説明

放射線測定装置及び放射線測定方法

【課題】放射線を放出する測定対象物の放射線量を測定する放射線測定装置において、正確に精度よく、効率的に配管等の測定対象物の放射線量の測定を行なうこと。
【解決手段】放射線を放出する測定対象物Pを気体と共に収容する測定対象物収容部11と、その測定対象物収容部11から流出した気体中のイオンを収集する第1イオン収集部15と、その第1イオン収集部15の電極に電圧を印加する第1高電圧電源装置17と、測定対象物収容部11内の気体を第1イオン収集部15に送ると共に、その第1イオン収集部15に送られた気体を測定対象物収容部11に戻して気体を循環させるファン20a,20bと、第1イオン収集部15で収集したイオンを電流として計測する第1電流計測部21と、測定対象物Pの形状と感度の補正係数との対応表を基に、測定対象物Pの形状に対応する補正係数を取得する形状/補正係数取得部38と、電流値を、形状/補正係数取得部38から出力した補正係数で補正して測定対象物Pの放射線量を測定する電流補正部22とを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、放射線による電離作用を利用して電流測定によって放射線を測定する放射線測定装置及び放射線測定方法に関する。
【背景技術】
【0002】
一般に、放射線測定装置及び放射線測定方法においては、廃棄物等の測定対象物から放出される放射線によってその近傍の気体が電離されてイオン対が生成されるが、そのイオンは数秒〜数十秒の寿命をもち、その間は測定対象物の近傍に存在する。この生成されるイオンのイオン数を電流として計測すれば、放射線の強度を求めることができる。
【0003】
この原理を利用した放射線測定装置及び放射線測定方法の従来技術として、次に示すような文献が開示されている。
【特許文献1】特許第3408543号公報
【特許文献2】特開2003−337175号公報
【特許文献3】特開2003−194946号公報
【非特許文献1】内藤晋、佐野明、泉幹雄、他、「α線の電離空気輸送型計測におけるイオン電流予測モデルの開発」日本原子力学会和文論文誌,Vol.4,No.1,pp.7『2005』
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、従来技術の第1の課題は、測定対象物収容部に収容する測定対象物の形状や材質、又は設置されている場所の気体の状態によって計測されるイオン電流が変化する点である。つまり、測定対象物としてのパイプ内部に汚染がある場合、表面に汚染がある場合に比べてイオン収集部まで輸送されるイオン量が異なり、異なった電流として計測されてしまう。
【0005】
また、測定対象物が帯電する物質である場合、電離したイオンを吸着し、検出器まで輸送されるイオン量を減少させる。また、気体中にエアロゾルと一般に言われる汚染物質が浮遊しているが、その量によって、イオン消滅時間等が異なり、計測される電流が変化する。特に、汚染の検出の観点からは、イオン電流が減少する場合は汚染を見逃すことになるため適切な対策を講じることは必須である。
【0006】
従来技術の第2の課題は、イオン気体中のBG(Back Ground)イオンの量が変化することによって、検出できる汚染の最低量(下限値)が変化する点である。BGイオン量が変化する要因としては、気体中の放射性ガスであるラドン濃度の変化や、宇宙放射線の変動などが挙げられる。特に、ラドン濃度は、装置の設置位置や、雨等の天候に影響されて変動する。また、ラドン濃度は、α汚染の考えられる施設では、ウラン等の核分裂物質からのラドンも増加する傾向にあると考えられ、その変動を抑えることは重要である。
【0007】
また、測定対象とする放射線がα線や重荷電粒子の場合、電離したイオンの発生直後の数密度は非常に大きい。このため、イオン数密度の2乗に比例する正負イオンの再結合反応により、数割程度のイオンが発生直後に消滅する。よって、検出器まで輸送されるイオン量が減少し、計測電流の低下や揺らぎが発生することで、放射線の計測精度が低下することが従来技術の第3の課題となっている。
【0008】
さらに、放射線の種類(α線、β線及びγ線等)によって計測電流と放射線との関係は異なるため、精度よく放射線を測定するためには、放射線の種類を弁別することが必要である。しかしながら、計測電流のみからは放射線の種類の弁別ができないことが従来技術の第4の課題となっている。
【0009】
また、計測電流には、被検体からの放射線以外に自然放射線(ラドン、宇宙線及び環境γ線等)によって電離したBGイオンに起因する電流も含む。そのBGイオンが、計測におけるノイズとなり放射能の測定精度を低下させることが従来技術の第5の課題となっている。
【0010】
本発明は、上述した事情を考慮してなされたもので、正確に精度よく、効率的に測定対象物の放射線量の測定が行なえる放射線測定装置及び放射線測定方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明に係る放射線測定装置は、上述した課題を解決するために請求項1に記載したように、放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、前記イオン収集部の電極に電圧を印加する電源部と、前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、前記測定対象物の形状と感度の補正係数との対応表を基に、前記測定対象物の形状に対応する補正係数を取得する補正係数取得部と、前記電流計測部から出力される電流値を前記補正係数取得部から出力される前記補正係数で補正し、補正した電流値から前記測定対象物の放射線量を測定する電流補正部とを有する。
【0012】
本発明に係る放射線測定装置は、上述した課題を解決するために請求項4に記載したように、放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、前記イオン収集部の電極に電圧を印加する電源部と、前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、前記測定対象物の帯電量と感度の補正係数との対応表を基に、前記測定対象物の帯電量に対応する感度の補正係数を取得する補正係数取得部と、前記電流計測部から出力される電流値を前記補正係数取得部から出力される前記補正係数で補正し、補正した電流値から前記測定対象物の放射線量を測定する電流補正部とを有する。
【0013】
本発明に係る放射線測定装置は、上述した課題を解決するために請求項6に記載したように、放射線を放出する測定対象物の帯電状態を判断する帯電状態判断部と、前記帯電状態判断部による前記測定対象物の帯電状態によって、前記測定対象物の帯電を除去する除電部と、前記測定対象物を気体と共に収容する測定対象物収容部と、前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、前記イオン収集部の電極に電圧を印加する電源部と、前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、前記電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有する。
【0014】
本発明に係る放射線測定装置は、上述した課題を解決するために請求項7に記載したように、放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、前記イオン収集部の電極に電圧を印加する電源部と、前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、前記気体中の放射性ガスを捕集する放射性ガス捕集部と、前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、前記電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有する。
【0015】
本発明に係る放射線測定装置は、上述した課題を解決するために請求項8に記載したように、放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、前記イオン収集部の電極に電圧を印加する電源部と、前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、前記気体の温度及び湿度のうち少なくとも一方を制御する温湿度制御部と、前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、前記電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有する。
【0016】
本発明に係る放射線測定装置は、上述した課題を解決するために請求項11に記載したように、放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、前記イオン収集部の電極に電圧を印加する電源部と、前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、前記気体の一部を入れ替える気体入替部と、前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、前記電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有する。
【0017】
本発明に係る放射線測定装置は、上述した課題を解決するために請求項14に記載したように、放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、前記測定対象物収容部から流出した前記気体中のイオンを収集する第1イオン収集部と、前記第1イオン収集部の電極に電圧を印加する第1電源部と、前記測定対象物収容部内の前記気体を前記第1イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、前記第1イオン収集部で収集した前記イオンを電流として計測する第1電流計測部と、前記第1電源部の起動前に、前記気体中のイオンを収集する第2イオン収集部と、前記第1電源部の起動前に、前記第2イオン収集部の電極に電圧を印加する第2電源部と、前記第1電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有する。
【0018】
本発明に係る放射線測定装置は、上述した課題を解決するために請求項16に記載したように、放射線を放出する測定対象物をアースするアース部と、前記測定対象物を気体と共に収容する測定対象物収容部と、前記測定対象物収容部から流出した前記気体中のイオンを収集する第1イオン収集部と、前記第1イオン収集部の電極に電圧を印加する第1電源部と、前記測定対象物収容部の内部に具備し、前記所要の測定対象物を電界シールドすると共に前記測定対象物収容部内のイオンを前記第1イオン収集部の方向に導く電界シールド部と、前記測定対象物収容部の内部に具備し、前記電界シールド部の外側のイオンを収集する第3イオン収集部と、前記第3イオン収集部の電極に電圧を印加する第3電源部と、前記測定対象物収容部内の前記気体を前記第1イオン収集部に送ると共に、その第1イオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、前記第1イオン収集部で収集した前記イオンを電流として計測する第1電流計測部と、前記第1電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有する。
【0019】
本発明に係る放射線測定装置は、上述した課題を解決するために請求項18に記載したように、放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、前記イオン収集部の電極に電圧を印加する電源部と、前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、前記測定対象物の放射線発生源を含む表面に対して前記気体を吹き付ける気体吹付部と、前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、前記電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有する。
【0020】
本発明に係る放射線測定装置は、上述した課題を解決するために請求項24に記載したように、放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、前記イオン収集部の電極に電圧を印加する電源部と、前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、前記測定対象物の放射線源を含む表面周辺の気流を攪拌する気流攪拌部と、前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、前記電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有する。
【0021】
本発明に係る放射線測定装置は、上述した課題を解決するために請求項26に記載したように、放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、前記測定対象物収容部から流出した前記気体中のイオンを収集する第1イオン収集部と、前記第1イオン収集部の電極に電圧を印加する第1電源部と、前記第1イオン収集部の下流側に、前記気体中のイオンを収集する第4イオン収集部と、前記第4イオン収集部の電極に電圧を印加する第4電源部と、前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる一方、前記気体の循環を逆転させる気体輸送部と、前記第1イオン収集部で収集した前記イオンを電流として計測する第1電流計測部と、前記第1電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有する。
【0022】
本発明に係る放射線測定方法は、上述した課題を解決するために請求項27に記載したように、放射線を放出する測定対象物を気体と共に測定対象物収容部に収容し、その測定対象物収容部からイオン収集部に送られた前記気体を、前記イオン収集部から前記測定対象物収容部に戻すことで循環流路を形成させ、前記イオン収集部で収集した前記気体中のイオンを電流として計測することで前記測定対象物の放射線量を測定する放射線測定方法において、測定対象物の形状に対応する感度の補正係数を基に、前記測定対象物の形状に対応する感度の補正係数である形状/補正係数を取得する形状/補正係数取得工程と、前記測定対象物が帯電しているか、又は、前記測定対象物の帯電量が閾値以上である場合、前記測定対象物を除電する除電工程と、前記測定対象物が帯電している場合、前記測定対象物の帯電量に対応する感度の補正係数である帯電量/補正係数を取得する帯電量/補正係数取得工程と、前記気体の温度及び湿度のうち少なくとも一方に対応する感度の補正係数である温湿度/補正係数を取得する温湿度/補正係数取得工程と、前記気体と比較して湿度の低い空気を注入して気体を入れ替える気体入替工程と、前記空気の割合に対応する感度の補正係数である注入割合/補正係数を取得する注入割合/補正係数取得工程と、前記測定対象物の回転角に応じて計測した電流値の変動が閾値未満の場合、前記形状/補正係数が適正であると判断する形状/補正係数適正判断工程と、前記形状/補正係数が適正であると判断する場合、前記電流値を、前記形状/補正係数、前記帯電量/補正係数、前記温湿度/補正係数及び前記注入割合/補正係数によって補正することで、前記測定対象物の放射線量を測定する。
【発明の効果】
【0023】
本発明に係る放射線測定装置及び放射線測定方法によると、正確に精度よく、効率的に測定対象物の放射線量の測定が行なえる。
【発明を実施するための最良の形態】
【0024】
本発明に係る放射線測定装置及び放射線測定方法の実施形態について、添付図面を参照して説明する。
【0025】
図1は、本発明に係る放射線測定装置の第1実施形態を示す概略図である。
【0026】
図1は、放射線によって電離した比較的長寿命のイオンに対して間接的測定を行なう放射線測定装置10を示す。この放射線測定装置10は、放射線を放出する廃棄物(パイプ等)等の測定対象物Pをアルゴン、ヘリウム又は空気等の気体と共に内部に収容する測定対象物収容部11と、その測定対象物収容部11から流出した気体中のイオンを収集(検出)する第1イオン収集部15と、その第1イオン収集部15の電極(センサ)Saに電圧を印加する電源部としての第1高圧電源装置17と、測定対象物収容部11内の気体を第1イオン収集部15に送ると共に、第1イオン収集部15に送られた気体を測定対象物収容部11に戻して気体を循環させる気体輸送部としてのファン20(20a,20b)と、第1イオン収集部15で収集したイオンを電流として計測するエレクトロメータ等の第1電流計測部21と、その第1電流計測部21で計測した電流値を補正する電流補正部22とを有する。電流補正部22は、電流値から測定対象物Pの放射線量を測定する機能を有している。なお、放射線測定装置10には気体輸送部としてファンを2つ有するものとして説明するが、2つに限定されるものではない。
【0027】
また、放射線測定装置10には、測定対象物収容部11の気体流入側に連結しその測定対象物収容部内に気体を流入する気体流入部23と、測定対象物収容部11の気体流出側に連結しその測定対象物収容部11内の気体を流出する気体流出部としての気体収集ノズル24と、第1イオン収集部15を通過した気体の径路に備えたバッファータンク25(25a,25b)と、気体径路32(32a,32b)と、気体から微粒子を除去して気体全体を浄化する気体全体浄化部、例えばフィルタ33(33a,33b)と、電気的手段等を用いて気体中の微粒子を捕集して気体の一部を浄化する気体一部浄化部、例えば気体清浄装置34とが具備される。
【0028】
ここで、同一放射線量に対する第1電流計測部21の出力電流を表す感度は、測定対象物Pの形状(収容方向)の影響を受ける。よって、放射線測定装置10は、測定対象物Pの形状によって感度を補正するための第1の構成要素を有する。
【0029】
(第1の構成要素)
正確に精度よく測定対象物Pの放射線量を測定することを目的とした第1の構成要素として、放射線測定装置10には、測定対象物Pの形状に対応する感度の補正係数を取得する形状/補正係数取得部38を有する。
【0030】
ここで、形状/補正係数取得部38は、測定対象物Pを形状によって電離するイオンのイオン量(イオン発生効率)を推定する。例えば、測定対象物Pとしてのパイプ内にα放射能による汚染がある場合、α線の飛ぶ距離(飛程)は、1気圧中では数cmであり、その飛程よりパイプの径が細ければ、α線はパイプの内壁に衝突してエネルギを消費するため、周辺の気体を電離する割合は減少する。つまり、測定対象物Pの形状によって電離するイオン量を推定することができる。
【0031】
一方、比較的長いパイプの中に汚染がある場合では、パイプ内のイオンが速やかにパイプ外部に出なければ、第1イオン収集部15に到達するまでの途中で損失するイオンの割合が増え、第1イオン収集部15で収集するイオン量が減少する。つまり、測定対象物Pの形状によってイオンの輸送効率が異なり、その輸送効率に伴ってイオン量が変化するので、測定対象物Pの形状によって電離するイオン量を推定することができる。
【0032】
図2は、パイプ形状の測定対象物Pに対する感度の変化の一例をグラフとして示す図である。
【0033】
図2のグラフに示したように、測定対象物Pの形状と感度とを対応させた対応表を予め放射線測定装置10に内蔵した、又は、外部接続された記憶装置(図示しない)に記録しておく。図1に示した形状/補正係数取得部38は、対応表を基に、オペレータが入力する測定対象物Pの形状に対応する感度の補正係数を取得する。
【0034】
また、例えば、放射線測定装置10に内蔵した、又は、外部接続された記憶装置(図示しない)に、形状によって定まるイオン収集効率及び電離空間(線源効率)の組み合わせと感度の補正係数との対応表を予め記憶させ、形状/補正係数取得部38は、対応表を基に、オペレータが入力する測定対象物Pの形状に対応する感度の補正係数を取得する。
【0035】
図3は、イオン収集効率及び電離空間(線源効率)の組み合わせと感度の補正係数との対応表の一例を示す図である。
【0036】
図3に示したように、イオン収集効率及び電離空間(線源効率)の組み合わせによって測定対象物Pを数種類の類型に分ける。ここでは、イオン収集効率及び電離空間(線源効率)の組み合わせによって、測定対象物Pを4つの類型(類型A、B、C及びD)に分け、類型毎に感度の補正係数を設定するものである。ここで、電離空間は、α線が電離できる空間を指す。
【0037】
また、図1に示した放射線測定装置10に第1の構成要素を有する場合、放射線測定装置10に、測定対象物収容部11内に具備し、載置された測定対象物Pを回転させる回転テーブル39と、この回転テーブル39の回転を制御する回転制御部40とを有してもよい。その場合、第1電流計測部21は、測定対象物Pの回転角に応じた電流を計測する。次いで、電流補正部22は、回転角に応じた電流を、形状/補正係数取得部38で取得した補正係数でそれぞれ補正し、補正された電流値の回転角による変動を基に、感度の補正係数、すなわち、オペレータによって入力された測定対象物Pの形状が適正であるか否かをオペレータに通知する。よって、オペレータは、入力した測定対象物の形状が適正であったか否かを判断できる。
【0038】
図4は、パイプ状の測定対象物Pの回転角に対する電流の変化の一例をグラフとして示す図である。
【0039】
パイプ内に汚染がある場合は、図4に示したグラフのように、パイプの回転角によって計測される電流が大きく変化する。つまり、回転によってイオン電流が変化するものは、形状に依存して電離するイオン量が変化するものと判断できる。回転テーブル39の回転に応じて計測される電流の変動が大きい場合、形状に依存して計測イオン量の感度が変化するものと判断できる。よって、電流補正部22は、第1電流計測部21で計測した電流値を、形状/補正係数取得部38で取得した補正係数で補正し、補正された電流値の回転角による変動が閾値未満であるか否かを判断することによって、オペレータによって入力された測定対象物Pの形状が適正であるか否かを判断する。
【0040】
なお、図1に示した回転テーブル39及び回転制御部40に替えて、測定対象物収容部11内の測定対象物Pを中心に回転し、測定対象物Pに対して種々の方向から気体を吹き付ける気体吹付部(図示しない)と、その気体吹付部の回転を制御する回転制御部とを有してもよい。その場合、第1電流計測部21は、吹き付け方向に応じた電流を計測する。次いで、電流補正部22は、吹き付け方向に応じた電流値を、形状/補正係数取得部38で取得した補正係数でそれぞれ補正し、補正された電流値の回転角による変動を基に、感度の補正係数、すなわち、オペレータによって入力された測定対象物Pの形状が適正であるか否かをオペレータに通知する。
【0041】
このように、放射線測定装置10に第1の構成要素としての形状/補正係数取得部38を有する場合、電流補正部22が第1電流計測部21で計測した電流値を、形状/補正係数取得部38から出力した補正係数で補正することで、正確に精度よく測定対象物Pの放射線量を測定できる。
【0042】
(第2の構成要素)
正確に精度よく測定対象物Pの放射線量を測定することを目的とした第2の構成要素として、放射線測定装置10には、測定対象物Pの帯電状態、すなわち、測定対象物Pの帯電の有無、又は、測定対象物Pの帯電の閾値以上若しくは未満を判断する帯電状態判断部42と、基準となる汚染源又はイオン発生源の電流の減少割合で測定対象物Pの帯電が感度に影響するか否かを判断し、測定対象物Pの帯電量に対応する感度の補正係数を取得する帯電量/補正係数取得部43とを有する。例えば、放射線測定装置10に内蔵した、又は、外部接続された記憶装置に、数種の帯電量に対応する感度を予め実測することで得られる数種の帯電量と感度の補正係数との対応表を予め記憶させ、帯電量/補正係数取得部43は、対応表を基に補正係数を取得する。
【0043】
ラドンがα線を放出して娘核種(放射性核種が放射線を出して崩壊し、新しく生まれた核種が放射能をもっているもの)に壊変する場合、α線は正の電荷を有するため娘核種は一般に負の電荷を帯び、周辺の粉塵(又はエアロゾル)に付着し、帯電した粉塵が生成され、イオンとして計測される。よって、帯電量/補正係数取得部43は、帯電した粉塵の成分を補正するものである。
【0044】
また、放射線測定装置10に第2の構成要素を有する場合、放射線測定装置10に、測定対象物Pの帯電量を測定する電位測定部44、例えば測定対象物Pの表面電位を測定する表面電位計44aを具備してもよい。
【0045】
帯電状態判断部42は、表面電位計44a等による直接の計測結果を基に測定対象物Pの帯電の有無、又は、測定対象物Pの帯電量が閾値以上若しくは未満を判断する。また、帯電状態判断部42は、測定対象物Pの材質から測定対象物Pの帯電の有無、又は、測定対象物Pの帯電量の閾値以上若しくは未満を判断してもよい。さらに、測定対象物Pを測定対象物収容部11に収容する前に実測した電流値を記録しておき、測定対象物Pの収容後に計測した電流の減少割合によって、帯電状態判断部42は、測定対象物Pの帯電の有無、又は、測定対象物Pの帯電量の閾値以上若しくは未満を判断してもよい。
【0046】
帯電状態判断部42で測定対象物Pが帯電する物質であると判断された場合や、直接の測定結果を基に測定対象物Pが帯電していると判断された場合は、例えば、表示装置(図示しない)に表示を行なって、オペレータに対して測定対象物Pの除電が必要である旨の提供を行なう。測定対象物Pの除電が必要である旨の提供がされると、ユーザは、放射線測定前に予め一般的な除電スプレーや水による測定対象物Pの洗浄等を行なう。測定対象物Pの表面電位が0V(ゼロボルト)となった後、又は、表面電位が閾値未満になった後、測定対象物収容部11に測定対象物Pを収容して放射線測定を行なう。
【0047】
また、帯電状態判断部42を有さない場合、あるいは、帯電状態判断部42を有する場合であっても、網状の導電シート又は薄膜の導電シートを予め測定対象物P表面に巻きつけ、その網状の導電シートを0Vにした後に測定を行なってもよい。
【0048】
図5は、測定対象物Pの内表面に巻きつける導電シートの構成例を示す横断面図である。
【0049】
図5に示した測定対象物Pであるパイプ内壁を覆うように網状導電シート45を巻きつけ、その網状導電シート45をアース部46に接続する。この構成では、パイプ内壁の付着した放射能からの放射線、例えばα線は、網の隙間から網状導電シート45内部に飛び込む。よって、測定対象物Pが帯電していたとしても、網状導電シート45でパイプ内壁はシールドされるため、パイプ内部で電離したイオンは、パイプ内部を流れる気体によって速やかにパイプ外部に取り出すことが可能となる。
【0050】
このように、図1に示した放射線測定装置10に第2の構成要素としての帯電状態判断部42及び帯電量/補正係数取得部43を有する場合、電流補正部22が第1電流計測部21で計測した電流値を、帯電量/補正係数取得部43から出力した補正係数で補正することで、正確に精度よく測定対象物Pの放射線量を測定できる。
【0051】
(第3の構成要素)
正確に精度よく、効率的に測定対象物Pの放射線量を測定することを目的とした第3の構成要素として、放射線測定装置10には、循環流路内の気体の温度及び湿度のうち少なくとも一方を制御する温湿度制御部47と、循環流路内の気体の温度に対応する感度の補正係数と湿度に対応する感度の補正係数とを取得する温湿度/補正係数取得部48とを有する。例えば、放射線測定装置10に内蔵した、又は、外部接続された記憶装置(図示しない)に、循環流路内の気体の温度と感度の補正係数との対応表を予め記憶させ、温湿度/補正係数取得部48は、対応表を基に測定対象物Pの補正係数を取得する。また、例えば、放射線測定装置10に内蔵した、又は、外部接続された記憶装置(図示しない)に、循環流路内の気体の湿度と感度の補正係数との対応表を予め記憶させ、温湿度/補正係数取得部48は、対応表を基に測定対象物Pの補正係数を取得する。なお、図1では、温湿度制御部47をバッファータンク25b内に有しているが、温湿度制御部47は気体の循環流路内のどこに有してもよい。
【0052】
循環流路内の気体が低湿度の場合、気体と構造材との摩擦等により気体中の帯電量が増加したりすること等があるので、温湿度制御部47は、気体中のBG(Back Ground)イオンが最も少なくなる気体の温湿度条件に設定する。BGイオンとしては、宇宙線によって電離した宇宙線寄与イオンや、気体中に浮遊するラドンとその娘核種から放出されるα線によって電離したラドン寄与イオン等が挙げられる。
【0053】
図6は、気体中の温度又は湿度と、イオンの検出下限(Bq)との関係をグラフとして示す図である。
【0054】
図6(a)の32℃におけるプロットは、気体の温度が32℃の場合であって、気体の湿度と気体中のラドン濃度とを変化させたときの検出下限の平均を示すものである一方、34℃におけるプロットは、気体の温度が34℃の場合であって、気体の湿度と気体中のラドン濃度とを変化させたときの検出下限の平均を示すものである。このグラフから、気体の温度が比較的低い32℃の方が34℃よりイオンの検出下限が優れていることが分かる。
【0055】
また、図6(b)の40%におけるプロットは、気体の湿度が40%の場合であって、気体の温度と気体中のラドン濃度とを変化させたときの検出下限の平均を示すものである一方、70%におけるプロットは、気体の湿度が70%の場合であって、気体の温度と気体中のラドン濃度とを変化させたときの検出下限の平均を示すものである。このグラフから、気体の湿度が比較的低い40%の方が70%よりイオンの検出下限が優れていることが分かる。
【0056】
このように、放射線測定装置10に第3の構成要素としての温湿度制御部47及び温湿度/補正係数取得部48を有し、気体の温度及び湿度を比較的低く制御する場合、電流補正部22が第1電流計測部21で計測した電流値を、温湿度/補正係数取得部48から出力した補正係数で補正することで、正確に精度よく、効率的に測定対象物Pの放射線量を測定できる。
【0057】
また、測定対象物Pを収容した測定対象物収容部11内の気体には、測定対象物Pに付着した放射線量に応じて電離した計測対象のイオン(計測対象イオン)の他、BGイオンが存在する。
【0058】
これらイオンは第1イオン収集部15で収集され、第1電流計測部21で電流として計測されるが、計測電流にはBGイオンに起因するBG電流が含まれている。よって、測定対象物Pを測定対象物収容部11に収容する前にBG電流を計測しておき、計測電流からBG電流を差分するデータ処理を行なうことで、計測電流から計測対象イオンのみに起因する計測対象の電流(計測対象電流)を取得する。
【0059】
しかし、第1電流計測部21で電流の計測を行なう前に、その都度、BG電流を計測するとなると、1回の放射線測定で2度のイオン収集・電流計測を行なう必要がある。そこで一般的には、あるタイミングで1度BG電流を計測し、そのBG電流値を代表値として、その後に第1電流計測部21で計測される各電流値から代表値をそれぞれ差分するデータ処理を行なう。なお、代表値としてのBG電流値は、定期又は不定期に更新される。
【0060】
BG電流値の代表値を用いる場合、正確に精度よく測定対象物Pの放射線量を測定するために、放射線測定装置10は、各電流値から差分するBG電流値が代表値として適切なものであるかを適宜確認する、後述する第7の構成要素を有する。
【0061】
また、各電流値から差分するBG電流値が代表値として適切なものである必要があるが、気体中にBGイオンが比較的多く含まれている場合、BGイオンに起因するBG電流の変動が大きくなり第1電流計測部21で行なう計測への影響が大きくなる。よって、各電流値から差分するBG電流値が代表値として適切なものであるためには、計測電流中の計測対象電流とBG電流との関係は、計測対象電流に対してBG電流が小さいほどよい。すなわち、第1電流計測部21で計測を行なう際、気体中のBGイオンが少ない方が望ましい。そこで、放射線測定装置10には、気体中のBGイオンを低減させる第4乃至第7の構成要素を有する。
【0062】
(第4の構成要素)
正確に精度よく、効率的に測定対象物Pの放射線量を測定することを目的とした第4の構成要素として、放射線測定装置10には、気体中の放射性ガスを捕集する放射性ガス捕集部、例えば活性炭51を有する。なお、図1では、活性炭51をバッファータンク25b内に有しているが、活性炭51は気体の循環流路内のどこに有してもよい。また、放射性ガス捕集部は、電界を捕集する電界捕集部であってもよい。
【0063】
活性炭51は、循環流路内の気体中のラドンを捕集し、BGイオンとしてのラドン寄与イオンを低減させる。一方、活性炭51は、測定対象物Pに付着したウラン等が壊変して生成されるラドンも吸着でき、計測中の測定対象物収容部11内でのラドンの蓄積を防止する機能も有している。
【0064】
このように、放射線測定装置10に第4の構成要素としての活性炭51を有する場合、第1電流計測部21で計測した電流値を基に、正確に精度よく、効率的に測定対象物Pの放射線量を測定できる。
【0065】
(第5の構成要素)
正確に精度よく、効率的に測定対象物Pの放射線量を測定することを目的とした第5の構成要素として、放射線測定装置10には、循環流路内の気体と比較して同等の温度であって湿度の低い空気(乾燥空気)を測定対象物収容部11の内部に注入して循環流路内の気体を入れ替える気体入替部53と、その気体入替部53から注入した空気の循環流路内に占める割合に対応する感度の補正係数を取得する注入割合/補正係数取得部54とを有する。例えば、放射線測定装置10に内蔵した、又は、外部接続された記憶装置(図示しない)に、注入した空気の循環流路内に占める割合と感度の補正係数との対応表を予め記憶させ、注入割合/補正係数取得部54は、対応表を基に測定対象物Pの補正係数を取得する。なお、図1では、気体入替部53からの空気を測定対象物収容部11の内部に注入するように気体入替部53を有しているが、気体入替部53は気体の循環流路内のどこに有してもよい。
【0066】
図7は、循環流路内の空気の温度、湿度及びBG電流値の時系列の推移をグラフとして示す図である。
【0067】
このグラフによると、時刻18:05から19:00までの間、入れ替えた空気の循環流路内に占める割合が50%となるように、気体入替部53から測定対象物収容部11の内部に、気体と比較して同等の温度である乾燥空気を注入している。時刻18:05から19:00までの間、循環流路内の気体の温度は約29℃に維持され、湿度は約9%(17%→8%)減少され、また、BG電流値が約100fA(680fA→580fA)減少している。このグラフから、気体の湿度が比較的低い方がBG電流の低減に優れていることが分かる。
【0068】
このように、放射線測定装置10に第5の構成要素としての気体入替部53及び注入割合/補正係数取得部54を有し、注入した空気の循環流路内に占める割合を増加させる場合、電流補正部22が第1電流計測部21で計測した電流値を、注入割合/補正係数取得部54から出力した補正係数で補正することで、正確に精度よく、効率的に測定対象物Pの放射線量を測定できる。
【0069】
(第6の構成要素)
正確に精度よく、効率的に測定対象物Pの放射線量を測定することを目的とした第6の構成要素として、放射線測定装置10には、第1イオン収集部15でイオン収集前の気体中のイオンを収集する第2イオン収集部55と、その第2イオン収集部55の電極Sbに電圧を印加する電源部としての第2高圧電源装置56とを有する。
【0070】
ラドンがα線を放出して娘核種に壊変する場合、α線は正の電荷を有するため娘核種は一般に負の電荷を帯び、周辺の粉塵に付着し、帯電した粉塵が生成されてイオンとして計測される。よって、これらラドンが崩壊した後に帯電した娘核種を予め第2イオン収集部55で収集することで、第1イオン収集部15でイオン収集する際の気体中のBGイオンを低減させる。すなわち、第1イオン収集部15用の第1高圧電源装置17は、第2イオン収集部55用の第2高圧電源装置56の電源が所定の電圧に設定された後に起動することで、第1イオン収集部15への娘核種の付着を抑制できる。
【0071】
このように、放射線測定装置10に第6の構成要素としての第2イオン収集部55及び第2高圧電源装置56を有する場合、第1電流計測部21で計測した電流値を基に、正確に精度よく、効率的に測定対象物Pの放射線量を測定できる。
【0072】
(第7の構成要素)
正確に精度よく、効率的に測定対象物Pの放射線量を測定することを目的とした第7の構成要素として、放射線測定装置10には、測定対象物Pの収容前に第2イオン収集部55で収集したBGイオンをBG電流として計測するエレクトロメータ等の第2電流計測部57と、その第2電流計測部57の出力を基にBG電流の変動を評価し、その評価によって適正なBG電流を電流補正部22に提供するBG電流評価部58とを有する。
【0073】
このように、放射線測定装置10に第7の構成要素としての第2電流計測部57及びBG電流評価部58を有する場合、電流補正部22は、第1電流計測部21で計測した電流値を、BG電流評価部58から出力した電流値で補正することで、正確に精度よく、効率的に測定対象物Pの放射線量を測定できる。
【0074】
なお、正確に精度よく、効率的に測定対象物Pの放射線量を測定する目的を達成するためには、放射線測定装置10には第1乃至第6の構成要素のうち少なくとも一構成要素を有すればよい。また、第6の構成要素を有する場合は、第7の構成要素を有してもよい。しかし、上述した目的を達成するためには図1に示した放射線測定装置10のように、第1乃至第7の構成要素を全て有することが好適であるので、以下の説明では、放射線測定装置10に第1乃至第7の構成要素を全て有する場合を例にとって説明する。
【0075】
すなわち、放射線測定装置10は、ファン20a,20bによって測定対象物収容部11内の気体が気体収集ノズル24から、気体径路32a、第1イオン収集部15、バッファータンク25a、ファン20a、フィルタ33a、気体径路32b、バッファータンク25b、ファン20b、第2イオン収集部55、気体流入部23、フィルタ33bを順に介して再び測定対象物収容部11に戻る気体の循環流路を形成するものとする。
【0076】
また、CPU(Central Processing Unit、図示しない)が記憶装置(図示しない)に内蔵したプログラムを実行することによって、第1電流計測部21、電流補正部22、形状/補正係数取得部38、回転制御部40、帯電物質判断部42、帯電量/補正係数取得部43、温湿度制御部47、温湿度/補正係数取得部48、注入割合/補正係数取得部54、第2電流計測部57及びBG電流評価部58として機能するものとするが、各構成部の全部又は一部は特定の回路としてもよい。さらに、第1イオン収集部15、第1高圧電源装置17、ファン20a,20b、気体清浄装置34、気体入替部53、第2イオン収集部55及び第2高圧電源装置56は、CPUによって動作を制御されるものであってもよい。
【0077】
続いて、本発明に係る放射線測定方法について、図8に示すフローチャートを用いて説明する。なお、図中の「S」に数字を付した符号はフローチャートの各ステップを示す。
【0078】
まず、オペレータによって選定された測定対象物Pの形状が放射線測定装置10に入力されると、放射線測定装置10に有する第1の構成要素としての形状/補正係数取得部38が機能する(ステップS1)。形状/補正係数取得部38は、図2又は図3に示した対応表から、測定対象物Pの形状に対応する感度の補正係数を取得する。
【0079】
また、放射線測定装置10に有する第2の構成要素としての帯電状態判断部42及び帯電量/補正係数取得部43が機能する(ステップS2)。表面電位計44aによって計測された表面電位等によって、帯電状態判断部42は、測定対象物Pが帯電しているか否かを判断する(ステップS2−1)。ステップS2−1の判断にてYes、すなわち、測定対象物Pが帯電していると判断された場合、帯電状態判断部42は、測定対象物Pの帯電量が閾値以上であるか否かを判断する(ステップS2−2)。ステップS2−2の判断にてYes、すなわち、測定対象物Pの帯電量が閾値以上であると判断された場合、測定対象物Pの除電を行なって(ステップS2−3)、帯電状態判断部42は、再び、測定対象物Pが帯電しているか否かを判断する(ステップS2−1)。測定対象物Pの除電は、一般的な除電部、例えば除電スプレーや水スプレーによって測定対象物Pの洗浄等を行なう。また、除電の代わりに、図5に示したように、網状の導電シート又は薄膜の導電シートを測定対象物P表面に巻きつけ、その網状の導電シートを0V又は閾値未満にした後に放射線測定を行なってもよい。
【0080】
一方、ステップS2−1の判断にてNo、すなわち、測定対象物Pが帯電していないと判断された場合、ステップS3に進む。また、ステップS2−2の判断にてNo、すなわち、測定対象物Pの帯電量が閾値未満と判断された場合、帯電量/補正係数取得部43は、測定対象物Pの帯電量に対応する感度の補正係数を取得して(ステップS2−4)、ステップS3に進む。
【0081】
加えて、放射線測定装置10の測定対象物収容部11内に気体を収容し、ファン20a,20bを稼動させることで、測定対象物収容部11内の気体が、気体収集ノズル24から、気体径路32a、第1イオン収集部15、バッファータンク25a、ファン20a、フィルタ33a、気体径路32b、バッファータンク25b、ファン20b、第2イオン収集部55、気体流入部23、フィルタ33bを順に介して再び測定対象物収容部11に戻る。ここで、フィルタ33a,33b及び気体清浄装置34が機能する。放射線測定装置10に循環気体全体を浄化するフィルタ33a,33bと、気体の一部をサンプリングして浄化する気体清浄装置34とによって、循環する気体量を確保しながら循環気体を一定の清浄度に維持させる。
【0082】
さらに、放射線測定装置10に有する第3の構成要素としての温湿度制御部47及び温湿度/補正係数取得部48が機能する(ステップS3)。温湿度制御部47は、循環流路内の気体及び湿度を、イオンの検出下限に優れた条件に維持する。また、温湿度/補正係数取得部48は、循環流路内の気体及び湿度に対応する感度の補正係数を取得する。
【0083】
また、放射線測定装置10に有する第4の構成要素としての活性炭51が機能する(ステップS4)。活性炭51は、循環流路内の気体中のラドンを捕集し、BGイオンとしてのラドン寄与イオンを低減させる。一方、活性炭51は、測定対象物Pの収容後、測定対象物Pに付着したウラン等が壊変して生成されるラドンも吸着する。
【0084】
加えて、放射線測定装置10に有する第5の構成要素としての気体入替部53及び注入割合/補正係数取得部54が機能する(ステップS5)。気体入替部53は、気体と比較して湿度の低い空気(乾燥空気)を測定対象物収容部11の内部に注入して気体を入れ替える。また、注入割合/補正係数取得部54は、入れ替えられた空気の割合に対応する感度の補正係数を取得する。
【0085】
次いで、ステップS5の動作から所要時間経過後、第1イオン収集部15用の第1高圧電源装置17の静止状態において、放射線測定装置10に有する第6の構成要素としての第2イオン収集部55及び第2高圧電源装置56が機能し、第2イオン収集部55用の第2高圧電源装置56を起動する(ステップS6)。第2イオン収集部55は気体中のイオンの収集を行なう。このイオン収集工程では、第2高圧電源装置56によって第2イオン収集部55の電極Sbに電圧が印加され、第2イオン収集部55は、ファン20bから送られた気体中のイオンをBGイオンとして電界によって収集する。
【0086】
次いで、放射線測定装置10の測定対象物収容部11内の回転テーブル39上にパイプ等の測定対象物Pを載置して、測定対象物収容部11内部に測定対象物Pを収容する(ステップS7)。
【0087】
第2イオン収集部55用の第2高圧電源装置56が所定の電圧に設定された後、第1イオン収集部15用の第1高圧電源装置17を起動することで(ステップS8)、第1イオン収集部15は、イオンの収集を行なう。このイオン収集工程では、第1高圧電源装置17によって第1イオン収集部15の電極Saに電圧が印加され、第1イオン収集部15は、気体収集ノズル24から送られた気体中のイオンを電界によって収集する。気体中には、計測対象イオンの他、BGイオンが存在する。よって、第1イオン収集部15で収集するイオンには、計測対象イオンとBGイオンとが含まれている。しかし、前述したように、放射線測定装置10に第2イオン収集部55を有する場合、気体中のBGイオンが第2イオン収集部55によって予め収集されているので、第1イオン収集部15の電極Saに対する娘核種の付着が低減されている。
【0088】
第1電流計測部21は、第1イオン収集部15で収集したイオンの電流としての計測を開始する(ステップS9)。
【0089】
電流の計測中、放射線測定装置10に有する第1の構成要素としての形状/補正係数取得部38と、回転テーブル39及び回転制御部40とが機能する(ステップS10)。まず、回転制御部40から発する駆動信号によって測定対象物Pを載置した回転テーブル39を回転させる(ステップS10−1)。電流補正部22は、第1電流計測部21で計測した電流値を、ステップS1で取得した(又は、ステップS10−4で再取得した)補正係数で補正し、補正された電流の回転角による変動が閾値以上であるか否かを判断する(ステップS10−2)。
【0090】
ステップS10−2にて、Yes、すなわち、補正された電流値の回転角による変動が閾値以上であると判断された場合、オペレータによって入力された測定対象物Pの形状が適正でないことをオペレータに通知する(ステップS10−3)。オペレータは、測定対象物Pの形状を入力し、図2又は図3に示した対応表から、測定対象物Pの形状に対応する感度の補正係数を再取得して(ステップS10−4)、ステップS10−1に戻る。
【0091】
一方、ステップS10−2にて、No、すなわち、補正された電流値の回転角による変動が閾値未満であると判断された場合、測定対象物Pの形状に対応する感度の補正係数を確定する(ステップS10−5)。
【0092】
よって、図1に示した回転テーブル39を有する場合、形状/補正係数取得部38は、ステップS1でオペレータが手動で入力した形状が妥当であるか否かを確認できる。また、手動で入力した形状と、予め記憶された対応表の回転角に対する形状が異なる場合は適正な形状を再び入力し、感度の補正係数を修正できる。
【0093】
次いで、放射線測定装置10に有する第7の構成要素としての第2電流計測部57及びBG電流評価部58が機能する(ステップS11)。まず、第2電流計測部57は、第2イオン収集部55で、測定対象物Pが収容された以降に収集したイオンを電流として計測する(ステップS11−1)。BG電流評価部58は、第2電流計測部57の出力を基にBG電流を評価する(ステップS11−2)。ここで、測定対象物Pが収容された以降に測定対象物収容部11内で電離した計測対象イオンの殆どは、測定対象物収容部11の直後に接続される第1イオン収集部15で収集される。一方、第1イオン収集部15と第2イオン収集部55との間で電離した残りのBGイオンは第2イオン収集部55で収集される。よって、第2イオン収集部55で収集されるBGイオンは単位体積当たり一定量であると仮定できる。つまり、第1イオン収集部15が収集する気体の体積と、第2イオン収集部55が収集する気体の体積は既知であり、第1イオン収集部15で収集したイオンに含まれるBGイオンに起因するBG電流値は、
【数1】

【0094】
BG電流評価部58は、上記式で演算したBG電流予測値の変動を時系列で監視する。BG電流予測値の変動が予め設定した閾値より小さい場合、BG電流予測値をBG電流値として電流補正部22に提供する。一方、BG電流予測値の変動が予め設定した閾値より大きい場合等、BG電流予測値の変動が大きいと判断された場合は、BG電流評価部58は、予め計測評価したBG電流値を電流補正部22に提供する。
【0095】
電流補正部22は、ステップS9以降に計測した電流値を、ステップS1、S2、S3及びS5で取得した補正係数や、ステップS11で評価したBG電流評価部58から出力したBG電流で補正して、測定対象物Pの放射線量を測定する(ステップS12)。
【0096】
なお、ステップS1乃至S5の順序、ステップS10及びS11の順序は問わないものとし、また、それぞれ並行して行なわれてもよい。
【0097】
図9は、本発明に係る放射線測定方法の第1変形例をフローチャートとして示す図である。
【0098】
まず、ステップS7にて放射線測定装置10の測定対象物収容部11内にパイプ等の測定対象物Pを載置した後(又は収容する前)に、ファン20a,20bを運転させている場合はファン20a,20bを停止させ、気体の循環停止状態とする(ステップS21)。第2イオン収集部55用の第2高圧電源装置56が所定の電圧に設定された後、第1イオン収集部15用の第1高圧電源装置17を起動することで(ステップS8)、第1イオン収集部15は、イオンの収集を行なう。このイオン収集工程では、第1高圧電源装置17によって第1イオン収集部15の電極Saに電圧が印加され、第1イオン収集部15は、気体収集ノズル24から送られた気体中のイオンを電界によって収集する。
【0099】
第1電流計測部21は、第1イオン収集部15で収集したイオンの電流としての計測を開始する(ステップS9)。第1電流計測部21は、出力パルスを計数する(ステップS22)。
【0100】
第1電流計測部21の出力パルスを時系列で監視すると、図10に示すようなパルス状の電流変化が観測できる。このパルスは、第1イオン収集部15近傍でのラドンの崩壊時に生成するα線による電離パルスと考えられ、この出力パルスをで計数することで、出力パルスを単位体積当たりのBGイオン数に換算できる(ステップS23)。つまり、第1電流計測部21では、第1電流計測部21で計数した出力パルスをBG電流に換算できる(ステップS24)。
【0101】
電流補正部22は、ステップS9以降に計測した電流値と、ステップS24で換算したBG電流値とを基に、測定対象物Pの放射線量を測定する(ステップS12)。
【0102】
図11は、本発明に係る放射線測定装置10の作用の第2変形例をフローチャートとして示す図である。
【0103】
図11は、放射線測定装置10に第6の構成要素としての第2電流計測部57及びBG電流評価部58を有する場合における放射線測定方法の第2変形例を示す。
【0104】
本変形例では、測定対象物Pの体積分だけ測定対象物収容部11内の容積が減少するとして、測定対象物Pの体積から測定対象物収容部11内の容積を差し引く。その差分に応じてBG電流値を演算するものである。
【0105】
まず、ステップS7にて放射線測定装置10の測定対象物収容部11内にパイプ等の測定対象物Pを収容する。第2イオン収集部55用の第2高圧電源装置56を起動する(ステップS6)。また、第1イオン収集部15用の第1高圧電源装置17を起動することで(ステップS8)、第1電流計測部21は、第1イオン収集部15で収集したイオンの電流としての計測を開始する(ステップS9)。
【0106】
第2電流計測部57は、第2イオン収集部55で、測定対象物Pが収容された以降に収集したイオンを電流として計測する(ステップS11−1)。BG電流評価部58は、測定対象物Pの体積、測定対象物収容部11内の容積を基に、BG電流値の差分に応じたBG電流値を演算する(ステップS11−3)。よって、放射線量の過小評価を回避できる。なお、測定対象物収容部11内の容積に対するBG電流値の関係は、図12に示すように予め計測して求めた関係から求めた値を用いてもよい。
【0107】
電流補正部22は、ステップS9以降に計測した電流値と、ステップS11−3で演算したBG電流値とを基に、測定対象物Pの放射線量を測定する(ステップS12)。
【0108】
図1に示す放射線測定装置10及び放射線測定方法によれば、第1の構成要素、すなわち、形状/補正係数取得部38を有することによって、測定対象物Pの形状による感度の変化を適切に補正でき、また、測定対象物Pの放射線量の測定中においてオペレータが入力した測定対象物Pの形状の妥当性を評価して感度の補正係数を修正できるので、正確に精度よく測定対象物Pの放射線量の測定が行なえる。
【0109】
加えて、放射線測定装置10及び放射線測定方法によれば、第2の構成要素、すなわち、帯電状態判断部42及び帯電量/補正係数取得部43を有することによって、測定対象物Pの帯電量による感度の変化を適切に補正でき、正確に精度よく測定対象物Pの放射線量の測定が行なえる。
【0110】
さらに、放射線測定装置10及び放射線測定方法によれば、第3の構成要素、すなわち、活性炭51を有することによって、測定対象物Pに付着したウラン等が壊変して生成されるラドンを吸着でき、正確に精度よく、効率的に測定対象物Pの放射線量の測定が行なえる。
【0111】
加えて、放射線測定装置10及び放射線測定方法によれば、第4の構成要素、すなわち、温湿度制御部47及び温湿度/補正係数取得部48を有することによって、気体中のBGイオンを低減でき、正確に精度よく、効率的に測定対象物Pの放射線量の測定が行なえる。
【0112】
また、放射線測定装置10及び放射線測定方法によれば、第5の構成要素、すなわち、気体入替部53及び注入割合/補正係数取得部54を有することによって、気体と比較して湿度の低い空気(乾燥空気)を測定対象物収容部11の内部に注入してBG電流を低減でき、正確に精度よく、効率的に測定対象物Pの放射線量の測定が行なえる。
【0113】
さらに、放射線測定装置10及び放射線測定方法によれば、第6の構成要素、すなわち、第2イオン収集部55及び高圧電源装置56を有することによって、第1イオン収集部15への娘核種の付着を抑制でき、正確に精度よく、効率的に測定対象物Pの放射線量の測定が行なえる。
【0114】
加えて、放射線測定装置10及び放射線測定方法によれば、第7の構成要素、すなわち、第2電流計測部57及びBG補正係数評価部58とを有することで、電流値に含まれるBG電流成分を補正でき、正確に精度よく、効率的に測定対象物Pの放射線量の測定が行なえる。
【0115】
図13は、本発明に係る放射線測定装置の第2実施形態を示す概略図である。
【0116】
図13は、放射線測定装置10Aを示す。放射線測定装置10Aには、測定対象物収容部11、第1イオン収集部15(図1に示す)、第1高圧電源装置17(図1に示す)、ファン20(図1に示す)、第1電流計測部21(図1に示す)及び電流補正部22(図1に示す)を有する。また、放射線測定装置10には、気体流入部23、気体収集ノズル24、バッファータンク25(図1に示す)、気体径路32(図1に示す)、フィルタ33(図1に示す)及び気体清浄装置34(図1に示す)が具備される。
【0117】
また、放射線測定装置10Aには、気体流入部23(図1に示す)、気体収集ノズル24(図1に示す)、バッファータンク25a,25b(図1に示す)及び気体径路32a,32b(図1に示す)が具備される。
【0118】
そして、放射線測定装置10は、図1で説明したように、ファン20a,20bによって測定対象物収容部11内の気体が気体収集ノズル24から、気体径路32a、第1イオン収集部15、バッファータンク25a、ファン20a、フィルタ33a、気体径路32b、バッファータンク25b、ファン20b、第2イオン収集部55、気体流入部23、フィルタ33bを順に介して再び測定対象物収容部11に戻る気体の循環流路を形成するものとする。
【0119】
また、放射線測定装置10Aは、第8の構成要素として、測定対象物収容部11内に具備し、電界をシールドすると共に、測定対象物収容部11内のイオンを第1イオン収集部15の方向に導く電界シールド部61と、測定対象物収容部11内に具備し、電界シールド部61の外側のイオンを収集する第3イオン収集部62と、その第3イオン収集部62の電極Scに電圧を印加する電源部としての第3高圧電源装置63と、測定対象物Pを0Vアースするアース部65とを有する。なお、第3イオン収集部62、第3高圧電源装置63及びアース部65は、CPU(図示しない)によって動作を制御されるものであってもよい。
【0120】
図14は、放射線測定装置10Aの作用を模式図として示す図である。なお、図14では測定対象物Pをパイプとし、そのパイプの内面のイオンを計測する場合を示しているので、パイプ内面に対しては、パイプ自体が電界シールド部61の機能を兼ねている。
【0121】
ファン20a,20b及びアース部65を稼動し、第1イオン収集部15用の第1高電圧電源装置17と第3イオン収集部62用の第3高電圧電源装置63とを起動する。測定対象物Pであるパイプ内面にα線源Rが付着していると、そのα線によってパイプ内面にイオンIが電離される。イオンIは気流によって第1イオン収集部15に運ばれる。
【0122】
一方、パイプ外面にて宇宙線等で電離したBGイオンは、第3イオン収集部62で収集される。つまり、アース部65にてパイプを0Vアースすることで、パイプ内面は電界が弱く、気流によってイオンIは第1イオン収集部15側に移送されるが、パイプ外面は電界の方が気流による移送と同等または強くなるように第3高圧電源装置63によって調整する。
【0123】
図15は、第3イオン収集部62で収集したイオンに起因する電流の内訳をグラフとして示す図である。
【0124】
第1イオン収集部15で収集したイオンに起因する電流は、α線による信号に起因する電流と、宇宙線等のBGによる信号起因するBG電流に分けられる。図15に示されたグラフによると、第3高圧電源装置63を起動して電極Scを印加した状態にて第1イオン収集部15でイオンの計測を行なうと、第1電流計測部21で計測した電流から、BGによる信号に起因するBG電流が低減される。
【0125】
また、本実施形態ではパイプ内面を例に説明を行なったが、別途、測定対象物Pの周りに電界シールド部61を設ければ、同様に、測定対象物収容部11の体積を低減させたのと同等のBG電流の低減効果が得られる。
【0126】
図13に示す放射線測定装置10A及び放射線測定方法によれば、第8の構成要素、すなわち、電界シールド部61、第3イオン収集部62、第3高圧電源装置63及びアース部65を有することで、第1イオン収集部15で収集される電流中の宇宙線等による寄与成分を低減でき、正確に精度よく、効率的に測定対象物Pの放射線量の測定が行なえる。
【0127】
図16は、本発明に係る放射線測定装置の第3実施形態を示す概略図である。
【0128】
図16は、放射線測定装置10Bを示す。放射線測定装置10Bには、測定対象物収容部11、第1イオン収集部15(図1に示す)、第1高圧電源装置17(図1に示す)、ファン20(図1に示す)、第1電流計測部21(図1に示す)及び電流補正部22(図1に示す)を有する。また、放射線測定装置10には、気体流入部23、気体収集ノズル24、バッファータンク25(図1に示す)、気体径路32(図1に示す)、フィルタ33(図1に示す)及び気体清浄装置34(図1に示す)が具備される。
【0129】
そして、放射線測定装置10Bは、図1で説明したように、ファン20a,20bによって測定対象物収容部11内の気体が気体収集ノズル24から、気体径路32a、第1イオン収集部15、バッファータンク25a、ファン20a、フィルタ33a、気体径路32b、バッファータンク25b、ファン20b、第2イオン収集部55、気体流入部23、フィルタ33bを順に介して再び測定対象物収容部11に戻る気体の循環流路を形成するものとする。
【0130】
また、放射線測定装置10Bは、第9の構成要素として、測定対象物収容部11内に具備し、電界をシールドすると共に前記測定対象物内のイオンを第1イオン収集部15の方向に導く電界シールド部61と、測定対象物収容部11内であって電界シールド部61の外側に具備した帯電物質71(71a,71b)と、測定対象物Pを0Vアースするアース部65とを有する。
【0131】
図17は、放射線測定装置10Bの作用を模式図として示す図である。なお、図17では測定対象物Pをパイプとし、そのパイプの内面のイオンを計測する場合を示しているので、パイプ内面に対しては、パイプ自体が電界シールド部61の機能を兼ねている。
【0132】
ファン20a,20b及びアース部65を稼動し、第1イオン収集部15用の第1高電圧電源装置17と第3イオン収集部62用の第3高電圧電源装置63とを起動する。測定対象物Pであるパイプ内面にα線源Rが付着していると、そのα線によってパイプ内面にイオンIが電離され、イオンIは気流によって第1イオン収集部15に運ばれる。
【0133】
一方、パイプ外面にて宇宙線等で電離したBGイオンは、帯電物質71a,71bで収集される。
【0134】
また、本実施形態ではパイプ内面を例に説明を行なったが、別途、測定対象物Pの周りに電界シールド部61を設ければ、同様に、測定対象物収容部11の体積を低減させたのと同等のBG電流の低減効果が得られる。
【0135】
図16に示す放射線測定装置10B及び放射線測定方法によれば、第9の構成要素、すなわち、電界シールド部61、帯電物質71a,71b及びアース部65を有することで、第1イオン収集部15で収集される電流中の宇宙線等による寄与成分を低減でき、正確に精度よく、効率的に測定対象物Pの放射線量の測定が行なえる。
【0136】
図18は、本発明に係る放射線測定装置の第4実施形態を示す概略図である。
【0137】
図18は、放射線測定装置10Cを示す。放射線測定装置10Cには、測定対象物収容部11、第1イオン収集部15(図1に示す)、第1高圧電源装置17(図1に示す)、ファン20(図1に示す)、第1電流計測部21(図1に示す)及び電流補正部22(図1に示す)を有する。また、放射線測定装置10には、気体流入部23、気体収集ノズル24、バッファータンク25(図1に示す)及び気体径路32(図1に示す)、フィルタ33(図1に示す)及び気体清浄装置34(図1に示す)が具備される。
【0138】
そして、放射線測定装置10Cは、図1で説明したように、ファン20a,20bによって測定対象物収容部11内の気体が気体収集ノズル24から、気体径路32a、第1イオン収集部15、バッファータンク25a、ファン20a、フィルタ33a、気体径路32b、バッファータンク25b、ファン20b、第2イオン収集部55、気体流入部23、フィルタ33bを順に介して再び測定対象物収容部11に戻る気体の循環流路を形成するものとする。
【0139】
また、放射線測定装置10Cは、第10の構成要素として、測定対象物収容部11内に、測定対象物Pの放射線発生源を含む表面周辺に対して気体を吹き付ける気体吹付部76を有する。よって、測定対象物収容部11内では、吹き付けた気体によって気流が加速される気流加速領域aの気体の流速と、気流加速領域a外の気流非加速領域の気体の流速とに差が生じる。なお、気体吹付部76は、CPU(図示しない)によって動作を制御されるものであってもよい。
【0140】
ファン20a,20bを稼動し、第1イオン収集部15用の第1高電圧電源装置17を起動する。また、気体吹付部76を稼動すると、電離したイオンは、気体吹付部76で加速された気流加速領域aの気流に乗って素早く第1イオン収集部15に到達する。ここで、α線等の荷電粒子による気体の電離で発生した一次イオンは不安定であり、他の分子との化学反応を経て比較的安定なイオン(正負イオン対、二次イオン)を生成する。このイオンは、第1イオン収集部15(図示しない)に剥離・輸送されるまでの間に、再結合反応(自己再結合反応や、BGイオンとの再結合反応)によって消滅し、また、エアロゾル粒子への付着による大イオン化して検出されなくなる。
【0141】
ここで、イオンの再結合反応とイオン数との関係を説明する。
【0142】
図19は、イオンの再結合反応とイオン数との関係を説明するための図である。
【0143】
図19に示したように、イオン(数密度φ)は、測定対象物Pの放射線発生源における生成直後は、荷電粒子の軌跡に沿って円柱状の柱状イオンIcとして分布している。そのイオンが自己再結合反応したりBGイオン(数密度N)と再結合反応したりする場合、イオン数及びBGイオン数は、
【数2】

【0144】
式(1),(2)の右辺の第1,2項は、イオンの再結合反応によるイオンの消滅、同じく第3項はエアロゾルへの付着によるイオンの消滅、同じく第4項は気流によるイオンの輸送を表す。また、式(1)の右辺の第5項はイオンの拡散による密度低下を、式(2)の右辺の第5項はBGイオンの発生をそれぞれ表す。例えば、所要の経過時間tでイオンの数密度φを式(1)に代入してイオン数を電流に換算することで、高密度時のイオンの再結合反応を経た電流を換算できる。
【0145】
図20は、気体の流速と電流値との関係をグラフとして示す図である。なお、気体吹付部76から吹き付ける気体を空気と、また、放射線Rをα線とする。
【0146】
図20は、第1に、吹き付ける気体の種々の流速と、イオンの生成直後の高密度時に再結合反応がないと仮定した場合の理論計算上の電流値Aとの関係をグラフとして示す。図20は、第2に、吹き付ける気体の種々の流速と、再結合反応があることを想定し式(1)によって算出したイオン数を電流に換算した場合の電流値Bとの関係をグラフとして示す。なお、式(1)のイオン拡散係数Dは、大気中での標準値である0.035cm/sを用いるものとする。また、図20は、第3に、吹き付ける気体の種々の流速と、実測して電流値Cとの関係を示す。また、各電流値A,B,Cは、検出器(第1イオン収集部15)と放射線発生源との距離を10,60及び110cmとした場合に分けて示している。
【0147】
このグラフによると、発生直後のイオンの再結合反応によってイオン数は数割程度減少し、それにより電流は数割程度減少することが分かる。また、式(1)によって算出した電流値Bは、電流値Aと比較して平均で約28%低下し、また、電流値Aと比較して実測の電流値Cに近い値となっている。なお、実測の電流値Cにおける流速が1m/s以上での減少傾向は、第1イオン収集部15の感度低下のためであり、感度補正を行なうことで電流値Aと同様の増加傾向を示す。
【0148】
次に、気体の流速とイオン数との関係を説明する。
【0149】
図21は、気体の流速と理論計算値比(図20中の電流値B/電流値A)との関係と、その関係の近似直線をグラフとして示す図である。
【0150】
図21は、検出器(第1イオン収集部15)と放射線発生源との距離毎(10,50及び100cm)毎に、気体の流速と理論計算値比との関係と、その関係の近似直線を示したものである。このグラフによると、気体速度の増加に従って理論計算値比が増加することが分かる。すなわち、気体の流速の増加に従って電流値Bが電流値Aに近づく。これは、気体の流速の増加に従って拡散効果が大きくなることでイオンの数密度が低下し、発生直後のイオンの再結合効果によるイオン数の低下が抑えらるからである。
【0151】
また、このグラフにおいて気体の流速が1m/s以下の場合では、理論計算値比は急激に増加する。一方、気体の流速が1m/s以上の場合では、理論計算値比は緩やかに増加する。理論計算値比は期待の流速が十分高くなることで1になる。よって、気体の流速が1m/s以下の場合では、気体の流速の僅かな変動によって電流値は揺らぎ、計測精度は低下すると言える。逆に気体吹付器76から吹き付ける気体の流速が少なくとも1m/s以上あれば、電流値の揺らぎを抑えることができる。
【0152】
さらに、図18に示した気体吹付部76から吹き付ける気体の吹き付け方向と、測定対象物Pの放射線発生源を含む表面方向とが角度をもつ場合、イオンは放射線発生源を含む表面に衝突して消滅し易くなる。よって、吹き付け方向は、測定対象物Pの放射線発生源を含む表面に対して平行であることが望ましい。
【0153】
また、測定対象物Pとして重要なウラン汚染物はα線を放出する。このα線の最大飛程は約4cmであるため、発生直後のイオンは、測定対象物Pの放射線発生源を含む表面から約4cm以内の距離に存在する。よって、測定対象物Pとしてウラン汚染物を測定する場合は、放射線発生源を含む表面から4cm以内で行なうことが望ましい。
【0154】
ここで、ノイズとなる自然放射線の中で、最も寄与の大きいのはラドンである。ラドンはα線を放出するため、気流加速領域a内の気流によって測定対象物Pで生成する放射線のイオン数の低下が抑えられるのと同時に、その周囲のラドンから発生したイオン数の低下も抑えられることでノイズが増えてしまう。また、ノイズは気流加速領域a全体で発生した自然放射線によるイオンであり、発生位置から第1イオン収集部15までのイオン輸送時間が長いほど、イオンの再結合反応やエアロゾルへの付着によって消滅する確率が高くなる。
【0155】
そこで、放射線測定装置10Cは、第11の構成要素として、測定対象物Pを載置し、最大流速となる気流の位置とは異なる位置に測定対象物Pを配置する配置調整テーブル77を有してもよい。配置調整テーブル77によって測定対象物Pを配置することによって、その位置に存在するラドンから発生したイオンは輸送時間が最大流速の位置と比べ長くなり、消滅確率が高くなる。その結果、ノイズへの相対的な寄与を下げることができ、ノイズの増加を抑えられる。一方、測定対象物Pから生成したイオンについては、同様に消滅確率が高くなるものの、吹き付けによる生成直後のイオン数低下の効果が消滅の効果よりも大きくなる設置位置を選ぶことで、結果としてS/N(Signal/Noise)比は向上し、測定精度が向上する。
【0156】
一方、気流非加速領域の気体の流速は、気流加速領域aの気体の流速と比較して遅くなるが、一般に気流非加速領域にはBG成分が主に存在するため流速を遅くすることで、BGイオンの寄与を低減できる。
【0157】
図18に示す放射線測定装置10C及び放射線測定方法によれば、第10の構成要素、すなわち、気体吹付部76を有することで、第1イオン収集部15で収集される電流中の宇宙線等による寄与成分を低減でき、正確に精度よく、効率的に測定対象物Pの放射線量の測定が行なえる。
【0158】
また、放射線測定装置10C及び放射線測定方法によれば、気体吹付部76を有することで、計測電流値の低下と揺らぎが抑えられ、正確に精度よく、効率的に測定対象物Pの放射線量の測定が行なえる。
【0159】
さらに、放射線測定装置10C及び放射線測定方法によれば、第10及び第11の構成要素、すなわち、気体吹付部76及び位置調整デーブル77を有することで、S/Nを向上させることができ、正確に精度よく、効率的に測定対象物Pの放射線量の測定が行なえる。
【0160】
図22は、本発明に係る放射線測定装置の第5実施形態を示す概略図である。
【0161】
図22は、放射線測定装置10Dを示す。放射線測定装置10Dには、測定対象物収容部11、第1イオン収集部15、第1高圧電源装置17、ファン20(図1に示す)、第1電流計測部21及び電流補正部22を有する。また、放射線測定装置10には、気体流入部23、気体収集ノズル24、バッファータンク25(図1に示す)及び気体径路32(図1に示す)、フィルタ33(図1に示す)及び気体清浄装置34(図1に示す)が具備される。
【0162】
そして、放射線測定装置10Dは、図1で説明したように、ファン20a,20bによって測定対象物収容部11内の気体が気体収集ノズル24から、気体径路32a、第1イオン収集部15、バッファータンク25a、ファン20a、フィルタ33a、気体径路32b、バッファータンク25b、ファン20b、第2イオン収集部55、気体流入部23、フィルタ33bを順に介して再び測定対象物収容部11に戻る気体の循環流路を形成するものとする。
【0163】
また、放射線測定装置10Dは、第12の構成要素として、測定対象物収容部11内に、測定対象物Pの放射線発生源を含む表面に対して気体を吹き付ける気体吹付部76と、その気体吹付部76から吹き付ける気体の流速を制御する流速制御部78と、気体吹付部76から吹き付ける気体の流速と電流値の関係から放射線の種類を弁別する放射線弁別部79とを有する。なお、CPU(図示しない)が記憶装置(図示しない)に内蔵したプログラムを実行することによって、流速制御部78及び放射線弁別部79として機能するものとするが、各構成部の両部又は一方は特定の回路としてもよい。
【0164】
ファン20a,20bを稼動し、第1イオン収集部15用の第1高電圧電源装置17を起動する。また、流速制御部78を介して気体吹付部76を稼動すると、気流加速領域a内の気体の流速が変化し、流速制御部78で制御した吹き付け気体の流速毎に第1イオン収集部15はイオンを収集する。第1電流計測部21で計測した電流は、放射線弁別部79に送られる。
【0165】
放射線弁別部79は、吹き付け気体の流速毎の電流値の差によって、放射線の種類を弁別する。ここで、放射線の中でもβ線やγ線や宇宙線は生成直後のイオンの数密度が低いため、発生直後のイオンの再結合反応によるイオン数の低下の効果は小さい。よって、例えば、気体吹付部76から気体を吹き付ける場合に計測される第1計測電流値と、気体を吹き付けない場合に計測される第2計測電流値とへのβ線やγ線や宇宙線の寄与は同程度とみなせ、第1計測電流値と第2計測電流値の差は、すべてα線や重粒子に起因する電流とみなせる。さらに、測定対象として重要な放射線はα線であり、他の重粒子の寄与を無視できる場合には、第1計測電流値と第2計測電流値との差はα線のみに起因する電流となる。放射線弁別部79が、第1計測電流値と第2計測電流値との差をとる演算及び適切な補正演算を行なうことによってα線とβ線等を弁別することで、放射線量の測定精度が向上する。
【0166】
なお、気体吹付部76から気体を吹き付けた場合に計測される第1計測電流値と、気体を吹き付けない場合に計測される第2計測電流値との差から放射線の種類を弁別する場合について説明したが、この場合に限定するものではない。例えば、流速制御部78によって吹き付ける気体の流速を管理することで、イオンの再結合反応の程度を任意に設定し、より高い測定精度を得ることができる。
【0167】
図22に示す放射線測定装置10D及び放射線測定方法によれば、第12の構成要素、すなわち、気体吹付部76、流速制御部78及び放射線弁別部79を有することで、放射線の種類を弁別することができるので、正確に精度よく、効率的に測定対象物Pの放射線量の測定が行なえる。
【0168】
図23は、本発明に係る放射線測定装置の第6実施形態を示す概略図である。
【0169】
図23は、放射線測定装置10Eを示す。放射線測定装置10Eには、測定対象物収容部11、第1イオン収集部15(図1に示す)、第1高圧電源装置17(図1に示す)、ファン20(図1に示す)、第1電流計測部21(図1に示す)及び電流補正部22(図1に示す)を有する。また、放射線測定装置10には、気体流入部23、気体収集ノズル24、バッファータンク25(図1に示す)及び気体径路32(図1に示す)、フィルタ33(図1に示す)及び気体清浄装置34(図1に示す)が具備される。
【0170】
そして、放射線測定装置10Eは、図1で説明したように、ファン20a,20bによって測定対象物収容部11内の気体が気体収集ノズル24から、気体径路32a、第1イオン収集部15、バッファータンク25a、ファン20a、フィルタ33a、気体径路32b、バッファータンク25b、ファン20b、第2イオン収集部55、気体流入部23、フィルタ33bを順に介して再び測定対象物収容部11に戻る気体の循環流路を形成するものとする。
【0171】
また、放射線測定装置10Eは、第13の構成要素として、測定対象物Pの放射線発生源を含む表面周辺の気流を攪拌する気流攪拌部、例えば扇風機80を有する。よって、測定対象物収容部11内では、気流が攪拌される気流攪拌領域bが生じる。なお、扇風機80は、CPU(図示しない)によって動作を制御されるものであってもよい。
【0172】
ファン20a,20bを稼動し、第1イオン収集部15用の第1高電圧電源装置17を起動する。また、扇風機80を稼動すると気流攪拌領域bの気流が攪拌され、生成直後のイオンの数密度が低下する。
【0173】
図24は、気体の攪拌と生成直後のイオンの数密度との関係を説明する図である。
【0174】
生成直後のイオンの数密度を低下させるために気流攪拌領域bの気流を攪拌させると、式(1)の拡散係数Dが増加し、短時間で数密度を低下させることができる。よって、扇風機80によって気流攪拌領域bの気流を攪拌することで、生成直後のイオンの再結合反応によるイオン数の低下を低減でき、計測電流の低下と揺らぎを抑えることができる。
【0175】
なお、測定対象物Pとして重要なウラン汚染物はα線を放出する。このα線の最大飛程は約4cmであるため、発生直後のイオンは、測定対象物Pの放射線発生源を含む表面から約4cm以内の距離に存在する。よって、測定対象物Pとしてウラン汚染物を測定する場合は、放射線発生源を含む表面から4cm以内の気流を攪拌することが望ましい。
【0176】
また、気流攪拌領域bの気流を攪拌するために扇風機80を用いているが、測定対象物Pを載置する回転テーブル(図示しない)を設置し、測定対象物Pを載置した回転テーブルを回転させることで、気流攪拌領域bの気流を攪拌させてもよい。
【0177】
図23に示す放射線測定装置10E及び放射線測定方法によれば、第13の構成要素、すなわち、扇風機80を有することで、電流の低下と揺らぎが抑えられるので、正確に精度よく、効率的に測定対象物Pの放射線量の測定が行なえる。
【0178】
図25は、本発明に係る放射線測定装置の第7実施形態を示す概略図である。
【0179】
図25は、放射線測定装置10Fを示す。放射線測定装置10Fには、測定対象物収容部11、第1イオン収集部15、第1高圧電源装置17(図1に示す)、ファン20a,20b(図1に示す)、第1電流計測部21(図1に示す)及び電流補正部22(図1に示す)を有する。また、放射線測定装置10には、気体流入部23、気体収集ノズル24、バッファータンク25a,25b(図1に示す)及び気体径路32a,32b(図1に示す)フィルタ33a,33b(図1に示す)及び気体清浄装置34(図1に示す)が具備される。
【0180】
また、放射線測定装置10Fは、第14の構成要素として、第1イオン収集部15の下流側(図25ではバッファータンク25aの下流側とする。)に、気体中のイオンを収集する第4イオン収集部81と、その第4イオン収集部81の電極Sdに電圧を印加する電源部としての第4高圧電源装置82とを有する。なお、第4イオン収集部81及び第4高圧電源装置82は、CPU(図示しない)によって動作を制御されるものであってもよい。
【0181】
ファン20a,20bを稼動し、第1イオン収集部15用の第1高電圧電源装置17と第4イオン収集部81用の第4高電圧電源装置82とを起動する。第1電流計測部21で測定中、測定対象物Pに付着したα線源が飛散し、例えばバッファータンク25aに付着した場合、第1イオン収集部15では収集できない。また、フィルタ33aでα線源は捕獲できるため、フィルタ33aの下流での汚染は殆ど起こらない。
【0182】
よって、バッファータンク25aの下流側であって、フィルタ33aの前段に有する第4イオン収集部81でイオンを収集する。これによって、第1イオン収集部15からフィルタ33a間で、α線によって電離したイオンを低減できる。
【0183】
また、第1イオン収集部15で収集したイオンを電流として計測する第4電流計測部83を設け、その第4電流計測部83から電流値の出力を行なうことで、オペレータは第1イオン収集部15からフィルタ33a間で、α線によって電離したイオン量を監視できる。つまり、オペレータは第1イオン収集部15からフィルタ33a間の汚染を監視できる。この監視は、通常の測定対象物Pの放射線測定をしながら連続的に可能であり、α線源の飛散の有無をリアルタイムに測定できる。また、異常が起こった場合は、オペレータは放射線測定を中断し、汚染測定等の対策を講じることが容易に可能となる。
【0184】
また、ファン20a,20bとして逆転可能ファンを用いることで、通常の計測終了後に気体流を逆転させることで、第1イオン収集部15のみで、第1イオン収集部15からフィルタ33a間の放射線測定を実施可能となる。
【0185】
図25に示す放射線測定装置10F及び放射線測定方法によれば、第14の構成要素、すなわち、第4イオン収集部81及び第4高圧電源装置82を有することで、通常の放射線測定の監査をしながら、測定対象物収容部11内への放射線の飛散を検出することで、異常が起こった場合の対処を支援することができ、正確に精度よく、効率的に測定対象物Pの放射線量の測定が行なえる。
【図面の簡単な説明】
【0186】
【図1】本発明に係る放射線測定装置の第1実施形態を示す概略図。
【図2】パイプ形状の測定対象物に対する感度の変化の一例をグラフとして示す図。
【図3】イオン収集効率及び電離空間(線源効率)の組み合わせと感度の補正係数との対応表の一例をテーブルとして示す図。
【図4】パイプ状の測定対象物を載せた回転テーブルの回転角に対する電流値の変化の一例をグラフとして示す図。
【図5】測定対象物の内表面に巻きつける導電シートの構成例を示す横断面図。
【図6】(a)は、気体中の温度とイオンの検出下限との関係をグラフとして示す図、(b)は気体中の湿度とイオンの検出下限との関係をグラフとして示す図。
【図7】循環流路内の空気の温度、湿度及びBG電流値の時系列の推移をグラフとして示す図。
【図8】本発明に係る放射線測定方法を示すフローチャート。
【図9】本発明に係る放射線測定方法の第1変形例をフローチャートとして示す図。
【図10】パルス状の電流変化を示す図。
【図11】放射線測定装置の作用の第2変形例をフローチャートとして示す図。
【図12】測定対象物収容部とBG電流値との関係を示す図。
【図13】本発明に係る放射線測定装置の第2実施形態を示す概略図。
【図14】本発明に係る放射線測定装置の第2実施形態の作用を模式図として示す図。
【図15】第3イオン収集部で収集したイオンに起因する電流の内訳をグラフとして示す図。
【図16】本発明に係る放射線測定装置の第3実施形態を示す概略図。
【図17】本発明に係る放射線測定装置の第3実施形態の作用を模式図として示す図。
【図18】本発明に係る放射線測定装置の第4実施形態を示す概略図。
【図19】イオンの再結合反応とイオン数との関係を説明するための図。
【図20】気体の流速と電流値との関係をグラフとして示す図。
【図21】気体の流速と理論計算値比との関係と、その関係の近似直線をグラフとして示す図。
【図22】本発明に係る放射線測定装置の第5実施形態を示す概略図。
【図23】本発明に係る放射線測定装置の第6実施形態を示す概略図。
【図24】気体の攪拌と生成直後のイオンの数密度との関係を説明する図。
【図25】本発明に係る放射線測定装置の第7実施形態を示す概略図。
【符号の説明】
【0187】
10,10A,10B,10C,10D,10E,10F 放射線測定装置
11 測定対象物収容部
15 第1イオン収集部
17 第1高電圧電源装置
20a,20b ファン
21 第1電流計測部
22 電流補正部
25a,25b バッファータンク
24 気体収集ノズル
38 形状/補正係数取得部
39 回転テーブル
40 回転制御部
42 帯電状態判断部
43 帯電量/補正係数取得部
44a 表面電位計
47 温湿度制御部
48 温湿度/補正係数取得部
51 活性炭
53 気体入替部
54 注入割合/補正係数取得部
55 第2イオン収集部
56 第2高圧電源装置
57 第2電流計測部
58 BG電流評価部
61 電界シールド部
62 第3イオン収集部
63 第3高圧電源装置
65 アース部
71a,72b 帯電物質
76 気体吹付部
77 配置調整テーブル
78 流速制御部
79 放射線弁別部
80 扇風機
81 第4イオン収集部
82 第4高圧電源装置
83 第4電流計測部

【特許請求の範囲】
【請求項1】
放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、
前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、
前記イオン収集部の電極に電圧を印加する電源部と、
前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、
前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、
前記測定対象物の形状と感度の補正係数との対応表を基に、前記測定対象物の形状に対応する補正係数を取得する補正係数取得部と、
前記電流計測部から出力される電流値を前記補正係数取得部から出力される前記補正係数で補正し、補正した電流値から前記測定対象物の放射線量を測定する電流補正部とを有することを特徴とする放射線測定装置。
【請求項2】
前記測定対象物収容部の内部に具備し、載置された前記測定対象物を回転させる回転テーブルと、その回転テーブルの回転を制御する回転制御部とを有し、前記電流計測部は、前記イオン収集部で収集した前記イオンを、前記測定対象物の回転角に応じた電流として計測し、前記電流補正部は、前記回転角に応じた電流を、前記補正係数取得部で取得した補正係数でそれぞれ補正し、補正された電流値の回転角による変動を基に、前記感度の補正係数が適正であるか否かを判断することを特徴とする請求項1に記載の放射線測定装置。
【請求項3】
前記測定対象物を中心として回転し、前記測定対象物に対して前記気体を吹き付ける気体吹付部と、その気体吹付部の回転を制御する回転制御部とを有し、前記電流計測部は、前記イオン収集部で収集した前記イオンを、前記測定対象物の吹き付け角に応じた電流として計測し、前記電流補正部は、前記吹き付け角に応じた電流を、前記補正係数取得部で取得した補正係数でそれぞれ補正し、補正された電流値の吹き付け角による変動を基に、前記感度の補正係数が適正であるか否かを判断することを特徴とする請求項1に記載の放射線測定装置。
【請求項4】
放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、
前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、
前記イオン収集部の電極に電圧を印加する電源部と、
前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、
前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、
前記測定対象物の帯電量と感度の補正係数との対応表を基に、前記測定対象物の帯電量に対応する感度の補正係数を取得する補正係数取得部と、
前記電流計測部から出力される電流値を前記補正係数取得部から出力される前記補正係数で補正し、補正した電流値から前記測定対象物の放射線量を測定する電流補正部とを有することを特徴とする放射線測定装置。
【請求項5】
前記補正係数取得部は、前記測定対象物の帯電量に対応する感度を予め実測することで得られる前記測定対象物の帯電量と感度の補正係数との対応表を基に、前記測定対象物の帯電量に対応する感度の補正係数を取得することを特徴とする請求項4に記載の放射線測定装置。
【請求項6】
放射線を放出する測定対象物の帯電状態を判断する帯電状態判断部と、
前記帯電状態判断部による前記測定対象物の帯電状態によって、前記測定対象物の帯電を除去する除電部と、
前記測定対象物を気体と共に収容する測定対象物収容部と、
前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、
前記イオン収集部の電極に電圧を印加する電源部と、
前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、
前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、
前記電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有することを特徴とする放射線測定装置。
【請求項7】
放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、
前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、
前記イオン収集部の電極に電圧を印加する電源部と、
前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、
前記気体中の放射性ガスを捕集する放射性ガス捕集部と、
前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、
前記電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有することを特徴とする放射線測定装置。
【請求項8】
放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、
前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、
前記イオン収集部の電極に電圧を印加する電源部と、
前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、
前記気体の温度及び湿度のうち少なくとも一方を制御する温湿度制御部と、
前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、
前記電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有することを特徴とする放射線測定装置。
【請求項9】
前記気体の温度と感度の補正係数との対応表を基に、前記温度に対応する補正係数を取得する補正係数取得部を有し、前記電流補正部は、前記電流値を前記補正係数取得部から出力される補正係数で補正することを特徴とする請求項8に記載の放射線測定装置。
【請求項10】
前記気体の湿度と感度の補正係数との対応表を基に、前記湿度に対応する補正係数を取得する補正係数取得部を有し、前記電流補正部は、前記電流値を前記補正係数取得部から出力される補正係数で補正することを特徴とする請求項8に記載の放射線測定装置。
【請求項11】
放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、
前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、
前記イオン収集部の電極に電圧を印加する電源部と、
前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、
前記気体の一部を入れ替える気体入替部と、
前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、
前記電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有することを特徴とする放射線測定装置。
【請求項12】
前記気体入替部は、前記気体と比較して湿度の低い空気を前記測定対象物収容部の内部に注入することを特徴とする請求項11に記載の放射線測定装置。
【請求項13】
前記空気の割合と感度の補正係数との対応表を基に、前記割合に対応する補正係数を取得する補正係数取得部を有し、前記電流補正部は、前記電流値を前記補正係数取得部から出力される補正係数で補正することを特徴とする請求項11に記載の放射線測定装置。
【請求項14】
放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、
前記測定対象物収容部から流出した前記気体中のイオンを収集する第1イオン収集部と、
前記第1イオン収集部の電極に電圧を印加する第1電源部と、
前記測定対象物収容部内の前記気体を前記第1イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、
前記第1イオン収集部で収集した前記イオンを電流として計測する第1電流計測部と、
前記第1電源部の起動前に、前記気体中のイオンを収集する第2イオン収集部と、
前記第1電源部の起動前に、前記第2イオン収集部の電極に電圧を印加する第2電源部と、
前記第1電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有することを特徴とする放射線測定装置。
【請求項15】
前記第2イオン収集部で収集した前記イオンを電流として計測する第2電流計測部と、その第2電流計測部で計測した電流をBG(Back Ground)イオンに起因する電流として評価するBG電流評価部を有し、前記電流補正部は、前記電流値を前記BG電流評価部から出力される電流値で補正することを特徴とする請求項14に記載の放射線測定装置。
【請求項16】
放射線を放出する測定対象物をアースするアース部と、
前記測定対象物を気体と共に収容する測定対象物収容部と、
前記測定対象物収容部から流出した前記気体中のイオンを収集する第1イオン収集部と、
前記第1イオン収集部の電極に電圧を印加する第1電源部と、
前記測定対象物収容部の内部に具備し、前記測定対象物を電界シールドすると共に前記測定対象物収容部内のイオンを前記第1イオン収集部の方向に導く電界シールド部と、
前記測定対象物収容部の内部に具備し、前記電界シールド部の外側のイオンを収集する第3イオン収集部と、
前記第3イオン収集部の電極に電圧を印加する第3電源部と、
前記測定対象物収容部内の前記気体を前記第1イオン収集部に送ると共に、その第1イオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、
前記第1イオン収集部で収集した前記イオンを電流として計測する第1電流計測部と、
前記第1電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有することを特徴とする放射線測定装置。
【請求項17】
前記第3イオン収集部を、前記測定対象物収容部の内部に具備し、前記電界シールド部の外側のイオンを収集する帯電物質とすることを特徴とする請求項16に記載の放射線測定装置。
【請求項18】
放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、
前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、
前記イオン収集部の電極に電圧を印加する電源部と、
前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、
前記測定対象物の放射線発生源を含む表面に対して前記気体を吹き付ける気体吹付部と、
前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、
前記電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有することを特徴とする放射線測定装置。
【請求項19】
前記気体吹付部は、前記測定対象物の放射線発生源を含む表面に対して流速が1m/s以上の気体を吹き付けることを特徴とする請求項18に記載の放射線測定装置。
【請求項20】
前記気体吹付部は、前記測定対象物の放射線発生源を含む表面に対して平行に前記気体を吹き付けることを特徴とする請求項18に記載の放射線測定装置。
【請求項21】
前記気体吹付部は、前記測定対象物の放射線源を含む表面から4cm以内に前記気体を吹き付けることを特徴とする請求項18に記載の放射線測定装置。
【請求項22】
前記測定対象物を載置し、最大流速となる気流の位置とは異なる位置に前記測定対象物を配置する配置調整テーブルを有することを特徴とする請求項18に記載の放射線測定装置。
【請求項23】
前記気体吹付部から吹き付ける気体の流速を制御する流速制御部と、前記気体吹付部から吹き付ける気体の流速と電流との関係から前記放射線の種類を弁別する放射線弁別部とを有することを特徴とする請求項18に記載の放射線測定装置。
【請求項24】
放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、
前記測定対象物収容部から流出した前記気体中のイオンを収集するイオン収集部と、
前記イオン収集部の電極に電圧を印加する電源部と、
前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる気体輸送部と、
前記測定対象物の放射線源を含む表面周辺の気流を攪拌する気流攪拌部と、
前記イオン収集部で収集した前記イオンを電流として計測する電流計測部と、
前記電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有することを特徴とする放射線測定装置。
【請求項25】
前記気流攪拌部は、前記測定対象物の放射線源を含む表面から4cm以内の領域の気流を攪拌することを特徴とする請求項24に記載の放射線測定装置。
【請求項26】
放射線を放出する測定対象物を気体と共に収容する測定対象物収容部と、
前記測定対象物収容部から流出した前記気体中のイオンを収集する第1イオン収集部と、
前記第1イオン収集部の電極に電圧を印加する第1電源部と、
前記第1イオン収集部の下流側に、前記気体中のイオンを収集する第4イオン収集部と、
前記第4イオン収集部の電極に電圧を印加する第4電源部と、
前記測定対象物収容部内の前記気体を前記イオン収集部に送ると共に、そのイオン収集部に送られた気体を前記測定対象物収容部に戻して前記気体を循環させる一方、前記気体の循環を逆転させる気体輸送部と、
前記第1イオン収集部で収集した前記イオンを電流として計測する第1電流計測部と、
前記第1電流計測部で計測した電流値から前記測定対象物の放射線量を測定する電流補正部とを有することを特徴とする放射線測定装置。
【請求項27】
放射線を放出する測定対象物を気体と共に測定対象物収容部に収容し、その測定対象物収容部からイオン収集部に送られた前記気体を、前記イオン収集部から前記測定対象物収容部に戻すことで循環流路を形成させ、前記イオン収集部で収集した前記気体中のイオンを電流として計測することで前記測定対象物の放射線量を測定する放射線測定方法において、
測定対象物の形状に対応する感度の補正係数を基に、前記測定対象物の形状に対応する感度の補正係数である形状/補正係数を取得する形状/補正係数取得工程と、
前記測定対象物が帯電しているか、又は、前記の測定対象物の帯電量が閾値以上である場合、前記測定対象物を除電する除電工程と、
前記測定対象物が帯電している場合、前記測定対象物の帯電量に対応する感度の補正係数である帯電量/補正係数を取得する帯電量/補正係数取得工程と、
前記気体の温度及び湿度のうち少なくとも一方に対応する感度の補正係数である温湿度/補正係数を取得する温湿度/補正係数取得工程と、
前記気体と比較して湿度の低い空気を注入して気体を入れ替える気体入替工程と、
前記空気の割合に対応する感度の補正係数である注入割合/補正係数を取得する注入割合/補正係数取得工程と、
前記測定対象物の回転角に応じて計測した電流値の変動が閾値未満の場合、前記形状/補正係数が適正であると判断する形状/補正係数適正判断工程と、
前記形状/補正係数が適正であると判断する場合、前記電流値を、前記形状/補正係数、前記帯電量/補正係数、前記温湿度/補正係数及び前記注入割合/補正係数によって補正することで、前記測定対象物の放射線量を測定することを特徴とする放射線測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate


【公開番号】特開2007−263804(P2007−263804A)
【公開日】平成19年10月11日(2007.10.11)
【国際特許分類】
【出願番号】特願2006−90295(P2006−90295)
【出願日】平成18年3月29日(2006.3.29)
【出願人】(000003078)株式会社東芝 (54,554)
【出願人】(505374783)独立行政法人 日本原子力研究開発機構 (727)
【Fターム(参考)】