説明

有機エレクトロルミネッセンス素子、及びその製造方法

【課題】高い発光効率、低い駆動電圧に加え、連続駆動時の電圧上昇が少ない有機EL素子を提供すること。
【解決手段】少なくともウェットプロセスで作製されたホスト−ゲスト型の発光層を有する有機積層体と一対の電極からなる有機エレクトロルミネッセンス素子において、該発光層に用いる溶媒の沸点が100℃以下で、且つ20℃における蒸気圧が20mmHg以上の溶媒であることを特徴とする有機エレクトロルミネッセンス素子。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は有機エレクトロルミネッセンス素子及び素子の製造方法に関する。詳しくは高効率、低電圧であり、且つ連続駆動での電圧上昇が少ない素子に関する。
【背景技術】
【0002】
発光型の電子デバイスとして、エレクトロルミネッセンス(以下、ELDと略記する)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子(以下、無機EL素子とも言う)や有機エレクトロルミネッセンス素子(以下、有機EL素子とも言う)が挙げられる。無機EL素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。
【0003】
一方、有機エレクトロルミネッセンス素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
【0004】
また、有機エレクトロルミネッセンス素子は、従来実用に供されてきた主要な光源、例えば、発光ダイオードや冷陰極管と異なり、面光源であることからも大きな特徴である。この特性を有効に活用できる用途として、照明用光源や様々なディスプレイのバックライトがある。特に近年、需要の増加が著しい液晶フルカラーディスプレイのバックライトとして用いることも好適である。
【0005】
有機エレクトロルミネッセンス素子をこのような照明用光源、あるいはディスプレイのバックライトとして実用するための課題として発光効率の向上が挙げられる。発光効率の向上のためには、有機エレクトロルミネッセンス素子を構成する有機機能層の一部において、それぞれ別個の機能を有する材料を複数混合して構成する、所謂ホスト−ゲスト型を用いることが一般的となりつつある。
【0006】
有機エレクトロルミネッセンス素子の製造方法としては、蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法)等(以下、塗布法とも言う)があるが、真空プロセスを必要とせず連続生産が簡便であるという理由で、近年はウェットプロセスにおける製造方法が注目されている。
【0007】
しかしながら、ウェットプロセスで作製した有機EL素子は、蒸着型素子に比べて十分な素子性能ではない。特に駆動電圧や連続駆動時の電圧上昇が高くなる傾向にある。この原因として、ウェットプロセスで作製した膜は、層間の混合や膜のモルフォロジー変化等によりドライプロセスで作製したものと膜の状態が異なっているためにキャリアの移動阻害、あるいは膜内残留溶媒の存在で残留溶媒が駆動時にキャリアの移動を阻害するトラップ成分として働くため、電圧上昇が起こりやすい傾向にある可能性がある。
【0008】
また、キャリアがトラップされることで層内がキャリア過多の状態になるため劣化が促進され、キャリアトラップが増大し、連続駆動時の電圧が上昇しやすい傾向にある可能性がある。
【0009】
このような現状を省みて鋭意検討を重ねた結果、特に発光層で用いる溶媒の沸点のみならず常温時の蒸気圧を高くすることで性能向上をすることを見出した。
【0010】
従来ウェットプロセスで作製した有機EL素子の性能向上の手段として、発光材料を溶解させる溶媒を工夫した発光層の作製方法が検討されている。例えば、ポリパラフェニレンビニレン系の発光前駆体材料を親水性の高沸点溶媒を用いて作製するといった工夫がなされている(例えば、特許文献1参照)。
【0011】
また、発光層をスクリーン印刷法で作製し、その際用いる溶媒の25℃における蒸気圧と沸点を規定し(例えば、特許文献2参照)、更に発光材料に2種以上の混合溶媒を用い、少なくとも一つは沸点が100℃以下にする工夫をしている(例えば、特許文献3参照)。しかしながら、これらの特許文献では高沸点溶媒と低蒸気圧溶媒を用いており、低沸点溶媒と高蒸気圧溶媒の例は記載されていない。
【0012】
また、低沸点溶媒を低温環境で用い、発光層の形成をする工夫を行うことが知られている(例えば、特許文献4参照)が、本発明の概念については記載されていない。
【先行技術文献】
【特許文献】
【0013】
【特許文献1】特開平11−339957号公報
【特許文献2】特開2002−170674号公報
【特許文献3】特開2004−31077号公報
【特許文献4】特開2007−220426号公報
【発明の概要】
【発明が解決しようとする課題】
【0014】
本発明は、上記課題に鑑みなされたものであり、その目的はホスト−ゲスト型の発光層をウェットプロセスで作製した、高発光効率、低駆動電圧であり、且つ連続駆動時の電圧上昇が少ない有機エレクトロルミネッセンス素子を提供することにある。
【課題を解決するための手段】
【0015】
本発明の上記目的は下記の構成により達成される。
【0016】
1.少なくともウェットプロセスで作製されたホスト−ゲスト型の発光層を有する有機積層体と一対の電極からなる有機エレクトロルミネッセンス素子において、該発光層に用いる溶媒の沸点が105℃以下で、且つ20℃における飽和蒸気圧が20mmHg以上の溶媒であることを特徴とする有機エレクトロルミネッセンス素子。
【0017】
2.前記発光層に用いる溶媒の沸点が75℃以上で、且つ20℃における飽和蒸気圧が70mmHg以下の溶媒であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。
【0018】
3.前記有機積層体のうち、発光層を含む4層以上がウェットプロセスで作製されることを特徴とする前記1または2に記載の有機エレクトロルミネッセンス素子。
【0019】
4.前記溶媒がカルボニル基を有することを特徴とする前記1〜3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0020】
5.前記カルボニル基がエステル基を形成していることを特徴とする前記4に記載の有機エレクトロルミネッセンス素子。
【0021】
6.前記溶媒が酢酸ノルマルプロピル、酢酸イソプロピル、プロピオン酸メチルのいずれかであることを特徴とする前記1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0022】
7.前記ホスト−ゲスト型の発光層に用いられるホスト化合物の分子量が1500以下であることを特徴とする前記1〜6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0023】
8.前記ホスト−ゲスト型の発光層に用いられるホスト化合物の分子量が1000以下であることを特徴とする前記7に記載の有機エレクトロルミネッセンス素子。
【0024】
9.前記ホスト−ゲスト型の発光層に用いられるホスト化合物が下記一般式(a)で表される化合物であることを特徴とする前記1〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0025】
【化1】

【0026】
(式中、XはNR′、O、S、CR′R″またはSiR′R″を表す。R′、R″は各々水素原子または置換基を表す。Arは芳香環を表す。nは0〜8の整数を表す。)
10.前記一般式(a)で表される化合物中、Arはカルバゾール環、カルボリン環、ジベンゾフラン環またはベンゼン環から選ばれることを特徴とする前記9に記載の有機エレクトロルミネッセンス素子。
【0027】
11.前記一般式(a)で表される化合物中、XはNR′またはOを表し、R′は水素原子または置換基を表すことを特徴とする前記9または10に記載の有機エレクトロルミネッセンス素子。
【0028】
12.前記ホスト−ゲスト型の発光層に、各々異なる発光ドーパント化合物を少なくとも3種含有することを特徴とする前記1〜11のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0029】
13.前記1〜12のいずれか1項に記載の有機エレクトロルミネッセンス素子を製造することを特徴とする有機エレクトロルミネッセンス素子の製造方法。
【発明の効果】
【0030】
本発明により、高い発光効率、低い駆動電圧に加え、連続駆動時の電圧上昇が少ない有機EL素子を提供することができた。
【発明を実施するための形態】
【0031】
以下、本発明の有機EL素子の各構成要素の詳細について順次説明するが、本発明はこれらに限定されるものではない。
【0032】
本発明においては、ホスト−ゲスト型の発光層を有する有機EL素子を、少なくとも発光層をウェットプロセスで作製し、発光層に用いる溶媒の沸点が105℃以下で、且つ20℃での飽和蒸気圧が20mmHg以上であることを特徴とする。ここで、発光層に用いる溶媒の沸点が105℃以下とは、具体的には発光ドーパントを溶解する溶媒の沸点が105℃以下であることである。
【0033】
このような素子を作製することにより、発光効率や駆動電圧が改善する理由は定かではないが、低沸点且つ高蒸気圧の溶媒を使い、境膜律速期間を短くすることで下層の溶解や混合を抑制すると予想される。あるいは、膜のモルフォロジーがよりドライプロセスで作製したものに近づいていると予想される。
【0034】
また、ホスト−ゲスト型の発光層のホスト化合物の分子量が1,500以下、構造を一般式(a)のように規定することで高分子材料を用いた時のように発現しやすい膨潤状態になることを抑制する、つまり膜内に溶媒が取り込まれることを防ぐことで溶媒除去がより容易になるのではないかと考えている。
【0035】
これらの結果、形成された膜がドライプロセスのモルフォロジーに近づいたため、蒸着型同様の素子性能が実現できると考えている。溶媒の種類は、沸点が105℃以下で、且つ20℃における飽和蒸気圧が20mmHg以上ならばいずれの溶媒でも構わない。
【0036】
例えば、発光層への使用溶媒として、クロロホルム、四塩化炭素、1,1−ジクロロエタン、1,2−ジクロロエタン、アセトニトリル、プロピオニトリル、ベンゼン、酢酸エチル、酢酸ノルマルプロピル、酢酸イソプロピル、プロピオン酸メチル、アセトン、メチルエチルケトン、テトラヒドロフラン、トリエチルアミン等が挙げられるが、成膜後の表面安定性等の観点から、より好ましくは20℃での蒸気圧が70mmHg以下、沸点は75℃以上である。例えば、1,2−ジクロロエタン、プロピオニトリル、酢酸ノルマルプロピル、プロピオン酸メチル、トリエチルアミン等が挙げられる。
【0037】
また、構造的にはカルボニル基を有する溶媒が好ましく、更にはエステル基を有する溶媒が好ましく、具体的には酢酸エチル、酢酸ノルマルプロピル、酢酸イソプロピル、プロピオン酸メチル、アセトン、メチルエチルケトン等であり、更に好ましくは酢酸エチル、酢酸ノルマルプロピル、酢酸イソプロピル、プロピオン酸メチル等である。
【0038】
また、溶媒の純度については、ウェットプロセスで作製した膜とドライプロセスで作製した膜で大きく異なる点として、溶媒由来の不純物の混入が予想されることから溶媒の純度は高いほど良く、具体的には溶媒純度が99.5%以上であることが好ましく、99.8%以上は更に好ましい。
【0039】
《有機EL素子の層構成》
次に、本発明の有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
【0040】
(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
この内、陽極と陰極を除いた各層を総称して有機積層体とも言う。
【0041】
以下に各層について説明する。
【0042】
《発光層》
発光層とは、電極または電子輸送層、正孔輸送層等から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよいが、層間での励起子の失活等が考えられることから発光層の層内であることが好ましい。
【0043】
発光層の膜厚は特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、且つ駆動電流に対する発光色の安定性向上の観点から、2〜200nmの範囲に調整することが好ましく、更に好ましくは5〜100nmの範囲に調整される。
【0044】
本発明では、ホスト−ゲスト型の発光層をウェットプロセスで形成する際に、溶媒の沸点と20℃での蒸気圧、また溶媒の官能基、発光ホストの分子量を選択することで、作製した素子の外部取り出し量子効率や駆動電圧を改善するのみならず、連続駆動時の電圧上昇を抑制している。
【0045】
以下に発光層に含まれるホスト化合物(発光ホストとも言う)と発光ドーパントについて説明する。
【0046】
《ホスト化合物》
本発明に用いられるホスト化合物について説明する。
【0047】
ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が0.1未満の化合物である。好ましくはリン光量子収率が0.01未満である。
【0048】
ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
【0049】
本発明において、ホスト化合物としては一般式(a)で表される化合物が好ましい。
【0050】
一般式(a)におけるXにおいて、R′、R″で各々表される置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。これらの置換基は上記の置換基によって更に置換されていてもよい。これらの置換基は複数が互いに結合して環を形成していてもよい。
【0051】
中でも、XとしてはNR′またはOが好ましく、またR′としては、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基)、または芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、フタラジニル基等)が特に好ましい。
【0052】
上記の芳香族炭化水素基、芳香族複素環基は、各々一般式(a)のXにおいて、R′、R″で各々表される置換基を有してもよい。
【0053】
一般式(a)において、Arにより表される芳香環としては、芳香族炭化水素環または芳香族複素環が挙げられる。また、該芳香環は単環でもよく、縮合環でもよく、更に未置換でも、一般式(a)のXにおいて、R′、R″で各々表される置換基を有してもよい。
【0054】
一般式(a)において、Arにより表される芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は更に、一般式(a)で表される部分構造のXにおいて、R′、R″で各々表される置換基を有してもよい。
【0055】
一般式(a)で表される部分構造において、Arにより表される芳香族複素環としては、例えば、フラン環、ジベンゾフラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。
【0056】
これらの環は、更に一般式(a)において、R′、R″で各々表される置換基を有してもよい。
【0057】
上記の中でも、一般式(a)において、Arにより表される芳香環として、好ましく用いられるのは、カルバゾール環、カルボリン環、ジベンゾフラン環、ベンゼン環であり、更に好ましく用いられるのは、カルバゾール環、カルボリン環、ベンゼン環であり、より好ましくは置換基を有するベンゼン環であり、特に好ましくはカルバゾリル基を有するベンゼン環が挙げられる。
【0058】
また、一般式(a)において、Arにより表される芳香環としては、各々3環以上の縮合環が好ましい一態様であり、3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。なお、これらの環は、更に上記の置換基を有していてもよい。
【0059】
また、3環以上が縮合した芳香族複素環としては、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。なお、これらの環は更に置換基を有していてもよい。
【0060】
また、一般式(a)において、nは0〜8の整数を表すが、0〜2であることが好ましく、特にXがO、Sである場合には1〜2であることが好ましい。
【0061】
以下に、一般式(a)で表されるホスト化合物の具体例を示すが、これらに限定されるものではない。
【0062】
【化2】

【0063】
【化3】

【0064】
【化4】

【0065】
【化5】

【0066】
【化6】

【0067】
【化7】

【0068】
【化8】

【0069】
【化9】

【0070】
また、本発明に用いられる発光ホストとしては、従来公知の低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性発光ホスト)でもよいが、高分子材料を用いた場合、化合物が溶媒を取り込んで膨潤やゲル化等、溶媒が抜けにくいと思われる現象が起こりやすいので、これを防ぐために分子量は高くない方が好ましく、具体的には塗布時での分子量が1,500以下の材料を用いることが好ましく、塗布時の分子量1,000以下の材料を用いることが更に好ましい。
【0071】
併用してもよい公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。
【0072】
特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。
【0073】
《発光ドーパント》
本発明に係る発光ドーパントについて説明する。
【0074】
本発明に係る発光ドーパントとしては、蛍光ドーパント、リン光ドーパントを用いることができるが、より発光効率の高い有機EL素子を得る観点からは、有機EL素子の発光層や発光ユニットに使用される発光ドーパントとしては、上記のホスト化合物を含有すると同時にリン光ドーパントを含有することが好ましい。
【0075】
リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
【0076】
本発明に係るリン光ドーパントとしては、好ましくは元素の周期表で8〜10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
【0077】
以下に、リン光ドーパントとして用いられる化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。
【0078】
【化10】

【0079】
【化11】

【0080】
【化12】

【0081】
【化13】

【0082】
【化14】

【0083】
【化15】

【0084】
《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
【0085】
陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
【0086】
陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。
【0087】
《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
【0088】
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
【0089】
本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
【0090】
正孔阻止層には、前述のホスト化合物として挙げたアザカルバゾール誘導体を含有することが好ましい。
【0091】
また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。
【0092】
イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば、下記に示すような方法により求めることができる。
【0093】
(1)米国Gaussian製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6−31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。
【0094】
(2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器製の低エネルギー電子分光装置「Model AC−1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。
【0095】
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3〜100nmであり、更に好ましくは5〜30nmである。
【0096】
《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
【0097】
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
【0098】
正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
【0099】
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
【0100】
更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
【0101】
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
【0102】
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
【0103】
また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
【0104】
本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
【0105】
《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
【0106】
従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
【0107】
また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。
【0108】
また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
【0109】
電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
【0110】
また、不純物をゲスト材料としてドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
【0111】
本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
【0112】
《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
【0113】
陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。
【0114】
《陰極》
陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
【0115】
これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
【0116】
また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
【0117】
また、陰極に上記金属を1〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
【0118】
《基板》
本発明の有機EL素子に用いることのできる基板(以下、支持基板とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。基板側から光を取り出す場合には、基板は透明であることが好ましい。好ましく用いられる透明な基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
【0119】
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(JSR製)あるいはアペル(三井化学製)といったシクロオレフィン系樹脂等を挙げられる。
【0120】
樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、水蒸気透過度が0.01g/m/日・atm以下のバリア性フィルムであることが好ましく、更には酸素透過度10−3g/m/日以下、水蒸気透過度10−5g/m/日以下の高バリア性フィルムであることが好ましい。
【0121】
バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
【0122】
バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
【0123】
不透明な基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
【0124】
本発明の有機EL素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、より好ましくは5%以上である。ここに、外部取り出し量子効率(%)=(有機EL素子外部に発光した光子数)/(有機EL素子に流した電子数)×100である。
【0125】
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
【0126】
《封止》
本発明の有機EL素子の封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
【0127】
封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
【0128】
具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
【0129】
本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10−3ml/m/24h以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10−3g/(m/24h)以下のものであることが好ましい。
【0130】
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
【0131】
接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
【0132】
なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
【0133】
また、有機層を挟み基板と対向する側の電極の外側に該電極と有機層を被覆し、基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。
【0134】
これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
【0135】
封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
【0136】
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
【0137】
《有機EL素子の作製方法》
本発明の有機EL素子の作製方法は、陽極と陰極に挟まれた有機積層体の内、少なくとも発光層をウェットプロセスで成膜し、好ましくは発光層を含め4層以上をウェットプロセスで成膜することである。有機積層体全てをウェットプロセスで形成することもまた好ましい。本発明で言うウェットプロセスとは、層を形成する際に層形成材料を溶液の形態で供給し、層形成を行うものである。
【0138】
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法を説明する。
【0139】
まず、適当な基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。
【0140】
次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層等の有機化合物薄膜(有機層)を形成させる。
【0141】
これら各層の形成方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、ダイコート法、キャスト法、インクジェット法、スプレー法、印刷法)等がある。更には均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、本発明においてはスピンコート法、ダイコート法、インクジェット法、スプレー法、印刷法等の塗布法による成膜が好ましい。
【0142】
本発明の有機EL素子を作製する際に、発光層以外の層をウェットプロセスで作製してもよい。材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2−ペンタノン等のケトン類、酢酸エチル、酢酸ブチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、アニソール等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒や、あるいは水を用いることができる。
【0143】
これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。
【0144】
また、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
【0145】
《保護膜、保護板》
有機層を挟み基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
【0146】
《光取り出し》
有機EL素子は空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光の内15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
【0147】
この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63−314795号公報)、有機EL素子の側面等に反射面を形成する方法(特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等がある。
【0148】
本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
【0149】
本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた有機EL素子を得ることができる。
【0150】
透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
【0151】
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
【0152】
また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
【0153】
全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光の内、層間での全反射等により外に出ることができない光をいずれかの層間、もしくは媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
【0154】
導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がそれほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
【0155】
回折格子を導入する位置としては、前述の通りいずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。
【0156】
回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
【0157】
《集光シート》
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
【0158】
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10〜100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
【0159】
集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基板に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
【0160】
また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
【0161】
《用途》
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
【0162】
本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
【0163】
本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
【0164】
また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000Cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。本発明の有機EL素子の発光層には、発光ホスト化合物とゲスト材料としての発光ドーパントの少なくとも一種を含有することが好ましい。
【実施例】
【0165】
以下、実施例により本発明を説明するが、本発明はこれらに限定されない。
【0166】
実施例1
また、以下に実施例で使用する化合物の構造を示す。
【0167】
【化16】

【0168】
《有機EL素子101の作製》
陽極として、100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板にパターニングを行った後、このITO透明電極を設けた透明支持基板をノルマルプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
【0169】
この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔注入層を設けた。
【0170】
次いで、基板を窒素雰囲気下のグローブボックスへと移動し、化合物HT−1(50mg)をモノクロロベンゼン10mlに溶解させた溶液を用いて1500rpm、30秒の条件下でスピンコート(膜厚約20nm)し、160℃、30分間窒素下で乾燥し、正孔輸送層とした。
【0171】
次いで、グローブボックス中で発光ホスト化合物であるa−6(100mg)と青色発光ドーパント化合物であるDopant−1(19mg)とをエチルベンゼン10mlに溶解させた溶液を用いて、1500rpm、30秒の条件下でスピンコート(膜厚約50nm)し、120℃、30分間窒素下で乾燥し、青色発光層とした。
【0172】
次いで、基板を真空蒸着装置に取付け、真空槽を4×10−4Paまで減圧し、化合物ET−1を蒸着で成膜を行い、厚さ20nmの電子輸送層とした。その後に電子注入層としてLiFを1nmで成膜し、アルミニウム110nmを蒸着して陰極を形成し、有機EL素子101を作製した。
【0173】
《有機EL素子102〜113の作製》
有機EL素子101の作製において、下記に示す表1の溶媒を用い、a−6とDopant−1を質量比は一定の比率(発光ホスト:発光ドーパント=100:19)を保ちつつ、1500rpm、30秒の条件で同じ膜厚になるように適宜溶液濃度を調整して、青色発光層を形成した以外は同様にして、有機EL素子102〜113を作製した。
【0174】
《有機EL素子の評価》
作製した有機EL素子について、下記のようにして外部取り出し量子効率、駆動電圧、及び連続駆動時の電圧上昇の評価を行った。
【0175】
(外部取り出し量子効率)
作製した有機EL素子に対し、2.5mA/cm定電流を印加したときの外部取り出し量子効率(%)を測定した。なお、測定には分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。有機EL素子101〜111の外部取り出し量子効率は、有機EL素子101(比較例)の測定値を100とした相対値で表した。
【0176】
(駆動電圧)
有機EL素子を室温(約23℃〜25℃)、2.5mA/cmの定電流条件下により駆動したときの電圧を各々測定し、測定結果を下記に示すように、有機EL素子101(比較例)を100として各々相対値で示した。
【0177】
(連続駆動時の電圧上昇)
作製した有機EL素子に対し、正面輝度2000cd/mとなるような電流を与え、正面輝度が初期の半減値(1000cd/m)になるまで連続駆動し、駆動終了時から駆動前の電圧の差を連続駆動時の電圧上昇として求めた。
【0178】
A:連続駆動時の電圧上昇が0.5V未満
B:連続駆動時の電圧上昇が0.5V以上1.0V未満
C:連続駆動時の電圧上昇が1.0V以上2.0V未満
D:連続駆動時の電圧上昇が2.0V以上。
【0179】
【表1】

【0180】
表1記載の結果から、低分子のホスト−ゲスト型のリン光発光する発光材料で発光層を形成する場合において、発光層の溶媒を低沸点、且つ高蒸気圧溶媒を使用することで、外部取り出し量子効率と駆動電圧の改善、及び連続駆動時の電圧上昇の抑制が行われていることがわかる。
【0181】
実施例2
《有機EL素子201の作製》
有機EL素子101の作製において、化合物ET−1(50mg)を2,2,3,3−テトラフルオロプロパノール10mlに溶解させた溶液を用いて、1500rpm、30秒の条件化でスピンコート(膜厚約20nm)し、120℃、30分間窒素下で乾燥し、電子輸送層とした以外は同様にして、有機EL素子201を作製した。
【0182】
《有機EL素子202〜213の作製》
有機EL素子201の作製において、下記に示す表2の溶媒を用い、a−6とDopant−1を質量比は一定の比率(発光ホスト:発光ドーパント=100:19)を保ちつつ、1500rpm、30秒の条件で同じ膜厚になるように適宜溶液濃度を調整して、青色発光層を形成した以外は同様にして、有機EL素子202〜213を作製した。
【0183】
《有機EL素子の評価》
作製した有機EL素子について、実施例1と同様にして外部取り出し量子効率、駆動電圧、及び連続駆動時の電圧上昇の評価を行った。なお、各々の外部取り出し量子効率及び駆動電圧の値は、有機EL素子201の測定値を100とした相対値で表した。
【0184】
【表2】

【0185】
表2記載の結果から、低分子のホスト−ゲスト型のリン光発光する発光材料で4層以上をウェットプロセスで有機EL素子を作製した場合においても、有機層を全てウェットプロセスにすることで、生産性を高めつつ発光層の溶媒を低沸点、且つ高蒸気圧溶媒を使用することで、外部取り出し量子効率と駆動電圧の改善、及び連続駆動時の電圧上昇の抑制が行われていることがわかる。
【0186】
実施例3
《有機EL素子301〜313の作製》
有機EL素子210の作製において、発光層の発光ホストをa−6から下記に示す表3のホスト化合物に変更した以外は,同様にして有機EL素子301〜313を作成した。
【0187】
《有機EL素子の評価》
作製した有機EL素子について、実施例1と同様にして外部取り出し量子効率、駆動電圧、及び連続駆動時の電圧上昇の評価を行った。なお、各々の外部取り出し量子効率及び駆動電圧の値は、有機EL素子210の測定値を100とした相対値で表した。
【0188】
【表3】

【0189】
表3記載の結果から、種々の発光ホストを使用して有機EL素子を作製した場合においても、本発明の示す溶媒を用いれば、同様に外部取り出し効率と駆動電圧が改善し、連続駆動時の電圧上昇の抑制が起こっていることがわかる。また、発光ホストの分子量が大きくなっていくほど、若干効果が抑制されることも明らかである。更に一般式(a)に該当しない発光ホストを用いた有機EL素子308においても、同様に効果が抑制されていることが明らかである。
【0190】
実施例4
《有機EL素子401の作製》
有機EL素子201の作製において、発光ホストであるa−6(100mg)と緑色発光ドーパント化合物であるIr−1(10mg)とをエチルベンゼン10mlに溶解させた溶液を用いて、1500rpm、30秒の条件下でスピンコート(膜厚約50nm)し、120℃、30分間窒素下で乾燥し、緑色発光層とした以外は同様にして、有機EL素子401を作製した。
【0191】
《有機EL素子402〜404の作製》
有機EL素子401の作製において、下記に示す表4の溶媒を用い、a−6とIr−1を質量比は一定の比率(発光ホスト:発光ドーパント=100:10)を保ちつつ、1500rpm、30秒の条件で同じ膜厚になるように適宜溶液濃度を調整して、緑色発光層を形成した以外は同様にして、有機EL素子402〜404を作製した。
【0192】
《有機EL素子の評価》
作製した有機EL素子について、実施例1と同様にして外部取り出し量子効率、駆動電圧、及び連続駆動時の電圧上昇の評価を行った。なお、各々の外部取り出し量子効率及び駆動電圧の値は、有機EL素子401の測定値を100とした相対値で表した。
【0193】
【表4】

【0194】
表4記載の結果から、発光色が青色から緑色に変更した場合でも同様に外部取り出し効率と駆動電圧が改善し、連続駆動時の電圧上昇の抑制が起っていることがわかる。
【0195】
実施例5
《有機EL素子501の作製》
有機EL素子201の作製において、発光ホストであるa−6(100mg)と赤色発光ドーパント化合物であるIr−4(10mg))とをエチルベンゼン10mlに溶解させた溶液を用いて、1500rpm、30秒の条件下でスピンコート(膜厚約50nm)し、120℃、30分間窒素下で乾燥し、赤色発光層とした以外は同様にして、有機EL素子501を作製した。
【0196】
《有機EL素子502〜504の作成》
有機EL素子501の作製において、下記に示す表5の溶媒を用い、a−6とIr−4を質量比は一定の比率(発光ホスト:発光ドーパント=100:10)を保ちつつ、1500rpm、30秒の条件で同じ膜厚になるように適宜溶液濃度を調整して、赤色発光層を形成した以外は同様にして、有機EL素子502〜504を作製した。
【0197】
《有機EL素子の評価》
作製した有機EL素子について、実施例1と同様にして外部取り出し量子効率、駆動電圧、及び連続駆動時の電圧上昇の評価を行った。なお、各々の外部取り出し量子効率及び駆動電圧の値は、有機EL素子501の測定値を100とした相対値で表した。
【0198】
【表5】

【0199】
表5記載の結果から、発光色が青色から赤色に変更した場合でも同様に外部取り出し効率と駆動電圧が改善し、連続駆動時の電圧上昇の抑制が起っていることがわかる。
【0200】
実施例6
《有機EL素子601の作製》
有機EL素子201の作製において、発光ホスト化合物であるa−6(100mg)と青色発光ドーパント化合物であるDopant−1(10mg)と緑色発光ドーパント化合物であるIr−1(0.2mg)と赤色発光ドーパント化合物であるIr−4(0.2mg)とをエチルベンゼン10mlに溶解させた溶液を用いて、1500rpm、30秒の条件下でスピンコート(膜厚約50nm)し、120℃、30分間窒素下で乾燥し、白色発光層とした以外は同様にして、有機EL素子601を作製した。
【0201】
《有機EL素子602〜604の作製》
有機EL素子601の作製において、下記に示す表6の溶媒を用い、a−6とDopant−1、Ir−1、Ir−4を質量比は一定の比率(a−6:Dopant−1:Ir−1:Ir−4=100:10:0.2:0.2)を保ちつつ、1500rpm、30秒の条件で同じ膜厚になるように適宜溶液濃度を調整して、白色発光層を形成した以外は同様にして、有機EL素子602〜604を作製した。
【0202】
《有機EL素子の評価》
作製した有機EL素子について、実施例1と同様にして外部取り出し量子効率、駆動電圧、及び連続駆動時の電圧上昇の評価を行った。なお、各々の外部取り出し量子効率及び駆動電圧の値は、有機EL素子601の測定値を100とした相対値で表した。
【0203】
【表6】

【0204】
表6記載の結果から、発光色が青色から白色に変更した場合でも同様に外部取り出し効率と駆動電圧が改善し、連続駆動時の電圧上昇の抑制が起っていることがわかる。

【特許請求の範囲】
【請求項1】
少なくともウェットプロセスで作製されたホスト−ゲスト型の発光層を有する有機積層体と一対の電極からなる有機エレクトロルミネッセンス素子において、該発光層に用いる溶媒の沸点が105℃以下で、且つ20℃における飽和蒸気圧が20mmHg以上の溶媒であることを特徴とする有機エレクトロルミネッセンス素子。
【請求項2】
前記発光層に用いる溶媒の沸点が75℃以上で、且つ20℃における飽和蒸気圧が70mmHg以下の溶媒であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
【請求項3】
前記有機積層体のうち、発光層を含む4層以上がウェットプロセスで作製されることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。
【請求項4】
前記溶媒がカルボニル基を有することを特徴とする請求項1〜3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項5】
前記カルボニル基がエステル基を形成していることを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子。
【請求項6】
前記溶媒が酢酸ノルマルプロピル、酢酸イソプロピル、プロピオン酸メチルのいずれかであることを特徴とする請求項1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項7】
前記ホスト−ゲスト型の発光層に用いられるホスト化合物の分子量が1500以下であることを特徴とする請求項1〜6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項8】
前記ホスト−ゲスト型の発光層に用いられるホスト化合物の分子量が1000以下であることを特徴とする請求項7に記載の有機エレクトロルミネッセンス素子。
【請求項9】
前記ホスト−ゲスト型の発光層に用いられるホスト化合物が下記一般式(a)で表される化合物であることを特徴とする請求項1〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【化1】

(式中、XはNR′、O、S、CR′R″またはSiR′R″を表す。R′、R″は各々水素原子または置換基を表す。Arは芳香環を表す。nは0〜8の整数を表す。)
【請求項10】
前記一般式(a)で表される化合物中、Arはカルバゾール環、カルボリン環、ジベンゾフラン環またはベンゼン環から選ばれることを特徴とする請求項9に記載の有機エレクトロルミネッセンス素子。
【請求項11】
前記一般式(a)で表される化合物中、XはNR′またはOを表し、R′は水素原子または置換基を表すことを特徴とする請求項9または10に記載の有機エレクトロルミネッセンス素子。
【請求項12】
前記ホスト−ゲスト型の発光層に、各々異なる発光ドーパント化合物を少なくとも3種含有することを特徴とする請求項1〜11のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項13】
請求項1〜12のいずれか1項に記載の有機エレクトロルミネッセンス素子を製造することを特徴とする有機エレクトロルミネッセンス素子の製造方法。

【公開番号】特開2011−54931(P2011−54931A)
【公開日】平成23年3月17日(2011.3.17)
【国際特許分類】
【出願番号】特願2010−110866(P2010−110866)
【出願日】平成22年5月13日(2010.5.13)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】