換可能に用いられ、ターゲット分子に共有結合するかまたは該分子と「架橋する」ことも可能な、1以上の光反応性官能基を含有するアプタマーを指す。例えば、天然存在核酸残基を修飾して、適切な波長の照射供給源に対する曝露に際して核酸残基に光反応性を与える、化学的官能基を含ませてもよい。いくつかの態様において、光反応性アプタマーをまず同定する。他の態様において、アプタマーをまず同定し、そして続いて、1以上の光反応性官能基を取り込むように修飾して、それによって光アプタマーを生成する。これらの態様において、アプタマーにおいて、例えば、1以上のチミジンおよび/またはシチジン・ヌクレオチドなどの1以上の他のヌクレオチドの代わりに、光反応性核酸残基を置換することによるか、あるいは光反応性官能基を含むように1以上の核酸残基を修飾することによるかのいずれかで、1以上の光反応性核酸残基をアプタマー内に取り込んでもよい。
【0069】
[0084]光アプタマーに取り込んでもよい例示的な光反応性官能基には、5−ブロモウラシル、5−ヨードウラシル、5−ブロモビニルウラシル、5−ヨードビニルウラシル、5−アジドウラシル、4−チオウラシル、5−チオウラシル、4−チオシトシン、5−ブロモシトシン、5−ヨードシトシン、5−ブロモビニルシトシン、5−ヨードビニルシトシン、5−アジドシトシン、8−アジドアデニン、8−ブロモアデニン、8−ヨードアデニン、8−アジドグアニン、8−ブロモグアニン、8−ヨードグアニン、8−アジドヒポキサンチン、8−ブロモヒポキサンチン、8−ヨードヒポキサンチン、8−アジドキサンチン、8−ブロモキサンチン、8−ヨードキサンチン、5−[(4−アジドフェナシル)チオ]シトシン、5−[(4−アジドフェナシル)チオ]ウラシル、7−デアザ−7−ヨードアデニン、7−デアザ−7−ヨードグアニン、7−デアザ−7−ブロモアデニン、および7−デアザ−7−ブロモグアニンが含まれる。
【0070】
[0085]これらのヌクレオシドに基づく例示的な光反応性官能基に加えて、適切なリンカー分子を用いてアプタマーの末端に付加可能な他の光反応性官能基もまた用いてもよい。こうした光反応性官能基には、ベンゾフェノン、アントラキノン、4−アジド−2−ニトロ−アニリン、ソラレン、これらのいずれかの誘導体等が含まれる。
【0071】
[0086]いかなる適切な方法によって、光アプタマーに取り込まれる光反応性官能基を活性化してもよい。1つの態様において、光アプタマーおよびその結合したターゲット分子を、電磁放射線源に曝露することによって、光反応性官能基を含有する光アプタマーをそのターゲットに架橋してもよい。適切なタイプの電磁放射線には、紫外光、可視光、X線、およびガンマ線が含まれる。適切な放射線源には、単色光またはフィルター処理した多色光のいずれかを利用する線源が含まれる。
【0072】
[0087]本明細書において、用語「アフィニティSELEX法」は、ターゲットに対する非光架橋アプタマーが生成されるSELEX法の態様を指す。アフィニティSELEX法のいくつかの態様において、ターゲットを核酸の候補混合物と接触させる前または後のいずれかに、ターゲットが固体支持体上に固定される。固体支持体とターゲットが会合していると、結合している候補混合物中の核酸を、そして遅いオフ速度の濃縮プロセスを用いた場合はターゲットに結合したままであるこうした核酸を、候補混合物の残りから分配することが可能になる。用語「ビーズアフィニティSELEX法」は、例えば核酸の候補混合物と接触させる前に、ターゲットをビーズ上に固定する、アフィニティSELEX法の特定の態様を指す。いくつかの態様において、ビーズは常磁性ビーズである。用語「フィルターアフィニティSELEX法」は、ニトロセルロースフィルターなどのフィルターとの会合によって、核酸ターゲット複合体が候補混合物から分配される態様を指す。これには、ターゲットおよび核酸が、溶液中でまず接触し、そしてフィルターと接触する態様が含まれ、そしてまた、核酸が、フィルター上にあらかじめ固定されたターゲットと接触する態様も含まれる。用語「プレートアフィニティSELEX法」は、ターゲットが、例えばマルチウェルマイクロタイタープレートなどのプレート表面上に固定される態様を指す。いくつかの態様において、プレートはポリスチレンで構成される。いくつかの態様において、疎水性相互作用を通じて、プレートアフィニティSELEX法において、ターゲットをプレートに付着させる。
【0073】
[0088]本開示は、ターゲット分子に結合可能なアプタマーを生成するための改善SELEX法を記載する。より具体的には、本開示は、以前のSELEX法で得られるアプタマーよりもそれぞれのターゲットとする分子からの解離速度が遅いアプタマーおよび/または光アプタマーを同定するための方法を記載する。本開示はさらに、本明細書記載の方法を用いることによって得られるアプタマーおよび/または光アプタマー、ならびに該アプタマーを用いる方法を記載する。
【0074】
[0089]1つの態様において、そのターゲット分子からの解離速度が遅いアプタマーを同定するための方法であって:(a)核酸配列の候補混合物を調製し;(b)ターゲット分子と候補混合物を接触させ、ここで、ターゲット分子に対して最高の相対的アフィニティを持つ核酸がターゲット分子に優先的に結合し、核酸−ターゲット分子複合体を形成し;(c)遅いオフ速度の濃縮プロセスを適用して、比較的速い解離速度を持つ核酸−ターゲット分子複合体の解離を可能にし;(d)候補混合物中の未結合核酸および非ターゲット分子の両方から、残りの核酸−ターゲット分子複合体を分配し;そして(e)ターゲット分子に対するアプタマーを同定する工程を含む、前記方法を提供する。該方法にはさらに、ターゲット分子に結合する核酸を増幅して、ターゲット分子に結合可能であり、さらに、解離速度が遅い核酸−ターゲット分子複合体を産生可能である配列が濃縮された核酸混合物を生じる、反復工程が含まれてもよい。上に定義するように、核酸−ターゲット分子複合体を含有する候補混合物を希釈する工程、核酸−ターゲット分子複合体を含有する候補混合物に少なくとも1つの競合剤を添加する工程、および核酸−ターゲット分子複合体を含有する候補混合物を希釈し、そして核酸−ターゲット分子複合体を含有する候補混合物に少なくとも1つの競合剤を添加する工程から、遅いオフ速度の濃縮プロセスを選択してもよい。
【0075】
[0090]1つの態様において、そのターゲット分子からの解離速度が遅いアプタマーを同定するための方法であって:(a)核酸の候補混合物を調製し;(b)ターゲット分子と候補混合物を接触させ、ここで、候補混合物中、他の核酸に比較してターゲット分子に対して増加したアフィニティを有する核酸がターゲット分子に結合し、核酸−ターゲット分子複合体を形成し;(c)候補混合物およびターゲット分子を、平衡結合を達成するのに十分な期間、一緒にインキュベーションし;(d)少なくとも1つの競合剤分子を(c)の混合物に過剰に添加し;(e)(d)由来の候補混合物、核酸−ターゲット分子複合体および競合剤分子の混合物を、あらかじめ決定された期間、インキュベーションし;(f)候補混合物から核酸−ターゲット分子複合体を分配し;(g)核酸−ターゲット分子複合体を解離させて、未結合核酸を生成し;(h)未結合核酸を増幅して、増加したアフィニティでターゲット分子に結合可能な核酸配列が濃縮された核酸混合物を得る工程を含み、それによってターゲット分子に対するアプタマーを同定可能である、前記方法を提供する。
【0076】
[0091]別の態様において、そのターゲット分子からの解離速度が遅いアプタマーを産生するための方法であって:(a)核酸の候補混合物を調製し;(b)ターゲット分子と候補混合物を接触させ、ここで、候補混合物中、他の核酸に比較してターゲット分子に対して増加したアフィニティを有する核酸がターゲット分子に結合し、核酸−ターゲット分子複合体を形成し;(c)候補混合物およびターゲット分子を、平衡結合を達成するのに十分な期間、一緒にインキュベーションし;(d)少なくとも1つの競合剤分子を(c)の混合物に過剰に添加し;(e)(d)由来の候補混合物、核酸−ターゲット分子および競合剤分子の混合物を、あらかじめ決定された期間、インキュベーションし;(f)候補混合物から核酸−ターゲット分子複合体を分配し;(g)核酸−ターゲット分子複合体を解離させて、未結合核酸を生成し;(h)未結合核酸を増幅して、増加したアフィニティでターゲット分子に結合可能な核酸配列が濃縮された核酸混合物を得る工程を含み、それによってターゲット分子に対するアプタマーを同定するプロセスによって同定される核酸配列を含むアプタマーを調製するかまたは合成する工程を含む、前記方法を提供する。
【0077】
[0092]別の態様において、そのターゲット分子からの解離速度が遅いアプタマーを同定するための方法であって:(a)核酸の候補混合物を調製し、ここで、候補混合物の少なくとも1つまたは各々の核酸において、1つ、いくつかまたはすべてのピリミジンが、5位で化学的に修飾されている、修飾された核酸を候補混合物が含み;(b)ターゲット分子と候補混合物を接触させ、ここで、候補混合物中、他の核酸に比較してターゲット分子に対して増加したアフィニティを有する核酸がターゲット分子に結合し、核酸−ターゲット分子複合体を形成し;(c)候補混合物の残りからアフィニティが増加した核酸を分配し;そして(d)アフィニティが増加した核酸を増幅して、増加したアフィニティでターゲット分子に結合可能な核酸配列が濃縮された核酸混合物を得る工程を含み、それによってターゲット分子に対するアプタマーを同定可能である工程を含む、前記方法を提供する。
【0078】
[0093]別の態様において、そのターゲット分子からの解離速度が遅いアプタマーを産生するための方法であって:(a)核酸の候補混合物を調製し、ここで、候補混合物の少なくとも1つまたは各々の核酸において、1つ、いくつかまたはすべてのピリミジンが、5位で化学的に修飾されている、修飾された核酸を候補混合物が含み;(b)ターゲット分子と候補混合物を接触させ、ここで、候補混合物中、他の核酸に比較してターゲット分子に対して増加したアフィニティを有する核酸がターゲット分子に結合し、核酸−ターゲット分子複合体を形成し;(c)候補混合物の残りからアフィニティが増加した核酸を分配し;そして(d)アフィニティが増加した核酸を増幅して、増加したアフィニティでターゲット分子に結合可能な核酸配列が濃縮された核酸混合物を得て、それによってターゲット分子に対するアプタマーを同定するプロセスによって同定される核酸配列を含むアプタマーを調製するかまたは合成する工程を含む、前記方法を提供する。
【0079】
[0094]別の態様において、ターゲットからのアプタマーの解離速度(t1/2)が:約30分間以上;約30分間〜約240分間;約30分間〜約60分間;約60分間〜約90分間;約90分間〜約120分間;約120分間〜約150分間;約150分間〜約180分間;約180分間〜約210分間;約210分間〜約240分間の1つより選択される、アプタマーおよびそのターゲットの非共有複合体を提供する。
【0080】
[0095]別の態様において、アプタマーがターゲットに対して約100nM以下のKを有し、ターゲットからのアプタマーの解離速度(t1/2)が約30分間以上であり、そしてアプタマーの核酸配列中の1つ、いくつかまたはすべてのピリミジンが、塩基の5位で修飾されている、アプタマーおよびターゲットの非共有複合体を提供する。図14に示す化合物群より修飾を選択してもよく、これらの修飾を「塩基修飾ヌクレオチド」と称する。所望の塩基修飾ピリミジンの任意の組み合わせを用いて、アプタマーを設計してもよい。
【0081】
[0096]光活性基を含有するヌクレオチド、または光活性基のための位置維持基を含有するヌクレオチドを含めて、修飾ヌクレオチドを伴ってSELEXを実行するための改善法が、本出願と同時に出願され、そしてその全体が本明細書に援用される、米国出願第12/175,388号、表題“Improved SELEX and PHOTOSELEX”に開示される。別の態様において、核酸分子の候補混合物には、比較的遅い解離速度で、修飾核酸−ターゲット複合体の形成を補助しうる修飾ヌクレオチド塩基を含有する核酸が含まれる。
【0082】
[0097]本明細書記載の多様な方法および工程を用いて、(1)ターゲット分子に結合可能であるかまたは(2)ターゲット分子に結合し、そして続いて照射に際してターゲット分子と共有結合を形成可能であるか、いずれかのアプタマーを生成可能である。
【0083】
[0098]本明細書記載の方法にしたがって同定されるアプタマーは、ある範囲の診断法および療法において有用である。オフ速度が遅いアプタマーは、より長い期間、ターゲットに結合するであろう。これは、ターゲットに対するアプタマーの結合を用いて、ターゲット分子の存在、非存在、量または分量を検出可能な診断法において有用であり、そしてアプタマーおよびターゲットの相互作用期間が延長されると、こうした検出が容易になる。in vitroまたはin vivoの画像法において、オフ速度が遅いアプタマーを用いる場合、類似の利点が提供されうる。アプタマーおよびターゲットの相互作用期間が延長されると、例えば、ターゲット分子または下流のシグナル伝達カスケードのより長い活性化または阻害のため、療法効果の改善が可能になりうる。
【0084】
[0099]したがって、多様な態様において、記載する方法によって得られるか、同定されるかまたは産生された、オフ速度が遅いアプタマーを、多様な医学的治療法または診断法(in vitroまたはin vivo)で用いてもよい。1つの態様において、疾患の治療法において、オフ速度が遅いアプタマーを用いてもよい。1つの態様において、in vivoでの疾患の診断法において、オフ速度が遅いアプタマーを用いてもよい。別の態様において、疾患の診断のために、オフ速度が遅いアプタマーをin vitroで用いてもよい。別の態様において、疾患の治療法または診断法で使用するための療法剤(例えば薬学的組成物)の製造において、または診断剤の製造において、オフ速度が遅いアプタマーを用いてもよい。オフ速度が遅いアプタマーの診断または療法適用には、そのターゲットに対するオフ速度が遅いアプタマーの特異的および/または高アフィニティ結合に応じた診断的または療法的結果が伴いうる。また、薬剤開発プロセスにおいて、オフ速度が遅いアプタマーをターゲット検証およびハイスループット・スクリーニングアッセイに用いてもよい。
【0085】
[00100]1つの態様において、オフ速度が遅いアプタマーは、in vivoの分子画像化に適した試薬である。この態様において、オフ速度が遅いアプタマーをin vivoで用いて、病変、疾患プロセス、または個体(例えばヒトまたは動物)の体内での他の状態を検出することも可能であり、この場合、そのターゲットへのアプタマーの結合が、疾患プロセスまたは他の状態の存在を示す。例えば、VEGF受容体が腫瘍内およびその新規血管系内で豊富に発現されているため、VEGF受容体に対するアプタマーをin vivoで用いて、個体の体の特定の領域(例えば組織、臓器等)において、癌の存在を検出することも可能であるし、またはEGF受容体が、しばしば、腫瘍細胞上で高レベルに発現されているため、EGF受容体に対するアプタマーをin vivoで用いて、個体の体の特定の領域(例えば組織、臓器等)において、癌の存在を検出することも可能である。すなわち、分子ターゲットは、誘導される受容体の細胞外ドメイン(ECD)であり、これはこうしたターゲットが細胞の外部に位置し、そして血管系を通じてアクセス可能であるためである。さらに、特定のECDのある程度のわずかな割合は、細胞死を含む生物学的プロセスを通じて脱落しうるとしても、ECDは、病変部位に局在する傾向がある。
【0086】
[00101]分子画像法の明確な候補である、高アフィニティ・モノクローナル抗体は、この適用に選択される試薬ではなくなってきている。分子画像化試薬は正確である必要性を有する。これらは、意図されるターゲットに対して高い結合活性を、そしてヒトまたは動物における他のターゲットに対して低い結合活性を持たなければならない。オフ速度が遅いアプタマーは、in vivoの分子画像法で使用するのに望ましいものとなるユニークな利点を有する。一方で、これらは、遅い解離速度定数を有するように選択され、したがってかなりの長さの時間(少なくとも約30分間)、意図されるターゲット上に、in vivoで常在することが可能である。他方で、オフ速度が遅いアプタマーは、血管系からの非常に速いクリアランスを有すると予期される。遅い解離速度定数および血管系からの速いクリアランスは、in vivoの分子画像化に望ましい2つの特性である。動力学的視点から、優れたin vivo分子画像化試薬は、病変部位に位置し続けなければならない一方、周囲の血管系における未結合試薬濃度は低くなる。これは、シグナル対ノイズ制約である。適切なシグナル対ノイズ比は、血管系における過剰なシグナルの中で、病変部位でシグナルが集積することによって得られうるか、または病変部位でシグナルが保持される一方、血管系濃度が減少することによって得られうる。
【0087】
[00102]オフ速度が遅いアプタマーとほぼ同じ分子量および正味電荷を持つ、遅いオフ速度の特性を持たないアプタマーは、10年以上、動物およびヒトにおいて研究されてきている。一般的に、これらのアプタマーは、通常、腎臓および/または肝臓に進入し、そして次いで排出のためさらに代謝されることによって、血管系から迅速に一掃されることが見出されてきている。こうしたアプタマーは、高分子量付加物(例えばPEGなど)がアプタマーに連結されない限り、いわゆる「初回通過(first pass)」クリアランスを示す。ターゲットが、いくつかの腫瘍において高濃度で見られる細胞外タンパク質(ECDではない)テネイシンCであるアプタマー内で実験が行われてきている。これらの実験において、テネイシンC特異的アプタマーは、迅速に一掃され、そしてテネイシンCの細胞外局所濃度が非常に高いため、腫瘍部位に保持されることが可能であった。対照的に、オフ速度が遅いアプタマーは、アプタマーの速いクリアランス速度を維持するが、解離速度が遅いため、動力学的な利点を提供し、関心対象の部位(例えば病変部位)での存在が幾分希薄でありうるターゲット(例えば腫瘍上のECD)で使用するのに適している。
【0088】
[00103]分子画像法のための別の試薬は、オフ速度が遅いアプタマーの2つの特性(すなわち遅い解離速度および体からの速いクリアランス)を共有しない。モノクローナル抗体は、しばしば、高いアフィニティおよび特異性を有し、そして遅い解離速度定数を有しうる;が、モノクローナル抗体は、血管系からの非常に遅いクリアランス速度を有する。例えばファージディスプレイを通じて同定された短いペプチドは、速いクリアランスを有するが、劣ったアフィニティおよび特異性を有し、そして意図されるターゲットからの速い解離速度を有する可能性もある。抗体模倣体の特定のペプチド型であるアフィボディは、妥当なアフィニティおよび特異性を有することも可能であり、そしてモノクローナル抗体より速いクリアランス速度を有することも可能であるが、ターゲットからの遅い解離速度を達成するため、アフィボディはしばしば二量体およびより高次の多量体になり、解離速度が増進されると同時に、クリアランスが遅くなる。
【0089】
[00104]in vivoの分子画像法に、1以上の低分子量付加物を伴う、オフ速度が遅いアプタマーを用いて、オフ速度が遅いアプタマーを体内でヌクレアーゼから保護し、そしてかつオフ速度が遅いアプタマーによってひとたび結合された意図されるターゲットを検出してもよい。例えば、オフ速度が遅いアプタマーは、血液中のヌクレアーゼ、典型的には、オフ速度が遅いアプタマーの5’および3’末端位のエキソヌクレアーゼ難分解性付加物を用いることによって容易にブロッキングされるエキソヌクレアーゼ(DNAに関して)、またはオフ速度が遅いアプタマー中にエンドヌクレアーゼ難分解性ピリミジン(例えば2’フルオロヌクレオチドなど)を取り込むことによって容易にブロッキングされるエンドヌクレアーゼ(RNAに関して)によって攻撃されうる。オフ速度が遅いアプタマーターゲット複合体の検出は、オフ速度が遅いアプタマーに検出部分を付着させることによって達成可能である。いくつかの態様において、これらの目的のための検出部分には、放射性分子(例えばテクネチウム99)のためのケージ、磁気共鳴検出のための鉄クラスター、PET画像化のためのフッ素同位体等が含まれうる。体内のオフ速度が遅いアプタマーの完全性を保護して、そして意図されるターゲットの検出を可能にする、オフ速度が遅いアプタマーに対して行われる修飾は、これらがそのターゲットとオフ速度が遅いアプタマーの相互作用に緩衝しないように設計されなければならず、そしてオフ速度が遅いアプタマーが血管系から一掃されるのがあまりにも遅くないようにしなければならない。
【0090】
[00105]デバイスの固体表面に付着された1以上のオフ速度が遅いアプタマーを有する、診断またはアッセイデバイス、例えばカラム、試験片またはバイオチップもまた提供する。固体表面と接触するターゲット分子にアプタマーが結合して、アプタマー−ターゲット複合体を形成し、該複合体がデバイス表面に接着したままであり、それによってターゲットを捕捉して、そしてターゲットの検出および場合によって定量化を可能にするように、アプタマー(単数または複数)を配置してもよい。こうしたデバイス上で、オフ速度が遅いアプタマーのアレイ(同じであってもまたは異なってもよい)を提供してもよい。
【0091】
[00106]別の態様において、オフ速度が遅いアプタマーおよびターゲット分子を含む複合体を提供する。他の態様において、対応するターゲット分子に対する高いアフィニティ、ならびにアプタマーおよびターゲットの非共有複合体からの遅い解離速度(t1/2)を有することによって特徴付けられるアプタマーのクラスを提供する。
【0092】
[00107]図1Aに関連して、基本的SELEX法は、一般的に、異なる配列の核酸の候補混合物の調製で始まる。候補混合物には、一般的に、2つの固定領域(すなわち候補混合物メンバー各々が、同じ位置に同じ配列を含有する)および可変領域を含む核酸配列が含まれる。典型的には、これらが以下に記載する増幅工程を補助するか、または候補混合物中の核酸の所定の構造配置の潜在能力を増進するような、固定配列領域を選択する。可変領域は、典型的には、候補混合物中の各核酸のターゲット結合領域を提供し、そしてこの可変領域は、完全にランダム化(すなわち任意の位で塩基が4つのうち1つであることを見出すことが可能)されていてもまたは部分的にのみランダム化(例えば、塩基を見出す可能性が、任意の部位で0〜100パーセントの間の任意のレベルで選択可能である)されていてもよい。ターゲットおよび候補混合物メンバー間で結合が生じるのを支持する条件下で、調製された候補混合物を、選択されたターゲットと接触させる。これらの条件下で、ターゲットおよび候補混合物の核酸間の相互作用は、一般的に、対のメンバー間の最強の相対的アフィニティを有する核酸−ターゲット対を形成する。ターゲットに対する最高のアフィニティを持つ核酸を、ターゲットに対するより低いアフィニティを持つ核酸から分配する。最大数の高アフィニティ候補を保持する方式で、分配プロセスを実行する。ターゲットに対して比較的高いアフィニティを有するとして、分配中に選択された核酸を増幅して、ターゲットに対して比較的高いアフィニティを有する核酸が濃縮された、新規候補混合物を生成する。上記の分配および増幅工程を反復することによって、新規に形成される候補混合物は、より少ないユニークな配列を含有し、そしてターゲットに対する核酸混合物のアフィニティの平均の度合いは、一般的に増加する。極端に言えば、SELEX法は、ターゲット分子に対する最高のアフィニティを有する元来の候補混合物由来の核酸に相当するユニークな核酸を1つまたは非常に少数含有する、候補混合物を生じるであろう。しかし、この基本的SELEX法は、そのターゲットからのオフ速度が遅いアプタマーに関しては選択しない。
【0093】
[00108]SELEX特許および光SELEX特許は、このプロセスに関して非常に詳細に記載し、そして詳述する。これらの特許には、方法中で使用可能な多様なターゲット;最初の候補混合物の調製法;候補混合物内の核酸を分配するための方法;および分配された核酸を増幅して、濃縮された候補混合物を生成する方法の説明が含まれる。SELEX特許はまた、タンパク質が核酸結合性タンパク質であるタンパク質ターゲットおよびそうではないタンパク質ターゲットを含めて、いくつかの異なるタイプのターゲット分子に対して得られるアプタマー溶液も記載する。
【0094】
[00109]図1Bに関連して、本明細書で開示する修飾SELEX法には、単数または複数のターゲットと核酸の候補混合物の平衡化後の、遅いオフ速度の濃縮プロセスの導入、およびSELEX法における続く工程の前の分配工程が含まれる。基本的SELEX法に遅いオフ速度の濃縮プロセスを導入すると、多様な解離速度を含む核酸−ターゲット複合体セットからの遅い解離速度を持つアプタマー・アフィニティ複合体の濃縮のための手段が提供される。したがって、修飾SELEX法は、ターゲット分子に結合し、そしてひとたび結合したら、ターゲット分子からの解離速度(本明細書においてまた、「オフ速度」とも称される)が比較的遅いアプタマーを同定するための方法を提供する。
【0095】
[00110]本明細書において、「結合」は、一般的に、リガンドおよびターゲット間の非共有結合の形成を指すが、こうした結合は、必ずしも可逆的ではない。用語「核酸−ターゲット複合体」または「複合体」または「アフィニティ複合体」は、こうした非共有結合会合の産物を指すよう用いられる。
【0096】
[00111]多様な態様において、オフ速度が遅いアプタマーは、一本鎖または二本鎖RNAまたはDNAオリゴヌクレオチドであってもよい。アプタマーは、非鎖形成(non−stranded)または修飾塩基を含有してもよい。さらに、アプタマーは、任意のタイプの修飾を含有してもよい。本明細書において、「修飾塩基」には、天然核酸残基に対する比較的単純な修飾が含まれてもよく、こうした修飾は、核酸残基の物理的特性に変化を与える。こうした修飾には、限定されるわけではないが、ピリミジンの5位での修飾、疎水性基、例えばベンジル、イソブチル、インドール、またはナフチルでの置換、あるいは親水性基、例えば四級アミンもしくはグアニジウム、またはより「中性の」基、例えばイミダゾール等での置換が含まれる。さらなる修飾が、リボース環、例えば2’位中に存在してもよく、例えば2’−アミノ(2’−NH)および2’−フルオロ(2’−F)であってもよいし、またはホスホジエステル主鎖中に存在してもよく、例えばホスホロチオエートまたはメチルホスホネートであってもよい。
【0097】
[00112]多様な態様において、修飾ヌクレオチド塩基を含有する核酸配列のランダム化セットを含有する候補混合物を、ある量のターゲット分子と混合し、そしてターゲット分子との結合平衡を確立することを可能にする。一般的に、ターゲット分子に高いアフィニティで結合する核酸のある程度のみが、ターゲットとともに効率的に分配される。
【0098】
[00113]多様な態様において、候補混合物には、修飾基を含む可変領域を有する核酸配列が含まれる。修飾基は、修飾ヌクレオチド塩基であってもよい。可変領域は、完全にまたは部分的にランダムな配列を含有してもよく;可変領域内に取り込まれる固定配列のサブポーションも含有してもよい。固定領域内のヌクレオチドもまた、修飾ヌクレオチド塩基を含有してもよいし、または天然存在塩基の標準的セットを含有してもよい。
【0099】
[00114]いくつかの態様において、試験混合物のメンバーが分配された後に増幅が起こり、そして増幅されるのは核酸である。例えば、一連の3つの反応によって、RNA分子の増幅を行ってもよい:選択されるRNAのcDNAコピーを作製し、ポリメラーゼ連鎖反応を用いて、各cDNAのコピー数を増加させ、そしてcDNAコピーを転写して、選択されたRNAと同じ配列を有するRNA分子を得る。当業者に認識されるであろうように、直接DNA複製、直接RNA増幅等を含む、当該技術分野に知られる任意の反応または反応の組み合わせを適切なように用いてもよい。増幅法は、増幅前の混合物における、異なる配列の比率の代表である、増幅混合物の比率を生じうる。核酸に対する多くの修飾が酵素的増幅と適合することが知られる。必要であれば、増幅の各ラウンド後に、増幅と適合しない修飾を行ってもよい。
【0100】
[00115]核酸候補混合物を多様な方式で修飾して、促進特性または他の望ましい特性、特に核酸およびターゲット間の相互作用を増進させる特性を核酸が有する可能性を増進させてもよい。意図される修飾には、所望のリガンド−ターゲット相互作用を増進するための正しい電荷、極性、水素結合、または静電相互作用を有する他の化学基を導入する修飾が含まれる。例えば、核酸のアフィニティおよび/または解離速度を含む、結合特性を増進させうる修飾には、親水性部分、疎水性部分、強固な構造、イミダゾール、一級アルコール、カルボキシレート、グアニジウム基、アミノ基、チオール等の、タンパク質中で見られる官能基が含まれる。また、修飾を用いて、広範囲のターゲットに対するオフ速度が遅いアプタマーを産生するために適用可能な、ストリンジェントな選択圧下でのアプタマー−ターゲット複合体の存続を増加させうる。1つの態様において、オフ速度が遅いアプタマーを産生するために用いられる候補混合物の生成において、Bz−dU(ベンジル−dU)を用いるが、他の修飾ヌクレオチドがこうしたアプタマーの産生によく適している。他の修飾ヌクレオチドが図14に示される。
【0101】
[00116]この適用の目的のための修飾ヌクレオチド候補混合物は、天然存在および天然存在以外のヌクレオチド両方を含む、任意のRNAまたはDNA候補混合物である。適切な修飾には、核酸のすべての残基上、核酸の単一の残基上、ランダムな残基上、すべてのピリミジンまたはすべてのプリン上、核酸中の特定の塩基(すなわちG、C、A、TまたはU)のすべての出現に際して、あるいは特定の適用に適している可能性もある任意の他の修飾スキームでの修飾が含まれる。修飾は、アプタマーの促進活性または結合能の必要条件ではないことが認識される。アプタマーには、修飾dUTPおよびdCTP残基が含まれてもよい。
【0102】
[00117]オフ速度が遅いアプタマーに関する候補混合物は、C−5塩基位で異なる修飾を有するピリミジンセットを含んでもよい。アミド連結を通じて直接、または別のタイプの連結を通じて間接的に、C−5修飾を導入してもよい。これらの候補混合物をSELEX法で用いて、オフ速度が遅いアプタマーを同定する。このプロセスにはまた、遅いオフ速度の濃縮プロセスの使用も含まれてもよい。候補混合物を酵素的にまたは合成的に産生してもよい。
【0103】
[00118]上述のように、リボース位および/またはリン酸位および/または塩基位の修飾を含めて、ヌクレオチドをいくつかの方式で修飾してもよい。特定の修飾は、米国特許第5,660,985号、表題“High Affinity Nucleic Acid Ligands Containing Modified Nucleotides”、米国特許第5,428,149号、表題“Method for Palladium Catalyzed Carbon−Carbon Coupling and Products”、米国特許第5,580,972号、表題“Purine Nucleoside Modifications by Palladium Catalyzed Methods”に記載され、これらのすべてが本明細書に援用される。1つの態様において、修飾は、別の化学基が、ピリミジンの5位、プリンの8位、または糖の2’位に付着するものである。個々のヌクレオチド上に取り込まれうる他の化学基のタイプには制限はない。いくつかの態様において、生じた修飾ヌクレオチドは増幅可能であるか、または増幅工程に続いて修飾可能である(例えば、米国特許第6,300,074号、表題“Systematic evolution of ligands by exponential enrichment: Chemi−SELEX”を参照されたい)。
【0104】
[00119]さらに他の態様において、結合し、そしてアフィニティ複合体の光活性化に際して、そのターゲット分子との共有架橋を形成するアプタマーを産生するための方法のために特定のヌクレオチドを修飾する。この方法は、ターゲット分子に結合し、該分子と光架橋し、そして/または該分子を光不活性化するアプタマーを含む。多様な態様において、アプタマーは、光の照射に際して、ターゲット分子と光架橋可能な光反応基を含有する。他の態様において、アプタマーは、照射の非存在下で、ターゲットと結合を形成可能である。
【0105】
[00120]光反応基は、光発色団を含有し、そしてターゲット分子と光架橋可能である、任意の化学構造であってもよい。本明細書において光反応基と称されるが、いくつかの場合、以下に記載するように、アプタマーおよびターゲット間で共有結合が生じるために照射は必ずしも必要ではない。いくつかの態様において、光反応基は、ターゲットまたはオリゴヌクレオチドの非修飾部分によって吸収されない波長の光を吸収するであろう。光反応基には、5−ハロ−ウリジン、5−ハロ−シトシン、7−ハロ−アデノシン、2−ニトロ−5−アジドベンゾイル、ジアジリン、アジ化アリール、フッ素化アジ化アリール、ベンゾフェノン、アミノ−ベンゾフェノン、ソラレン、アントラキノン等が含まれる。
【0106】
[00121]光反応基は、一般的に、会合する核酸−ターゲット対の照射に際して、ターゲットと結合を形成する。いくつかの場合、結合を形成するのに照射は必要でない。典型的に起こる光架橋は、会合するアプタマーおよびターゲット間での共有結合の形成であろう。しかし、アプタマーおよびターゲット間の緊密なイオン相互作用もまた、照射に際して起こりうる。
【0107】
[00122]1つの態様において、電磁照射への曝露によって光架橋が起こる。電磁照射には、紫外光、可視光、X線、およびガンマ線が含まれる。
[00123]多様な他の態様において、SELEX法を用いたオリゴヌクレオチドの限定された選択に、光SELEX法を用いた選択が続く。光反応基を含有するオリゴヌクレオチドを用いて、最初のSELEX選択ラウンドを行う。いくつかのSELEXラウンド後、光SELEXを行って、ターゲット分子に結合可能なオリゴヌクレオチドを選択する。
【0108】
[00124]別の態様において、アプタマー配列中に切断可能または遊離可能セクション(要素または構成要素とも記載される)を含むアプタマーの産生を記載する。これらのさらなる構成要素または要素は、アプタマー内にさらなる官能性を導入する構造的要素または構成要素であり、そしてしたがって、官能性要素または構成要素である。1以上の以下のさらなる構成要素(これらの用語の任意の組み合わせで、官能性または構造的要素または構成要素または部分とも記載される)を用いて、アプタマーをさらに産生する:標識または検出可能構成要素、スペーサー構成要素、および特異的結合タグまたは固定化要素または構成要素。
【0109】
[00125]上述のように、本開示は、ターゲット分子に結合し、そしてひとたび結合したら、解離速度またはオフ速度が遅いアプタマーを同定するための方法を提供する。この方法で得られる遅いオフ速度は、約1時間の半減期を超え、そして最長約240分間であり、すなわち、核酸−ターゲット複合体セットがひとたび生成されたならば、セット中の複合体の半分は1時間後に結合したままである。遅いオフ速度の濃縮プロセスの効果は、アプタマー・アフィニティ複合体の異なる解離速度に依存するため、遅いオフ速度の濃縮プロセスの期間は、解離速度が遅いアプタマー・アフィニティ複合体が高比率で保持される一方、解離速度が速いアプタマー・アフィニティ複合体の数が実質的に減少するように、選択される。例えば、遅いオフ速度の濃縮プロセスを課した後、比較的長期間、混合物をインキュベーションすると、より短いインキュベーション期間を有する遅いオフ速度の濃縮プロセスを用いて選択されたアプタマーよりも、より長い解離速度を持つアプタマーが選択されるであろう。
【0110】
[00126]多様な態様において、候補混合物を、ある量のターゲット分子と混合し、そしてターゲット分子との結合平衡の確立を可能にする。溶液中で未結合であるものから、ターゲットに結合した核酸を分配する前に、遅いオフ速度の濃縮プロセスを課して、結合した集団を、遅い解離速度に関して濃縮する。上述のように、競合剤分子の添加によって、試料希釈によって、競合剤分子の存在下での試料希釈の組み合わせによって、遅いオフ速度の濃縮プロセスを適用してもよい。したがって、1つの態様において、核酸−ターゲット複合体を含有する混合物内に競合剤分子を導入し、そして結合した核酸から未結合のものを分配する前に、ある期間、混合物をインキュベーションすることによって、遅いオフ速度の濃縮プロセスを適用する。競合剤分子の量は、一般的に、核酸分子の量よりも少なくとも1桁多く、そして2桁以上多くてもよい。別の態様において、核酸−ターゲット複合体の試料混合物の体積を数倍(例えば2x、3x、4x、5xの少なくとも約1つ)希釈して、そして結合した核酸から未結合のものを分配する前に、ある期間、混合物をインキュベーションすることによって、遅いオフ速度の濃縮プロセスを適用する。希釈体積は、一般的に、元来の体積よりも少なくとも1桁多く、そして2桁以上多くてもよい。さらに別の態様において、競合剤分子および希釈の両方の組み合わせを用いて、遅いオフ速度の濃縮プロセスを適用する。別の態様において、解離速度が遅いアプタマーの頻度が増加したことが示された候補混合物を用いて、いくつかの候補アプタマーを選択する。これらのアプタマーをスクリーニングして、オフ速度が遅いアプタマーを同定する。
【0111】
[00127]別の態様において、アプタマーの固定領域中に切断可能または遊離可能セクションを含む遅いオフ速度のアプタマーを産生する。また、1以上の以下のさらなる構成要素を含んで、アプタマーを産生してもよい:標識化構成要素、スペーサー構成要素、および特異的結合タグ。あらゆるこれらの要素を一本鎖アプタマー内に導入してもよい。1つの態様において、アプタマーの5’端に要素を導入する。別の態様において、一方の鎖が所望の多様な要素とともに、多様なターゲット結合領域を含有する第二の鎖の固定配列セクションの1つに相補的な配列を含有する、部分的二本鎖アプタマーを生成することによって、1以上のこれらの要素が含まれる。
【0112】
[00128]「遊離可能」または「切断可能」要素または部分または構成要素は、官能基中の特定の結合が破壊されて、2つの別個の構成要素を産生可能である官能基を指す。多様な態様において、適切な波長を官能基(光切断可能)に照射することによって、あるいは適切な化学的または酵素的試薬で処理することによって、官能基を切断してもよい。別の態様において、遊離可能要素は、還元剤で処理して結合を破壊可能なジスルフィド結合であってもよい。遊離可能要素は、固体支持体に付着したアプタマー/ターゲット・アフィニティ複合体が、複合体の溶出によるなどで、固体支持体から分離されるのを可能にする。遊離可能要素は、残りのアッセイ条件に対して安定であってもよいし、そしてアプタマー/ターゲット複合体を破壊しない条件下で遊離可能であってもよい。
【0113】
[00129]本明細書に開示するように、アプタマーは、さらに、「タグ」または「固定化構成要素または要素」または「特異的結合構成要素または要素」を含んでもよく、これは、固体支持体へのアプタマー(およびそれに結合している任意のターゲット分子)の付着または固定化のための手段を提供する構成要素を指す。「タグ」は、プローブと会合可能な構成要素の1つのタイプまたは種のコピーセットである。「(複数の)タグ」は、構成要素のこうしたセットの1より多くを指す。任意の適切な方法によって、タグをアプタマーに付着させてもよいし、またはタグがアプタマーに含まれてもよい。一般的に、タグは、アプタマーが、固体支持体に付着したプローブまたは受容体と、直接または間接的にのいずれかで会合することを可能にする。プローブは、タグとの相互作用において、非常に特異的であってもよく、そしてすべての続くプロセシング工程または手順中に、その会合を保持してもよい。タグは、固体支持体上の空間的に定義されたアドレスに、アプタマー・アフィニティ複合体(または場合によって共有アプタマー・アフィニティ複合体)を局在させることを可能にしうる。したがって、異なるタグは、固体支持体上の空間的に定義された異なるアドレスに、異なるアプタマー共有複合体を局在させることを可能にしうる。タグは、ポリヌクレオチド、ポリペプチド、ペプチド核酸、ロック核酸、オリゴ糖、多糖、抗体、アフィボディ、抗体模倣体、細胞受容体、リガンド、脂質、ビオチン、これらの構造の任意の断片または誘導体、前述のものの任意の組み合わせ、あるいはプローブ(または以下に記載するようなリンカー分子)が、特異性を持って結合するかまたは別の方式で会合するように設計されるかまたは設定されうる任意の他の構造であってもよい。一般的に、タグは、分子内で、それ自体と、あるいはそのタグが付着しているかまたはそのタグが一部となっているアプタマーと相互作用しないように設定される。SELEXを用いてアプタマーを同定する場合、SELEX前またはSELEX後のいずれかで、タグをアプタマーに添加してもよい。SELEX後、アプタマーの5’端上にタグが含まれるか、またはSELEX後、アプタマーの3’端上にタグが含まれるか、またはタグは、SELEX後修飾プロセスにおいて、アプタマーの3’および5’端上の両方に含まれてもよい。
【0114】
[00130]図8Dに例示するように、蛍光色素(Cy3など)、光切断可能およびビオチン部分をすべて、アプタマーの末端に付加する。光切断可能部分および色素間の潜在的相互作用のため、これらの2つの部分間にスペーサーが挿入される。標準的ホスホロアミダイト化学反応を用いて、すべての構築物が合成可能である。代表的なアプタマー構築物を、図9A〜図9Fに示す。官能性は5’端および3’端の間で分割されていてもよいし、またはいずれかの端に組み合わされていてもよい。光切断可能部分に加えて、化学的または酵素的切断可能部分を含めて、他の切断可能部分を用いてもよい。多様なスペーサー部分を用いてもよく、そして1以上のビオチン部分が含まれてもよい。ビオチン以外のタグ(また、固定化または特異的結合性要素または構成要素とも呼ばれる)もまた取り込み可能である。適切な構築物試薬には、ビオチン・ホスホロアミダイト、PCリンカー(Glen Research PN 10−4920−02); PCビオチン・ホスホロアミダイト(Glen Research PN 10−4950−02); dSpacer CEホスホロアミダイト(Glen Research PN 10−1914−02); Cy3ホスホロアミダイト(Glen Research PN 10−5913−02);およびArm26−Achスペーサーアミダイト(Fidelity Systems PN SP26Ach−05)が含まれる。
【0115】
[00131]1つの態様において、アプタマーの可変領域の産生において、ヌクレオチドの塩基修飾を用いる。これらの修飾ヌクレオチドは、ターゲットに対してオフ速度が非常に遅いアプタマーを産生することが示されてきている。
【0116】
[00132]本開示の方法において、候補混合物は、候補混合物の少なくとも1つまたは各々の核酸中の1つ、いくつか(例えば、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30の1つ、または少なくとも1つ)またはすべてのピリミジンが、5位で化学的に修飾されている、修飾核酸を含んでもよい。場合によって、候補混合物の核酸中のすべてのC残基が5位で化学的に修飾されている。場合によって、候補混合物の核酸中のすべてのT残基が5位で化学的に修飾されている。場合によって、候補混合物の核酸中のすべてのU残基が5位で化学的に修飾されている。
【0117】
[00133]別の態様において、オフ速度が遅いアプタマーを試料と混合するかまたは試料に曝露する。オフ速度が遅いアプタマーを試料中の特異的ターゲットと反応させるかまたは結合させる。多様な方法を用いて、ターゲットまたはアプタマーのいずれかを検出してもよい。複合体中で、または複合体からの遊離に際して、ターゲットを検出してもよい。アプタマー/ターゲット複合体を用いて、試験試料中の他の構成要素から特異的ターゲットを単離してもよい。多様なターゲットの検出のために多重化アッセイが望ましい場合、多数のアプタマーを用いてもよい。本開示の方法を実施例1〜7に一般的に例示する。
【0118】
[00134]本開示の方法を実施例1〜6に一般的に例示する。実施例1は、修飾ヌクレオチドで構成される候補混合物を用いた一般的アフィニティSELEX法を記載する。実施例2は、修飾ヌクレオチドおよび5’末端光反応基で構成される候補混合物を用いた、光SELEX法、ならびに希釈を用いて、平衡化アプタマー:ターゲット混合物に対する遅いオフ速度の濃縮プロセスを提供する、改善SELEX法を記載する。実施例3は、希釈工程に競合剤を添加することによって、実施例2に記載する方法を拡張する。実施例4は、遅いオフ速度の濃縮プロセスの有効性を例示する。遅いオフ速度の濃縮プロセスの非存在下で選択される、修飾ヌクレオチド5−ベンジル−dUTP(BzdUTP)、5−イソブチル−dUTP(iBdUTP)、または5−トリプトアミノ−dUTPを用いたアプタマーに関する平均解離半減期値(t1/2)は、20分間であり、いくつかのアプタマーは、最長1時間のt1/2値を有した。これは、天然塩基または他の修飾ヌクレオチドで以前記載されたものよりも実質的に長い。遅いオフ速度の濃縮プロセスを用いて選択されるアプタマーに関する平均は85分を超えた。より具体的には、図3Bに関連して、遅いオフ速度の濃縮プロセスの導入によって、約30分間以上、約60分間以上、約90分間以上、約120分間以上、約150分間以上、約180分間以上、約210分間以上、および約240分間以上のt1/2値を持つアプタマーが産生された。アプタマー:ターゲット複合体に関するこれらの解離速度は前例がない。
【0119】
[00135]実施例5は、NpdUTP候補混合物を用いた遅いオフ速度のアプタマーの生成を記載する。
[00136]実施例6は、ペプチドターゲットに対する遅いオフ速度のアプタマーの生成を記載する。
【実施例】
【0120】
[00137]以下の実施例は、例示目的のみのために提供され、そして付随する請求項中に定義するような本発明の範囲を限定することを意図しない。
実施例1. 核酸ライブラリー中に修飾ヌクレオチドが取り込まれると、アフィニティSELEXにおいて、より高いアフィニティが濃縮されたライブラリーが導かれる
[00138]A. 候補混合物の調製
[00139]dATP、dGTP、5−メチル−dCTP(MedCTP)、およびdTTPまたは3つのdUTP類似体:5−ベンジル−dUTP(BzdUTP)、5−イソブチル−dUTP(iBdUTP)、または5−トリプトアミノ−dUTP(TrpdUTP)の1つを用いて、候補混合物を調製した。ビオチン化テンプレートにアニーリングしたプライマーのポリメラーゼ伸長によって、候補混合物を調製した(図2)。各候補混合物組成に関して、4.8nmolの順方向PCRプライマーおよび4nmolのテンプレートを、100μLの1XKOD DNAポリメラーゼ緩衝液(Novagen)中で混ぜ合わせ、95℃に8分間加熱して、そして氷上で冷却した。1XKOD DNAポリメラーゼ緩衝液、0.125U/μLのKOD DNAポリメラーゼ、ならびに各0.5mMのdATP、MedCTP、dGTP、およびdTTPまたはdUTP類似体を含有する400μLの伸長反応に、各100μLのプライマー:テンプレート混合物を添加し、そして70℃で30分間インキュベーションした。1mLのストレプトアビジン・コーティング磁気ビーズ(MagnaBindストレプトアビジン、Pierce、1M NaCl+0.05%TWEEN−20中、5mg/5mL)を添加し、そして混合しながら25℃で10分間インキュベーションすることによって、テンプレート鎖ビオチンを介して、二本鎖産物を捕捉した。0.75mL SB1T緩衝液(40mM HEPES、pH7.5、125mM NaCl、5mM KCl、1mM MgCl、1mM CaCl、0.05%TWEEN−20)で3回、ビーズを洗浄した。1.2mL 20mM NaOHを用いてビーズからアプタマー鎖を溶出させ、0.3mL 80mM HClで中和し、そして15μL 1M HEPES、pH7.5で緩衝した。Centricon−30で候補混合物をおよそ0.2mLに濃縮し、そしてUV吸収分光法によって定量化した。
【0121】
[00140]B.ターゲットタンパク質の固定化
[00141](His)タグ(R&D Systems)などのポリHisタグを含むターゲットタンパク質を購入し、そしてCo+2−NTA常磁性ビーズ(TALON、Invitrogen)上に固定した。0.5mL B/W緩衝液(50mM Na−リン酸、pH8.0、300mM NaCl、0.01%TWEEN−20)中で、0.2mg/mLにターゲットタンパク質を希釈し、そして0.5mL TALONビーズ(B/W緩衝液で3回あらかじめ洗浄し、そしてB/W緩衝液中で10mg/mLに再懸濁)に添加した。混合物を25℃で30分間回転させ、そして使用するまで4℃で保存した。(His)ペプチドでコーティングしたTALONビーズもまた調製し、そして上述のように保存した。使用前、B/W緩衝液でビーズを3回洗浄し、SB1Tで1回洗浄し、そしてSB1T中に再懸濁した。
【0122】
[00142]C.アプタマー選択スキーム
[00143]各候補混合物を用いて、アフィニティ選択を別個に行い、ターゲットタンパク質ビーズ(シグナル、S)および(His)ビーズ(バックグラウンド、B)間で結合を比較した。各試料に関して、40μL SB1T中、0.5μM候補DNA混合物を調製した。1μLの(His)相補的オリゴ(1mM)(図2)を、10μLのタンパク質競合剤混合物(SB1T中の0.1%HSA、10μMカゼイン、および10μMプロトロンビン)とともにDNAに添加した。
【0123】
[00144]50μLのターゲットタンパク質コーティングビーズまたは(His)コーティングビーズ(SB1T中、5mg/mL)をDNA混合物に添加し、そして混合しながら37℃で15分間インキュベーションすることによって、結合反応を行った。DNA溶液を除去し、そして0.1mg/mLニシン精子DNA(Sigma−Aldrich)を含有するSB1Tを用いて37℃で5回、ビーズを洗浄した。示さない限り、100μLの洗浄溶液中にビーズを再懸濁し、30秒間混合し、磁石でビーズを分離し、そして洗浄溶液を除去することによって、すべての洗浄を行った。100μL SB1T+2Mグアニジン−HClを添加し、そして混合しながら37℃で5分間インキュベーションすることによって、結合したアプタマーをビーズから溶出させた。磁気分離後、アプタマー溶出物を新規試験管に移した。最初の2回の選択ラウンド後、ターゲットビーズ洗浄の最後の2回を、30秒間ではなく5分間行った。
【0124】
[00145]ビオチン化逆方向PCRプライマーをストレプトアビジンコーティング常磁性ビーズ(MyOne−SA、Invitrogen)に固定することによって、プライマービーズを調製した。5mL MyOne−SAビーズ(10mg/mL)をNaClT(5M NaCl、0.01%TWEEN−20)で1回洗浄し、そして5mLビオチン化逆方向PCRプライマー(NaClT中、5μM)中に再懸濁した。試料を25℃で15分間インキュベーションし、5mL NaClTで2回洗浄し、12.5mL NaClT(4mg/mL)中に再懸濁し、そして4℃で保存した。
【0125】
[00146]グアニジン緩衝液中の100μLアプタマー溶液に、25μLのプライマービーズ(NaClT中、4mg/mL)を添加し、そして混合しながら50℃で15分間インキュベーションした。アプタマー溶液を除去し、そしてビーズをSB1Tで5回洗浄した。85μL 20mM NaOHを添加し、そして混合しながら37℃で1分間インキュベーションすることによって、ビーズからアプタマーを溶出させた。磁気分離後、80μLのアプタマー溶出物を新規試験管に移し、20μL 80mM HClで中和し、そして1μL 0.5M Tris−HCl、pH7.5で緩衝した。
【0126】
[00147]D.アプタマー増幅および精製
[00148]選択されたアプタマーDNAをQPCRによって増幅し、そして定量化した。48μL DNAを12μL QPCR混合物(5X KOD DNAポリメラーゼ緩衝液、25mM MgCl、10μM順方向PCRプライマー、10μMビオチン化逆方向PCRプライマー、5X SYBRグリーンI、0.125U/μL KOD DNAポリメラーゼ、ならびに各1mMのdATP、dCTP、dGTP、およびdTTP)に添加し、そして以下のプロトコルで、ABI5700 QPCR装置中で熱サイクリングした:1サイクルの99.9℃15秒間、55℃10秒間、70℃30分間;30サイクルの99.9℃15秒間、72℃1分間。装置ソフトウェアを用いて定量化を行い、そしてターゲットビーズおよび(His)ビーズで選択されたDNAのコピー数を比較して、シグナル/バックグラウンド比を決定した。
【0127】
[00149]増幅後、ビオチン化アンチセンス鎖を介してMyOne−SAビーズ上にPCR産物を捕捉した。1.25mL MyOne−SAビーズ(10mg/mL)を0.5mL 20mM NaOHで2回洗浄し、0.5mL SB1Tで1回洗浄し、2.5mL 3M NaCl中に再懸濁し、そして4℃で保存した。25μL MyOne−SAビーズ(3M NaCl中、4mg/mL)を50μLの二本鎖QPCR産物に添加し、そして混合しながら25℃で5分間インキュベーションした。ビーズをSB1Tで1回洗浄し、そして200μL 20mM NaOHを添加し、そして混合しながら37℃で1分間インキュベーションすることによって、「センス」鎖をビーズから溶出させた。溶出された鎖を廃棄し、そしてビーズをSB1Tで3回洗浄し、そして16mM NaClで1回洗浄した。
【0128】
[00150]固定されたアンチセンス鎖からのプライマー伸張によって、適切なヌクレオチド組成で、アプタマーセンス鎖を調製した。20μLプライマー伸張反応混合物(1X KOD DNAポリメラーゼ緩衝液、1.5mM MgCl、5μM順方向PCRプライマー、0.125U/μL KOD DNAポリメラーゼ、各0.5mMのdATP、MedCTP、dGTP、およびdTTPまたはdUTP類似体のいずれか)中にビーズを再懸濁し、そして混合しながら68℃で30分間インキュベーションした。SB1Tで3回ビーズを洗浄し、そして85μL 20mM NaOHを添加し、そして混合しながら37℃で1分間インキュベーションすることによって、ビーズからアプタマー鎖を溶出させた。磁気分離後、80μLのアプタマー溶出物を新規試験管に移し、20μL 80mM HClで中和し、そして5μL 0.1M HEPES、pH7.5で中和した。
【0129】
[00151]E.選択ストリンジェンシーおよびフィードバック
[00152]選択工程の相対的ターゲットタンパク質濃度は、以下のようにS/B比に応じて、各ラウンドで低下し、ここでシグナルSおよびバックグラウンドBは上記セクションC中で定義される:
S/B<10であれば、[P](i+l)=[P]i
10≦S/B<100であれば、[P](i+l)=[P]i/3.2
S/B≧100であれば、[P](i+l)=[P]i/10
式中、[P]=タンパク質濃度であり、そしてi=現在のラウンド数である。
【0130】
[00153]選択工程に添加するターゲットタンパク質ビーズ(およびバックグラウンド決定のための(His)ビーズ)の質量を調整することによって、ターゲットタンパク質濃度を低下させた。
【0131】
[00154]各選択ラウンド後、濃縮されたDNA混合物の収束状態を決定した。1X SYBRグリーンIを含有する4mM MgClで、5μLの二本鎖QPCR産物を200μLに希釈した。75μLのシリコンオイルを試料に重層し、そして二本鎖オリゴヌクレオチドの複合体混合物に関するハイブリダイゼーション時間を測定するCt分析を用いて、収束に関して分析した。以下のプロトコルで、試料を熱サイクリングする:3サイクルの98℃1分間、85℃1分間;1サイクルの93℃1分間、85℃15分間。85℃で15分間の処理中、5秒間間隔で、蛍光画像を測定する。対数(時間)の関数として、蛍光強度をプロットして、配列の多様性を評価する。
【0132】
[00155]F.平衡結合定数(Kd)の測定
[00156]TALONビーズ分配を用いて、濃縮されたライブラリーの平衡結合定数を測定した。95℃に加熱し、そしてゆっくりと37℃に冷却することによって、DNAを再生させた。SB1緩衝液(先に記載するもの)中、低濃度の放射標識DNA(〜1x10−11M)をある範囲の濃度のターゲットタンパク質(1x10−7M〜1x10−12M最終)と混合して、そして37℃でインキュベーションすることによって、複合体を形成した。各反応の一部をナイロン膜に移し、そして乾燥させて、各反応中の総カウントを決定した。少量の5mg/mL MyOne TALONビーズ(Invitrogen)を各反応の残りに添加し、そして37℃で1分間混合した。一部を真空下でMultiScreen HVプレート(Millipore)に通過させて、未結合DNAからタンパク質が結合した複合体を分離して、そして100μL SB1緩衝液で洗浄した。ナイロン膜およびMultiScreen HVプレートをホスホイメージ化(phosphorimaged)し、そしてFUJI FLA−3000を用いて、各試料中の放射能量を定量化した。タンパク質濃度の関数として、捕捉されたDNAの分率をプロットし、そして非線形曲線適合アルゴリズムを用いて、データから平衡結合定数(K値)を抽出した。表1は、ターゲットセットに対して濃縮された候補混合物各々に関して決定されたK値を示す。NTは、特定の塩基組成に関して濃縮されたライブラリーが、Ct分析(先に記載するもの)によって決定した際、元来の候補混合物から変化していないようであり、そしてしたがって、試験されなかった(NT)ことを示す。
【0133】
[00157]表1は、15の異なるタンパク質ターゲットおよび4つの異なるDNAライブラリー:天然存在塩基(dT)、ベンジル(BzdU)、イソブチル(iBdU)またはトリプトファン(TrpdU)に対して濃縮されたプールに関する平衡結合定数(K)を示す。1x10−8未満のKを持つアプタマーが望ましい。SELEX法において修飾塩基を使用すると、有意により高い割合で、所望の高アフィニティアプタマーが生じる。通常のヌクレオチドで産生された14のアプタマーのうち2つのみが所望の遅い解離速度を有することが観察された。修飾ヌクレオチドを用いて産生された、遅いオフ速度のアプタマーは、BzdUTP、iBdUTP、およびTRPdUTPに関して、それぞれ、14のうち9、14のうち7、および14のうち14と同定された。
【0134】
[00158]
【0135】
【表1】

表1.異なる修飾ヌクレオチドを用いて選択された、濃縮ライブラリーの平衡結合定数(Kd)、モル濃度単位で報告。NT=未試験。
【0136】
実施例2. 5’固定光SELEXおよび希釈による遅いオフ速度の濃縮プロセスを用いた、光アプタマーの生成
[00159]A.候補混合物の調製
[00160]ビオチン化テンプレートにアニーリングしたプライマーのポリメラーゼ伸長によって、dATP、dCTP、dGTP、およびBzdUTPを含有する候補混合物を調製した(図4A〜B)。各テンプレートに関して、各々、5’末端にユニークな発色団を所持する、4つの異なる順方向プライマーを用いた(図5)。各候補混合物に関して、11nmolの順方向プライマー(5’発色団を含む)および10nmolのテンプレートを、250μLのプライマー伸張緩衝液(120mM Tris−HCl、pH7.8、10mM KCl、6mM (NHSO、7mM MgSO、0.1mg/mL BSA、0.1%TritonX−100)中で混ぜ合わせ、95℃に5分間加熱して、そして氷上で冷却した。プライマー伸張緩衝液、0.125U/μLのKOD DNAポリメラーゼ、ならびに各0.5mMのdATP、dCTP、dGTP、およびBzdUTPを含有する1mLの伸長反応に、各125μLのプライマー:テンプレート混合物を添加し、そして70℃で30分間インキュベーションした。各1mLの反応を4つの250μLのアリコットに分けて、そして氷上で冷却した。1mLのストレプトアビジン・コーティング磁気ビーズ(MagnaBindストレプトアビジン、Pierce、1M NaCl+0.05%TWEEN−20中、5mg/5mL)を各250μLのアリコットに添加し、そして混合しながら25℃で60分間インキュベーションすることによって、テンプレート鎖ビオチンを介して、二本鎖産物を捕捉した。0.5mL SB17T緩衝液(40mM HEPES、pH7.5、125mM NaCl、5mM KCl、5mM MgCl、1mM EDTA、0.05%TWEEN−20)で3回、ビーズを洗浄した。1mL 20mM NaOHを用いてビーズからアプタマー鎖を溶出させ、0.25mL 80mM HClで中和し、そして10μL 1M HEPES、pH7.5で緩衝した。Centricon−30で候補混合物をおよそ0.2mLに濃縮し、そしてUV吸収分光法によって定量化した。
【0137】
[00161]B.ターゲットタンパク質の調製
[00162]NHS−PEO4−ビオチン(Pierce)をリジン残基に共有結合させることによって、タグ化されていないターゲットタンパク質をビオチン化した。Sephadex G−25マイクロスピンカラムを用いて、タンパク質(50μL中、300pmol)をSB17T内に交換した。NHS−PEO4−ビオチンを1.5mMまで添加し、そして反応を4℃で16時間インキュベーションした。Sephadex G−25マイクロスピンカラムを用いて、未反応NHS−PEO4−ビオチンを除去した。
【0138】
[00163]C.遅いオフ速度の濃縮プロセスおよび光架橋を伴うアプタマー選択
[00164]各候補混合物を用いて、選択を別個に行い、ターゲットタンパク質を伴う試料(シグナルS)およびターゲットタンパク質を伴わない試料(バックグラウンドB)間の結合を比較した。最初の3回のラウンドをアフィニティに関する選択を伴って行い(光架橋なし);第二および第三のラウンドには、遅いオフ速度の濃縮プロセスが含まれた。ラウンド4〜8には、遅いオフ速度の濃縮プロセスおよび光架橋両方が含まれた。
【0139】
[00165]各試料に関して、10〜20pmolの候補混合物(最初のラウンドでは100pmol)および100pmolの逆方向プライマーを伴い、SB17T中で、90μLのDNA混合物を調製した。試料を95℃に3分間加熱し、そして0.1℃/秒の速度で37℃に冷却した。試料を10μLのタンパク質競合剤混合物(SB17T中、0.1%HSA、10μMカゼイン、および10μMプロトロンビン)と混ぜ合わせ、0.5mg Dynal MyOneストレプトアビジンビーズ(20mM NaOHで2回、そしてSB17Tで1回、あらかじめ洗浄)に添加し、そして混合しながら37℃で5分間インキュベーションした。磁気分離によってビーズを除去した。
【0140】
[00166]10μLターゲットタンパク質(SB17T中、0.5μM)またはSB17Tを40μLのDNA混合物に添加し、そして37℃で30分間インキュベーションすることによって、結合反応を行った。
【0141】
[00167]遅いオフ速度の濃縮プロセスを使用する場合、950μL SB17T(37℃にあらかじめ加熱)を添加することによって試料を20X希釈し、そして複合体を捕捉する前に、37℃で30分間インキュベーションした。
【0142】
[00168]0.25mg MyOne−SAビーズ(Invitrogen)を添加し、そして混合しながら37℃で15分間インキュベーションすることによって、タンパク質ビオチンを介して、SAビーズ上に複合体を捕捉した。ビーズをSB17Tで5回洗浄することによって、未結合DNAを除去した。示さない限り、100μL洗浄溶液中にビーズを再懸濁して、25℃で30秒間混合し、磁石でビーズを分離し、そして洗浄溶液を除去することによって、すべての洗浄を行った。85μL 20mM NaOHを添加し、そして混合しながら37℃で1分間インキュベーションすることによって、アプタマー鎖をビーズから溶出させた。磁気分離後、80μLのアプタマー溶出物を新規試験管に移し、20μL 80mM HClで中和し、そして1μL 0.5M Tris−HCl、pH7.5で緩衝した。
【0143】
[00169]光選択を使用した場合、上記由来の50μLの結合反応(または場合によって、希釈による遅いオフ速度の濃縮プロセス後、1mLの結合反応)に高圧水銀ランプ(Optical Associates, Inc.モデル0131−0003−01、500W、310nmミラーセット)を照射した。BrdU発色団を所持する候補混合物に37秒間照射し、ANA発色団を所持する混合物に60秒間照射し、そしてAQまたはソラレン発色団を所持するものに10分間照射した。さらなるフィルター(5mmプレートガラス)をANA、AQおよびソラレン発色団に用いて、不要であるが、潜在的に有害な320nm未満の波長を排除した。複合体を上述のように捕捉し、そして4Mグアニジン−HCl+0.05%TWEEN−20で、50℃で10分間1回、20mM NaOHで、25℃で2分間1回、SB17Tで2回、そして16mM NaClで1回、ビーズを洗浄することによって、非架橋DNAを除去した。架橋DNAは、増幅工程に関しては、ビーズ表面から除去されなかった。
【0144】
[00170]D.アプタマー増幅および精製
[00171]選択されたアプタマーDNAをQPCRによって増幅し、そして定量化した。48μL DNAを12μL QPCR混合物(5X KOD DNAポリメラーゼ緩衝液、25mM MgCl、10μM順方向PCRプライマー、10μMビオチン化逆方向PCRプライマー、5X SYBRグリーンI、0.125U/μL KOD DNAポリメラーゼ、ならびに各1mMのdATP、dCTP、dGTP、およびdTTP)に添加し、そして以下のプロトコルで、Bio−Rad MyIQ QPCR装置中で熱サイクリングした:1サイクルの99.9℃15秒間、55℃10秒間、68℃30分間;30サイクルの99.9℃15秒間、72℃1分間。光SELEXラウンドに関しては、最初の30分間のインキュベーションを行い、装置ソフトウェアを用いて定量化を行い、そしてターゲットタンパク質を伴いそして伴わずに選択されたDNAのコピー数を比較して、シグナル/バックグラウンド比を決定した。
【0145】
[00172]光選択を使用する場合、ビーズ表面上のプライマー伸張によって、選択されたDNAのcDNAコピーを調製した。20μL cDNA伸張混合物(5μM逆方向PCRプライマー、各0.5mMのdATP、dCTP、dGTP、およびdTTP、ならびに0.125U/μL KOD DNAポリメラーゼを含有するプライマー伸張緩衝液)中に、洗浄したビーズを再懸濁し、そして混合しながら68℃で30分間インキュベーションした。SB17Tで3回ビーズを洗浄し、そして85μL 20mM NaOHを添加し、そして混合しながら37℃で1分間インキュベーションすることによって、ビーズからアプタマー鎖を溶出させた。磁気分離後、80μLのアプタマー溶出物を新規試験管に移し、20μL 80mM HClで中和し、そして1μL 0.5M Tris−HCl、pH7.5で緩衝した。30サイクルの99.9℃15秒間、72℃1分間の上述のようなQPCRによって、cDNAを増幅し、そして定量化した。
【0146】
[00173]増幅後、ビオチン化アンチセンス鎖を介してMyOne−SAビーズ上にPCR産物を捕捉した。1.25mL MyOne−SAビーズ(10mg/mL)を0.5mL 20mM NaOHで2回洗浄し、0.5mL SB17Tで1回洗浄し、1.25mL 3M NaCl+0.05%Tween中に再懸濁し、そして4℃で保存した。25μL MyOne−SAビーズ(3M NaClT中、10mg/mL)を50μLの二本鎖QPCR産物に添加し、そして混合しながら25℃で5分間インキュベーションした。ビーズをSB17Tで1回洗浄し、そして200μL 20mM NaOHを添加し、そして混合しながら37℃で1分間インキュベーションすることによって、「センス」鎖をビーズから溶出させた。溶出された鎖を廃棄し、そしてビーズをSB17Tで3回洗浄し、そして16mM NaClで1回洗浄した。
【0147】
[00174]固定されたアンチセンス鎖からのプライマー伸張によって、適切な発色団を含むアプタマーセンス鎖を調製した。20μLプライマー伸張反応混合物(1Xプライマー伸張緩衝液、1.5mM MgCl、適切な5’発色団を含む5μM順方向PCRプライマー、各0.5mMのdATP、dCTP、dGTP、およびBzdUTP、ならびに0.125U/μL KOD DNAポリメラーゼ)中にビーズを再懸濁し、そして混合しながら68℃で30分間インキュベーションした。SB17Tで3回ビーズを洗浄し、そして85μL 20mM NaOHを添加し、そして混合しながら37℃で1分間インキュベーションすることによって、ビーズからアプタマー鎖を溶出させた。磁気分離後、80μLのアプタマー溶出物を新規試験管に移し、20μL 80mM HClで中和し、そして5μL 0.1M HEPES、pH7.5で緩衝した。
【0148】
[00175]E.選択ストリンジェンシーおよびフィードバック
[00176]各ラウンドで、実施例1に記載するように、ターゲットタンパク質を調整した。各選択ラウンド後、実施例1に記載するように、濃縮されたプールの収束状態を決定した。
【0149】
[00177]F.濃縮されたライブラリーの平衡結合定数
[00178]上記の実施例1に記載するように、しかしMyOne−SA捕捉ビーズを用いて、結合アフィニティを決定した。以下の表、表2は、遅いオフ速度の濃縮プロセスを伴う光SELEXプロトコルを用いて得られた平衡結合定数(Kd)を要約する。
【0150】
【表2】

表2.異なる発色団を用いて選択された、濃縮ライブラリーの平衡結合定数(Kd)、モル濃度単位で報告。収束に失敗したライブラリーに対しては測定を行わなかった(xで示す)。
【0151】
[00179]G.架橋活性アッセイ
[00180]飽和タンパク質および光の条件下で、タンパク質に架橋されたDNAのパーセントを測定することによって、濃縮されたライブラリーの架橋収率を決定した。放射標識DNA(50pM)を、SB17T中、逆方向プライマー(16nM)と混合し、95℃に3分間加熱し、そして0.1℃/秒で37℃に冷却した。ターゲットタンパク質を最終濃度10nMまでDNA混合物に添加し、そして37℃で30分間インキュベーションした。タンパク質を含まない対照試料を同時に調製した。上記のとおりであるが、飽和用量で(BrdUに関しては6分間、ANAに関しては10分間、そしてAQおよびPsorに関しては30分間)、上記の発色団特異的条件で、試料を架橋した。変性PAGEによって、試料を分析し、図6、そして定量化し、そして結果を表3に一覧にする。
【0152】
【表3】

表3.異なる発色団を用いて選択された、濃縮ライブラリーの架橋収率、タンパク質に架橋した総DNAパーセント単位で報告。収束に失敗したライブラリーに対しては測定を行わなかった(xで示す)。
【0153】
実施例3. 競合剤を用いた遅いオフ速度の濃縮プロセスを用いた、遅いオフ速度のアプタマーの生成
[00181]A.候補混合物の調製
[00182]94のタンパク質ターゲットに対して、ビオチン化テンプレートにアニーリングしたプライマーのポリメラーゼ伸長によって、dATP、dCTP、dGTP、およびBzdUTPを含有する候補混合物を調製した。55nmolの順方向プライマー(5’ANA発色団を含む)および55nmolのテンプレートを、0.5mLのプライマー伸張緩衝液(120mM Tris−HCl、pH7.8、10mM KCl、6mM (NHSO、7mM MgSO、0.1mg/mL BSA、0.1%TritonX−100)中で混ぜ合わせ、95℃に5分間、70℃に5分間、48℃に5分間加熱して、そして氷上で冷却した。プライマー伸張緩衝液、0.125U/μLのKOD DNAポリメラーゼ、ならびに各0.5mMのdATP、dCTP、dGTP、およびBzdUTPを含有する5.5mLの伸長反応に、プライマー:テンプレート混合物を添加し、そして70℃で60分間インキュベーションした。伸長反応の完了後、溶液を氷上で冷却した。25mLのストレプトアビジン・コーティング磁気ビーズ(MagnaBindストレプトアビジン、Pierce、1M NaCl+0.05%TWEEN−20中、5mg/5mL)をプライマー伸張産物に添加し、そして回転させながら25℃で15分間インキュベーションすることによって、テンプレート鎖ビオチンを介して、二本鎖産物を捕捉した。40mL SB17T緩衝液(40mM HEPES、pH7.5、125mM NaCl、5mM KCl、5mM MgCl、1mM EDTA、0.05%TWEEN−20)で3回、ビーズを洗浄した。振盪しながら、5分間、35.2mL 20mM NaOHを用いてビーズからアプタマー鎖を溶出させた。溶出された鎖を8.8mL 80mM HClで中和し、そして400μL 1M HEPES、pH7.3で緩衝した。Centricon−30で候補混合物をおよそ0.7mLに濃縮し、そしてUV吸収分光法によって定量化した。
【0154】
[00183]B.ターゲットタンパク質の調製
[00184]実施例2に記載するように、タグ化されていないターゲットタンパク質をビオチン化した。
【0155】
[00185]C.遅いオフ速度の濃縮プロセスおよび光架橋を伴うアプタマー選択
[00186]ラウンド6〜9の遅いオフ速度の濃縮プロセス中、アプタマー再結合に関する競合剤として10mMの硫酸デキストランを添加して、実施例2に記載するように選択を別個に行った。
【0156】
[00187]3つの異なる方式で、遅いオフ速度の濃縮プロセスを使用した。ラウンド2および3では、950μL SB17T(37℃にあらかじめ加熱)を添加することによって試料を20X希釈し、そして複合体を捕捉する前に、37℃で30分間インキュベーションした。ラウンド4および5では、950μL SB17T(37℃にあらかじめ加熱)を添加することによって試料を20X希釈し、そして架橋前に、37℃で30分間インキュベーションした。ラウンド6および7では、950μL SB17T(37℃にあらかじめ加熱)を添加することによって試料を20X希釈した。50μLの各希釈試料を950μL SB17T+10mM 5000K硫酸デキストラン(37℃にあらかじめ加熱)に移すことによって、再び希釈して、全体で400X希釈とし、そして架橋前に37℃で60分間インキュベーションした。ラウンド8および9では、950μL SB17T(37℃にあらかじめ加熱)を添加することによって、試料を20X希釈して、そして50μlの各試料を950μl SB17T(37℃にあらかじめ加熱)に移すことによって、再び希釈して、400X希釈とした。最後に、各400X希釈試料のうち50μLを950μL SB17T+10mM 5000K硫酸デキストラン(37℃にあらかじめ加熱)に移すことによって、再び希釈して、全体で8000X希釈とし、そして架橋前に37℃で60分間インキュベーションした。実施例2に記載するように、複合体を捕捉し、そして洗浄した。光架橋を使用する場合、遅いオフ速度の濃縮プロセス後の1mL結合反応を、実施例2におけるような複合体捕捉前に、470nm LEDアレイで、60秒間照射した。
【0157】
[00188]D.アプタマー増幅および精製
[00189]実施例2におけるように、増幅および精製を行った。
[00190]E.選択ストリンジェンシーおよびフィードバック
[00191]ラウンド6および8を除いて、実施例1に記載するように各ラウンドでターゲットタンパク質を調整した。これらの大規模希釈後のシグナルを最大にするため、ラウンド6および8に関してターゲットタンパク質を100nMに増加させた。各選択ラウンド後、実施例1に記載するように、濃縮されたプールの収束状態を決定した。
【0158】
[00192]F.解離速度定数決定プロトコル
[00193]時間の関数として、希釈後に結合したままである、あらかじめ形成されたアプタマー:タンパク質複合体の割合を測定することによって、各アプタマーに関して、アプタマー:タンパク質複合体解離に関する速度定数(koff)を決定した。測定されたK値より10X高い濃度のタンパク質とともに、放射標識アプタマー(50pM)をSB17T−0.002(TWEEN−20を0.002%まで減少させたSB17T)中、37℃で平衡化させた。37℃のSB17T−0.002で試料を100X希釈し、そして多様な時点でアリコットを除去し、そして分配して、未結合アプタマーをタンパク質:アプタマー複合体から分離した。試料にZORBAX樹脂(Agilent)を添加し、該樹脂上に複合体を捕捉し、真空下でDuraPore膜に試料を通過させ、そしてSB17T−0.002で樹脂を洗浄することによって、分配を完了した。タンパク質はZORBAX樹脂では効率的に捕捉されないため、SB17T中でビオチン化タンパク質を用いてアッセイを行い、そしてDyanal MyOne−SAビーズで複合体を捕捉することによって、分配を完了した。FUJI FLA−3000ホスホイメージャーで樹脂上の放射標識アプタマーを定量化することによって、各時点で残っている複合体の量を決定した。複合体の割合を時間の関数としてプロットし、そして非線形回帰を用いた生体分子解離動力学に関する分析的表現にデータを適合させることによって、解離速度定数(koff)および解離半減期値(t1/2)を決定した。
【0159】
[00194]G.いくつかのアプタマーの動力学的特性
[00195]以下の表、表4は、このプロトコルを用いて、10のターゲットに対して選択されたアプタマーに関して得られる解離半減期値(t1/2)を要約する。
【0160】
【表4】

表4.競合剤を含む、遅いオフ速度の濃縮工程プロトコルを用いた、アプタマーの解離半減期値(t1/2
[00196]実施例4:遅いオフ速度の濃縮プロセスは、選択されたアプタマーの解離半減期を増加させる。
【0161】
[00197]遅いオフ速度の濃縮プロセスを伴わない、実施例1に記載するアフィニティSELEX法または米国特許第6,458,539号、表題“Photoselection of Nucleic Acid Ligands”に記載される光SELEX法のいずれかによって選択された65のアプタマーに関して、解離半減期値(t1/2)を測定し、そしてプロットした(図3A)。希釈または競合剤を伴う希釈による、遅いオフ速度の濃縮プロセスを伴う、実施例2に記載する遅いオフ速度の濃縮プロセスによって選択された72のアプタマーに関してもまた、t1/2値を測定し、そしてプロットした(図3B)。遅いオフ速度の濃縮プロセスの非存在下で選択される、修飾ヌクレオチド5−ベンジル−dUTP(BzdUTP)、5−イソブチル−dUTP(iBdUTP)、または5−トリプトアミノ−dUTPを用いたアプタマーに関する平均t1/2値は、20分間であり、いくつかのアプタマーは、最長1時間のt1/2値を有した。これは、天然塩基または他の修飾ヌクレオチドで以前記載されているものよりも実質的に長い。遅いオフ速度の濃縮プロセスを用いて選択されるアプタマーに関する平均は85分を超え、いくつかのアプタマーは4時間を超えるt1/2値を有した。
【0162】
[00198]実施例5: NpdUTPランダムライブラリーからのアプタマーの生成
[00199]A.候補混合物の調製
[00200]実施例3に記載するように、しかし5’−ANA光反応基を用いずに、dATP、dCTP、dGTP、およびNpdUTPを含有する候補混合物を調製した。
【0163】
[00201]B.ターゲットタンパク質の固定化
実施例1に記載するように、ターゲットタンパク質は(His)6タグを含有し、そしてCo+2−NTAビーズを用いて、該タンパク質を捕捉した。
【0164】
[00202]C.遅いオフ速度の濃縮プロセスを用いたアプタマー選択
[00203]実施例3に記載するように、しかし光架橋を伴わずに、アプタマー選択を行った。
【0165】
[00204]D.アプタマー増幅および精製
[00205]実施例3に記載するように、増幅および精製を行った。
[00206]E.選択ストリンジェンシーおよびフィードバック
[00207]実施例3に記載するように選択ストリンジェンシーおよびフィードバックを行った。
【0166】
[00208]F.アプタマー特性
[00209]この選択に由来する4つのアプタマーの平衡結合定数(Kd)を表5に列挙する。
【0167】
表5.
NpdUTPアプタマーの平衡結合定数(Kd)
【0168】
【表5】

[00210]実施例6. 競合剤を伴う、遅いオフ速度の濃縮プロセスを用いた、ペプチドターゲットに関するオフ速度が遅いアプタマーの生成
[00211]A.候補混合物の調製
[00212]実施例3に記載するように、5’ANA発色団を含むプライマーのポリメラーゼ伸長によって、dATP、dCTP、dGTP、およびBzdUTPを含有する候補混合物を調製し、そして精製した。
【0169】
[00213]B.遅いオフ速度の濃縮プロセスおよび光架橋を用いたアプタマー選択
[00214]29アミノ酸のビオチン化ターゲットペプチドSMAP29(ヒツジ骨髄抗細菌ペプチドMAP−29、Anaspec)を用いて、実施例3に記載するように、アプタマー選択を行った。
【0170】
[00215]C.アプタマー増幅および精製
[00216]実施例3に記載するように、増幅および精製を行った。
[00217]D.選択ストリンジェンシーおよびフィードバック
[00218]実施例3に記載するように選択ストリンジェンシーおよびフィードバックを行った。
【0171】
[00219]E.アプタマー特性
[00220]この選択に由来するアプタマーの平衡結合定数(Kd)は、1.2e−8M(実施例1に記載するプロトコルにしたがって測定)であった。このアプタマーの解離半減期(t1/2)は、69分であった(実施例3に記載するプロトコルにしたがって測定)、結果を図12Aおよび図12Bに示す。
【0172】
[00221]実施例7:アフィニティビーズハイブリッド捕捉
[00222]工程1:実施例7:試験試料中のタンパク質測定は、オフ速度が遅いアプタマーによって可能になる。
【0173】
[00223]工程1:アプタマー/プライマー混合物および試験試料の調製
ビオチンCy3検出標識(各4nM)を含むアプタマーを、1XSB17T中、3X過剰の捕捉プローブ(ビオチンタグおよび光切断可能要素を含有するアプタマーの3’固定領域に相補的なオリゴヌクレオチド)と混合し、そして95℃で4分間、次いで37℃で13分間加熱し、そして1xSB17T中、1:4に希釈する。55μLのアプタマー/プライマー混合物をマイクロタイタープレート(Hybaid#AB−0407)に添加し、そしてホイルで密封する。SB17T中、既知の濃度のタンパク質分析物と混合し、そしてSB17Tで連続希釈することによって、マイクロタイタープレート中で試験試料を調製する。
【0174】
[00224]工程2:試料平衡化
[00225]55μLのアプタマー/プライマー混合物を55μLの試験試料に添加し、そしてホイルで密封したマイクロタイタープレート中、37℃で15分間インキュベーションする。平衡混合物中の各アプタマーの最終濃度は0.5nMである。別に記載しない限り、平衡化後、この方法のすべての続く工程を室温で行う。
【0175】
[00226]工程3:アプタマー捕捉および未結合タンパク質除去
[00227]DuraPoreろ過プレート(Millipore HVカタログ#MAHVN4550)を真空ろ過によって100μL 1XSB17Tで1回洗浄し、133μL 7.5%ストレプトアビジン−アガロース樹脂(Pierce)を各ウェルに添加し、そして200μL 1XSB17Tで2回洗浄する。ストレプトアビジン−アガロース樹脂を含有するDuraporeプレートに、100μLの平衡化試料を移し、そして熱ミキサー(Eppendorf)上で、800rpmで5分間インキュベーションする。200μL 1XSB17T+100μMビオチンで1回、そして200μL 1XSB17Tで1回、樹脂を洗浄する。
【0176】
[00228]工程4:ビオチンでのタンパク質タグ化
[00229]使用直前に調製される、SB17T中の1.2mM NHS−PEO4−ビオチン100μLを、捕捉アプタマーおよびアプタマー:タンパク質複合体とともに樹脂に添加し、そして熱ミキサー上で800rpmで20分間インキュベーションする。真空ろ過によって、200μL 1XSB17Tで5回、樹脂を洗浄する。
【0177】
[00230]工程5:遅いオフ速度の濃縮プロセスおよび光切断
[00231]Duraporeプレートの底面から水滴誘導装置(drip director)を除去し、そしてプレートを1mLマイクロタイター収集プレート上に乗せる。1000xgで30秒間遠心分離することによって、200μL 1XSB17Tで1回、樹脂を洗浄する。80μLの1XSB17T+10mM DxSO4を樹脂に添加し、そして熱ミキサー上、800rpmで10分間、BlackRay水銀ランプを照射する。DuraPoreプレートを新しい1mL深底プレートに移し、そして1000xgで30秒間遠心分離して、光切断されたアプタマーおよびタンパク質:アプタマー複合体を収集する。
【0178】
[00232]工程6:タンパク質捕捉および未結合アプタマー除去
[00233]50μLのMyOneストレプトアビジンC1常磁性ビーズ(Invitrogen)(1XSB17T中、10mg/mL)をマイクロタイタープレートに添加する。磁石で60秒間ビーズを分離し、そして上清を除去する。225μLの光切断混合物をビーズに添加し、そして5分間混合する。磁気ビーズを分離し、そして洗浄緩衝液を交換することによって、200μL 1XSB17Tで4回、ビーズを洗浄する。最終洗浄緩衝液を除去する。
【0179】
[00234]工程7:アプタマー溶出
[00235]100μLのリン酸ナトリウム溶出緩衝液(10mM NaHPO、pH11)をビーズに添加し、そして5分間混合する。90μLの溶出物をマイクロタイタープレートに移し、そして10μLのリン酸ナトリウム中和緩衝液(10mM NaHPO、pH5)で中和する。
【0180】
[00236]工程8:マイクロアレイに対するアプタマーハイブリダイゼーション
[00237]カスタム顕微鏡スライド支持体上に固定された各アプタマーの可変領域の相補配列で構成されるオリゴヌクレオチド捕捉プローブを含む、DNAアレイを調製する。多数のアレイ(サブアレイ)が各スライド上に存在し、そしてサブアレイは、試料適用のため、ガスケット(Grace)を取り付けることによって、物理的に分離される。アレイを100μLブロッキング緩衝液で前処理し、そして熱ミキサー上、65℃で15分間インキュベーションする。30μLの高塩ハイブリダイゼーション緩衝液を、マイクロタイタープレート中、90μLの中和アプタマー溶出物に添加し、熱サイクラー中で95℃で5分間インキュベーションし、そして0.1℃/秒で65℃に冷却する。ブロッキング緩衝液をアレイから除去し、そして110μLのアプタマー試料をアレイに添加し、そして加湿チャンバー中、65℃で20時間インキュベーションする。
【0181】
[00238]工程9:アレイ洗浄
[00239]アプタマー試料をアレイから除去し、そしてアレイを200μLのリン酸ナトリウムTween−20洗浄緩衝液で、ガスケットを適所にして65℃で1回洗浄し、そしてガスケットを除去してパップ瓶中、25mLリン酸ナトリウム、Tween−20洗浄緩衝液を用いて、65℃で3回洗浄する。アレイを窒素銃で乾燥させる。
【0182】
[00240]工程10:アレイ上のシグナルを定量化する
[00241]アレイスライドをTECAN LS300 Reloaded上、適切なチャネル中で、Cy3検出のためにスキャンし、そして各アレイ特徴上のCy3シグナルを定量化する。
【0183】
[00242]結果:
[00243]伝統的なSELEX法および材料を用いて、3つの異なるターゲット(bFGF、VEGF、およびミエロペルオキシダーゼ)に特異的なアプタマーを産生した。5位修飾ヌクレオチドを用いて、ターゲットの同じセットに特異的なアプタマーの第二のセットを作製し、そしてそれぞれのターゲットに対する非常に遅いオフ速度に関して選択した。伝統的なプロセスで作製されたアプタマーは、5分未満のオフ速度と測定された。修飾ヌクレオチドを含んで、そして選択中に、遅いオフ速度の濃縮プロセスを用いて作製されたアプタマーは、20分より長いオフ速度を有した。2つの異なる方法によって、各ターゲットに関して2セットのアプタマーを作製して、各ターゲットに関して総数4の異なるアプタマー集団を得た。ターゲット濃度のある範囲に渡って、上述のように、これらのアプタマー集団が試験試料中で分析物濃度を測定する能力を評価した。DNAチップ検出からの相対的シグナルを、投入ターゲット濃度に対してプロットした。図11A〜11Cを参照されたい。伝統的なアプタマーの反応曲線は非常に平坦であり、そして検出感度はかなり低い。オフ速度が遅いアプタマーを用いたそれぞれのターゲットの検出感度は、非常に優れている。このデータは、分析性能を最大にするため、オフ速度が遅いアプタマーを用いる必要性があることを裏付ける。
【0184】
[00244]実施例8. ヒト・トロンビンに対する高アフィニティBzdUアプタマーの生成
[00245]A.候補混合物の調製
[00246]実施例3に記載するように、5’ANA発色団を含むプライマーのポリメラーゼ伸長によって、dATP、dCTP、dGTP、およびBzdUTPを含有する候補混合物を調製し、そして精製した。
【0185】
[00247]B.ターゲットタンパク質の調製
[00248]実施例2に記載するように、ヒト・トロンビンをビオチンでタグ化した。
【0186】
[00249]C.遅いオフ速度の濃縮プロセスおよび光架橋を用いたアプタマー選択
[00250]実施例3に記載するように、ターゲットとしてビオチン化ヒト・トロンビンを用いて、アプタマー選択を行った。
【0187】
[00251]D.アプタマー増幅および精製
[00252]実施例3に記載するように、増幅および精製を行った。
[00253]E.選択ストリンジェンシーおよびフィードバック
[00254]実施例3に記載するように選択ストリンジェンシーおよびフィードバックを行った。
【0188】
[00255]F.アプタマー特性
[00256]図15に示すように、この選択に由来するアプタマー2336−17の平衡結合定数(Kd)は、4.4e−11M(実施例1に記載するプロトコルにしたがって測定)であった。
【0189】
[00257]天然dA、dC、dG、およびdTヌクレオチドで構成されるライブラリー(Bockら、1992)から、ヒト・トロンビンに対する一本鎖DNAアプタマーを選択した。アプタマーの結合アフィニティは、2.5e−8M〜2.0e−7Mの範囲のKd値を有した。天然dA、dC、dG、および修飾5−(1−ペンチニル)−dUTPで構成されるライブラリーを伴う、類似のプロトコルを用いると、4e−7M〜1e−6Mの範囲のKd値を持つアプタマーが選択された(Lathamら、1994)。実施例7は、dA、dC、dG、および修飾BzdUで構成されるライブラリーから選択されるヒト・トロンビンに対する非常に高アフィニティのアプタマーの発見を記載する。このライブラリー由来の最高のアフィニティ−のアプタマーは、4.4e−11MのKd値を有した。
【0190】
[00258]いくつかの特許、特許出願刊行物、および科学的刊行物が、説明全体に引用され、そして/または最後に列挙される。これらの各々は、その全体が本明細書に援用される。同様に、援用される刊行物中に言及されるすべての刊行物は、その全体が本明細書に援用される。
【0191】
[00259]引用される刊行物およびこれに関連する制限の例は、例示であり、そして独占的ではないと意図される。引用される刊行物の他の制限は、明細書を読み、そして図を検討すると、当業者には明らかであろう。
【0192】
[00260]単語「含む」(「comprise」、「comprises」、および「comprising」)は、独占的ではなく、包括的と解釈されるものとする。

【特許請求の範囲】
【請求項1】
アプタマーを同定するための方法であって:
(a)核酸の候補混合物を調製し;
(b)ターゲット分子と候補混合物を接触させ、ここで、候補混合物中、他の核酸に比較してターゲット分子に対して増加したアフィニティを有する核酸がターゲット分子に結合し、核酸−ターゲット分子複合体を形成し;
(c)核酸−ターゲット分子複合体を、遅いオフ速度の濃縮プロセスに曝露し;
(d)候補混合物から核酸−ターゲット分子複合体を分配し;
(e)核酸−ターゲット分子複合体を解離させて、未結合(free)核酸を生成し;
(f)未結合核酸を増幅して、増加したアフィニティでターゲット分子に結合可能な配列が濃縮された核酸混合物を得て、それによってターゲット分子に対するアプタマーを同定可能であり;
(g)必要に応じて(b)〜(f)を反復し;そして
(h)ターゲット分子に対する少なくとも1つのアプタマーを同定する
工程を含む、前記方法。
【請求項2】
前記候補混合物が一本鎖核酸または二本鎖核酸である、請求項1の方法。
【請求項3】
前記候補混合物がDNAまたはRNAを含む、請求項1の方法。
【請求項4】
前記候補混合物が少なくとも1つの化学的修飾を含む、請求項1の方法。
【請求項5】
前記の化学的に修飾された核酸が、リボース位、デオキシリボース位、リン酸位、および塩基位からなる群より独立に選択される1以上の位で化学的置換を含む、請求項4の方法。
【請求項6】
前記の化学的に修飾された核酸が、2’位糖修飾、2’−アミノ(2’−NH)、2’−フルオロ(2’−F)、2’−O−メチル(2’−OMe)、5位ピリミジン修飾、シトシン環外アミンでの修飾、5−ブロモウラシルの置換、5−ブロモデオキシウリジンの置換、5−ブロモデオキシシチジンの置換、主鎖修飾、メチル化、3’キャップ、および5’キャップからなる群より独立に選択される、請求項4の方法。
【請求項7】
前記の化学的に修飾された核酸が、5−(N−ベンジルカルボキシアミド)−2’−デオキシウリジン、5−(N−イソブチルカルボキシアミド)−2’−デオキシウリジン、5−(N−[2−(1H−インドール−3イル)エチル]カルボキシアミド)−2’−デオキシウリジン、5−(N−[1−(3−トリメチルアンモニウム)プロピル]カルボキシアミド)−2’−デオキシウリジンクロリド、5−(N−ナフチルカルボキシアミド)−2’−デオキシウリジン、および5−(N−[1−(2,3−ジヒドロキシプロピル)]カルボキシアミド)−2’−デオキシウリジンからなる群より独立に選択される、請求項4の方法。
【請求項8】
前記の遅いオフ速度の濃縮プロセスが、核酸−ターゲット分子複合体を含有する候補混合物を希釈する工程を含む、請求項1の方法。
【請求項9】
前記の遅いオフ速度の濃縮プロセスが、核酸−ターゲット分子複合体を含有する候補混合物に、少なくとも1つの競合剤を添加する工程を含む、請求項1の方法。
【請求項10】
前記の遅いオフ速度の濃縮プロセスが、核酸−ターゲット分子複合体を含有する候補混合物を希釈し、そして核酸−ターゲット分子複合体を含有する候補混合物に、少なくとも1つの競合剤を添加する工程を含む、請求項1の方法。
【請求項11】
前記ターゲット分子が、タンパク質、炭水化物、多糖、糖タンパク質、ホルモン、受容体、ペプチド、抗原、抗体、ウイルス、基質、代謝物、遷移状態類似体、補因子、阻害剤、薬剤、色素、栄養物、増殖因子、組織、および規制物質からなる群より選択される、請求項1の方法。
【請求項12】
少なくとも1つのアプタマーが、そのターゲット分子からの遅い解離速度(t1/2)を有する、請求項1の方法。
【請求項13】
前記解離速度(t1/2)が約30分間以上である、請求項12の方法。
【請求項14】
前記解離速度(t1/2)が約30分間〜約240分間の間である、請求項12の方法。
【請求項15】
前記解離速度(t1/2)が、約30分間以上、約60分間以上、約90分間以上、約120分間以上、約150分間以上、約180分間以上、約210分間以上、および約240分間以上の時間からなる群より選択される、請求項12の方法。
【請求項16】
前記の少なくとも1つの競合剤分子が、オリゴヌクレオチド、ポリアニオン、脱塩基ホスホジエステルポリマー、dNTP、およびピロホスフェートからなる群より独立に選択される、請求項9の方法。
【請求項17】
前記ポリアニオンが、ヘパリン、ニシン精子DNA、サケ精子DNA、硫酸デキストラン、およびポリデキストランからなる群より選択される、請求項16の方法。
【請求項18】
請求項1の方法にしたがって同定されるアプタマー。
【請求項19】
そのターゲット分子からの遅い解離速度(t1/2)を有する、請求項18のアプタマー。
【請求項20】
そのターゲット分子からの約30分間以上の解離速度(t1/2)を有する、請求項18のアプタマー。
【請求項21】
そのターゲット分子からの約30分間〜約240分間の間の解離速度(t1/2)を有する、請求項18のアプタマー。
【請求項22】
そのターゲット分子からの約30分間以上、約60分間以上、約90分間以上、約120分間以上、約150分間以上、約180分間以上、約210分間以上、および約240分間以上の時間からなる群より選択される解離速度(t1/2)を有する、請求項18のアプタマー。
【請求項23】
前記の遅いオフ速度の濃縮プロセスが:
(i)核酸−ターゲット分子複合体を含有する候補混合物が平衡結合を達成することを可能にし;
(ii)(i)の後、核酸−ターゲット分子複合体を含有する候補混合物を希釈し;そして
(iii)(ii)の後、核酸−ターゲット分子複合体を含有する候補混合物をインキュベーションする
工程を含む、請求項1の方法。
【請求項24】
前記の遅いオフ速度の濃縮プロセスが:
(i)核酸−ターゲット分子複合体を含有する候補混合物が平衡結合を達成することを可能にし;
(ii)(i)の後、核酸−ターゲット分子複合体を含有する候補混合物を、少なくとも1つの競合剤分子と混合し;
(ii)(ii)の後、競合剤および核酸−ターゲット分子複合体を含有する候補混合物をインキュベーションする
工程を含む、請求項1の方法。
【請求項25】
前記の遅いオフ速度の濃縮プロセスが:
(i)核酸−ターゲット分子複合体を含有する候補混合物が平衡結合を達成することを可能にし;
(ii)(i)の後、核酸−ターゲット分子複合体を含有する候補混合物を、少なくとも1つの競合剤分子と混合し;
(iii)(i)の後、核酸−ターゲット分子複合体を含有する候補混合物を希釈し; そして
(iv)競合剤および核酸−ターゲット分子複合体を含有する希釈された候補混合物をインキュベーションする
工程を含む、請求項1の方法。
【請求項26】
核酸の候補混合物が光反応性ヌクレオチドを含む、請求項1の方法。
【請求項27】
ターゲットからの解離速度が遅いアプタマーであって、前記解離速度(t1/2)が約30分間以上である、前記アプタマー。
【請求項28】
前記解離速度(t1/2)が約30分間〜約240分間の間である、請求項27のアプタマー。
【請求項29】
約30分間以上、約60分間以上、約90分間以上、約120分間以上、約150分間以上、約180分間以上、約210分間以上、および約240分間以上の時間からなる群より選択される解離速度(t1/2)を有する、請求項27のアプタマー。
【請求項30】
ターゲットが、図7に列挙されるターゲットからなる群より選択される、請求項26のアプタマー。
【請求項31】
前記タ−ゲットがタンパク質である、請求項26のアプタマー。
【請求項32】
前記タ−ゲットがペプチドである、請求項26のアプタマー。
【請求項33】
i)切断可能要素、
ii)検出可能要素、
iii)スペーサー要素、および
iv)タグ
からなる群より独立に選択される少なくとも1つの要素を含む、請求項26のアプタマー。
【請求項34】
ターゲットに特異的に結合するアプタマーであって、図14に示される塩基修飾されたピリミジンからなる群より独立に選択される少なくとも1つの塩基修飾されたピリミジンを含む、前記アプタマー。
【請求項35】
5−ブロモウラシル(BrU)、5−ヨードウラシル(IU)、5−ブロモビニルウラシル、5−ヨードビニルウラシル、5−アジドウラシル、4−チオウラシル、5−ブロモシトシン、5−ヨードシトシン、5−ブロモビニルシトシン、5−ヨードビニルシトシン、5−アジドシトシン、8−アジドアデニン、8−ブロモアデニン、8−ヨードアデニン、8−アジドグアニン、8−ブロモグアニン、8−ヨードグアニン、8−アジドヒポキサンチン、8−ブロモヒポキサンチン、8−ヨードヒポキサンチン、8−アジドキサンチン、8−ブロモキサンチン、8−ヨードキサンチン、5−ブロモデオキシウリジン、8−ブロモ−2’−デオキシアデニン、5−ヨード−2’−デオキシウラシル、5−ヨード−2’−デオキシシトシン、5−[(4−アジドフェナシル)チオ]シトシン、5−[(4−アジドフェナシル)チオ]ウラシル、7−デアザ−7−ヨードアデニン、7−デアザ−7−ヨードグアニン、7−デアザ−7−ブロモアデニン、および7−デアザ−7−ブロモグアニンからなる群より独立に選択される少なくとも1つの光反応性ヌクレオチドをさらに含む、請求項34のアプタマー。
【請求項36】
アントラキノン(AQ)、ソラレン(Psor)、4−アジド−2−ニトロ−アニリン(ANA)、および5−ブロモ−dUTPからなる群より独立に選択される少なくとも1つの光反応基をさらに含む、請求項33のアプタマー。
【請求項37】
そのターゲット分子からの解離速度が遅いアプタマーを同定するための方法であって:
(a)核酸の候補混合物を調製し;
(b)ターゲット分子と候補混合物を接触させ、ここで、候補混合物中、他の核酸に比較してターゲット分子に対して増加したアフィニティを有する核酸がターゲット分子に結合し、核酸−ターゲット分子複合体を形成し;
(c)核酸−ターゲット分子複合体をオフ速度濃縮プロセスに曝露し;
(d)候補混合物から核酸−ターゲット分子複合体を分配し;
(e)核酸−ターゲット分子複合体を解離させて、未結合核酸を生成し;
(f)未結合核酸を増幅して、増加したアフィニティでターゲット分子に結合可能な配列が濃縮された核酸混合物を得て、それによってターゲット分子に対するアプタマーを同定可能であり;
(g)必要に応じて(b)〜(f)を反復し;そして
(h)ターゲット分子に対する少なくとも1つのアプタマーを同定する、ここで、アプタマーがそのターゲット分子からの遅いオフ速度を有する
工程を含む、前記方法。
【請求項38】
前記候補混合物が一本鎖核酸または二本鎖核酸である、請求項37の方法。
【請求項39】
前記候補混合物がDNAまたはRNAを含む、請求項37の方法。
【請求項40】
前記候補混合物が化学的に修飾された核酸を含む、請求項37の方法。
【請求項41】
前記の化学的に修飾された核酸が、リボース位、デオキシリボース位、リン酸位、および塩基位からなる群より独立に選択される1以上の位で化学的置換を含む、請求項40の方法。
【請求項42】
前記の化学的に修飾された核酸が、2’位糖修飾、2’−アミノ(2’−NH)、2’−フルオロ(2’−F)、2’−O−メチル(2’−OMe)、5位ピリミジン修飾、シトシン環外アミンでの修飾、5−ブロモウラシルの置換、5−ブロモデオキシウリジンの置換、5−ブロモデオキシシチジンの置換、主鎖修飾、メチル化、3’キャップ、および5’キャップからなる群より独立に選択される、請求項40の方法。
【請求項43】
前記の少なくとも1つの化学的修飾が、5−(N−ベンジルカルボキシアミド)−2’−デオキシウリジン、5−(N−イソブチルカルボキシアミド)−2’−デオキシウリジン、5−(N−[2−(1H−インドール−3イル)エチル]カルボキシアミド)−2’−デオキシウリジン、5−(N−[1−(3−トリメチルアンモニウム)プロピル]カルボキシアミド)−2’−デオキシウリジンクロリド、5−(N−ナフチルカルボキシアミド)−2’−デオキシウリジン、および5−(N−[1−(2,3−ジヒドロキシプロピル)]カルボキシアミド)−2’−デオキシウリジンからなる群より独立に選択される、請求項40の方法。
【請求項44】
前記の遅いオフ速度の濃縮プロセスが、核酸−ターゲット分子複合体を含有する候補混合物を希釈する工程を含む、請求項37の方法。
【請求項45】
前記の遅いオフ速度の濃縮プロセスが、核酸−ターゲット分子複合体を含有する候補混合物に、少なくとも1つの競合剤を添加する工程を含む、請求項37の方法。
【請求項46】
前記の遅いオフ速度の濃縮プロセスが、核酸−ターゲット分子複合体を含有する候補混合物を希釈し、そして核酸−ターゲット分子複合体を含有する候補混合物に、少なくとも1つの競合剤を添加する工程を含む、請求項37の方法。
【請求項47】
前記ターゲット分子が、タンパク質、炭水化物、多糖、糖タンパク質、ホルモン、受容体、ペプチド、抗原、抗体、ウイルス、基質、代謝物、遷移状態類似体、補因子、阻害剤、薬剤、色素、栄養物、増殖因子、組織、および規制物質からなる群より選択される、請求項37の方法。
【請求項48】
前記解離速度(t1/2)が約30分間以上である、請求項37の方法。
【請求項49】
前記解離速度(t1/2)が約30分間〜約240分間の間である、請求項37の方法。
【請求項50】
前記解離速度(t1/2)が、約30分間以上、約60分間以上、約90分間以上、約120分間以上、約150分間以上、約180分間以上、約210分間以上、および約240分間以上の時間からなる群より選択される、請求項37の方法。
【請求項51】
前記の少なくとも1つの競合剤分子が、オリゴヌクレオチド、ポリアニオン、脱塩基ホスホジエステルポリマー、dNTP、およびピロホスフェートからなる群より独立に選択される、請求項45の方法。
【請求項52】
前記ポリアニオンが、ヘパリン、ニシン精子DNA、サケ精子DNA、硫酸デキストラン、およびポリデキストランからなる群より選択される、請求項51の方法。
【請求項53】
請求項37の方法にしたがって同定されるアプタマー。
【請求項54】
そのターゲット分子からの約30分間以上の解離速度(t1/2)を有する、請求項53のアプタマー。
【請求項55】
そのターゲット分子からの約30分間〜約240分間の間の解離速度(t1/2)を有する、請求項53のアプタマー。
【請求項56】
そのターゲット分子からの約30分間以上、約60分間以上、約90分間以上、約120分間以上、約150分間以上、約180分間以上、約210分間以上、および約240分間以上の時間からなる群より選択される解離速度(t1/2)を有する、請求項53のアプタマー。
【請求項57】
前記の遅いオフ速度の濃縮プロセスが:
(i)核酸−ターゲット分子複合体を含有する候補混合物が平衡結合を達成することを可能にし;
(ii)(i)の後、核酸−ターゲット分子複合体を含有する候補混合物を希釈し;そして
(iii)(ii)の後、核酸−ターゲット分子複合体を含有する候補混合物をインキュベーションする
工程を含む、請求項37の方法。
【請求項58】
前記の遅いオフ速度の濃縮プロセスが:
(i)核酸−ターゲット分子複合体を含有する候補混合物が平衡結合を達成することを可能にし;
(ii)(i)の後、核酸−ターゲット分子複合体を含有する候補混合物を、少なくとも1つの競合剤分子と混合し;
(ii)(ii)の後、競合剤および核酸−ターゲット分子複合体を含有する候補混合物をインキュベーションする
工程を含む、請求項37の方法。
【請求項59】
前記の遅いオフ速度の濃縮プロセスが:
(i)核酸−ターゲット分子複合体を含有する候補混合物が平衡結合を達成することを可能にし;
(ii)(i)の後、核酸−ターゲット分子複合体を含有する候補混合物を、少なくとも1つの競合剤分子と混合し;
(iii)(i)の後、核酸−ターゲット分子複合体を含有する候補混合物を希釈し; そして
(iv)競合剤および核酸−ターゲット分子複合体を含有する希釈された候補混合物をインキュベーションする
工程を含む、請求項37の方法。
【請求項60】
核酸の候補混合物が光反応性ヌクレオチドを含む、請求項37の方法。
【請求項61】
ターゲットからの解離速度が遅いアプタマーであって、前記解離速度(t1/2)が約30分間以上である、前記アプタマー。
【請求項62】
前記解離速度(t1/2)が約30分間〜約240分間の間である、請求項61のアプタマー。
【請求項63】
前記解離速度(t1/2)が、約30分間以上、約60分間以上、約90分間以上、約120分間以上、約150分間以上、約180分間以上、約210分間以上、および約240分間以上の時間からなる群より選択される、請求項61のアプタマー。
【請求項64】
ターゲットが、図7に列挙されるターゲットからなる群より選択される、請求項61のアプタマー。
【請求項65】
前記タ−ゲットがタンパク質である、請求項61のアプタマー。
【請求項66】
前記タ−ゲットがペプチドである、請求項61のアプタマー。
【請求項67】
i)切断可能要素、
ii)検出可能要素、
iii)スペーサー要素、および
iv)タグ
からなる群より独立に選択される少なくとも1つの要素を含む、請求項61のアプタマー。
【請求項68】
ターゲットに特異的に結合する光アプタマーであって、図14に示される塩基修飾されたピリミジンからなる群より独立に選択される少なくとも1つの塩基修飾されたピリミジンを含む、前記光アプタマー。
【請求項69】
少なくとも1つの塩基修飾されたピリミジンが、5−(N−ベンジルカルボキシアミド)−2’−デオキシウリジン、5−(N−イソブチルカルボキシアミド)−2’−デオキシウリジン、5−(N−[2−(1H−インドール−3イル)エチル]カルボキシアミド)−2’−デオキシウリジン、5−(N−[1−(3−トリメチルアンモニウム)プロピル]カルボキシアミド)−2’−デオキシウリジンクロリド、5−(N−ナフチルカルボキシアミド)−2’−デオキシウリジン、および5−(N−[1−(2,3−ジヒドロキシプロピル)]カルボキシアミド)−2’−デオキシウリジンからなる群より独立に選択される、請求項68の光アプタマー。
【請求項70】
5−ブロモウラシル(BrU)、5−ヨードウラシル(IU)、5−ブロモビニルウラシル、5−ヨードビニルウラシル、5−アジドウラシル、4−チオウラシル、5−ブロモシトシン、5−ヨードシトシン、5−ブロモビニルシトシン、5−ヨードビニルシトシン、5−アジドシトシン、8−アジドアデニン、8−ブロモアデニン、8−ヨードアデニン、8−アジドグアニン、8−ブロモグアニン、8−ヨードグアニン、8−アジドヒポキサンチン、8−ブロモヒポキサンチン、8−ヨードヒポキサンチン、8−アジドキサンチン、8−ブロモキサンチン、8−ヨードキサンチン、5−ブロモデオキシウリジン、8−ブロモ−2’−デオキシアデニン、5−ヨード−2’−デオキシウラシル、5−ヨード−2’−デオキシシトシン、5−[(4−アジドフェナシル)チオ]シトシン、5−[(4−アジドフェナシル)チオ]ウラシル、7−デアザ−7−ヨードアデニン、7−デアザ−7−ヨードグアニン、7−デアザ−7−ブロモアデニン、および7−デアザ−7−ブロモグアニンからなる群より独立に選択される少なくとも1つの光反応性ヌクレオチドをさらに含む、請求項68の光アプタマー。
【請求項71】
アントラキノン(AQ)、ソラレン(Psor)、4−アジド−2−ニトロ−アニリン(ANA)、および5−ブロモ−dUTPからなる群より独立に選択される少なくとも1つの光反応基をさらに含む、請求項68の光アプタマー。
【請求項72】
ターゲットに特異的に結合するアプタマーを含有する診断キットであって、アプタマーが、図14に示される塩基修飾されたピリミジンからなる群より独立に選択される少なくとも1つの塩基修飾されたピリミジンを含む、前記診断キット。
【請求項73】
前記アプタマーが、5−ブロモウラシル(BrU)、5−ヨードウラシル(IU)、5−ブロモビニルウラシル、5−ヨードビニルウラシル、5−アジドウラシル、4−チオウラシル、5−ブロモシトシン、5−ヨードシトシン、5−ブロモビニルシトシン、5−ヨードビニルシトシン、5−アジドシトシン、8−アジドアデニン、8−ブロモアデニン、8−ヨードアデニン、8−アジドグアニン、8−ブロモグアニン、8−ヨードグアニン、8−アジドヒポキサンチン、8−ブロモヒポキサンチン、8−ヨードヒポキサンチン、8−アジドキサンチン、8−ブロモキサンチン、8−ヨードキサンチン、5−ブロモデオキシウリジン、8−ブロモ−2’−デオキシアデニン、5−ヨード−2’−デオキシウラシル、5−ヨード−2’−デオキシシトシン、5−[(4−アジドフェナシル)チオ]シトシン、5−[(4−アジドフェナシル)チオ]ウラシル、7−デアザ−7−ヨードアデニン、7−デアザ−7−ヨードグアニン、7−デアザ−7−ブロモアデニン、および7−デアザ−7−ブロモグアニンからなる群より独立に選択される、少なくとも1つの光反応性ヌクレオチドをさらに含む、請求項72の診断キット。
【請求項74】
前記アプタマーが、アントラキノン(AQ)、ソラレン(Psor)、4−アジド−2−ニトロ−アニリン(ANA)、および5−ブロモ−dUTPからなる群より独立に選択される少なくとも1つの光反応基をさらに含む、請求項72の診断キット。
【請求項75】
そのターゲット分子からの遅い解離速度を有する光アプタマーを同定するための方法であって:
(a)核酸の候補混合物を調製し;ここで、前記候補混合物の各核酸は、少なくとも1つの光反応部分を含有し;
(b)ターゲット分子と候補混合物を接触させ、ここで、候補混合物中、他の核酸に比較してターゲット分子に対して増加したアフィニティを有する核酸がターゲット分子に結合し、核酸−ターゲット分子複合体を形成し;
(c)(b)で形成された核酸−ターゲット分子複合体を、遅いオフ速度の濃縮プロセスに曝露し;
(d)前記核酸−ターゲット分子複合体に照射し、ここで、前記核酸−ターゲット分子が光架橋され;
(e)候補混合物から光架橋された核酸−ターゲット分子複合体を分配し;
(f)光架橋された核酸を増幅して、増加したアフィニティでターゲット分子に結合可能な配列が濃縮された核酸混合物を得て、それによってターゲット分子に対する光アプタマーを同定可能であり;
(g)必要に応じて(b)〜(f)を反復し;そして
(h)ターゲット分子に対する少なくとも1つの光アプタマーを同定する、ここで、該光アプタマーは、そのターゲット分子からの遅い解離速度を有する
工程を含む、前記方法。
【請求項76】
前記光アプタマーが一本鎖核酸または二本鎖核酸である、請求項75の方法。
【請求項77】
前記光アプタマーがDNAまたはRNAを含む、請求項76の方法。
【請求項78】
前記光アプタマーが、5−ブロモウラシル(BrU)、5−ヨードウラシル(IU)、5−ブロモビニルウラシル、5−ヨードビニルウラシル、5−アジドウラシル、4−チオウラシル、5−ブロモシトシン、5−ヨードシトシン、5−ブロモビニルシトシン、5−ヨードビニルシトシン、5−アジドシトシン、8−アジドアデニン、8−ブロモアデニン、8−ヨードアデニン、8−アジドグアニン、8−ブロモグアニン、8−ヨードグアニン、8−アジドヒポキサンチン、8−ブロモヒポキサンチン、8−ヨードヒポキサンチン、8−アジドキサンチン、8−ブロモキサンチン、8−ヨードキサンチン、5−ブロモデオキシウリジン、8−ブロモ−2’−デオキシアデニン、5−ヨード−2’−デオキシウラシル、5−ヨード−2’−デオキシシトシン、5−[(4−アジドフェナシル)チオ]シトシン、5−[(4−アジドフェナシル)チオ]ウラシル、7−デアザ−7−ヨードアデニン、7−デアザ−7−ヨードグアニン、7−デアザ−7−ブロモアデニン、および7−デアザ−7−ブロモグアニンからなる群より独立に選択される少なくとも1つの光反応性ヌクレオチドをさらに含む、請求項76の方法。
【請求項79】
前記光アプタマーが、アントラキノン(AQ)、ソラレン(Psor)、4−アジド−2−ニトロ−アニリン(ANA)、および5−ブロモ−dUTPからなる群より独立に選択される少なくとも1つの光反応基を含む、請求項75の方法。
【請求項80】
前記の遅いオフ速度の濃縮プロセスが、核酸−ターゲット分子複合体を含有する候補混合物を希釈する工程を含む、請求項75の方法。
【請求項81】
前記の遅いオフ速度の濃縮プロセスが、核酸−ターゲット分子複合体を含有する候補混合物に、少なくとも1つの競合剤を添加する工程を含む、請求項75の方法。
【請求項82】
前記の遅いオフ速度の濃縮プロセスが、核酸−ターゲット分子複合体を含有する候補混合物を希釈し、そして核酸−ターゲット分子複合体を含有する候補混合物に、少なくとも1つの競合剤を添加する工程を含む、請求項75の方法。
【請求項83】
前記の少なくとも1つの競合剤が、オリゴヌクレオチド、ポリアニオン、脱塩基ホスホジエステルポリマー、dNTP、およびピロホスフェートからなる群より独立に選択される、請求項81の方法。
【請求項84】
前記ポリアニオンが、ヘパリン、ニシン精子DNA、サケ精子DNA、および硫酸デキストランからなる群より選択される、請求項83の方法。
【請求項85】
前記解離速度(t1/2)が約30分間以上である、請求項75の方法。
【請求項86】
前記解離速度(t1/2)が約30分間〜約240分間の間である、請求項75の方法。
【請求項87】
前記解離速度(t1/2)が、約30分間以上、約60分間以上、約90分間以上、約120分間以上、約150分間以上、約180分間以上、約210分間以上、および約240分間以上の時間からなる群より選択される、請求項75の方法。
【請求項88】
請求項75の方法にしたがって生成される、光アプタマー。
【請求項89】
そのターゲットからの約30分間以上の解離速度(t1/2)を有する、請求項88の光アプタマー。
【請求項90】
そのターゲットからの約30分間〜約240分間の間の解離速度(t1/2)を有する、請求項88の光アプタマー。
【請求項91】
そのターゲットからの約30分間以上、約60分間以上、約90分間以上、約120分間以上、約150分間以上、約180分間以上、約210分間以上、および約240分間以上の時間からなる群より選択される解離速度を有する、請求項88の光アプタマー。
【請求項92】
ポリアニオン難分解性アプタマーを同定する方法であって:
a)核酸の候補混合物をターゲットと接触させ;
b)混合物が平衡に達することを可能にし、ここで核酸−ターゲット複合体が形成され;
c)ポリアニオン性物質を混合物に添加し、そして混合物をインキュベーションし;
d)候補混合物から核酸−ターゲット分子複合体を分配し;
(e)核酸−ターゲット分子複合体を解離させて、未結合核酸を生成し;
(f)未結合核酸を増幅して、増加したアフィニティでターゲット分子に結合可能な配列が濃縮された核酸混合物を得て、それによってターゲット分子に対するポリアニオン難分解性アプタマーを同定可能であり;
(g)必要に応じて(b)〜(f)を反復し;そして
(h)ターゲット分子に対する少なくとも1つのポリアニオン難分解性アプタマーを同定する
工程を含む、前記方法。
【請求項93】
アプタマーがポリアニオン性物質の存在に対して難分解性である、アプタマー−ターゲット複合体。
【請求項94】
請求項53のアプタマーを含む、バイオチップ。
【請求項95】
請求項53のアプタマーを含む、診断デバイス。
【請求項96】
請求項53のアプタマーを含む、療法物質。
【請求項97】
請求項53のアプタマーを含む、画像化試薬。
【請求項98】
請求項53のアプタマーを含む、組織学的試薬。
【請求項99】
請求項53のアプタマーを含む、病理学試薬。
【請求項100】
請求項53のアプタマーを含む、細胞学試薬。
【請求項101】
請求項53のアプタマーを含む、アフィニティ分離試薬。
【請求項102】
請求項53のアプタマーを含む、バイオセンサー。
【請求項103】
請求項54のアプタマーを含む、ALONAデバイス。
【請求項104】
約30分間以上の解離速度(t1/2)を有する、アプタマー−ターゲット複合体。
【請求項105】
約30分間〜約240分間の間の解離速度(t1/2)を有する、請求項104のアプタマー−ターゲット複合体。
【請求項106】
約30分間以上、約60分間以上、約90分間以上、約120分間以上、約150分間以上、約180分間以上、約210分間以上、および約240分間以上の時間からなる群より選択される解離速度を有する、請求項105のアプタマー−ターゲット複合体。
【請求項107】
前記アプタマーが光アプタマーである、請求項105のアプタマー−ターゲット複合体。
【請求項108】
少なくとも1つの塩基修飾されたピリミジンを含むアプタマーを同定するための方法であって:
(a)核酸の候補混合物を調製し、ここで、核酸は各々、図14に示される塩基修飾されたピリミジンからなる群より独立に選択される、少なくとも1つの塩基修飾されたピリミジンを含み;
(b)ターゲット分子と候補混合物を接触させ、ここで、候補混合物中、他の核酸に比較してターゲット分子に対して増加したアフィニティを有する核酸がターゲット分子に結合し、核酸−ターゲット分子複合体を形成し;
(c)候補混合物から核酸−ターゲット分子複合体を分配し;
(d)核酸−ターゲット分子複合体を解離させて、未結合核酸を生成し;
(e)未結合核酸を増幅して、増加したアフィニティでターゲット分子に結合可能な配列が濃縮された核酸混合物を得て、それによってターゲット分子に対するアプタマーを同定可能であり;
(f)必要に応じて(b)〜(e)を反復し;そして
(g)ターゲット分子に対する少なくとも1つのアプタマーを同定する、ここで、アプタマーは、少なくとも1つの塩基修飾されたピリミジンを含む
工程を含む、前記方法。
【請求項109】
前記アプタマーが少なくとも1つのさらなる化学的修飾をさらに含む、請求項108の方法。
【請求項110】
前記の少なくとも1つのさらなる化学的修飾が、リボース位、デオキシリボース位、リン酸位、および塩基位からなる群より独立に選択される1以上の位での化学的置換である、請求項108の方法。
【請求項111】
前記の少なくとも1つのさらなる化学的修飾が、2’位糖修飾、2’−アミノ(2’−NH)、2’−フルオロ(2’−F)、2’−O−メチル(2’−OMe)、5位ピリミジン修飾、シトシン環外アミンでの修飾、5−ブロモウラシルの置換、5−ブロモデオキシウリジンの置換、5−ブロモデオキシシチジンの置換、主鎖修飾、メチル化、3’キャップ、および5’キャップからなる群より独立に選択される、請求項108の方法。
【請求項112】
前記の少なくとも1つの塩基修飾されたピリミジンが、5−(N−ベンジルカルボキシアミド)−2’−デオキシウリジン、5−(N−イソブチルカルボキシアミド)−2’−デオキシウリジン、5−(N−[2−(1H−インドール−3イル)エチル]カルボキシアミド)−2’−デオキシウリジン、5−(N−[1−(3−トリメチルアンモニウム)プロピル]カルボキシアミド)−2’−デオキシウリジンクロリド、5−(N−ナフチルカルボキシアミド)−2’−デオキシウリジン、および5−(N−[1−(2,3−ジヒドロキシプロピル)]カルボキシアミド)−2’−デオキシウリジンからなる群より独立に選択される、請求項108の方法。
【請求項113】
前記ターゲット分子が、タンパク質、炭水化物、多糖、糖タンパク質、ホルモン、受容体、ペプチド、抗原、抗体、ウイルス、基質、代謝物、遷移状態類似体、補因子、阻害剤、薬剤、色素、栄養物、増殖因子、組織、および規制物質からなる群より選択される、請求項108の方法。
【請求項114】
アプタマーが、そのターゲット分子からの遅い解離速度(t1/2)を有する、請求項108の方法。
【請求項115】
前記解離速度(t1/2)が約30分間以上である、請求項114の方法。
【請求項116】
前記解離速度(t1/2)が約30分間〜約240分間の間である、請求項115の方法。
【請求項117】
前記解離速度(t1/2)が、約30分間以上、約60分間以上、約90分間以上、約120分間以上、約150分間以上、約180分間以上、約210分間以上、および約240分間以上の時間からなる群より選択される、請求項116の方法。
【請求項118】
請求項117の方法にしたがって同定されるアプタマー。
【請求項119】
そのターゲット分子からの遅い解離速度(t1/2)を有する、請求項118のアプタマー。
【請求項120】
そのターゲット分子からの約30分間以上の解離速度(t1/2)を有する、請求項118のアプタマー。
【請求項121】
そのターゲット分子からの約30分間〜約240分間の間の解離速度(t1/2)を有する、請求項118のアプタマー。
【請求項122】
そのターゲット分子からの約30分間以上、約60分間以上、約90分間以上、約120分間以上、約150分間以上、約180分間以上、約210分間以上、および約240分間以上の時間からなる群より選択される解離速度(t1/2)を有する、請求項118のアプタマー。
【請求項123】
核酸の候補混合物が光反応性ヌクレオチドを含む、請求項118の方法。
【請求項124】
そのターゲット分子からの解離速度が遅いアプタマーを同定するかまたは産生するための方法であって:
(a)核酸の候補混合物を調製し;
(b)ターゲット分子と候補混合物を接触させ、ここで、候補混合物中、他の核酸に比較してターゲット分子に対して増加したアフィニティを有する核酸がターゲット分子に結合し、核酸−ターゲット分子複合体を形成し;
(c)候補混合物およびターゲット分子を、平衡結合を達成するのに十分な期間、一緒にインキュベーションし;
(d)少なくとも1つの競合剤分子を(c)の混合物に過剰に添加し;
(e)(d)由来の候補混合物、ターゲット分子/アプタマー複合体および競合剤分子の混合物を、あらかじめ決定された期間、インキュベーションし;
(f)候補混合物から核酸−ターゲット分子複合体を分配し;
(g)核酸−ターゲット分子複合体を解離させて、未結合核酸を生成し;
(h)未結合核酸を増幅して、増加したアフィニティでターゲット分子に結合可能な核酸配列が濃縮された核酸混合物を得る
工程を含み、それによってターゲット分子に対するアプタマーを同定可能である、前記方法。
【請求項125】
(i)必要に応じて工程(b)〜(h)を反復し;そして
(h)ターゲット分子に対する少なくとも1つのアプタマーを同定する、ここで、アプタマーはそのターゲット分子からの比較的遅い解離速度を有する
工程をさらに含む、請求項124の方法。
【請求項126】
(e)における、あらかじめ決定された期間が:
(i)少なくとも10分間、
(ii)少なくとも20分間、
(iii)少なくとも30分間、
(iv)少なくとも45分間、
(v)少なくとも1時間、
(vi)少なくとも2時間、
(vii)少なくとも3時間、
(viii)少なくとも4時間、
(ix)少なくとも5時間、
(x)少なくとも6時間
より選択される、請求項124または125の方法。
【請求項127】
(g)の未結合核酸または(h)の混合物由来の核酸を配列決定し、それによって前記ターゲットのアプタマーを同定する工程をさらに含む、請求項124〜126のいずれかの方法。
【請求項128】
こうして同定されたアプタマーに基づいて、アプタマーを調製する工程をさらに含む、請求項124〜126のいずれか一項の方法。
【請求項129】
そのターゲット分子からの解離速度が遅いアプタマーを産生するための方法であって、請求項128記載の方法によって同定されるアプタマーに基づいて、アプタマーを調製する工程を含む、前記方法。
【請求項130】
そのターゲット分子からの解離速度が遅いアプタマーを産生する方法であって:
(a)核酸の候補混合物を調製し;
(b)ターゲット分子と候補混合物を接触させ、ここで、候補混合物中、他の核酸に比較してターゲット分子に対して増加したアフィニティを有する核酸がターゲット分子に結合し、核酸−ターゲット分子複合体を形成し;
(c)候補混合物およびターゲット分子を、平衡結合を達成するのに十分な期間、一緒にインキュベーションし;
(d)少なくとも1つの競合剤分子を(c)の混合物に過剰に添加し;
(e)(d)由来の候補混合物、ターゲット分子/アプタマー複合体および競合剤分子の混合物を、あらかじめ決定された期間、インキュベーションし;
(f)候補混合物から核酸−ターゲット分子複合体を分配し;
(g)核酸−ターゲット分子複合体を解離させて、未結合核酸を生成し;
(h)未結合核酸を増幅して、増加したアフィニティでターゲット分子に結合可能な核酸配列が濃縮された核酸混合物を得る
工程を含み、それによってターゲット分子に対するアプタマーを同定するプロセスによって同定される核酸配列に基づいて、アプタマーを調製するかまたは合成する工程を含む、前記方法。
【請求項131】
(i)必要に応じて工程(b)〜(h)を反復し;そして
(h)ターゲット分子に対する少なくとも1つのアプタマーを同定する、ここで、アプタマーはそのターゲット分子からの比較的遅い解離速度を有する
工程をさらに含む、請求項130の方法。
【請求項132】
少なくとも1つまたは各々の核酸において、1つ、いくつかまたはすべてのピリミジンが、5位で化学的に修飾されている、修飾された核酸を候補混合物が含む、先行する請求項のいずれか一項の方法。
【請求項133】
候補混合物の核酸中のすべてのC残基が、5位で化学的に修飾されている、請求項132の方法。
【請求項134】
候補混合物の核酸中のすべてのT残基が、5位で化学的に修飾されている、請求項132または133の方法。
【請求項135】
候補混合物の核酸中のすべてのU残基が、5位で化学的に修飾されている、請求項132または134の方法。
【請求項136】
5位化学的修飾が:
5−(N−ベンジルカルボキシアミド)−2’−デオキシウリジン、5−(N−イソブチルカルボキシアミド)−2’−デオキシウリジン、5−(N−[2−(1H−インドール−3イル)エチル]カルボキシアミド)−2’−デオキシウリジン、5−(N−[1−(3−トリメチルアンモニウム)プロピル]カルボキシアミド)−2’−デオキシウリジンクロリド、5−(N−ナフチルカルボキシアミド)−2’−デオキシウリジン、および5−(N−[1−(2,3−ジヒドロキシプロピル)]カルボキシアミド)−2’−デオキシウリジンより選択される、請求項132〜135のいずれか一項の方法。
【請求項137】
5位化学的修飾が、図14に示される化学的修飾の群より独立に選択される、請求項132〜135のいずれか一項の方法。
【請求項138】
そのターゲット分子からの解離速度が遅いアプタマーを同定するかまたは産生する方法であって:
(a)核酸の候補混合物を調製し、ここで、候補混合物の少なくとも1つまたは各々の核酸において、1つ、いくつかまたはすべてのピリミジンが、5位で化学的に修飾されている、修飾された核酸を候補混合物が含み;
(b)ターゲット分子と候補混合物を接触させ、ここで、候補混合物中、他の核酸に比較してターゲット分子に対して増加したアフィニティを有する核酸がターゲット分子に結合し、核酸−ターゲット分子複合体を形成し;
(c)候補混合物の残りからアフィニティが増加した核酸を分配し;そして
(d)アフィニティが増加した核酸を増幅して、増加したアフィニティでターゲット分子に結合可能な核酸配列が濃縮された核酸混合物を得る
工程を含み、それによってターゲット分子に対するアプタマーを同定可能である、前記方法。
【請求項139】
5位化学的修飾が:
5−(N−ベンジルカルボキシアミド)−2’−デオキシウリジン、5−(N−イソブチルカルボキシアミド)−2’−デオキシウリジン、5−(N−[2−(1H−インドール−3イル)エチル]カルボキシアミド)−2’−デオキシウリジン、5−(N−[1−(3−トリメチルアンモニウム)プロピル]カルボキシアミド)−2’−デオキシウリジンクロリド、5−(N−ナフチルカルボキシアミド)−2’−デオキシウリジン、および5−(N−[1−(2,3−ジヒドロキシプロピル)]カルボキシアミド)−2’−デオキシウリジンより選択される、請求項138記載の方法。
【請求項140】
5位化学的修飾が、図14に示される化学的修飾の群より独立に選択される、請求項138記載の方法。
【請求項141】
候補混合物の核酸中のすべてのC残基が、5位で化学的に修飾されている、請求項138〜140のいずれか一項の方法。
【請求項142】
候補混合物の核酸中のすべてのT残基が、5位で化学的に修飾されている、請求項138〜141のいずれか一項の方法。
【請求項143】
候補混合物の核酸中のすべてのU残基が、5位で化学的に修飾されている、請求項138〜141の方法。
【請求項144】
(d)の混合物由来の核酸を配列決定し、それによって前記ターゲットのアプタマーを同定する工程をさらに含む、請求項138〜142のいずれか一項の方法。
【請求項145】
こうして同定されたアプタマーに基づいて、アプタマーを調製する工程をさらに含む、請求項138〜143のいずれか一項記載の方法。
【請求項146】
そのターゲット分子からの解離速度が遅いアプタマーを産生するための方法であって、請求項138または143記載の方法によって同定されるアプタマーに基づいて、アプタマーを調製する工程を含む、前記方法。
【請求項147】
そのターゲット分子からの解離速度が遅いアプタマーを産生する方法であって:
(a)核酸の候補混合物を調製し、ここで、候補混合物の少なくとも1つまたは各々の核酸において、1つ、いくつかまたはすべてのピリミジンが、5位で化学的に修飾されている、修飾された核酸を候補混合物が含み;
(b)ターゲット分子と候補混合物を接触させ、ここで、候補混合物中、他の核酸に比較してターゲット分子に対して増加したアフィニティを有する核酸がターゲット分子に結合し、核酸−ターゲット分子複合体を形成し;
(c)候補混合物の残りからアフィニティが増加した核酸を分配し;そして
(d)アフィニティが増加した核酸を増幅して、増加したアフィニティでターゲット分子に結合可能な核酸配列が濃縮された核酸混合物を得る
工程を含み、それによってターゲット分子に対するアプタマーを同定するプロセスによって同定される核酸配列に基づいて、アプタマーを調製するかまたは合成する工程を含む、前記方法。
【請求項148】
5位化学的修飾が:
5−(N−ベンジルカルボキシアミド)−2’−デオキシウリジン、5−(N−イソブチルカルボキシアミド)−2’−デオキシウリジン、5−(N−[2−(1H−インドール−3イル)エチル]カルボキシアミド)−2’−デオキシウリジン、5−(N−[1−(3−トリメチルアンモニウム)プロピル]カルボキシアミド)−2’−デオキシウリジンクロリド、5−(N−ナフチルカルボキシアミド)−2’−デオキシウリジン、および5−(N−[1−(2,3−ジヒドロキシプロピル)]カルボキシアミド)−2’−デオキシウリジンより選択される、請求項147記載の方法。
【請求項149】
5位化学的修飾が、図14に示される化学的修飾の群より独立に選択される、請求項147記載の方法。
【請求項150】
候補混合物の核酸中のすべてのC残基が、5位で化学的に修飾されている、請求項147〜148のいずれか一項の方法。
【請求項151】
候補混合物の核酸中のすべてのT残基が、5位で化学的に修飾されている、請求項147〜150のいずれか一項の方法。
【請求項152】
候補混合物の核酸中のすべてのU残基が、5位で化学的に修飾されている、請求項147〜150のいずれか一項の方法。
【請求項153】
同定されるかまたは産生されるアプタマー(単数または複数)の解離速度(t1/2)が:
(i)30分間以上;
(ii)約30分間〜約240分間;
(iii)30分間〜60分間
(iv)60分間〜90分間
(v)90分間〜120分間
(vi)120分間〜150分間
(vii)150分間〜180分間
(viii)180分間〜210分間
(ix)210分間〜240分間の間
より選択される、先行する請求項のいずれか一項の方法。
【請求項154】
(i)30分間以上;
(ii)約30分間〜約240分間;
(iii)30分間〜60分間
(iv)60分間〜90分間
(v)90分間〜120分間
(vi)120分間〜150分間
(vii)150分間〜180分間
(viii)180分間〜210分間
(ix)210分間〜240分間の間
の1つより選択される、ターゲットおよびアプタマーの非共有複合体からの解離速度(t1/2)を有する、アプタマー。
【請求項155】
アプタマーおよびそのターゲットの非共有複合体であって、ターゲットからのアプタマーの解離速度(t1/2)が:
(i)30分間以上;
(ii)約30分間〜約240分間;
(iii)30分間〜60分間
(iv)60分間〜90分間
(v)90分間〜120分間
(vi)120分間〜150分間
(vii)150分間〜180分間
(viii)180分間〜210分間
(ix)210分間〜240分間の間
の1つより選択される、前記複合体。
【請求項156】
アプタマーの核酸配列において、1つ、いくつかまたはすべてのピリミジンが、5位で修飾されている、請求項155のアプタマー。
【請求項157】
5位化学的修飾が:
5−(N−ベンジルカルボキシアミド)−2’−デオキシウリジン、5−(N−イソブチルカルボキシアミド)−2’−デオキシウリジン、5−(N−[2−(1H−インドール−3イル)エチル]カルボキシアミド)−2’−デオキシウリジン、5−(N−[1−(3−トリメチルアンモニウム)プロピル]カルボキシアミド)−2’−デオキシウリジンクロリド、5−(N−ナフチルカルボキシアミド)−2’−デオキシウリジン、および5−(N−[1−(2,3−ジヒドロキシプロピル)]カルボキシアミド)−2’−デオキシウリジンより選択される、請求項156のアプタマー。
【請求項158】
5位化学的修飾が、図14に示される化学的修飾の群より独立に選択される、請求項157のアプタマー。
【請求項159】
アプタマーの核酸配列中のすべてのC残基が、5位で化学的に修飾されている、請求項156〜158のいずれか一項のアプタマー。
【請求項160】
アプタマーの核酸配列中のすべてのT残基が、5位で化学的に修飾されている、請求項156〜159のいずれか一項のアプタマー。
【請求項161】
アプタマーの核酸配列中のすべてのU残基が、5位で化学的に修飾されている、請求項156〜160のいずれか一項のアプタマー。
【請求項162】
アプタマーおよびターゲットの非共有複合体であって、アプタマーがターゲットに対して100nM以下のKを有し、ターゲットからのアプタマーの解離速度(t1/2)が30分間以上であり、そしてアプタマーの核酸配列中の1つ、いくつかまたはすべてのピリミジンが、5位で修飾されており、修飾が:5−(N−ベンジルカルボキシアミド)−2’−デオキシウリジン、5−(N−イソブチルカルボキシアミド)−2’−デオキシウリジン、5−(N−[2−(1H−インドール−3イル)エチル]カルボキシアミド)−2’−デオキシウリジン、5−(N−[1−(3−トリメチルアンモニウム)プロピル]カルボキシアミド)−2’−デオキシウリジンクロリド、5−(N−ナフチルカルボキシアミド)−2’−デオキシウリジン、および5−(N−[1−(2,3−ジヒドロキシプロピル)]カルボキシアミド)−2’−デオキシウリジンより選択されるか、または図14に示される化学修飾の群より独立に選択される、前記複合体。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5−1】
image rotate

【図5−2】
image rotate

【図6】
image rotate

【図7−1】
image rotate

【図7−2】
image rotate

【図8】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図9C】
image rotate

【図9D】
image rotate

【図9E】
image rotate

【図9F】
image rotate

【図10】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図11C】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図13】
image rotate

【図14−1】
image rotate

【図14−2】
image rotate

【図15】
image rotate


【公表番号】特表2010−533499(P2010−533499A)
【公表日】平成22年10月28日(2010.10.28)
【国際特許分類】
【出願番号】特願2010−517170(P2010−517170)
【出願日】平成20年7月17日(2008.7.17)
【国際出願番号】PCT/US2008/070383
【国際公開番号】WO2009/012418
【国際公開日】平成21年1月22日(2009.1.22)
【出願人】(510016254)ソマロジック・インコーポレーテッド (5)
【Fターム(参考)】