説明

Fターム[4C082AG11]の内容

放射線治療装置 (15,937) | 出力照射線の制御 (1,370) | 放射線の偏向(加速装置の偏向を除く) (203)

Fターム[4C082AG11]の下位に属するFターム

Fターム[4C082AG11]に分類される特許

1 - 14 / 14


陽子コンピュータ断層撮影に関連するシステムと、デバイスと、方法とが開示される。幾つかの実施態様では、陽子の検出は、各陽子についてオブジェクトの前及び後のトラック情報をもたらすことができ、それによってオブジェクト内での各陽子の、可能性が高い経路を求めることが可能になる。さらに、各陽子が受けるエネルギー損失の測定によって、所与の可能性の高い経路が所与のエネルギー損失をもたらすという判定が可能になる。こうしたデータの集合によって、オブジェクトの特徴付けが可能になる。エネルギー損失に関して、こうした特徴付けは、オブジェクトの相対阻止能の画像マップを含むことができる。限定はしないが、総変動等のメリット関数の優秀化を含むこうした画像を取得するための種々の再構成方法が開示される。幾つかの実施態様では、種々の形態の総変動優秀化方法は、計算的に効率的であり、かつ、計算時間を低減しながら、優れた結果をもたらすことができる。幾つかの実施態様では、こうした方法は、比較的低い陽子線量を使用して、高品質陽子CT画像をもたらすことができる。 (もっと読む)


現在市販されている陽子線治療システムに関連するサイズ、重量、コスト、及び放射線ビームロスを低減する改善点を有する、陽子線治療を行うためのガントリ。該ガントリは、磁石が双極子、及び四重極を含み得る色収差補正超電導多機能電磁石システムを利用する。ランプ可能な磁石システムの色収差補正特性により、磁場強度、又は双極子の設定を変更することなく、広範囲の様々なエネルギーによってビームのエネルギーが急速に変化する該ビームの伝送が容易になる。該磁石は、低温超電導体、又は高温超電導体から形成することができる。ガントリ設計は、ビーム走査をさらに統合するが、ガントリのアイソセントリックは維持する。該ガントリによって、現行の技術よりもはるかに大きい割合でビームを伝送できるため、放射線を遮蔽する要件、及び多量の陽子ビームを生成するために加速器に求められる要求が緩和される。 (もっと読む)


【課題】照射するビーム粒子の散乱を低減し、かつ真空雰囲気の保持性能の高い荷電粒子線照射装置を提供する
【解決手段】荷電粒子線照射装置のビーム取り出し窓14を、粒子線透過膜101、連結ダクト104、及び粒子線透過膜102を有する二重構造とすることで、照射するビーム粒子の散乱を低減し、かつ荷電粒子線照射装置内の真空雰囲気の保持性能を高める。 (もっと読む)


治療装置であって、撮像ゾーン内の磁気共鳴撮像データの組を獲得するよう適合された磁気共鳴撮像システムであって、上記磁気共鳴撮像システムは、磁場を発生させる手段を備える磁気共鳴撮像システムと、被験者内の標的ゾーンに荷電粒子ビームを誘導するよう適合された誘導手段であって、上記撮像ゾーンが上記標的ゾーンを含む誘導手段と、磁気共鳴撮像データの組を使用して、上記被験者内の上記標的ゾーンの位置を判定するよう適合されたゾーン判定手段と、算出された軌道が上記標的ゾーンに達するように上記磁場を表す磁場データを使用して上記ビームの軌道を算出するよう適合された軌道算出手段と、上記ビームが上記算出された軌道をたどるように、上記算出された軌道を使用して上記誘導手段を制御するよう適合された制御手段とを備える治療装置。
(もっと読む)


X線ビームプロセッサシステムは、複数本のX線ビームを発生するX線ビーム発生器と、設定領域からのX線ビームを遮蔽するミラーシールドと、空胴形状の導波構成体であって、X線ビームを導波して該導波構成体の中を伝搬させるように構成され、複数の入射ポートと複数の出射ポートとを備えた導波構成体と、前記導波構成体の軸心「X」に対して同軸心的に配列された複数のリング状ミラーであって、前記複数の入射ポート及び前記複数の出射ポートに近接してそれらに対してほぼ平行に配設された複数のミラーと、前記複数のミラーを前記導波構成体に取付ける複数の取付部材とを備えている。 (もっと読む)


【課題】シンクロトロン内の蓄積ビームを効率良く出射・利用でき、かつ照射線量の平坦度を担保することができる荷電粒子ビーム照射システムおよび荷電粒子ビーム出射方法を提供する。
【解決手段】シンクロトロン13の運転サイクルにおける出射制御期間の直前にシンクロトロン内を13周回しているイオンビームの蓄積ビーム電荷量Qm0を測定する計測手段15と、イオンビームの蓄積量の測定結果Qm0に基づいてイオンビームの全量が予め設定した出射制御時間Texの終了に合わせて出射し終わるようにイオンビームの出射を制御するビーム出射制御手段20,24,28,29とを設ける。照射装置がRMW32を備える場合、蓄積ビーム電荷量の基準値に対する測定値の割合Qm0/Qs0と、出射制御時間Texに対する実際のビーム出射時間の割合Tb/Taに応じて出射用高周波電圧の振幅値を制御する。 (もっと読む)


フォトン利用の非侵襲的外科手術システムであり、MRI装置などの画像形成装置と、少なくとも2つのビーム発生器とを備えており、それらビーム発生器は、処置対象者の体内の標的にエネルギを供給するための複数本のエネルギビームを発生し、それら複数本のエネルギビームが1箇所で交差するようにしてある。このシステムは更に、複数本のエネルギビームが処置対象者の身体を透過して進行する際に発生すると予測されるビーム偏向と、予測したビーム偏向が発生したならばその結果として形成されるはずのビーム経路とを事前算出するフィードフォワード制御手段と、前記画像形成装置により収集される情報を取得して利用するフィードバック制御手段とを備えている。 (もっと読む)


【課題】呼吸や脈拍などの生体活動による反復的な位置の変動に伴って照射領域が動いてしまう場合であっても、予め設定された形状および線量に基づいて正確な照射を行うことのできる、3次元スキャニング法を用いたスキャニング照射方法を提供する。
【解決手段】本発明に係るスキャニング照射方法は、線量算出ステップS2と、差分線量算出ステップS3と、照射線量設定ステップS4と、を含み、所定の条件を満たすまで差分線量算出ステップS3および照射線量設定ステップS4を繰り返して行う。 (もっと読む)


【課題】荷電粒子線の誤照射の防止を図ることができる粒子線照射システムを得る。
【解決手段】粒子線加速装置2によって加速された荷電粒子線は、粒子線輸送装置4によって所定の経路に沿って粒子線照射装置3へ輸送される。粒子線照射装置3は、所定の経路を通る荷電粒子線を照射対象に照射する。粒子線輸送装置4は、軌道分岐部5を有している。軌道分岐部5は、偏向永久磁石14と偏向電磁石15,16とで構成される偏向装置8と、偏向電磁石15,16の励磁用に偏向電磁石を構成する電磁コイルに給電する電源装置とを有している。偏向電磁石15,16が励磁されているときには、輸送中の荷電粒子の軌道が、粒子線照射装置3の設置された位置に荷電粒子が輸送される軌道に乗り、偏向電磁石15,16が励磁されていないときには、輸送中の荷電粒子の軌道が、粒子線照射装置3の設置された位置に荷電粒子が輸送される軌道とは異なる軌道に分岐される。 (もっと読む)


【課題】計画CT像をとった時と、その後の放射線処理時との間での患者のミスアライメントを測定、修正するための手段を提供する。
【解決手段】第1ポジションにある患者に対する第1の複数の放射線撮影投射を含む計画断層撮影投射セットを得、ついで電子計算機を用いて、蓄積プログラムに従って、第1の患者のポジションに関して放射線ビームの少なくとも1つの方向性を描く放射線処理計画を作成して、患者に所望の処置を提供する。第2ポジションにある患者に対する第2の複数の放射線撮影投射を含む、後の確認投射セットを得、ついで電子計算機を用いて、蓄積プログラムに従って、第2の複数の放射線撮影投射を第1の放射線撮影投射セットの対応する投射と比較し、第1ポジションと第2ポジションの間での患者の移動量を測定する。電子計算機によって測定された移動量に従って患者の処置を変える。 (もっと読む)


【課題】
線形加速器を利用し、治療部位に応じて中性子を多方向から治療部位に照射可能なBNCT装置を提供する。
【解決手段】
線形加速器3を用いて陽子エネルギを、Be(p,xn)反応によって単位陽子電流当りに発生する中性子発生率が、Li(p,n)反応によって単位陽子電流当りに発生する中性子発生率より大きく、かつ、核破砕反応によって単位陽子電流当りに発生する中性子発生率よりも小さくなる範囲のエネルギに陽子を加速する。加速された陽子を複数の四重極電磁石14および偏向電磁石15A、15B、15Cからなる回転ガントリ5Aに入射し、回転ガントリ5Aの先端に設置した中性子発生用のベリリウムのターゲット7に衝突させる。ターゲット7で発生した高速中性子を、脱着可能な中性子照射部9を用いてホウ素中性子捕捉療法に必要な熱中性子または熱外中性子に調整し、治療部位に多方向から照射する。 (もっと読む)


【課題】外科用レーザ装置と皮膚科での使用方法に関し、所定深さの皮膚浸透を行うとともにその制御ができ、手術領域近傍の健康な組織領域を傷つけず、皮膚科に利用可能な効率の良い携帯レーザ外科装置を提供する。
【解決手段】生体組織を蒸発させるレーザ外科装置10は、手術用レーザアセンブリ22、24、26、38、30、32、34と、検出装置48と、制御ユニット14とからなる。手術用レーザアセンブリは、水のピーク吸収波長に相当する所定波長を有する手術用ビームを生成する。検出装置は、制御信号を生成するために、手術される生体組織から反射される信号を受信してチェックすることによって、手術される生体組織の状態を検出するようになっている。制御ユニットは、制御信号に基づいて手術用ビームの特性を制御するので、生体組織の蒸発の深さは、15〜20ミクロンを越えない。 (もっと読む)


【課題】陽子・炭素イオン等の荷電粒子ビーム出射装置の出射に関し、治療時間を短縮する方法を提案する。
【解決手段】リッジフィルタ若しくはレンジモジュレーションホイール(RMW)を対応する形状に成形し、RMWのビームON/OFF制御若しくはRMWのビーム電流制御を行い、インテンシティモジュレーション制御を行い、又はスキャニング方式の照射を行うことにより、患者5内に線量同一若しくは線量が異なる複数の拡大ブラッグピークを形成させる。また、部分的に線量の異なる拡大ブラッグピークを形成させる。 (もっと読む)


【課題】厚みが回転方向において変化して通過するイオンビームのエネルギーを変える1つの回転体で治療できる患者数を増加する。
【解決手段】イオンビームを患者32に照射して治療を行うイオンビーム出射装置において、イオンビームを発生させるビーム発生装置1と、周回方向に所定の厚さ分布を備え、ビーム発生装置1から発生されたイオンビームの進路上で回転しイオンビームの飛程を制御するレンジモジュレーションホイール29を備えたビーム照射ノズル15と、レンジモジュレーションホイール29の回転位相に応じて、ビーム発生装置1のビーム発生加速動作を制御する照射制御装置38とを備える。 (もっと読む)


1 - 14 / 14