説明

放射線治療装置制御装置、その処理方法、及びプログラム

【課題】生体内で移動する患部を追尾する精度を向上できる放射線治療装置制御装置を提供する。
【解決手段】呼吸位相ごとに生成されたCT画像データ群の中から、患部を写すCT画像データを複数の呼吸位相について選択し、更新対象のCT画像データを用いて呼吸位相に応じた再構成画像を線源及びセンサアレイの回転角度ごとに生成する。回転角度が所定の回転角度である場合に放射線を照射した際の患部を写す放射線投影画像を生成し、複数の呼吸位相ごとの再構成画像と放射線投影画像とを比較して差分が少ない再構成画像が示す呼吸位相を、現在の呼吸位相と判定し、当該呼吸位相のCT画像データ群内のCT画像データにおいて予め算出されている患部の位置を、現在の前記患部の位置と特定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、生体内の患部の位置を追尾する放射線治療装置制御装置、その処理方法、及びプログラムに関する。
【背景技術】
【0002】
放射線治療装置制御装置では、CT画像(コンピュータトモグラフィ画像)に表示された患部(腫瘍)の位置に基づいて生体内の放射線照射位置を特定し、当該位置を放射線治療装置へ送出する。これにより、放射線治療装置は放射線治療装置制御装置より受信した放射線照射位置に基づいて生体内の患部へ放射線を照射し治療を行う。ここで、生体内の腫瘍などの患部の位置は呼吸等の影響によって変動する。このため、患部の照射位置への放射線の照射精度を高めるには、生体内において変動する患部の位置を精度良く追尾することが必要となる。特許文献1には放射線投影画像(透過画像)中で患部領域を指定し、その患部領域に基づいて放射線を照射する技術が記載されている(特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特許第4126318号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、放射線投影画像(透過画像)中においては患部の鮮明度が低く当該患部の位置を特定しにくい可能性もあり、生体内で変動する患部を追尾する精度の向上が望まれていた。
そこでこの発明は、上述の課題を解決することのできる放射線治療装置制御装置及びその処理方法とプログラムを提供することを目的としている。
【課題を解決するための手段】
【0005】
上記目的を達成するために、本発明は、線源とセンサアレイとの間に配置された生体に前記線源から放射線を照射して前記生体の患部を治療する放射線治療装置、を制御する放射線治療装置制御装置であって、前記生体の複数の体動位相ごとに生成されたCT画像データ群の中から、CT画像データを前記複数の体動位相それぞれについて選択するCT画像選択部と、前記選択されたCT画像データを用いて前記体動位相に応じた再構成画像を、前記線源及び前記センサアレイの回転角度ごとに生成する再構成画像生成部と、前記回転角度が所定の回転角度である場合に前記放射線を前記線源側から前記センサアレイ側へ照射した際の前記患部を写す放射線投影画像を生成する放射線投影画像生成部と、前記複数の体動位相ごとの再構成画像と、前記生成した放射線投影画像とを比較して、それら画像を構成する画素の輝度の差分が少ない再構成画像の示す体動位相を、現在の前記生体の体動位相と判定する体動位相判定部と、前記現在の生体の体動位相の前記CT画像データ群内のCT画像データについて予め算出されている患部の位置を特定し、現在の前記患部の位置と判定する患部追尾処理部と、を備えることを特徴とする放射線治療装置制御装置である。
【0006】
また本発明は、上述の放射線治療装置制御装置において、前記放射線投影画像生成部は、複数の前記所定の回転角度についての放射線投影画像を生成し、前記体動位相判定部は、前記再構成画像と前記放射線投影画像との比較において、複数の前記所定の回転角度についての同一の体動位相の再構成画像及び放射線投影画像の差分の合計値が最も少ない場合の当該比較に用いた再構成画像の示す体動位相を、現在の前記生体の体動位相と判定することを特徴とする。
【0007】
また本発明は、上述の放射線治療装置制御装置において、前記体動位相判定部は、前記再構成画像と前記放射線投影画像との比較において、複数の前記所定の回転角度についての同一の体動位相の再構成画像及び放射線投影画像の全画素の輝度差の合計値が最も少ない場合の当該比較に用いた再構成画像の示す体動位相を、現在の前記生体の体動位相と判定することを特徴とする。
【0008】
また本発明は、上述の放射線治療装置制御装置において、前記体動位相判定部は、前記再構成画像と前記放射線投影画像との比較において、複数の前記所定の回転角度についての同一の体動位相の再構成画像及び放射線投影画像の画素のうち、体動位相が変化した際に輝度変化の大きい画素範囲の輝度差の合計値が最も少ない場合の当該比較に用いた再構成画像の示す体動位相を、現在の前記生体の体動位相と判定することを特徴とする。
【0009】
また本発明は、上述の放射線治療装置制御装置において、体動位相ごとに予め生成されたCT画像データ群の中から、設定された体動位相のCT画像データを、更新対象のCT画像データとして選択し、前記回転角度それぞれに応じた放射線投影画像を生成し、当該放射線投影画像とこの放射線投影画像の生成時に前記線源及び前記センサアレイを回転させた際の回転角度と前記放射線投影画像の生成時の体動位相とを対応付けて記録し、前記放射線投影画像の生成時の前記回転角度を検出し、前記更新対象のCT画像データを、前記検出した回転角度で前記線源側から前記センサアレイ側に投影した場合の再構成画像を生成し、前記放射線投影画像の各画素と前記生成した再構成画像の各画素とを比較して、それら各画素についての輝度差を示す差分情報を生成し、前記線源と前記センサアレイの検出素子とを結ぶ直線上の画素を、前記更新対象のCT画像データにおいて特定し、当該特定した画素の輝度値における変化のしやすさと前記差分情報に基づいて、輝度更新量候補値を当該特定した画素それぞれについて算出するとともに、対象とする体動位相に対応する複数の前記回転角度について算出した当該特定した画素それぞれの前記輝度更新量候補値を用いて、当該特定した画素それぞれの輝度更新量を算出し、前記特定した画素それぞれの輝度更新量を用いて、前記更新対象のCT画像データの対応する各画素の輝度値を更新することを特徴とする。
【0010】
また本発明は、線源とセンサアレイとの間に配置された生体に前記線源から放射線を照射して前記生体の患部を治療する放射線治療装置、を制御する放射線治療装置制御装置の処理方法であって、前記生体の複数の体動位相ごとに生成されたCT画像データ群の中から、CT画像データを前記複数の体動位相それぞれについて選択し、前記選択されたCT画像データを用いて前記体動位相に応じた再構成画像を、前記線源及び前記センサアレイの回転角度ごとに生成し、前記回転角度が所定の回転角度である場合に前記放射線を前記線源側から前記センサアレイ側へ照射した際の前記患部を写す放射線投影画像を生成し、前記複数の体動位相ごとの再構成画像と、前記生成した放射線投影画像とを比較して、それら画像を構成する画素の輝度の差分が少ない再構成画像の示す体動位相を、現在の前記生体の体動位相と判定し、前記現在の生体の体動位相の前記CT画像データ群内のCT画像データについて予め算出されている患部の位置を特定し、現在の前記患部の位置と判定することを特徴とする処理方法である。
【0011】
また本発明は、線源とセンサアレイとの間に配置された生体に前記線源から放射線を照射して前記生体の患部を治療する放射線治療装置、を制御する放射線治療装置制御装置のコンピュータを、前記生体の複数の体動位相ごとに生成されたCT画像データ群の中から、CT画像データを前記複数の体動位相それぞれについて選択するCT画像選択手段、前記選択されたCT画像データを用いて前記体動位相に応じた再構成画像を、前記線源及び前記センサアレイの回転角度ごとに生成する再構成画像生成手段、前記回転角度が所定の回転角度である場合に前記放射線を前記線源側から前記センサアレイ側へ照射した際の前記患部を写す放射線投影画像を生成する放射線投影画像生成手段、前記複数の体動位相ごとの再構成画像と、前記生成した放射線投影画像とを比較して、それら画像を構成する画素の輝度の差分が少ない再構成画像の示す体動位相を、現在の前記生体の体動位相と判定する体動位相判定手段、前記現在の生体の体動位相の前記CT画像データ群内のCT画像データについて予め算出されている患部の位置を特定し、現在の前記患部の位置と判定する患部追尾処理手段、として機能させることを特徴とするプログラムである。
【発明の効果】
【0012】
本発明によれば、逐次生成した放射線投影画像と、CT画像データから生成したDRR画像とを用いて現在の呼吸位相を逐次特定し、当該特定した呼吸位相に応じたCT画像について予め特定されている患部位置を、現在の患部位置と特定するので、生体内で移動する患部を追尾する精度の向上を図ることができる。
【図面の簡単な説明】
【0013】
【図1】放射線治療装置の構成を示す図である。
【図2】放射線治療装置制御装置の構成を示すブロック図である。
【図3】放射線治療装置制御装置の処理フローを示す図である。
【図4】差分情報生成処理の概要を示す図である。
【図5】画素の変化量S(t)の算出処理の概要を示す図である。
【図6】輝度更新量の算出処理の概要を示す図である。
【図7】患部追尾処理時の処理フローを示す図である。
【図8】患部追尾処理の概要を示す図である。
【発明を実施するための形態】
【0014】
以下、本発明の一実施形態による放射線治療装置制御装置、及び当該放射線治療装置制御装置によって制御される放射線治療装置について説明する。
本発明では、呼吸、心拍などの周期的な体動運動の体動位相毎にCT画像データを作成することを前提としているが、簡易化のため、以下の説明では体動運動として呼吸位相のみを対象とした説明を行う。
まず、制御対象である放射線治療装置の概要について説明する。図1は、放射線治療装置を示している。
この図で示すように放射線治療装置3は、旋回駆動装置11とOリング12と走行ガントリ14と首振り機構15と治療用放射線照射装置16とを備えている。旋回駆動装置11は、回転軸17を中心に回転可能にOリング12を土台に支持し、放射線治療装置制御装置1により制御されて回転軸17を中心にOリング12を回転させる。回転軸17は、鉛直方向に平行である。Oリング12は、回転軸18を中心とするリング状に形成され、回転軸18を中心に回転可能に走行ガントリ14を支持している。回転軸18は、鉛直方向に垂直であり、回転軸17に含まれるアイソセンタ19を通る。回転軸18は、さらに、Oリング12に対して固定され、すなわち、Oリング12とともに回転軸17を中心に回転する。走行ガントリ14は、回転軸18を中心とするリング状に形成され、Oリング12のリングと同心円になるように配置されている。放射線治療装置3は、さらに、図示されていない走行駆動装置を備えている。その走行駆動装置は、放射線治療装置制御装置1により制御されて回転軸18を中心に走行ガントリ14を回転させる。
【0015】
治療用放射線照射装置16は、走行ガントリ14の内側に配置されている。治療用放射線照射装置16は、放射線治療装置制御装置1により制御されて、治療用放射線23を照射する。
【0016】
首振り機構15は、走行ガントリ14のリングの内側に固定され、治療用放射線照射装置16を走行ガントリ14に支持している。首振り機構15は、パン軸21およびチルト軸22を有している。パン軸21は、走行ガントリ14に対して固定され、回転軸18に交差しないで回転軸18に平行である。チルト軸22は、走行ガントリ14に対して固定され、パン軸21に直交している。首振り機構15は、放射線治療装置制御装置1により制御されて、パン軸21を中心に治療用放射線照射装置16を回転させ、チルト軸22を中心に治療用放射線照射装置16を回転させる。
【0017】
治療用放射線23は、このように治療用放射線照射装置16が走行ガントリ14に支持されることにより、首振り機構15で治療用放射線照射装置16がアイソセンタ19に向かうように一旦調整されると、旋回駆動装置11によりOリング12が回転し、または、その走行駆動装置により走行ガントリ14が回転しても、常に概ねアイソセンタ19を通る。即ち、走行・旋回を行うことで任意方向からアイソセンタ19に向けて治療用放射線23の照射が可能になる。なお、治療用放射線照射装置16などは重量物であるため走行・旋回に応じてOリング自身に機械的変形を生じる場合がある。また、患部がアイソセンタに必ずしも一致しない場合もある。この場合、旋回・走行の設定に引き続き、再度首振り機構15により治療用放射線照射装置16がアイソセンタ19または患部に向かうように調整することも可能である。
【0018】
放射線治療装置3は、さらに、複数のイメージャシステムを備えている。すなわち、放射線治療装置3は、診断用X線源24、25とセンサアレイ32、33とを備えている。診断用X線源24は、走行ガントリ14に支持されている。診断用X線源24は、走行ガントリ14のリングの内側に配置され、アイソセンタ19から診断用X線源24を結ぶ線分とアイソセンタ19から治療用放射線照射装置16を結ぶ線分とがなす角が鋭角になるような位置に配置されている。診断用X線源24は、放射線治療装置制御装置1により制御されてアイソセンタ19に向けて診断用X線35を照射する。診断用X線35は、診断用X線源24が有する1点から放射され、その1点を頂点とする円錐状のコーンビームである。診断用X線源25は、走行ガントリ14に支持されている。診断用X線源25は、走行ガントリ14のリングの内側に配置され、アイソセンタ19から診断用X線源25を結ぶ線分とアイソセンタ19から治療用放射線照射装置16を結ぶ線分とがなす角が鋭角になるような位置に配置されている。診断用X線源25は、放射線治療装置制御装置1により制御されてアイソセンタ19に向けて診断用X線36を照射する。診断用X線36は、診断用X線源25が有する1点から放射され、その1点を頂点とする円錐状のコーンビームである。
【0019】
センサアレイ32は、走行ガントリ14に支持されている。センサアレイ32は、診断用X線源24により放射されてアイソセンタ19の周辺の被写体を透過した診断用X線35を受光して、その被写体の放射線投影画像を生成する。センサアレイ33は、走行ガントリ14に支持されている。センサアレイ33は、診断用X線源25により放射されてアイソセンタ19の周辺の被写体を透過した診断用X線36を受光して、その被写体の放射線投影画像を生成する。センサアレイ32、33としては、FPD(Flat Panel Detector)、X線II(Image Intensifier)が例示される。
【0020】
このようなイメージャシステムによれば、センサアレイ32、33により得た画像信号に基づき、アイソセンタ19を中心とする放射線投影画像を生成することができる。
【0021】
放射線治療装置3は、さらに、センサアレイ31を備えている。センサアレイ31は、センサアレイ31と治療用放射線照射装置16とを結ぶ線分がアイソセンタ19を通るように配置されて、走行ガントリ14のリングの内側に固定されている。センサアレイ31は、治療用放射線照射装置16により放射されてアイソセンタ19の周辺の被写体を透過した治療用放射線23を受光して、その被写体の放射線投影画像を生成する。センサアレイ31としては、FPD(Flat Panel Detector)、X線II(Image Intensifier)が例示される。
診断用X線源24とセンサアレイ32、診断用X線源25とセンサアレイ33、及び治療用放射線照射装置16とセンサアレイ31は、それぞれ、走行ガントリ14をOリング12に沿って走行させると、互いの位置関係を保ちつつ、アイソセンタ19を通る回転軸18回りに回転させることができる。以下において、所定の位置を基準とした、走行ガントリ14、並びに、診断用X線源24、25、治療用放射線照射装置16及びセンサアレイ31〜33の回転軸18回りの回転角度を、単に回転角度と称する。
【0022】
放射線治療装置3は、さらに、カウチ41とカウチ駆動装置42とを備えている。カウチ41は、治療される患者43が横臥することに利用される。カウチ41は、図示されていない固定具を備えている。その固定具は、その患者が動かないように、その患者をカウチ41に固定する。カウチ駆動装置42は、カウチ41を土台に支持し、放射線治療装置制御装置1により制御されてカウチ41を移動させる。
また、放射線治療装置3は、図示しない赤外線カメラを備えており、赤外線カメラによって生体に取付けられた赤外線マーカの動きを検出する。赤外線マーカは、生体における呼吸の周期及び位相と対応する周期及び位相で周期的な動きをする。放射線治療装置3は、放射線治療装置制御装置1の制御によって生体に放射線を照射する際に、検出された赤外線マーカの動きから、当該マーカの周期的な動きにおける位相を抽出し、抽出した位相のデータを呼吸位相に係る情報として放射線治療装置制御装置1へ通知する。そして、放射線治療装置制御装置1は、初期設定CT画像データ群、異なる呼吸位相、複数の回転角度による放射線投影画像に基づいて、CT画像データを生成する。
【0023】
図2は同実施形態による放射線治療装置制御装置の構成を示すブロック図である。
図2において、符号1は、線源と当該線源に対向する位置に配されたセンサアレイとの間に配置された生体へ、線源から照射軸に沿って放射線を照射して生体の患部を治療する放射線治療装置3を制御する放射線治療装置制御装置である。
ここで線源とは、診断用X線源または治療用放射線照射装置を意味する。
図2に示すように、放射線治療装置制御装置1は、CT画像選択部102、再構成画像生成部103、放射線投影画像生成部104、呼吸位相判定部105、患部追尾処理部106、CT画像更新部107、及び患部位置算出部109の各処理部と、各処理部を制御する制御部101と、各処理部での処理に利用される情報を記憶するデータベース108と、を備えている。
【0024】
CT画像選択部102は、CT画像更新部107の処理により、更新処理された複数の呼吸位相それぞれについてのCT画像データ群の中から、CT画像データを選択する処理部である。
再構成画像生成部103は、CT画像データを用いて呼吸位相に応じた再構成画像を複数の前記回転角度ごとに生成する処理部である。
放射線投影画像生成部104は、所定の回転角度で線源からセンサアレイ側に放射線を照射した際の患部を写す放射線投影画像を生成する処理部である。
【0025】
呼吸位相判定部105は、複数の呼吸位相ごとの再構成画像と、生成した放射線投影画像とを比較して、それら画像を構成する画素の輝度の差分が少ない再構成画像が示す呼吸位相を、現在の生体の呼吸位相と判定する処理部である。
患部追尾処理部106は、時間の経過に従って逐次に生成された放射線投影画像に基づいて判定された呼吸位相の、CT画像データ群内のCT画像データにおいて予め算出されている患部の位置を、現在の前記患部の位置と判定する処理部である。
CT画像更新部107は、予め生成されてデータベース108に記録されている呼吸位相毎の初期設定CT画像データ群を用いて、更新処理を行い、呼吸位相毎のCT画像データ群(再構成CT画像データ群)を作成する処理部である。予め生成されてデータベース108に記録されている初期設定CT画像データ群は、他の装置で事前に生成されたものであってもよいし、放射線治療装置制御装置1で事前に生成したものであってもよい。
患部位置算出部109は、CT画像更新部107によって更新されたCT画像データにおいて患部の位置を算出する処理部である。
このような処理部やデータベースを備えることにより、本実施形態の放射線治療装置制御装置1は、生体内で移動する患部を精度良く追尾する制御を放射線治療装置に対して行う。
【0026】
次に、放射線治療装置3を制御する放射線治療装置制御装置1の処理フローについて順を追って説明する。図3は放射線治療装置制御装置の処理フローを示す図である。
以下においては、放射線投影画像は、診断用X線源24がセンサアレイ32へ向けて照射した放射線により生成された放射線投影画像であるものとする。なお、本発明は、他の対向した線源とセンサアレイを用いても同様に成立する。
本処理フローの事前に、体動運動で殆ど移動しない脊髄などの位置に基づいて、初期設定CT画像データと、当該初期設定CT画像データに更新処理を行った後の再構成CT画像データの座標を位置合わせておく。
まず、放射線治療装置制御装置1は、予めデータベース108に記録されているCT画像データ群の更新処理を行う。当該更新処理においては、CT画像更新部107は、放射線治療装置3に対して患部位置を含む放射線投影画像の撮影を指示する。
すると、診断用X線源24が生体へ放射線を照射し、放射線治療装置制御装置1は、センサアレイ32で検出した信号や、図示しない赤外線センサで取得した赤外線マーカの周期的な動きにおける位相のデータを受信する。上記のとおり、赤外線マーカの周期的な動きの周期及び位相は、呼吸の周期及び位相と対応しており、赤外線マーカの動きに基づいて算出された呼吸位相を利用して、以下に示すように呼吸位相毎のCT画像を作成する。
【0027】
そして、CT画像更新部107は、回転角度An(n=1…n)のうちの、1つ目の回転角度に応じた生体の患部位置を含む放射線投影画像を生成する。CT画像更新部107は、当該生成した放射線投影画像について、回転角度と、放射線を照射した際に赤外線センサで取得された位相のデータから抽出される呼吸位相に係る情報と対応付けて、データベース108に記録する(ステップS101)。
【0028】
CT画像更新部107では、複数の呼吸位相において、再構成CT画像データを作成するが、以下においては、1つの呼吸位相(以下、呼吸位相p1と呼ぶ。)における処理を説明する。
また、CT画像更新部107では、CT画像データを更新するが、初期値として設定されているCT画像データを初期設定CT画像データと呼び、更新処理によって求めるべきCT画像データまたは当該求めるべきCT画像データを算出する過程のCT画像データを再構成CT画像データと呼ぶ。
【0029】
CT画像更新部107は、設定された呼吸位相p1をメモリより読み取る。そして、CT画像更新部107は、データベース108に記録されている初期設定CT画像データ群の中から、設定された呼吸位相p1に最も近い呼吸位相p1’に対応付けられて記録されているCT画像データD1(初期設定CT画像データ、または再構成CT画像データ)を選択する(ステップS103)。その後、データベース108に記録された(放射線投影画像、回転角度、呼吸位相)の組み合わせデータのうち、呼吸位相p1に対応付けられて記録されている放射線投影画像と回転角度(回転角度A1)を読み出す(ステップS104)。
【0030】
図4は差分情報生成処理の概要を示す図である。
図4において、放射線投影画像Eが、CT画像更新部107によって特定された回転角度A1に対応する放射線投影画像を示している。
以下、放射線投影画像Eを、放射線投影画像(呼吸位相p1,回転角度A1)と記載する。
【0031】
次にCT画像更新部107は、選択した再構成CT画像データを用いて再構成画像を生成する(ステップS105)。このとき、CT画像更新部107は、回転角度がA1で診断用X線源24から放射線を投影したと仮定した場合の再構成画像を生成する。
【0032】
当該再構成画像の生成概要を図4で示している。再構成画像は、例えばDRR(Digital Reconstructed Radiography)画像を示す。以下、再構成画像をDRR画像Fと呼ぶ。また、ステップS105によって生成したDRR画像Fを、DRR画像(呼吸位相p1,回転角度A1)と記載する。DRR画像Fの生成方法は公知の技術である。そして、DRR画像(呼吸位相p1,回転角度A1)が生成されると、CT画像更新部107は、呼吸位相p1,回転角度A1の放射線投影画像(呼吸位相p1,回転角度A1)と、生成されたDRR画像(呼吸位相p1,回転角度A1)の各画素を比較して、それら各画素についての輝度差を示す差分情報(呼吸位相p1,回転角度A1の場合の差分情報)を生成する(ステップS106)。
【0033】
より具体的には、差分情報Is(x,y)は、放射線投影画像(呼吸位相p1,回転角度A1)の輝度値をIk(x,y)とし、DRR画像の輝度値をId(x,y)とすると(x,yはそれぞれの画像の画素の原点からのx座標、y座標で示される位置を示す)、
Is(x,y)=Id(x,y)−Ik(x,y)
により表すことができる。つまり差分情報は、放射線投影画像(呼吸位相p1,回転角度A1)とDRR画像(呼吸位相p1,回転角度A1)の各画素の輝度値の差分を示す情報である。ここで、Is(x,y)≠0の場合には、当該座標(x,y)で示される画素に対応するセンサアレイ32の放射線検出素子と、診断用X線源24と、を結ぶ直線L上において、放射線投影画像(呼吸位相p1、回転角度A1)を生成する元となる実際の生体内の情報と、DRR画像(呼吸位相p1、回転角度A1)を生成する元となる再構成CT画像データとで異なっていることを示している。そして、CT画像更新部107は差分情報を生成するとデータベース108に当該差分情報(呼吸位相p1,回転角度A1)を登録する。
【0034】
差分情報(呼吸位相p1,回転角度A1)が生成されると、CT画像更新部107は、更新対象の再構成CT画像データD1(CT画像のうちDRR画像の作成に利用したもの)を読み込む。またCT画像更新部107は、差分情報(呼吸位相p1,回転角度A1)を読み込んで、当該差分情報(呼吸位相p1,回転角度A1)においてIs(x,y)≠0である画素zを特定する。次に、CT画像更新部107は、再構成CT画像データD1において、当該画素zに対応するセンサアレイ32上の放射線検出素子と、診断用X線源24と、を結ぶ直線L上に位置すると推定される部分を表す各画素gを特定する(ステップS107)。またCT画像更新部107は、呼吸位相p1’(前述の、初期設定CT画像データ群の中で、呼吸位相p1に最も近い呼吸位相)の初期設定CT画像D1’をデータベース108から読み取る。また輝度更新量算出部107は、当該特定した更新対象のCT画像D1が示す呼吸位相p1’よりも小さい値となる範囲で最も近傍の呼吸位相p2’である初期設定CT画像D2’をデータベース108から読み取る。さらに輝度更新量算出部107は、更新対象のCT画像D1が示す呼吸位相p1’よりも大きい値となる範囲で最も近傍の呼吸位相p3’である初期設定CT画像D3’をデータベース111から読み取る。上記のとおり、呼吸位相p2’、p3’は、呼吸位相p1’よりも大小それぞれの範囲における最も近傍の呼吸位相であるから、CT画像D2’,D1’,D3’は、初期設定CT画像データ群において連続する3つの呼吸位相に対応する初期設定CT画像である。
【0035】
図5は画素の変化量S(t)の算出処理の概要を示す図である。
図5で示すように、CT画像更新部107は、特定した初期設定CT画像D1’(呼吸位相p1’)の各画素gのうちの1つの画素g1と、初期設定CT画像D2’(呼吸位相p2’)における画素g1に対応する画素g1aとの輝度差の絶対値d1を算出する。また、CT画像更新部107は、初期設定CT画像D1’(呼吸位相p1’)の1つの画素g1と、初期設定CT画像D3’(呼吸位相p3’)における画素g1に対応する画素g1bの輝度差の絶対値d2を算出する。そしてCT画像更新部107は、それら絶対値d1と絶対値d2のうち、大きい値を、当該画素g1の変化量S(t)として特定する(ステップS108)。
【0036】
ここで、直線Lを、L(t)=(Lx(t),Ly(t),Lz(t))とし、tを、0<t<1と定義する。
また、初期設定CT画像D1’(呼吸位相p1’)の画素g1の輝度値を、D1’(Lx(t),Ly(t),Lz(t))とする。
同様に、初期設定CT画像D2’(呼吸位相p2’)の画素g1aの輝度値を、D2’(Lx(t),Ly(t),Lz(t))とする。
同様に、初期設定CT画像D3’(呼吸位相p3’)の画素g1bの輝度値を、D2’(Lx(t),Ly(t),Lz(t))とする。
すると、変化量S(t)は、下記式(1)により表すことができる。ここで、maxは引数のうち、最大値をとる関数、absは引数の絶対値をとる関数である。このS(t)が再構成CT画像データ中の画素の輝度値の変化のしやすさであり、ここでは、呼吸位相が変化した際の輝度の変化量を輝度の変化のしやすさとみなしている。
【0037】
【数1】

【0038】
以上の変化量S(t)の算出処理を第1の変化量S(t)の算出処理とする。そして、CT画像更新部107は、当該画素zに対応するセンサアレイ32上の放射線検出素子と、診断用X線源24と、を結ぶ直線L上に位置すると推定される部分を表すものとして特定される複数の画素gにおいて同様の算出処理を行う。なお、解像度を向上させるためには、本算出処理は全ての画素に対して行うことが望ましい。以下は全ての画素において同様の算出処理を行う場合を想定して示す。
以上の説明では、呼吸位相p2’及び呼吸位相p3’の両方を使用しているが、どちらか一方のみを使用しても良い。
ところで、CT画像更新部107は、第1の変化量S(t)の算出処理に代えて、以下の第2の変化量S(t)の算出処理、または第3の変化量S(t)の算出処理を用いることによって変化量S(t)を算出するようにしてもよい。
【0039】
(第2の変化量S(t)の算出処理)
当該第2の変化量S(t)の算出処理においては、CT画像更新部107は差分情報を読み込んで、当該差分情報においてIs(x,y)≠0である画素を特定する。そして、当該画素に対応するセンサアレイ32上の放射線検出素子と、診断用X線源24と、を結ぶ直線L上に位置すると推定される部分と対応する各画素g1を、更新対象の再構成CT画像データD1において特定する。ここまでの処理は第1の変化量S(t)の算出処理と同じである。また、CT画像更新部107は、呼吸位相p1’の初期設定CT画像D1’をデータベース108から読み取る。また、CT画像更新部107は、呼吸位相がp1と異なる回転角度で生成された放射線投影画像も含め、回転角度が異なる複数の放射線投影画像をデータベース108から読み取る。そして、それら複数の回転角度の異なる放射線投影画像を利用して、CT画像D4を生成する。当該複数の回転角度の異なる放射線投影画像を利用したCT画像の生成処理は公知の技術である。
【0040】
そして、CT画像更新部107は、データベース108から読み取った初期設定CT画像D1’(呼吸位相p1’)の画素g1と、複数の回転角度の異なる放射線投影画像を利用して生成したCT画像D4において画素g1に対応する画素g1cとの輝度差の絶対値を、当該画素g1の変化量S(t)として特定する。そして、初期設定CT画像D1’(呼吸位相p1’)の画素g1の輝度値をD1’(Lx(t),Ly(t),Lz(t))、CT画像D4の画素g1cの輝度値をD4(Lx(t),Ly(t),Lz(t))とすると、変化量S(t)を、下記式(2)により算出することができる。
【0041】
【数2】

【0042】
(第3の変化量S(t)の算出処理)
当該第3の変化量S(t)の算出処理においては、まず、上記第1の変化量S(t)の算出処理、及び第2の変化量S(t)の算出処理を行う。そして、第1の変化量S(t)の算出処理の結果Sa(t)と、第2の変化量S(t)の算出処理の結果Sb(t)とを用いて、
S(t)=αSa(t)+βSb(t)
の式により画素g1の変化量S(t)を算出する。αおよびβは係数であり、例えばα=0.5、β=0.5として算出する。
【0043】
図6は輝度更新量の算出処理の概要を示す図である。
図6(a)に示すように、第1〜第3の何れかの変化量S(t)の算出処理を終了すると、CT画像更新部107は、全ての画素gについて算出した変化量S(t)の総和(ΣS(t))を算出する。さらに、CT画像更新部107は、その変化量S(t)の総和に対して、直線L上のある部分と対応する1つの画素g1について算出した変化量S(t)の割合(S(t)÷ΣS(t))を算出する。そして、CT画像更新部107は、当該S(t)の割合に、画素zについて算出された差分情報で示される輝度差Isを乗じる。このようにして、当該画素zについて算出された輝度差で示される差分の情報を、CT画像D1の直線L上であると推定された部分と対応する1つの画素g1に配分した値となる輝度更新量候補値を算出する。この輝度更新量候補値をR(x,y,z)とする。この処理を直線L上の全ての画素gについて行なう(ステップS109)。
【0044】
輝度更新量候補値の処理を終了すると、CT画像更新部107は、センサアレイ32上の全ての放射線検出素子(画素)について輝度更新量候補値を算出したかを判定し(ステップS110)、算出していない場合には、上記ステップS107〜ステップS109の処理を繰り返す。
【0045】
ステップS110においてYesの場合には、CT画像更新部107は、対象となる呼吸位相p1に対応付けられデータベース108に記録されている全ての回転角度についての処理を行ったかを判定する(ステップS111)。CT画像更新部107は、対象となる呼吸位相p1に対応付けられデータベース108に記録されている全ての回転角度についての処理を行っていない場合には、回転角度A1を変更して、次の回転角度A2を設定して、当該回転角度A2の放射線投影画像を用いた上述のステップS103〜ステップS110の処理の開始を指示し、回転角度Anまでこれを繰り返す。以上の処理により、呼吸位相p1,回転角度A1〜Anの複数の差分情報と、呼吸位相p1,回転角度A1〜Anの組合せごとの再構成CT画像データD1内の画素の輝度更新量候補値R(x,y,z)がデータベース108に記録されることとなる。
【0046】
次に、CT画像更新部107は、呼吸位相p1について、回転角度A1〜Anごとに算出した、再構成CT画像データD1内の各画素についての輝度更新量候補値を用いて、再構成CT画像データD1における、輝度更新量候補値が算出された各画素の輝度更新量を算出する(ステップS112)。
【0047】
より具体的には、図6(b)で示すように、CT画像更新部107は、呼吸位相p1の再構成CT画像データD1内の画素について、回転角度A1〜Anごとに算出された輝度更新量候補値R(x,y,z)の平均を、輝度更新量として算出する。
【0048】
または、CT画像更新部107は、ステップS111の判定に基づいて回転角度A1〜Anの繰り返しの処理ごとにステップS101で生成した放射線投影画像が異なる呼吸位相のタイミングで生成されている場合には、再構成CT画像データD1が示す呼吸位相に最も近い呼吸位相のタイミングで生成された放射線投影画像を用いてステップS102〜ステップS109の処理が行われた場合の輝度更新量候補値R(x,y,z)の重みが最も重くなるようにして重み付けを行って、輝度更新量を算出するようにしてもよい。例えば、再構成CT画像データD1が示す呼吸位相をp、回転角度Ai、呼吸位相がpiの放射線投影画像を利用して算出した輝度更新量候補値をRiとすると、再構成CT画像データD1内の輝度更新量候補値が算出された画素g(x,y,z)の輝度更新量Dを、
【0049】
【数3】

【0050】
により算出する。ここで式(3)におけるΩは、Ω=Σωiを示しており、たとえば、ωiは
【0051】
【数4】

【0052】
である。
CT画像更新部107は、再構成CT画像データD1内の輝度更新量候補値が算出された各画素について算出した輝度更新量Dを、対象となる呼吸位相p1の再構成CT画像データD1内の対応する画素の値に加算して、当該再構成CT画像データD1の各画素の値を更新する(ステップS113)。次に、CT画像更新部107は、更新処理後の再構成CT画像データD1と、更新前の再構成CT画像データD1’とを比較する。この比較処理においては、更新処理後の再構成CT画像データD1のある画素と、当該ある画素に対応する更新前の再構成CT画像データD1’の画素の輝度差を、全ての対応する画素について算出し、その総和が閾値未満かを判定する(ステップS114)。そして、閾値未満であれば、CT画像更新部107は、当該更新処理後のCT画像D1により処理終了と判定する。閾値以上である場合には、CT画像更新部107は、ステップS104からの処理を繰り返す。繰り返しの処理においては、更新処理後の再構成CT画像データが利用されることとなる。
【0053】
また、ステップS114において、閾値未満である場合には、ステップS102〜ステップS114の処理を再構成CT画像データ作成対象である全ての呼吸位相pm(m=1…m)について行ったかを判定し(ステップS115)、行っていない場合には、他の呼吸位相についてステップS101〜ステップS114の処理を行う。これにより、再構成CT画像データ作成対象である全ての呼吸位相pmについての再構成CT画像データの更新処理が終了する。
【0054】
ここで、上述のCT画像の更新処理によれば、事前に作成され、データベース108に記録されたCT画像データ群(初期設定CT画像データ群)を用いてデータを更新する処理を行っているため、新たに生成した放射線投影画像を用いて、上述の更新処理を行うだけで、短時間で画質のよいCT画像を得ることができる。そして、この画質のよいCT画像を用いて、患部の追尾処理を行うことによって、精度高く患部位置へ放射線を照射することができるようになる。
【0055】
また、上述の処理によれば、輝度更新量候補値が算出された各画素についてのみ輝度更新量を算出し、当該輝度更新量によりCT画像の更新処理を行っているため、輝度更新量候補値が算出されない画素については更新処理を行う必要がない。従って、更新処理を行わない画素分だけ、更新処理を完了するまでの時間を短縮することができる。
【0056】
図7は患部追尾処理時の処理フローを示す図である。
図8は患部追尾処理の概要を示す図である。
CT画像データ群の更新処理が終了すると(ステップS201)、ユーザは、任意の呼吸位相または全ての呼吸位相について更新処理されたCT画像において患部の範囲を特定する。当該患部のCT画像中の範囲の情報は、データベース108にCT画像の識別情報に対応付けられて登録される。そしてユーザは、患部位置の特定完了を、放射線治療装置制御装置1へ入力する。なお、任意の呼吸位相について更新処理されたCT画像のみ、患部の範囲の情報がユーザによって特定された場合には、当該患部位置の特定完了の入力を検出した患部位置算出部109は、患部の範囲が特定されていない他の呼吸位相のCT画像において患部の範囲を特定する。そして患部の範囲が特定されたCT画像中の当該患部の範囲の中心の座標の情報を、CT画像の識別情報に対応付けてデータベース108へ登録する。ユーザによって患部の範囲が特定されていない呼吸位相における患部の特定処理では、患部位置算出部109は、ユーザにより選択された患部範囲の画素データをCT画像中から読取り、当該画素データと類似する範囲を、他の位相のCT画像中において検索処理することにより、対象とする呼吸位相のCT画像中の患部の範囲を特定する。そして患部位置算出部109は、それら特定したCT画像中の患部の範囲の中心座標Cを、患部位置として算出する。ユーザにより選択された患部範囲Tの座標の輝度値をc(x,y,z)(但し、(x,y,z)∈T)、他の位相のCT画像中の患部範囲に相当する範囲の画素の輝度値をc’(x,y,z)とすると、
【0057】
【数5】

【0058】
が最小となるような前記中心座標Cに対応する座標(p,q,r)を求め、この座標(p,q,r)をユーザが選択した患部範囲Tからの移動量とし、他の位相のCT画像の患部範囲に相当する範囲の中心座標を患部位置として算出する。
【0059】
次にCT画像選択部102は、更新処理後のCT画像データ群の中からCT画像を、複数の呼吸位相それぞれについて選択する。そして、再構成画像生成部103は、更新対象となるそれら複数のCT画像を用いて、選択されたCT画像と同じ呼吸位相におけるDRR画像を、複数の回転角度について生成する(ステップS202)。また、再構成画像生成部103は、選択された全ての呼吸位相のCT画像に基づいて、同様に、更新対象のCT画像を読み取って、それぞれの呼吸位相のDRR画像を複数の回転角度ごとに生成する(図8(a)参照)。当該DRR画像は、再構成画像生成部103によってデータベース108に記録される。そして、再構成画像生成部103は、DRR画像を生成し、データベース108に記録する毎に、対象とする全ての呼吸位相についてのDRR画像を回転角度ごとに生成したかを判定し(ステップS203)、生成した場合には次のステップへ進む。
【0060】
放射線治療装置制御装置1は、上述の更新処理後のCT画像データ群を利用して生成された複数の回転角度ごとの呼吸位相に応じたDRR画像を用いて、患部の追尾処理を行う。そして放射線治療装置制御装置1は、当該追尾した患部に対して放射線照射を行うように放射線治療装置3を制御する。
当該患部の追尾処理において放射線投影画像生成部104は、CT画像データ群が生成された際と同じように、放射線治療装置3のカウチ41上の位置に固定された生体の放射線投影画像の生成を開始する。すると、放射線投影画像生成部104は、放射線治療装置3に対して患部位置を含む所定の複数の回転角度の放射線投影画像の撮影を指示する。例えば、当該所定の複数の回転角度を第1回転角度Ai,第2回転角度Ajとする。ここで、当該第1回転角度Ai,第2回転角度Ajは、ステップS202において生成したDRR画像の何れかが示す回転角度に一致した値であるとする。
【0061】
次に放射線治療装置3は、第1回転角度Ai,第2回転角度Ajにおいて生体へ放射線を照射する。また放射線治療装置制御装置1が、当該放射線の照射に基づいてセンサアレイ32で検出した信号を受信する。そして放射線投影画像生成部104は、走行ガントリ14の第1回転角度Ai,第2回転角度Ajそれぞれに応じた生体の患部位置を含む放射線投影画像を生成し(ステップS204)、データベース108に記録する(図8(b)参照)。なお、放射線治療装置制御装置1は、放射線治療が終了するまで、放射線治療装置3に対して放射線投影画像の撮影の指示を所定の時間間隔ごとに行い、放射線治療装置3から受信した情報に基づいて、所定の時間間隔ごとに放射線投影画像の生成処理を繰り返す。当該放射線投影画像は、放射線投影画像生成部104によってデータベース108に記録される。
【0062】
第1回転角度Ai,第2回転角度Ajそれぞれに応じた生体の患部位置を含む放射線投影画像の生成が完了すると、呼吸位相判定部105が、当該生成した放射線投影画像と、予め生成された回転角度ごとの呼吸位相に応じたDRR画像を用いて、現在の生体の呼吸位相を判定する。具体的には、まず、呼吸位相判定部105が、第1回転角度Aiの放射線透視画像と、当該回転角度Aiの画像として生成された複数の呼吸位相の異なるDRR画像をデータベース108から読取る。また、呼吸位相判定部105は、第2回転角度Ajの放射線透視画像と、当該回転角度Ajの画像として生成された複数の呼吸位相の異なるDRR画像をデータベース108から読取る。そして、呼吸位相判定部105は、第1回転角度Aiの放射線透視画像と当該第1回転角度Aiにおける呼吸位相pのDRR画像との比較を行う。また呼吸位相判定部105は、第2回転角度Ajの放射線透視画像と当該第2回転角度Ajにおける呼吸位相pのDRR画像との比較(図8(b),(c)参照)を行う。そして呼吸位相判定部105は、それら比較の処理によって、放射線投影画像と呼吸位相pのDRR画像との誤差を算出する(ステップS205)。
【0063】
ここで、第1回転角度Aiの放射線透視画像をIk(x,y)とし、回転角度AiのDRR画像のうち呼吸位相pのDRR画像をId(x,y,p)とする。また第2回転角度Ajの放射線透視画像をI’k(x’,y’)とし、回転角度AjのDRR画像のうち呼吸位相pのDRR画像をI’d(x’,y’,p)とする。そして、呼吸位相判定部105は、放射線投影画像と呼吸位相pのDRR画像との誤差を、下記式(6)により算出する。
【0064】
【数6】

【0065】
また、呼吸位相判定部105は放射線投影画像と呼吸位相pのDRR画像との誤差を、複数の呼吸位相p(p=1…pm)について、式(6)を用いて算出する。そして呼吸位相判定部105は、各呼吸位相について算出した誤差のうち最も小さい誤差を算出した場合の呼吸位相を、現在の呼吸位相と判定する(ステップS206)。
【0066】
上記の式(6)は、放射線透視画像とDRR画像の画像全体の画素の輝度差を、画像内の全ての画素について算出し、算出された各画素の輝度差の総和を用いて、放射線投影画像と呼吸位相pのDRR画像との誤差を算出している。しかしながら呼吸位相判定部105は、輝度差の大きい画素範囲のみの総和を用いて、放射線投影画像と呼吸位相pのDRR画像との誤差を算出するようにしてもよい。例えば、回転角度Aiを示す複数の呼吸位相p(p=1…pm)それぞれのDRR画像を比較して、同一の位置の画素についての最大輝度と最小輝度との差が閾値C以上の画素を、輝度差の大きい画素範囲候補として特定する。そして、呼吸位相判定部105は、例えば、当該画素範囲候補として特定された画素の纏まりによって構成される範囲が所定の面積以上であれば、当該画素範囲候補を輝度差の大きい画素範囲Sに含まれると判定する。また同様に回転角度Ajを示す複数の呼吸位相p(p=1…pm)それぞれのDRR画像を比較して、当該回転角度Ajにおける各DRR画像の輝度差の大きい画素範囲S’を判定する。そして、式(7)により、放射線投影画像と呼吸位相pのDRR画像との誤差を算出する。
【0067】
【数7】

【0068】
以上により、放射線投影画像を生成した際の生体の呼吸位相を特定することができる。また、患部位置追尾処理部106は特定した呼吸位相のCT画像について予め算出されている患部の座標をデータベース108から読取り、当該座標を患部位置として特定する(ステップS207)。また患部追尾処理部106は、特定した患部位置の座標を放射線治療装置3へ出力する(ステップS208)。これにより、放射線治療装置3は患部位置の座標に対応する空間座標に放射線が当たるよう制御して、放射線を照射する。そして、患部追尾処理を終了するかを判定し(ステップS209)、患部追尾処理を終了する(Yes)の場合には、ステップS202の処理から繰り返す。
【0069】
以上、本発明の実施形態について説明したが、上述の処理によれば、治療時に逐次生成した放射線投影画像と、DRR画像とを用いて現在の呼吸位相を逐次特定し、当該特定した呼吸位相に応じたCT画像について予め特定されている患部位置を、現在の患部位置と特定するので、生体内で移動する患部を追尾する精度の向上を図ることができる。
【0070】
上記実施例では、放射線投影画像は放射線治療装置に具備した線源及びセンサアレイをもとに作成する場合を例に取り示した。しかし、放射線投影画像は、例えば放射線治療装置とは別に具備した診断装置(CT,MRI)により作成したものでも構わない。
なお、上述の放射線治療装置制御や放射線治療装置は、内部にコンピュータシステムを有している。そして、上述した各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
【0071】
また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
【符号の説明】
【0072】
1・・・放射線治療装置制御装置
3・・・放射線治療装置
101・・・制御部
102・・・CT画像選択部
103・・・再構成画像生成部
104・・・放射線投影画像生成部
105・・・呼吸位相判定部
106・・・患部追尾処理部
107・・・CT画像更新部
108・・・データベース
109・・・患部位置算出部

【特許請求の範囲】
【請求項1】
線源とセンサアレイとの間に配置された生体に前記線源から放射線を照射して前記生体の患部を治療する放射線治療装置、を制御する放射線治療装置制御装置であって、
前記生体の複数の体動位相ごとに生成されたCT画像データ群の中から、CT画像データを前記複数の体動位相それぞれについて選択するCT画像選択部と、
前記選択されたCT画像データを用いて前記体動位相に応じた再構成画像を、前記線源及び前記センサアレイの回転角度ごとに生成する再構成画像生成部と、
前記回転角度が所定の回転角度である場合に前記放射線を前記線源側から前記センサアレイ側へ照射した際の前記患部を写す放射線投影画像を生成する放射線投影画像生成部と、
前記複数の体動位相ごとの再構成画像と、前記生成した放射線投影画像とを比較して、それら画像を構成する画素の輝度の差分が少ない再構成画像の示す体動位相を、現在の前記生体の体動位相と判定する体動位相判定部と、
前記現在の生体の体動位相の前記CT画像データ群内のCT画像データについて予め算出されている患部の位置を特定し、現在の前記患部の位置と判定する患部追尾処理部と、
を備えることを特徴とする放射線治療装置制御装置。
【請求項2】
前記放射線投影画像生成部は、複数の前記所定の回転角度についての放射線投影画像を生成し、
前記体動位相判定部は、
前記再構成画像と前記放射線投影画像との比較において、複数の前記所定の回転角度についての同一の体動位相の再構成画像及び放射線投影画像の差分の合計値が最も少ない場合の当該比較に用いた再構成画像の示す体動位相を、現在の前記生体の体動位相と判定する
ことを特徴とする請求項1に記載の放射線治療装置制御装置。
【請求項3】
前記体動位相判定部は、
前記再構成画像と前記放射線投影画像との比較において、複数の前記所定の回転角度についての同一の体動位相の再構成画像及び放射線投影画像の全画素の輝度差の合計値が最も少ない場合の当該比較に用いた再構成画像の示す体動位相を、現在の前記生体の体動位相と判定する
ことを特徴とする請求項2に記載の放射線治療装置制御装置。
【請求項4】
前記体動位相判定部は、
前記再構成画像と前記放射線投影画像との比較において、複数の前記所定の回転角度についての同一の体動位相の再構成画像及び放射線投影画像の画素のうち、体動位相が変化した際に輝度変化の大きい画素範囲の輝度差の合計値が最も少ない場合の当該比較に用いた再構成画像の示す体動位相を、現在の前記生体の体動位相と判定する
ことを特徴とする請求項2に記載の放射線治療装置制御装置。
【請求項5】
体動位相ごとに予め生成されたCT画像データ群の中から、設定された体動位相のCT画像データを、更新対象のCT画像データとして選択し、
前記回転角度それぞれに応じた放射線投影画像を生成し、当該放射線投影画像とこの放射線投影画像の生成時に前記線源及び前記センサアレイを回転させた際の回転角度と前記放射線投影画像の生成時の体動位相とを対応付けて記録し、
前記放射線投影画像の生成時の前記回転角度を検出し、
前記更新対象のCT画像データを、前記検出した回転角度で前記線源側から前記センサアレイ側に投影した場合の再構成画像を生成し、
前記放射線投影画像の各画素と前記生成した再構成画像の各画素とを比較して、それら各画素についての輝度差を示す差分情報を生成し、
前記線源と前記センサアレイの検出素子とを結ぶ直線上の画素を、前記更新対象のCT画像データにおいて特定し、当該特定した画素の輝度値における変化のしやすさと前記差分情報に基づいて、輝度更新量候補値を当該特定した画素それぞれについて算出するとともに、対象とする体動位相に対応する複数の前記回転角度について算出した当該特定した画素それぞれの前記輝度更新量候補値を用いて、当該特定した画素それぞれの輝度更新量を算出し、
前記特定した画素それぞれの輝度更新量を用いて、前記更新対象のCT画像データの対応する各画素の輝度値を更新する
ことを特徴とする請求項1から請求項4の何れか一項に記載の放射線治療装置制御装置。
【請求項6】
線源とセンサアレイとの間に配置された生体に前記線源から放射線を照射して前記生体の患部を治療する放射線治療装置、を制御する放射線治療装置制御装置の処理方法であって、
前記生体の複数の体動位相ごとに生成されたCT画像データ群の中から、CT画像データを前記複数の体動位相それぞれについて選択し、
前記選択されたCT画像データを用いて前記体動位相に応じた再構成画像を、前記線源及び前記センサアレイの回転角度ごとに生成し、
前記回転角度が所定の回転角度である場合に前記放射線を前記線源側から前記センサアレイ側へ照射した際の前記患部を写す放射線投影画像を生成し、
前記複数の体動位相ごとの再構成画像と、前記生成した放射線投影画像とを比較して、それら画像を構成する画素の輝度の差分が少ない再構成画像の示す体動位相を、現在の前記生体の体動位相と判定し、
前記現在の生体の体動位相の前記CT画像データ群内のCT画像データについて予め算出されている患部の位置を特定し、現在の前記患部の位置と判定する
ことを特徴とする処理方法。
【請求項7】
線源とセンサアレイとの間に配置された生体に前記線源から放射線を照射して前記生体の患部を治療する放射線治療装置、を制御する放射線治療装置制御装置のコンピュータを、
前記生体の複数の体動位相ごとに生成されたCT画像データ群の中から、CT画像データを前記複数の体動位相それぞれについて選択するCT画像選択手段、
前記選択されたCT画像データを用いて前記体動位相に応じた再構成画像を、前記線源及び前記センサアレイの回転角度ごとに生成する再構成画像生成手段、
前記回転角度が所定の回転角度である場合に前記放射線を前記線源側から前記センサアレイ側へ照射した際の前記患部を写す放射線投影画像を生成する放射線投影画像生成手段、
前記複数の体動位相ごとの再構成画像と、前記生成した放射線投影画像とを比較して、それら画像を構成する画素の輝度の差分が少ない再構成画像の示す体動位相を、現在の前記生体の体動位相と判定する体動位相判定手段、
前記現在の生体の体動位相の前記CT画像データ群内のCT画像データについて予め算出されている患部の位置を特定し、現在の前記患部の位置と判定する患部追尾処理手段、
として機能させることを特徴とするプログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−196260(P2012−196260A)
【公開日】平成24年10月18日(2012.10.18)
【国際特許分類】
【出願番号】特願2011−61024(P2011−61024)
【出願日】平成23年3月18日(2011.3.18)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】