説明

放射線治療装置

【課題】占有空間を少なくできるとともに、被検者の位置を高くすることなく治療を施すことのできる放射線治療装置の提供。
【解決手段】床面に載置される電子加速器マイクロトロンと治療台を備え、
前記電子加速器マイクロトロンは、その放射線ビームの出力側を前記治療台側に傾斜させて配置され、
前記治療台は、その天板が前記床面と水平な面内で前記マイクロトロン電子加速器と干渉することなく回転するように構成され、
前記放射線ビームは、前記天板の回転軸に交差するように照射される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、様々な方向から細径の放射線を被検体の病変に照射する放射線治療装置に関する。
【背景技術】
【0002】
このような放射線治療装置は、被検体の周囲の皮膚、あるいは健常組織への放射線の影響を抑え、病変への放射線の線量を高めることができる。
【0003】
そして、このような装置として、たとえば下記特許文献1に開示されているものがある。すなわち、小径コリメータから細いX線を出力する小型の線型電子加速器を多関節ロボットに設け、該多関節ロボットの駆動制御により、細いX線をアイソセンタと称される一点に向けて照射する構成となっている。
【0004】
この場合、前記線型電子加速器から出力されるX線は、そのエネルギーが6MVと低く、図7のグラフに示すように、水における深部線量分布はそのピークが表面から1〜2cm程度となっている。なお、図7のグラフは、その横軸に水深(cm)を、縦軸に線量(%)をとっている。
【0005】
病変が深部にある場合、高いエネルギーのX線ほど深部の線量が相対的に増え、該深部での線量集中に関して有利となる。たとえば50MVのX線であれば、図7に示すように、表面から約5cmと深くなる。また、6MVおよび50MVのそれぞれのピークを100%として正規化して比較した場合、10cmの深さにおける線量は、50MVの場合にほぼ90%、6MVの場合にほぼ70%となる。このため、高いエネルギーのX線ほど、深部まで届き、深部病変の治療に適することになる。
【0006】
なお、図8は、X線が深部に到達できない場合、被検体の裏面側からも病変に向けて照射することにより、中央部の線量を上げることができることを示している。
【0007】
一方、数MVから数十MVまでのX線を照射する放射線治療装置として、たとえば下記特許文献2に開示されているように、マイクロトロン電子加速器を用いたものがある。すなわち、床面に立設させて配置させたマイクロトロン電子加速器によって、所望のエネルギーの電子線が照射される照射口を治療台に横臥させた被検体に指向させて設け、前記マイクロトロン電子加速器の回転によって前記照射口を該被検体の体軸の回りに回転できるように構成したものである。
【特許文献1】Adler JR Jr, Chang SD, Murphy MJ, et al; Stereotactic and functional neurosurgery; 69(1-4 Pt 2)124-128 1997
【特許文献2】特開平7−169600号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかし、上述した放射線治療装置は、病院の部屋に設置させる場合に、該装置を新たに設置するという場合よりも、既設の装置を入れ替えて更新させる場合が多い。
【0009】
この場合、更新前の旧型器は小型のものが多く、更新する放射線治療装置は大型であることから、設置させる部屋を拡張させなければならなくなるという可能性を有する。
【0010】
放射線治療装置を据付ける部屋は、1mを超える厚さのコンクリート壁で囲まれた放射線遮蔽室からなり、一般に病院の地下に設けられていることが通常であることから、部屋の拡張は多大な労力、コストを要する。
【0011】
また、X線の上述した定位的照射を実施するためには、被検者をその病変がガントリの回転軸と治療台の回転軸の交点(アイソセンタ)に一致するように配置させる必要があり、このようにした場合、該被検者の位置が比較的高くなってしまう。このことは、被検者の治療台からの落下による健康被害のリスクが高くなってしまうことになる。
【0012】
本発明の目的は、占有空間を少なくできるとともに、被検者の位置を高くすることなく治療を施すことのできる放射線治療装置を提供することにある。
【課題を解決するための手段】
【0013】
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。
【0014】
(1)本発明による放射線治療装置は、たとえば、床面に載置される電子加速器マイクロトロンと治療台を備え、
前記電子加速器マイクロトロンは、その放射線ビームの出力側を前記治療台側に傾斜させて配置され、
前記治療台は、その天板が前記床面と水平な面内で前記マイクロトロン電子加速器と干渉することなく回転するように構成され、
前記放射線ビームは、前記天板の回転軸に交差するように照射されることを特徴とする。
【0015】
(2)本発明による放射線治療装置は、たとえば、(1)の構成を前提とし、前記放射線ビームは、前記電子加速器マイクロトロンから単一のビームによって前記天板の回転軸に交差するように照射されることを特徴とする。
【0016】
(3)本発明による放射線治療装置は、たとえば、(1)の構成を前提とし、前記放射線ビームは、前記電子加速器マイクロトロンから複数のビームに分岐され、分岐された各ビームは前記回転軸上の同一点に方向を変えて照射されることを特徴とする。
【0017】
(4)本発明による放射線治療装置は、たとえば、(1)の構成を前提とし、前記電子加速器マイクロトロンの放射線ビームの出力側に該電子線ビームの照射口回転機構が備えられ、
前記照射口回転機構の回転に応じて、前記電子線ビームの前記天板の回転軸上の同一点への照射方向が変化することを特徴とする。
【0018】
なお、本発明は以上の構成に限定されず、本発明の技術思想を逸脱しない範囲で種々の変更が可能である。
【発明の効果】
【0019】
このように構成した放射線治療装置によれば、その占有空間を少なくできるとともに、被検者の位置を高くすることなく治療を施すことができる。
【発明を実施するための最良の形態】
【0020】
以下、本発明による放射線治療装置の実施例を図面を用いて説明する。
【0021】
ここで、前記放射線治療装置の全体の構成を説明するに先立って、図2を用いて該放射線治療装置に備えられる電子加速器マイクロトロン11の概略構成について説明する。
【0022】
図2は前記電子加速器マイクロトロン11の概略平面図であり、同図に示すように、まず、電磁石63によって形成される一様磁場中に電子銃(図示しない)が備えられた加速空洞61が設けられている。該電子銃は電子ビームを発生し、前記加速空洞61には外部からマイクロ波が供給されて電場が生じるようになっている。
【0023】
前記電子銃から出力された電子ビームは、加速空洞61によって加速され、一様磁場内を円を描いて回り、再び加速空洞61に戻るようになっている。該加速空洞61によって再び加速された電子は、相対性原理によって質量が増加し、前記一様磁場内で、より大きな円軌道を描いて加速空洞61に戻るようになる。
【0024】
この繰り返しによって、所定の値に加速された電子ビームは、取り出しパイプ62によって、外部に取り出されるようになっている。
【0025】
該取り出しパイプ62は、強磁性体から構成され、前記電子ビームが通過する内部の磁束密度は減弱されている。
【0026】
該取り出しパイプ62内を直進した電子ビームは、該取り出しパイプ62を出た後に、シフトした円軌道を描き、取り出し口64に向かうようになっている。該取り出し口64内を進行する電子ビームは四重極電磁石65によって収束されるようになっている。
【0027】
なお、図6において、前記取り出し口64の先端には90度偏向電磁石12が備えられており、この90度偏向電磁石12によって、電子ビームは紙面に対して垂直方向に照射されるようになっている。
【0028】
このように構成される電子加速器マイクロトロン11は、前記取り出しパイプ62を移動できるように構成され、これにより、一様磁場内の電子ビームの軌道を選択でき、換言すれば、出力される電子ビームのエネルギーを選択することができるようになる。このため、取り出す電子ビームのエネルギーの選択範囲を広範囲とでき、そのエネルギーの値のばらつきが少なく、したがって、該電子ビームの電磁石による偏向および収束を容易にすることができる。
【0029】
〈実施例1〉
図1は、上述した電子加速器マイクロトロン11を備えた放射線治療装置の一実施例を示す構成図である。
【0030】
図1において、前記電子加速器マイクロトロン11は、その側面から観た状態で示され、床面に対して傾斜して(たとえば45°に)設置されている。この電子加速器マイクロトロン11には、図2に示した四重極電磁石65、および90度偏向電磁石12が描画されている。
【0031】
前記電子加速器マイクロトロン11は、後述の治療台14側に傾斜して配置され、前記90度偏向電磁石12から出射された電子ビームは、四重極電磁石13、ターゲット21、円筒形コリメータ22、および放射線検出器23を経て、前記治療台14に横臥された被検体に照射されるようになっている。
【0032】
なお、前記四重極電磁石13、ターゲット21、円筒形コリメータ22、および放射線検出器23は、電子加速器マイクロトロン11とともに、ガントリ10内に組み込まれて配置されている。
【0033】
前記90度偏向電磁石12から出射された電子ビームは、四重極電磁石13によって収束された後にターゲット21に入射されるようになっている。前記ターゲット21として、金あるいはタングステンのように高原子番号であって高融点の材料を用いることにより、それによって発生されるX線を被検体に出力させることができ、また、アルミニウムのような低原子番号の金属箔を用いることにより、該電子ビームを散乱させて広げることができる。
【0034】
前記円筒形コリメータ22は、前記ターゲット21、および放射線検出器23とともに描画した図3に示すように、内部にテーパー状の孔22aを有し、治療用として出力させる放射線(電子線、X線)の照射野を限定するようになっている。
【0035】
なお、前記円形コリメータ22の出力側に配置される前記放射線検出器23は、たとえば平行平板型電離箱からなり、治療用に出力する放射線の線量を測定するようになっている。
【0036】
再び、図1に戻り、床面20には前記治療台14が配置され、その治療台14は前記床面20に対して垂直な軸(回転軸)15を中心として前記床面と平行な平面内で回転できるようになっている。すなわち、前記治療台14は、床に埋設されたターンテーブル14aに固定され、該ターンテーブル14aが図示しない機構によって回転することにより、前記軸15を中心として回転できるようになっている。この場合、前記治療台14は、その回転の際において、前記電子加速器マイクロトロン11(正確にはガントリ10)に干渉しないようになっている。
【0037】
そして、前記電子加速器マイクロトロン11からの前記放射線検出器23を通して出射される電子ビームはそのビーム軸16が前記回転軸15と交わるように照射されるようになっている。
【0038】
前記ビーム軸16と前記回転軸15との交点Pはアイソセンタと称され、被検体はその病変を前記アイソセンタに一致づけられて前記治療台14上に配置されるようになっている。
【0039】
このような状態で、前記治療台14を回転させながら放射線を照射することによって、該放射線は、図9に示すように、被検体に対して漏斗状の軌跡を描くようになり、それらの各放射線は被検体の病変に向けて照射されるようになる。このため、被検体の病変において線量の集中度を高めた放射線照射を実現できる。
【0040】
このように構成された放射線治療装置は、電子加速器マイクロトロン11の床からの高さを低くでき、また、該電子加速器マイクロトロン11からの放射線の放射口を治療台14上の被検体に近接させることができる。このため、該放射線治療装置の占有空間を少なくできるとともに、被検体の位置を高くすることなく治療を施すことのできるようになる。
【0041】
上述した実施例では、説明を簡単にするため、孔の大きさが特定されている一個の円筒形コリメータ22が備えられていることを示したものである。
【0042】
しかし、前記円筒形コリメータ22を、たとえば図4に示すように回転式交換機構を備える円筒形コリメータ22Aとして構成し、照射対象の大きさに応じて孔の大きさの異なる複数の円形コリメータ22のうちの一つを選択できるようにしてもよい。すなわち、図4において、円筒形コリメータ22Aは、回転テーブル32に孔径の異なる複数の円筒形コリメータ22が取り付けられ、該回転テーブル32を駆動装置31によって回転させることによって、所望の孔径の円筒形コリメータ22を前記ターゲット21と放射線検出器23の間に位置づけるように構成されている。
【0043】
〈実施例2〉
図5は、本発明による放射線治療装置の他の実施例を示す構成図で、図1と対応した図となっている。図5において図1と同符号の部材は同一の機能を有する部材となっている。
【0044】
図5において、図1の場合と比較して異なる構成は、前記電子加速器マイクロトロン11から前記90度偏向電磁石12を通して出射される電子ビームが、たとえば2つの分岐経路を通して、それぞれ、前記回転軸15上における一点P(アイソセンタ)に照射されるようになっていることにある。
【0045】
すなわち、前記90度偏向電磁石12からの電子ビームは分岐電磁石41によって分岐され、その一方に分岐された電子ビームは、偏向電磁石42a、ターゲット21a、円筒形コリメータ22a、および放射線検出器23aを通して、前記回転軸15上における一点Pに照射され、他方に分岐された電子ビームは、偏向電磁石42b、ターゲット21b、円筒形コリメータ22b、および放射線検出器23bを通して、前記一点Pに照射されるようになっている。
【0046】
このように構成された放射線治療装置は、被検体の病変をアイソセンタに合わせ、治療台14を回転させ、放射線を出力させることにより、2重の漏斗状の軌跡を描く放射線の照射が可能となり、より線量の集中度を高めた放射線の照射を実現させることができる。
【0047】
〈実施例3〉
図6は、本発明による放射線治療装置の他の実施例を示す構成図で、図1と対応した図となっている。図6において図1と同符号の部材は同一の機能を有する部材となっている。
【0048】
図6において、図1の場合と比較して異なる構成は、前記電子加速器マイクロトロン11から前記90度偏向電磁石12を通して出射される電子ビームの方向(図中点線軸54で示す)に対し、前記回転軸15上におけるアイソセンタへの放射線の照射は、ある角度θを有してなされるとともに、照射口回転機構50によって、前記点線軸54の回りに回転してなされることにある。
【0049】
このように構成した放射線治療装置は、被検体への放射線の照射口は一つであるが、前記点線軸54の回りの放射線の回転と回転軸15の回りの治療台15の回転とを組み合わせた放射線の照射によって、様々な方向から被検体の病変に放射線を照射することができるにようになる。
【0050】
前記照射口回転機構50はたとえば次のようにして構成されている。すなわち、前記90度偏向電磁石12を通して前記点線軸54の方向に出射される電子ビームは、偏向電磁石55によって角度βで偏向され、さらに偏向電磁石56によって角度γで偏向されるようになっている。
【0051】
そして、ターゲット21a、円筒形コリメータ22a、および放射線検出器23aを通して出射される放射線は前記点線軸54に対して角度θを有して前記アイソセンタに照射されるようになっている。
【0052】
前記偏向電磁石55、偏向電磁石56、ターゲット21a、円筒形コリメータ22a、および放射線検出器23aは、前記点線軸54を中心軸として配置される照射口回転テーブル51に積載されている。
【0053】
そして、前記照射口回転テーブル51は、駆動装置53によって前記点線軸54の回りに回転するようになっている。
【0054】
なお、前記照射口回転テーブル51には、その回転において重心が偏心するのを回避させるためカウンターウエイト52が取り付けられている。
【0055】
上述した各実施例に示した電子加速器マイクロトロン11は、それぞれ、治療台14側に傾倒させた状態で、その傾き角度は不変のものとして説明したものである。しかし、電子加速器マイクロトロン11の傾き角度を駆動機構を用いて調整できるように構成してもよい。このようにすることによって、前記回転軸15上のアイソセンタの位置を調整できる効果を奏するからである。
【0056】
上述した各実施例はそれぞれ単独に、あるいは組み合わせて用いても良い。それぞれの実施例での効果を単独であるいは相乗して奏することができるからである。
【図面の簡単な説明】
【0057】
【図1】本発明による放射線治療装置の一実施例を示す構成図である。
【図2】本発明による放射線治療装置に具備される電子加速器マイクロトロンの一実施例を示す概略平面図である。
【図3】図1に示すコリメータの詳細な構成を示す図である。
【図4】図1に示すコリメータに代替される他のコリメータの実施例を示す構成図である。
【図5】本発明による放射線治療装置の他の実施例を示す構成図である。
【図6】本発明による放射線治療装置の他の実施例を示す構成図である。
【図7】放射線ビームの被検体の深部方向における線量分布を示した図である。
【図8】放射線ビームの被検体に対向してそれぞれ放射線照射した際の深部方向の線量分布を説明する図である。
【図9】細径の放射線ビームが病変に照射される様子を説明する図である。
【符号の説明】
【0058】
11……電子加速器マイクロトロン、12……90度偏向電磁石、13……四重極電磁石、14……治療台、15……治療台回転軸、16……放射線ビーム軸、21……ターゲット、22……円筒形コリメータ、23……放射線検出器、31、53……駆動装置、32……回転テーブル、41……分岐電磁石、42、55、56……偏向電磁石、51……照射口回転テーブル、52……カウンターウェイト、61……加速空洞、62……取り出しパイプ、65……四重極電磁石。

【特許請求の範囲】
【請求項1】
床面に載置されるマイクロトロン電子加速器と治療台を備え、
前記マイクロトロン電子加速器は、その放射線ビームの出力側を前記治療台側に傾斜させて配置され、
前記治療台は、その天板が前記床面と水平な面内で前記マイクロトロン電子加速器と干渉することなく回転するように構成され、
前記放射線ビームは、前記天板の回転軸に交差するように照射されることを特徴とする放射線治療装置。
【請求項2】
前記放射線ビームは、前記マイクロトロン電子加速器から単一のビームによって前記天板の回転軸に交差するように照射されることを特徴とする請求項1に記載の放射線治療装置。
【請求項3】
前記放射線ビームは、前記マイクロトロン電子加速器から複数のビームに分岐され、分岐された各ビームは前記回転軸上の同一点に方向を変えて照射されることを特徴とする請求項1に記載の放射線治療装置。
【請求項4】
前記マイクロトロン電子加速器の放射線ビームの出力側に該電子線ビームの照射口回転機構が備えられ、
前記照射口回転機構の回転に応じて、前記電子線ビームの前記天板の回転軸上の同一点への照射方向が変化することを特徴とする請求項1の放射線治療装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2009−207581(P2009−207581A)
【公開日】平成21年9月17日(2009.9.17)
【国際特許分類】
【出願番号】特願2008−51558(P2008−51558)
【出願日】平成20年3月3日(2008.3.3)
【出願人】(000153498)株式会社日立メディコ (1,613)
【出願人】(590001452)国立がんセンター総長 (80)
【Fターム(参考)】