説明

有機EL表示装置の製造方法および有機EL表示装置

【課題】青色の発光効率および寿命を向上させることが可能な有機EL表示装置の製造方法および有機EL表示装置を提供する。
【解決手段】下部電極14上に正孔注入層16AR,16AG,16ABを形成する。赤色有機EL素子10R,緑色有機EL素子10Gについて、高分子材料よりなる正孔輸送層16BR,16BG,赤色発光層16CRおよび緑色発光層16CGを塗布法により形成する。青色有機EL素子10Bの正孔注入層16ABの上に低分子材料よりなる正孔輸送層16BBを塗布法により形成する。赤色発光層16CR,緑色発光層16CGおよび青色有機EL素子10B用の正孔輸送層16BBの全面に低分子材料よりなる青色発光層16CBを蒸着法により形成する。青色発光層16CBの全面に電子輸送層16D,電子注入層16Eおよび上部電極17を順に形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機エレクトロルミネセンス(EL;Electro Luminescence)現象を利用して発光する有機EL表示装置の製造方法および有機EL表示装置に関する。
【背景技術】
【0002】
情報通信産業の発達が加速するにつれて、高度の性能を有する表示素子が要求されている。そのなかで、次世代表示素子として有機EL素子が注目されている。有機EL素子は自発発光型表示素子として視野角が広くてコントラストが優秀なだけでなく応答時間が速いという長所がある。
【0003】
有機EL素子を形成する発光層等は、低分子材料と高分子材料に大別される。一般に、低分子材料の方が高い発光効率、寿命を示すことが知られており、特に青色の性能は高いとされる。
【0004】
また、その有機膜の形成方法として、低分子材料は真空蒸着法等の乾式法、高分子材料は、スピンコーティング、インクジェット、ノズルコート等の湿式法により成膜されている。
【0005】
乾式法は、有機薄膜層の形成材料を溶媒に溶解させる必要がなく、成膜後に溶媒を除去する必要がないという利点がある。しかしながら、真空蒸着法は、特にメタルマスクによる塗り分けが難しく、特に大型のパネルを作成する点で、設備製造コストが高い、大画面基板に適用できない、量産に難がある等の欠点を有していた。
【0006】
そこで、インクジェット方式やノズルコート方式による表示画面の大面積化が比較的容易であるという利点を有している湿式法が注目されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特許第4062352号明細書
【特許文献2】特許第3899566号明細書
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、依然、青色発光材料では発光輝度及び寿命が乏しく実用的ではないので、インクジェット方式やノズルコート方式などの塗布法によるパターニングは困難とされていた。
【0009】
そこで、例えば特許文献1および特許文献2では、赤色の有機発光層及び緑色の有機発光層をインクジェット法により形成し、青色の有機発光層を蒸着により形成する製造方法が開示されている。この特許文献1および特許文献2の製造方法では、青色発光層を実用性の高い低分子材料を用い、蒸着法で製造しているので、低コストであり、大型化の実現性も高い。しかしながら、依然、実用性を考えると、青色画素の発光効率・寿命には問題があった。
【0010】
本発明はかかる問題点に鑑みてなされたもので、その目的は、青色の発光効率および寿命を向上することが可能な有機EL表示装置の製造方法および有機EL表示装置を提供することにある。
【課題を解決するための手段】
【0011】
本発明による有機EL表示装置の製造方法は、以下の(A)〜(H)の工程を含むものである。
(A)基板に下部電極を赤色有機EL素子,緑色有機EL素子および青色有機EL素子の各々ごとに形成する工程
(B)下部電極の上に正孔注入層を赤色有機EL素子,緑色有機EL素子および青色有機EL素子の各々ごとに塗布法により形成する工程
(C)正孔注入層の上に高分子材料よりなる正孔輸送層を赤色有機EL素子および緑色有機EL素子の各々ごとに塗布法により形成する工程
(D)赤色有機EL素子用の正孔輸送層の上に高分子材料よりなる赤色発光層を塗布法により形成する工程
(E)緑色有機EL素子用の正孔輸送層の上に高分子材料よりなる緑色発光層を塗布法により形成する工程
(F)青色有機EL素子の正孔注入層の上に低分子材料よりなる正孔輸送層を塗布法により形成する工程
(G)赤色発光層,緑色発光層および青色有機EL素子用の正孔輸送層の全面に低分子材料よりなる青色発光層を蒸着法により形成する工程
(H)青色発光層の全面に電子輸送層,電子注入層および上部電極を順に形成する工程
【0012】
本発明による有機EL表示装置は、以下の(A)〜(H)の構成要素を備えたものである。
(A)基板に、赤色有機EL素子,緑色有機EL素子および青色有機EL素子の各々ごとに設けられた下部電極
(B)下部電極の上に赤色有機EL素子,緑色有機EL素子および青色有機EL素子の各々ごとに設けられた正孔注入層
(C)正孔注入層の上に赤色有機EL素子および緑色有機EL素子の各々ごとに設けられた高分子材料よりなる正孔輸送層
(D)赤色有機EL素子用の正孔輸送層の上に設けられた高分子材料よりなる赤色発光層
(E)緑色有機EL素子用の正孔輸送層の上に設けられた高分子材料よりなる緑色発光層
(F)青色有機EL素子の正孔注入層の上に設けられた低分子材料よりなる正孔輸送層
(G)赤色発光層,緑色発光層および青色有機EL素子用の正孔輸送層の全面に設けられた低分子材料よりなる青色発光層
(H)青色発光層の全面に順に設けられた電子輸送層,電子注入層および上部電極
【0013】
本発明の有機EL表示装置では、青色有機EL素子用の正孔輸送層が低分子材料により構成されているので、低分子材料よりなる青色発光層との界面状態が改善され、青色の発光効率および寿命が向上する。
【発明の効果】
【0014】
本発明の有機EL表示装置の製造方法、または本発明の有機EL表示装置によれば、青色有機EL素子の正孔注入層の上に低分子材料よりなる正孔輸送層を塗布法により形成するようにしたので、低分子材料よりなる青色発光層との界面状態を改善し、青色の発光効率および寿命を向上させることが可能になる。よって、赤色有機EL素子,緑色有機EL素子および青色有機EL素子を配列形成してなるカラー有機EL表示装置のさらなる高発光効率化、長寿命化が可能になる。
【図面の簡単な説明】
【0015】
【図1】本発明の一実施の形態に係る有機EL表示装置の構成を表す図である。
【図2】図1に示した画素駆動回路の一例を表す図である。
【図3】図1に示した表示領域の構成を表す断面図である。
【図4】図1に示した有機EL表示装置の製造方法の流れを表す図である。
【図5】図4に示した製造方法を工程順に表す断面図である。
【図6】図5に続く工程を表す断面図である。
【図7】図6に続く工程を表す断面図である。
【図8】上記実施の形態の表示装置を含むモジュールの概略構成を表す平面図である。
【図9】上記実施の形態の表示装置の適用例1の外観を表す斜視図である。
【図10】(A)は適用例2の表側から見た外観を表す斜視図であり、(B)は裏側から見た外観を表す斜視図である。
【図11】適用例3の外観を表す斜視図である。
【図12】適用例4の外観を表す斜視図である。
【図13】(A)は適用例5の開いた状態の正面図、(B)はその側面図、(C)は閉じた状態の正面図、(D)は左側面図、(E)は右側面図、(F)は上面図、(G)は下面図である。
【図14】実施例の結果を表す図である。
【図15】実施例の結果を表す図である。
【発明を実施するための形態】
【0016】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0017】
図1は、本発明の一実施の形態に係る有機EL表示装置の構成を表すものである。この有機EL表示装置は、有機ELテレビジョン装置などとして用いられるものであり、例えば、基板11の上に、表示領域110として、後述する複数の赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bがマトリクス状に配置されたものである。表示領域110の周辺には、映像表示用のドライバである信号線駆動回路120および走査線駆動回路130が設けられている。
【0018】
表示領域110内には画素駆動回路140が設けられている。図2は、画素駆動回路140の一例を表したものである。画素駆動回路140は、後述する下部電極14の下層に形成されたアクティブ型の駆動回路である。すなわち、この画素駆動回路140は、駆動トランジスタTr1および書き込みトランジスタTr2と、これらトランジスタTr1,Tr2の間のキャパシタ(保持容量)Csと、第1の電源ライン(Vcc)および第2の電源ライン(GND)の間において駆動トランジスタTr1に直列に接続された赤色有機EL素子10R(または緑色有機EL素子10G,青色有機EL素子10B)とを有する。駆動トランジスタTr1および書き込みトランジスタTr2は、一般的な薄膜トランジスタ(TFT(Thin Film Transistor))により構成され、その構成は例えば逆スタガ構造(いわゆるボトムゲート型)でもよいしスタガ構造(トップゲート型)でもよく特に限定されない。
【0019】
画素駆動回路140において、列方向には信号線120Aが複数配置され、行方向には走査線130Aが複数配置されている。各信号線120Aと各走査線130Aとの交差点が、赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bのいずれか一つ(サブピクセル)に対応している。各信号線120Aは、信号線駆動回路120に接続され、この信号線駆動回路120から信号線120Aを介して書き込みトランジスタTr2のソース電極に画像信号が供給されるようになっている。各走査線130Aは走査線駆動回路130に接続され、この走査線駆動回路130から走査線130Aを介して書き込みトランジスタTr2のゲート電極に走査信号が順次供給されるようになっている。
【0020】
また、表示領域110には、赤色の光を発生する赤色有機EL素子10Rと、緑色の光を発生する緑色有機EL素子10Gと、青色の光を発生する青色有機EL素子10Bとが、順に全体としてマトリクス状に配置されている。なお、隣り合う赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bの組み合わせが一つの画素(ピクセル)を構成している。
【0021】
図3は図1に示した表示領域110の断面構成を表したものである。赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bは、それぞれ、基板11の側から、上述した画素駆動回路140の駆動トランジスタTr1および平坦化絶縁膜(図示せず)を間にして、陽極としての下部電極14、隔壁15、後述する発光層16Cを含む有機層16および陰極としての上部電極17がこの順に積層された構成を有している。
【0022】
このような赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bは、保護層20により被覆され、更にこの保護層20上に熱硬化型樹脂または紫外線硬化型樹脂などの接着層(図示せず)を間にしてガラスなどよりなる封止用基板40が全面にわたって貼り合わされることにより封止されている。
【0023】
基板11は、その一主面側に赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bが配列形成される支持体であって、公知のものであって良く、例えば、石英、ガラス、金属箔、もしくは樹脂製のフィルムやシートなどが用いられる。この中でも石英やガラスが好ましく、樹脂製の場合には、その材質としてポリメチルメタクリレート(PMMA)に代表されるメタクリル樹脂類、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)などのポリエステル類、もしくはポリカーボネート樹脂などが挙げられるが、透水性や透ガス性を抑える積層構造、表面処理を行うことが必要である。
【0024】
下部電極14は、基板11に、赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bの各々ごとに設けられている。下部電極14は、例えば、積層方向の厚み(以下、単に厚みと言う)が10nm以上1000nm以下であり、クロム(Cr),金(Au),白金(Pt),ニッケル(Ni),銅(Cu),タングステン(W)あるいは銀(Ag)などの金属元素の単体または合金が挙げられる。また、下部電極14は、これらの金属元素の単体または合金よりなる金属膜と、インジウムとスズの酸化物(ITO)、InZnO(インジウ亜鉛オキシド)、酸化亜鉛(ZnO)とアルミニウム(Al)との合金などの透明導電膜との積層構造を有していてもよい。なお、下部電極14が陽極として使われる場合には、下部電極14は正孔注入性の高い材料により構成されていることが望ましい。ただし、アルミニウム(Al)合金のように、表面の酸化皮膜の存在や、仕事関数が大きくないことによる正孔注入障壁が問題となる材料においても、適切な正孔注入層を設けることによって下部電極14として使用することが可能である。
【0025】
隔壁15は、下部電極14と上部電極17との絶縁性を確保すると共に発光領域を所望の形状にするためのものであると共に、後述する製造工程においてインクジェットまたはノズルコート方式による塗布を行う際の隔壁としての機能も有している。隔壁15は、例えば、SiO2等の無機絶縁材料よりなる下部隔壁15Aの上に、ポジ型感光性ポリベンゾオキサゾール,ポジ型感光性ポリイミドなどの感光性樹脂よりなる上部隔壁15Bを有している。隔壁15には、発光領域に対応して開口が設けられている。なお、有機層16ないし上部電極17は、開口だけでなく隔壁15の上にも設けられていてもよいが、発光が生じるのは隔壁15の開口だけである。
【0026】
赤色有機EL素子10Rの有機層16は、例えば、下部電極14の側から順に、正孔注入層16AR,正孔輸送層16BR,赤色発光層16CR,青色発光層16CB,電子輸送層16Dおよび電子注入層16Eを積層した構成を有する。緑色有機EL素子10Gの有機層16は、例えば、下部電極14の側から順に、正孔注入層16AG,正孔輸送層16BG,緑色発光層16CG,青色発光層16CB,電子輸送層16Dおよび電子注入層16Eを積層した構成を有する。青色有機EL素子10Bの有機層16は、例えば、下部電極14の側から順に、正孔注入層16AB,正孔輸送層16BB,青色発光層16CB,電子輸送層16Dおよび電子注入層16Eを積層した構成を有する。これらのうち青色発光層16CB,電子輸送層16Dおよび電子注入層16Eは、赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bの共通層として設けられている。
【0027】
正孔注入層16AR,16AG,16ABは、正孔注入効率を高めるためのものであると共に、リークを防止するためのバッファ層であり、下部電極14の上に赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bの各々ごとに設けられている。
【0028】
正孔注入層16AR,16AG,16ABの厚みは例えば5nm〜100nmであることが好ましく、より好ましくは8nm〜50nmである。正孔注入層16AR,16AG,16ABの構成材料は、電極や隣接する層の材料との関係で適宜選択すればよく、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子、金属フタロシアニン(銅フタロシアニン等)、カーボン等が例示される。
正孔注入層16AR,16AG,16ABに用いられる材料が、高分子材料である場合、その高分子の重量平均分子量(Mw)は、2000〜1万程度のオリゴマーや1万〜30万の範囲であることが好ましい。特に、5000〜20万程度が好ましい。Mwが5000未満では、正孔輸送層以降を形成する際に、正孔注入層が溶解してしまう恐れがある。また30万を超えると、材料がゲル化し、成膜が困難になる恐れがある。
【0029】
正孔注入層16AR,16AG,16ABの構成材料として使用される典型的な導電性高分子としては、ポリアニリンおよび/またはオリゴアニリン、及びポリ(3,4−エチレンジオキシチオフェン)(PEDOT)などのポリジオキシチオフェンが挙げられる。例えば、エイチ・シー・スタルク製 Nafion(商標)で市販されているポリマー、または溶解形態で商品名 Liquion(商標)で市販されているポリマーや、日産化学製エルソース(商標)や、綜研化学製導電性ポリマーベラゾール(商標)などがある。
【0030】
赤色有機EL素子10R,緑色有機EL素子10Gの正孔輸送層16BR,16BGは、赤色発光層16CR,緑色発光層16CGへの正孔輸送効率を高めるためのものである。正孔輸送層16BR,16BGは、正孔注入層16AR,16AGの上に赤色有機EL素子10R,緑色有機EL素子10Gの各々ごとに設けられている。
【0031】
正孔輸送層16BR,16BGの厚みは、素子の全体構成にもよるが、例えば10nm〜200nmであることが好ましく、さらに好ましくは15nm〜150nmである。
正孔輸送層16BR,16BGを構成する高分子材料としては、有機溶媒に可溶な発光材料、例えば、ポリビニルカルバゾール及びその誘導体、ポリフルオレン及びその誘導体、ポリアニリン及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリチオフェン及びその誘導体、ポリピロール等が使用できる。
【0032】
高分子材料の重量平均分子量(Mw)は、5万〜30万であることが好ましく、特に、10万〜20万であることが好ましい。Mwが5万未満では、発光層を形成するときに、高分子材料中の低分子成分が脱落し、正孔注入・輸送層にドットが生じるため、有機EL素子の初期性能が低下したり、素子の劣化を引き起こすおそれがある。一方、30万を越えると、材料がゲル化するため、成膜が困難になるおそれがある。
尚、重量平均分子量(Mw)は、テトラヒドロフランを溶媒として、ゲルパーエミーションクロマトグラフィー(GPC)により、ポリスチレン換算の重量平均分子量を求めた値である。
【0033】
赤色発光層16CR,緑色発光層16CGは、電界をかけることにより電子と正孔との再結合が起こり、光を発生するものである。赤色発光層16CR,緑色発光層16CGの厚みは、素子の全体構成にもよるが、例えば10nm〜200nmであることが好ましく、さらに好ましくは15nm〜150nmである。赤色発光層16CR,緑色発光層16CGを構成する高分子発光材料としては、ポリフルオレン系高分子誘導体や、(ポリ)パラフェニレンビニレン誘導体、ポリフェニレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体、ペリレン系色素、クマリン系色素、ローダミン系色素、あるいは上記高分子に有機EL材料をドープして用いることができる。例えば、ルブレン、ペリレン、9,10ジフェニルアントラセン、テトラフェニルブタジエン、ナイルレッド、クマリン6等をドープすることにより用いることができる。
【0034】
青色有機EL素子10Bの正孔輸送層16BBは、青色発光層16CBへの正孔輸送効率を高めるためのものであり、正孔注入層16ABの上に設けられている。正孔輸送層16BBの厚みは、素子の全体構成にもよるが、例えば10nm〜200nmであることが好ましく、さらに好ましくは15nm〜150nmである。
【0035】
正孔輸送層16BBは、低分子材料を含んでいる。これにより、この有機EL表示装置では、青色の発光効率および寿命を向上させることが可能となっている。ここで、低分子材料とは、低分子化合物が同じ反応又は類似の反応を連鎖的に繰り返すことにより、生じた高分子量の重合体又は縮合体の分子からなる物質以外のものであって、分子量が実質的に単一である化合物を指す。また加熱により、実質的に分子間の新たな化学結合は生まれず、単分子で存在する。
【0036】
正孔輸送層16BBの具体的な材料としては、例えば、ベンジン、スチリルアミン、トリフェニルアミン、ポルフィリン、トリフェニレン、アザトリフェニレン、テトラシアノキノジメタン、トリアゾール、イミダゾール、オキサジアゾール、ポリアリールアルカン、フェニレンジアミン、アリールアミン、オキザゾール、アントラセン、フルオレノン、ヒドラゾン、スチルベンあるいはこれらの誘導体、または、ポリシラン系化合物、ビニルカルバゾール系化合物、チオフェン系化合物あるいはアニリン系化合物等の複素環式共役系のモノマー、オリゴマーあるいはポリマーを用いることができる。
【0037】
さらに具体的な材料としては、α−ナフチルフェニルフェニレンジアミン、ポルフィリン、金属テトラフェニルポルフィリン、金属ナフタロシアニン、ヘキサシアノアザトリフェニレン、7,7,8,8−テトラシアノキノジメタン(TCNQ)、7,7,8,8−-テトラシアノ - 2,3,5,6-テトラフルオロキノジメタン(F4−TCNQ)、テトラシアノ4、4、4−トリス(3−メチルフェニルフェニルアミノ)トリフェニルアミン、N、N、N’、N’−テトラキス(p−トリル)p−フェニレンジアミン、N、N、N’、N’−テトラフェニル−4、4’−ジアミノビフェニル、N−フェニルカルバゾール、4−ジ−p−トリルアミノスチルベン、ポリ(パラフェニレンビニレン)、ポリ(チオフェンビニレン)、ポリ(2、2’−チエニルピロール)等が挙げられるが、これらに限定されるものではない。
【0038】
さらに好ましくは、下記の化1に示した一般式(1)で示される有機材料を用いて構成されているものが好ましい。
【0039】
【化1】

【0040】
ただし一般式(1)中におけるA1 〜A3 は、それぞれ独立に置換あるいは無置換のアリール基または置換あるいは無置換の複素環基を示す。またA1 〜A3 は、それぞれ複数の環が共役結合によって連結する伸展構造であっても良いが、総炭素数30以下であることが好ましい。またこれらのアリール基または複素環基に結合される置換基としては、水素、ハロゲン、ヒドロキシル基、炭素数20以下の置換あるいは無置換のカルボニル基、炭素数20以下の置換あるいは無置換のカルボニルエステル基、炭素数20以下の置換あるいは無置換のアルキル基、炭素数20以下の置換あるいは無置換のアルケニル基、炭素数20以下の置換あるいは無置換のアルコキシル基、シアノ基、ニトロ基、もしくは炭素数30以下の置換あるいは無置換のアミノ基が挙げられる。
【0041】
このような有機材料の具体例として、以下の化2ないし化5に示した(1)−1〜(1)−60が例示される。
【0042】
【化2】

【0043】
【化3】

【0044】
【化4】

【0045】
【化5】

【0046】
青色発光層16CBは、電界をかけることにより電子と正孔との再結合が起こり、光を発生するものであり、赤色発光層16CR,緑色発光層16CGおよび青色有機EL素子10B用の正孔輸送層16BBの全面に共通層として設けられている。青色発光層16CBは、アントラセン化合物をホスト材料として青色もしくは緑色の蛍光性色素のゲスト材料がドーピングされており、青色もしくは緑色の発光光を発生する。
【0047】
このうち、青色発光層16CBを構成するホスト材料は、下記の化6に示した一般式(2)に示すアントラセン誘導体をホスト材料として用いることが好ましい。
【0048】
【化6】

【0049】
ただし、一般式(2)中において、R1 〜R6 はそれぞれ独立に、水素、ハロゲン、ヒドロキシル基、炭素数20以下の置換あるいは無置換のカルボニル基、炭素数20以下の置換あるいは無置換のカルボニルエステル基、炭素数20以下の置換あるいは無置換のアルキル基、炭素数20以下の置換あるいは無置換のアルケニル基、炭素数20以下の置換あるいは無置換のアルコキシル基、シアノ基、ニトロ基、炭素数30以下の置換あるいは無置換のシリル基,炭素数30以下の置換あるいは無置換のアリール基、炭素数30以下の置換あるいは無置換の複素環基、もしくは炭素数30以下の置換あるいは無置換のアミノ基を示す。
【0050】
一般式(2)におけるR1 〜R6 が示すアリール基は、例えば、フェニル基、1−ナフチル基、2−ナフチル基、フルオレニル基、1−アントリル基、2−アントリル基、9−アントリル基、1−フェナントリル基、2−フェナントリル基、3−フェナントリル基、4−フェナントリル基、9−フェナントリル基、1−ナフタセニル基、2−ナフタセニル基、9−ナフタセニル基、1−ピレニル基、2−ピレニル基、4−ピレニル基、1−クリセニル基、6−クリセニル基、2−フルオランテニル基、3−フルオランテニル基、2−ビフェニルイル基、3−ビフェニルイル基、4−ビフェニルイル基、o−トリル基、m−トリル基、p−トリル基、p−t−ブチルフェニル基等が挙げられる。
【0051】
また,R1 〜R6 が示す複素環基は、ヘテロ原子としてO、N、Sを含有する5員または6員環の芳香族複素環基、炭素数2〜20の縮合多環芳香複素環基が挙げられる。また、芳香族複素環基及び縮合多環芳香複素環基としては、チエニル基、フリル基、ピロリル基、ピリジル基、キノリル基、キノキサリル基、イミダゾピリジル基、ベンゾチアゾール基が挙げられる。代表的なものとしては,1−ピロリル基、2−ピロリル基、3−ピロリル基、ピラジニル基、2−ピリジニル基、3−ピリジニル基、4−ピリジニル基、1−インドリル基、2−インドリル基、3−インドリル基、4−インドリル基、5−インドリル基、6−インドリル基、7−インドリル基、1−イソインドリル基、2−イソインドリル基、3−イソインドリル基、4−イソインドリル基、5−イソインドリル基、6−イソインドリル基、7−イソインドリル基、2−フリル基、3−フリル基、2−ベンゾフラニル基、3−ベンゾフラニル基、4−ベンゾフラニル基、5−ベンゾフラニル基、6−ベンゾフラニル基、7−ベンゾフラニル基、1−イソベンゾフラニル基、3−イソベンゾフラニル基、4−イソベンゾフラニル基、5−イソベンゾフラニル基、6−イソベンゾフラニル基、7−イソベンゾフラニル基、キノリル基、3−キノリル基、4−キノリル基、5−キノリル基、6−キノリル基、7−キノリル基、8−キノリル基、1−イソキノリル基、3−イソキノリル基、4−イソキノリル基、5−イソキノリル基、6−イソキノリル基、7−イソキノリル基、8−イソキノリル基、2−キノキサリニル基、5−キノキサリニル基、6−キノキサリニル基、1−カルバゾリル基、2−カルバゾリル基、3−カルバゾリル基、4−カルバゾリル基、9−カルバゾリル基、1−フェナンスリジニル基、2−フェナンスリジニル基、3−フェナンスリジニル基、4−フェナンスリジニル基、6−フェナンスリジニル基、7−フェナンスリジニル基、8−フェナンスリジニル基、9−フェナンスリジニル基、10−フェナンスリジニル基、1−アクリジニル基、2−アクリジニル基、3−アクリジニル基、4−アクリジニル基、9−アクリジニル基、などが挙げられる。
【0052】
R1 〜R6 が示すアミノ基は、アルキルアミノ基、アリールアミノ基、アラルキルアミノ基等のいずれでもよい。これらは、総炭素数1〜6の脂肪族及び/又は1〜4環の芳香族炭素環を有することが好ましい。このような基としては、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ビスビフェニリルアミノ基、ジナフチルアミノ基が挙げられる。
【0053】
尚、上記置換基の2種以上は縮合環を形成していても良く、さらに置換基を有していてもよい。
【0054】
このような化合物の具体例として、以下の化7ないし化9に示した化合物(2)−1〜(2)−51が例示される。
【0055】
【化7】

【0056】
【化8】

【0057】
【化9】

【0058】
一方、青色発光層16CBを構成する発光性ゲスト材料としては、発光効率が高い材料、例えば、低分子蛍光もしくは、りん光色素、さらには金属錯体等の有機発光材料が用いられる。
【0059】
ここで青色の発光性ゲスト材料とは、発光の波長範囲が約400nm〜490nmの範囲にピークを有する化合物を示す。このよう化合物として、ナフタレン誘導体、アントラセン誘導体、ナフタセン誘導体、スチリルアミン誘導体、ビス(アジニル)メテンホウ素錯体などの有機物質が用いられる。なかでも、アミノナフタレン誘導体、アミノアントラセン誘導体、アミノクリセン誘導体、アミノピレン誘導体、スチリルアミン誘導体、ビス(アジニル)メテンホウ素錯体から選択されることが好ましい。
【0060】
電子輸送層16Dは、赤色発光層16CR,緑色発光層16CG,青色発光層16CBへの電子輸送効率を高めるためのものであり、青色発光層16CBの全面に共通層として設けられている。電子輸送層16Dの材料としては、例えば、キノリン、ペリレン、フェナントロリン、ビススチリル、ピラジン、トリアゾール、オキサゾール、フラーレン、オキサジアゾール、フルオレノン、またはこれらの誘導体や金属錯体が挙げられる。具体的には、トリス(8−ヒドロキシキノリン)アルミニウム(略称Alq3 )、アントラセン、ナフタレン、フェナントレン、ピレン、アントラセン、ペリレン、ブタジエン、クマリン、C60、アクリジン、スチルベン、1,10−フェナントロリンまたはこれらの誘導体や金属錯体が挙げられる。
【0061】
電子注入層16Eは、電子注入効率を高めるためのものであり、電子輸送層16Dの全面に共通層として設けられている。電子注入層16Eの材料としては、例えばリチウム(Li)の酸化物である酸化リチウム(Li2O)や、セシウム(Cs)の複合酸化物である炭酸セシウム(Cs2 CO3 )、さらにはこれらの酸化物及び複合酸化物の混合物を用いることができる。また、電子注入層16Eは、このような材料に限定されることはなく、例えば、カルシウム(Ca)、バリウム(Ba)等のアルカリ土類金属、リチウム、セシウム等のアルカリ金属、さらにはインジウム(In)、マグネシウム(Mg)等の仕事関数の小さい金属、さらにはこれらの金属の酸化物及び複合酸化物、フッ化物等を、単体でまたはこれらの金属および酸化物及び複合酸化物、フッ化の混合物や合金として安定性を高めて使用しても良い。
【0062】
上部電極17は、例えば、厚みが3nm以上8nm以下であり、金属導電膜により構成されている。具体的には、アルミニウム(Al),マグネシウム(Mg),カルシウム(Ca)またはナトリウム(Na)の合金が挙げられる。中でも、マグネシウムと銀との合金(Mg−Ag合金)は、薄膜での導電性と吸収の小ささとを兼ね備えているので好ましい。Mg−Ag合金におけるマグネシウムと銀との比率は特に限定されないが、膜厚比でMg:Ag=20:1〜1:1の範囲であることが望ましい。また、上部電極17の材料は、アルミニウム(Al)とリチウム(Li)との合金(Al−Li合金)でもよい。
【0063】
更に、上部電極17は、アルミキノリン錯体、スチリルアミン誘導体、フタロシアニン誘導体等の有機発光材料を含有した混合層でもよい。この場合には、さらに第3層としてMgAgのような光透過性を有する層を別途有していてもよい。なお、上部電極17は、アクティブマトリックス駆動方式の場合、有機層16と隔壁15とによって、下部電極14と絶縁された状態で基板11上にベタ膜状に形成され、赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bの共通電極として用いられる。
【0064】
保護層20は、例えば厚みが2〜3μmであり、絶縁性材料または導電性材料のいずれにより構成されていてもよい。絶縁性材料としては、無機アモルファス性の絶縁性材料、例えばアモルファスシリコン(α−Si),アモルファス炭化シリコン(α−SiC),アモルファス窒化シリコン(α−Si1-x Nx )、アモルファスカーボン(α−C)などが好ましい。このような無機アモルファス性の絶縁性材料は、グレインを構成しないため透水性が低く、良好な保護膜となる。
【0065】
封止用基板40は、赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bの上部電極17の側に位置しており、接着層(図示せず)と共に赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bを封止するものである。封止用基板40は、赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bで発生した光に対して透明なガラスなどの材料により構成されている。封止用基板40には、例えば、カラーフィルタおよびブラックマトリクスとしての遮光膜(いずれも図示せず)が設けられており、赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bで発生した光を取り出すと共に、赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10B並びにその間の配線において反射された外光を吸収し、コントラストを改善するようになっている。
【0066】
カラーフィルタは、赤色フィルタ,緑色フィルタおよび青色フィルタ(いずれも図示せず)を有しており、赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bに対応して順に配置されている。赤色フィルタ,緑色フィルタおよび青色フィルタは、それぞれ例えば矩形形状で隙間なく形成されている。これら赤色フィルタ,緑色フィルタおよび青色フィルタは、顔料を混入した樹脂によりそれぞれ構成されており、顔料を選択することにより、目的とする赤,緑あるいは青の波長域における光透過率が高く、他の波長域における光透過率が低くなるように調整されている。
【0067】
更に、カラーフィルタにおける透過率の高い波長範囲と、共振器構造MC1から取り出したい光のスペクトルのピーク波長λとは一致している。これにより、封止用基板40から入射する外光のうち、取り出したい光のスペクトルのピーク波長λに等しい波長を有するもののみがカラーフィルタを透過し、その他の波長の外光が有機EL素子10R,10G,10Bに侵入することが防止される。
【0068】
遮光膜は、例えば黒色の着色剤を混入した光学濃度が1以上の黒色の樹脂膜、または薄膜の干渉を利用した薄膜フィルタにより構成されている。このうち黒色の樹脂膜により構成するようにすれば、安価で容易に形成することができるので好ましい。薄膜フィルタは、例えば、金属,金属窒化物あるいは金属酸化物よりなる薄膜を1層以上積層し、薄膜の干渉を利用して光を減衰させるものである。薄膜フィルタとしては、具体的には、クロムと酸化クロム(III)(Cr2 O3 )とを交互に積層したものが挙げられる。
【0069】
この有機EL表示装置は、例えば次のようにして製造することができる。
【0070】
図4は、この有機EL表示装置の製造方法の流れを表したものであり、図5ないし図7は図4に示した製造方法を工程順に表したものである。まず、上述した材料よりなる基板11の上に駆動トランジスタTr1を含む画素駆動回路140を形成し、例えば感光性樹脂よりなる平坦化絶縁膜(図示せず)を設ける。
【0071】
(下部電極14を形成する工程)
次いで、基板11の全面に例えばITOよりなる透明導電膜を形成し、この透明導電膜をパターニングすることにより、図5(A)に示したように、下部電極14を赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bの各々ごとに形成する(ステップS101)。その際、下部電極14を、平坦化絶縁膜(図示せず)のコンタクトホール(図示せず)を介して駆動トランジスタTr1のドレイン電極と導通させる。
【0072】
(隔壁15を形成する工程)
続いて、同じく図5(A)に示したように、下部電極14上および平坦化絶縁膜(図示せず)上に、例えばCVD(Chemical Vapor Deposition;化学気相成長)法により、SiO2 等の無機絶縁材料を成膜し、フォトリソグラフィー技術およびエッチング技術を用いてパターニングすることにより、下部隔壁15Aを形成する。
【0073】
そののち、同じく図5(A)に示したように、下部隔壁15Aの所定位置、詳しくは画素の発光領域を囲む位置に、上述した感光性樹脂よりなる上部隔壁15Bを形成する。これにより、上部隔壁15Aおよび下部隔壁15Bよりなる隔壁15が形成される(ステップS102)。
【0074】
隔壁15を形成したのち、基板11の下部電極14および隔壁15を形成した側の表面を酸素プラズマ処理し、その表面に付着した有機物等の汚染物を除去して濡れ性を向上させる。具体的には、基板11を所定温度、例えば70〜80℃程度に加熱し、続いて大気圧下で酸素を反応ガスとするプラズマ処理(O2 プラズマ処理)を行う。
【0075】
(撥水化処理を行う工程)
プラズマ処理を行ったのち、撥水化処理(撥液化処理)を行う(ステップS103)ことにより、特に上部隔壁15Bの上面及び側面の濡れ性を低下させる。具体的には、大気圧下で4フッ化メタンを反応ガスとするプラズマ処理(CF4 プラズマ処理)を行い、その後、プラズマ処理のために加熱された基板11を室温まで冷却することで、上部隔壁15Bの上面及び側面を撥液化し、その濡れ性を低下させる。
【0076】
なお、このCF4プラズマ処理においては、下部電極14の露出面および下部隔壁15Aについても多少の影響を受けるが、下部電極14の材料であるITOおよび下部隔壁15Aの構成材料であるSiO2 などはフッ素に対する親和性に乏しいため、酸素プラズマ処理で濡れ性が向上した面は濡れ性がそのままに保持される。
【0077】
(正孔注入層16AR,16AG,16ABを形成する工程)
撥水化処理を行ったのち、図5(B)に示したように、上部隔壁15Bに囲まれた領域内に、上述した材料よりなる正孔注入層16AR,16AG,16ABを形成する(ステップS104)。この正孔注入層16AR,16AG,16ABは、スピンコート法や液滴吐出法などの塗布法により形成する。特に、上部隔壁15Bに囲まれた領域に正孔注入層16AR,16AG,16ABの形成材料を選択的に配する必要上、液滴吐出法であるインクジェット法や、ノズルコート法を用いることが好ましい。
【0078】
具体的には、例えばインクジェット法により、正孔注入層16AR,16AG,16ABの形成材料であるポリアニリンやポリチオフェン等の溶液または分散液を下部電極14の露出面上に配する。その後、熱処理(乾燥処理)を行うことにより、正孔注入層16AR,16AG,16ABを形成する。
【0079】
熱処理においては、溶媒または分散媒を乾燥後、高温で加熱する。ポリアニリンやポリチオフェン等の導電性高分子を用いる場合、大気雰囲気、もしくは酸素雰囲気が好ましい。酸素による導電性高分子の酸化により、導電性が発現しやすくなるためである。
【0080】
加熱温度は、150℃〜300℃が好ましく、さらに好ましくは180℃〜250℃である。時間は、温度、雰囲気にもよるが、5分〜300分程度が好ましく、さらに好ましくは、10分〜240分である。この乾燥後の膜厚みは、5nm〜100nmが好ましい。さらに好ましくは、8nm〜50nmが好ましい。
【0081】
(赤色有機EL素子10Rおよび緑色有機EL素子10Gの正孔輸送層16BR,16BGを形成する工程)
正孔注入層16AR,16AG,16ABを形成したのち、図5(C)に示したように、正孔注入層16AR,16AGの上に、上述した高分子材料よりなる正孔輸送層16BR,16BGを赤色有機EL素子10R,緑色有機EL素子10Gの各々ごとに形成する(ステップS105)。この正孔輸送層16BR,16BGは、スピンコート法や液滴吐出法などの塗布法により形成する。特に、上部隔壁15Bに囲まれた領域に正孔輸送層16BR,16BGの形成材料を選択的に配する必要上、液滴吐出法であるインクジェット法や、ノズルコート法を用いることが好ましい。
【0082】
具体的には、例えばインクジェット法により、正孔輸送層16BR,16BGの形成材料である高分子ポリマーの溶液または分散液を正孔注入層16AR,16AGの露出面上に配する。その後、熱処理(乾燥処理)を行うことにより、赤色有機EL素子10R,緑色有機EL素子10Gの正孔輸送層16BR,16BGを形成する。
【0083】
熱処理においては、溶媒または分散媒を乾燥後、高温で加熱する。塗布する雰囲気や溶媒を乾燥、加熱する雰囲気としては、窒素(N2)を主成分とする雰囲気中が好ましい。酸素や水分があると、作成された有機EL表示装置の発光効率や寿命が低下する恐れがある。特に、加熱工程においては、酸素や水分の影響が大きいため、注意が必要である。好ましい酸素濃度は、0.1ppm以上100ppm以下が好ましく、50ppm以下であればより好ましい。100ppmより多い酸素があると、形成した薄膜の界面が汚染され、得られた有機EL表示装置の発行効率や寿命が低下する恐れがある。また、0.1ppm未満の酸素濃度の場合、素子の特性は問題ないが、現状の量産のプロセスとして、雰囲気を0.1ppm未満に保持するための装置コストが多大になる可能性がある。
また、水分については、露点が例えば−80℃以上−40℃以下であることが好ましい。更に、−50℃以下であればより好ましく、−60℃以下であれば更に好ましい。−40℃より高い水分があると、形成した薄膜の界面が汚染され、得られた有機EL表示装置の発光効率や寿命が低下する恐れがある。また、−80℃未満の水分の場合、素子の特性は問題ないが、現状の量産のプロセスとして、雰囲気を−80℃未満に保持するための装置コストが多大になる可能性がある。
【0084】
加熱温度は、100℃〜230℃が好ましく、さらに好ましくは100℃〜200℃である。少なくとも、正孔注入層16AR,16AG,16AB形成時の温度よりも低いことが好ましい。時間は、温度、雰囲気にもよるが、5分〜300分程度が好ましく、さらに好ましくは、10分〜240分である。乾燥後の膜厚みは、素子の全体構成にもよるが、10nm〜200nmが好ましい。さらに、15nm〜150nmであればより好ましい。
【0085】
(赤色発光層16CRおよび緑色発光層16CGを形成する工程)
赤色有機EL素子10R,緑色有機EL素子10Gの正孔輸送層16BR,16BGを形成したのち、図6(A)に示したように、赤色有機EL素子の正孔輸送層16BRの上に上述した高分子材料よりなる赤色発光層16CRを形成する。また、緑色有機EL素子の正孔輸送層16BGの上に上述した高分子材料よりなる緑色発光層16CGを形成する(ステップS106)。赤色発光層16CRおよび緑色発光層16CGは、スピンコート法や液滴吐出法などの塗布法により形成する。特に、上部隔壁15Bに囲まれた領域に赤色発光層16CRおよび緑色発光層16CGの形成材料を選択的に配する必要上、液滴吐出法であるインクジェット法や、ノズルコート法を用いることが好ましい。
【0086】
具体的には、例えばインクジェット法により、赤色発光層16CRおよび緑色発光層16CGの形成材料である高分子ポリマーの溶液または分散液を正孔輸送層16BR,16BGの露出面上に配する。その後、熱処理(乾燥処理)を行うことにより、赤色発光層16BRおよび緑色発光層16BGを形成する。
【0087】
熱処理においては、溶媒または分散媒を乾燥後、高温で加熱する。塗布する雰囲気や溶媒を乾燥、加熱する雰囲気としては、窒素(N2)を主成分とする雰囲気中が好ましい。酸素や水分があると、作成された有機EL表示装置の発光効率や寿命が低下する恐れがある。特に、加熱工程においては、酸素や水分の影響が大きいため、注意が必要である。好ましい酸素濃度は、0.1ppm以上100ppm以下が好ましく、50ppm以下であればより好ましい。100ppmより多い酸素があると、形成した薄膜の界面が汚染され、得られた有機EL表示装置の発光効率や寿命が低下する恐れがある。また、0.1ppm未満の酸素濃度の場合、素子の特性は問題ないが、現状の量産のプロセスとして、雰囲気を0.1ppm未満に保持するための装置コストが多大になる可能性がある。
また、水分については、露点が例えば−80℃以上−40℃以下であることが好ましい。更に、−50℃以下であればより好ましく、−60℃以下であれば更に好ましい。−40℃より高い水分があると、形成した薄膜の界面が汚染され、得られた有機EL表示装置の発光効率や寿命が低下する恐れがある。また、−80℃未満の水分の場合、素子の特性は問題ないが、現状の量産のプロセスとして、雰囲気をー80℃未満に保持するための装置コストが多大になる可能性がある。
【0088】
加熱温度は、100℃〜230℃が好ましく、さらに好ましくは100℃〜200℃である。少なくとも、正孔注入層16AR,16AG,16AB形成時の温度よりも低いことが好ましい。時間は、温度、雰囲気にもよるが、5分〜300分程度が好ましく、さらに好ましくは、10分〜240分である。乾燥後の膜厚みは、素子の全体構成にもよるが、10nm〜200nmが好ましい。さらに、15nm〜150nmであればより好ましい。
【0089】
(青色有機EL素子10Bの正孔輸送層16BBを形成する工程)
赤色発光層16CRおよび緑色発光層16CGを形成したのち、図6(B)に示したように、青色有機発光素子10B用の正孔注入層16ABの上に、上述した低分子材料よりなる正孔輸送層16BBを形成する(ステップS107)。正孔輸送層16BBは、スピンコート法や液滴吐出法などの塗布法により形成する。特に、上部隔壁15Bに囲まれた領域に正孔輸送層16BBの形成材料を選択的に配する必要上、液滴吐出法であるインクジェット法や、ノズルコート法を用いることが好ましい。
【0090】
具体的には、例えばインクジェット法により、正孔輸送層16BBの形成材料である低分子の溶液または分散液を正孔注入層16ABの露出面上に配する。その後、熱処理(乾燥処理)を行うことにより、正孔輸送層16BBを形成する。
【0091】
熱処理においては、溶媒または分散媒を乾燥後、高温で加熱する。塗布する雰囲気や溶媒を乾燥、加熱する雰囲気としては、窒素(N2)を主成分とする雰囲気中が好ましい。酸素や水分があると、作成された有機EL表示装置の発光効率や寿命が低下する恐れがある。特に、加熱工程においては、酸素や水分の影響が大きいため、注意が必要である。好ましい酸素濃度は、0.1ppm以上100ppm以下が好ましく、50ppm以下であればより好ましい。100ppmより多い酸素があると、形成した薄膜の界面が汚染され、得られた有機EL表示装置の発光効率や寿命が低下する恐れがある。また、0.1ppm未満の酸素濃度の場合、素子の特性は問題ないが、現状の量産のプロセスとして、雰囲気を0.1ppm未満に保持するための装置コストが多大になる可能性がある。
また、水分については、露点が例えば−80℃以上−40℃以下であることが好ましい。更に、−50℃以下であればより好ましく、−60℃以下であれば更に好ましい。−40℃より高い水分があると、形成した薄膜の界面が汚染され、得られた有機EL表示装置の発光効率や寿命が低下する恐れがある。また、−80℃未満の水分の場合、素子の特性は問題ないが、現状の量産のプロセスとして、雰囲気を−80℃未満に保持するための装置コストが多大になる可能性がある。
【0092】
加熱温度は、材料の特性にもよるが、100℃〜230℃が好ましく、さらに好ましくは100℃〜200℃である。少なくとも、正孔注入層16AR,16AG,16AB形成時の温度よりも低いことが好ましい。また低分子材料のTgを超えすぎた温度で加熱しつづけると、特性が大きく低下する恐れがある。時間は、温度、雰囲気にもよるが、5分〜300分程度が好ましく、さらに好ましくは、10分〜240分である。乾燥後の膜厚みは、素子の全体構成にもよるが、10nm〜200nmが好ましい。さらに、15nm〜150nmであればより好ましい。
【0093】
(工程の順序について)
赤色有機EL素子10R,緑色有機EL素子10Gの正孔輸送層16BR,16BGを形成する工程と、青色有機EL素子10Bの正孔輸送層16BBを形成する工程と、赤色発光層16CRおよび緑色発光層16CGを形成する工程とは、いずれの順番で行ってもよいが、少なくとも、形成する層を展開する下地が先に形成されており、加熱乾燥各工程の加熱工程を経ていることが必要である。また、加熱工程時の温度が、前工程よりも少なくとも同等もしくは低い温度で行うように、塗布する必要がある。例えば、赤色発光層16CRおよび緑色発光層16CGの加熱温度が、130℃であり、青色有機EL素子10B用の正孔輸送層16BBの加熱温度が同じ130℃である場合、赤色発光層16CRおよび緑色発光層16CGの塗布を行い、乾燥せずに、続けて、青色有機EL素子10B用の正孔輸送層16BBの塗布をした後、赤色発光層16CR,緑色発光層16CGおよび青色有機EL素子10B用の正孔輸送層16BBの乾燥、加熱工程を行ってもよい。
また、上記各工程において、乾燥と加熱とは別個の工程として分けて行うことが好ましい。理由として、乾燥工程では、塗布したウエット膜が、非常に流動しやすいために、膜ムラが起きやすいからである。好ましい乾燥工程は、常圧で均一に真空乾燥する方法であり、さらに、乾燥中に風などをあてずに乾燥させることが望ましい。加熱工程では、ある程度、溶媒が飛んで流動性が低下し、硬化した膜になっており、そこからゆっくりと、熱をかけることにより、微量に残存している溶媒を取り除いたり、発光材料や正孔輸送層の材料を分子レベルで再配列を起こさせることが可能となる。
【0094】
(青色発光層16CBを形成する工程)
青色有機EL素子10B用の正孔輸送層16BBおよび赤色発光層16CR,緑色発光層16CGまで形成したのち、図6(C)に示したように、蒸着法により、赤色発光層16CR,緑色発光層16CGおよび青色有機EL素子10B用の正孔輸送層16BBの全面に、上述した低分子材料よりなる青色発光層16CBを共通層として形成する(ステップS108)。
【0095】
(電子輸送層16D,電子注入層16Eおよび上部電極17を形成する工程)
青色発光層16CBを形成したのち、図7(A),図7(B)および図7(C)に示したように、この青色発光層16CBの全面に、蒸着法により、上述した材料よりなる電子輸送層16D,電子注入層16Eおよび上部電極17を形成する(ステップS109,S110,S111)。
【0096】
上部電極17を形成したのち、図1に示したように、下地に対して影響を及ぼすことのない程度に、成膜粒子のエネルギーが小さい成膜方法、例えば蒸着法やCVD法により、保護層20を形成する。例えば、アモルファス窒化シリコンからなる保護層20を形成する場合には、CVD法によって2〜3μmの膜厚に形成する。この際、有機層16の劣化による輝度の低下を防止するため、成膜温度を常温に設定すると共に、保護層20の剥がれを防止するために膜のストレスが最小になる条件で成膜することが望ましい。
【0097】
青色発光層16CB,電子輸送層16D,電子注入層16E,上部電極17および保護層20は、マスクを用いることなく全面にベタ膜として形成される。また、青色発光層16CB,電子輸送層16D,電子注入層16E,上部電極17および保護層20の形成は、望ましくは、大気に暴露されることなく同一の成膜装置内において連続して行われる。これにより大気中の水分による有機層16の劣化が防止される。
【0098】
なお、下部電極14と同一工程で補助電極(図示せず)を形成した場合、補助電極の上部にベタ膜で形成された有機層16を、上部電極17を形成する前にレーザアブレーションなどの手法によって除去してもよい。これにより、上部電極17を補助電極に直接接続させることが可能となり、コンタクトが向上する。
【0099】
保護層20を形成したのち、例えば、上述した材料よりなる封止用基板40に、上述した材料よりなる遮光膜を形成する。続いて、封止用基板40に赤色フィルタ(図示せず)の材料をスピンコートなどにより塗布し、フォトリソグラフィ技術によりパターニングして焼成することにより赤色フィルタを形成する。続いて、赤色フィルタ(図示せず)と同様にして、青色フィルタ(図示せず)および緑色フィルタ(図示せず)を順次形成する。
【0100】
そののち、保護層20の上に、接着層(図示せず)を形成し、この接着層を間にして封止用基板40を貼り合わせる。以上により、図1ないし図3に示した表示装置が完成する。
【0101】
この表示装置では、各画素に対して走査線駆動回路130から書き込みトランジスタTr2のゲート電極を介して走査信号が供給されると共に、信号線駆動回路120から画像信号が書き込みトランジスタTr2を介して保持容量Csに保持される。すなわち、この保持容量Csに保持された信号に応じて駆動トランジスタTr1がオンオフ制御され、これにより、赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bに駆動電流Idが注入され、正孔と電子とが再結合して発光が起こる。この光は、下面発光(ボトムエミッション)の場合には下部電極14および基板11を透過して、上面発光(トップエミッション)の場合には上部電極17,カラーフィルタ(図示せず)および封止用基板40を透過して取り出される。
【0102】
その際、赤色有機EL素子10Rでは、赤色発光層16CRと青色発光層16CBとが設けられているが、最もエネルギー準位の低い赤色にエネルギー移動が起こり、赤色発光が支配的となる。緑色有機EL素子10Gでは、緑色発光層16CGと青色発光層16CBとが設けられているが、よりエネルギー準位の低い緑色にエネルギー移動が起こり、緑色発光が支配的となる。青色有機EL素子10Bでは、青色発光層16CBのみを有するので、青色発光が生じる。ここでは、青色有機EL素子10B用の正孔輸送層16BBが低分子材料により構成されているので、低分子材料よりなる青色発光層16CBとの界面状態が改善され、青色の発光効率および寿命が向上する。
【0103】
このように本実施の形態では、青色有機EL素子10Bの正孔注入層16ABの上に低分子材料よりなる正孔輸送層16BBを塗布法により形成するようにしたので、低分子材料よりなる青色発光層16CBとの界面状態を改善し、青色の発光効率および寿命を向上させることが可能になる。よって、赤色有機EL素子10R,緑色有機EL素子10Gおよび青色有機EL素子10Bを配列形成してなるカラー有機EL表示装置のさらなる高発光効率化、長寿命化が可能になる。また、蒸着時のパターニングの困難さを解消し、かつ印刷プロセスによる低コスト化を実現することが可能となる。
【0104】
(モジュールおよび適用例)
以下、上記実施の形態で説明した有機EL表示装置の適用例について説明する。上記実施の形態の有機EL表示装置は、テレビジョン装置,デジタルカメラ,ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置あるいはビデオカメラなど、外部から入力された映像信号あるいは内部で生成した映像信号を、画像あるいは映像として表示するあらゆる分野の電子機器の表示装置に適用することが可能である。
【0105】
(モジュール)
上記実施の形態の有機EL表示装置は、例えば、図8に示したようなモジュールとして、後述する適用例1〜5などの種々の電子機器に組み込まれる。このモジュールは、例えば、基板11の一辺に、保護層20および封止用基板40から露出した領域210を設け、この露出した領域210に、信号線駆動回路120および走査線駆動回路130の配線を延長して外部接続端子(図示せず)を形成したものである。外部接続端子には、信号の入出力のためのフレキシブルプリント配線基板(FPC;Flexible Printed Circuit)220が設けられていてもよい。
【0106】
(適用例1)
図9は、上記実施の形態の有機EL表示装置が適用されるテレビジョン装置の外観を表したものである。このテレビジョン装置は、例えば、フロントパネル310およびフィルターガラス320を含む映像表示画面部300を有しており、この映像表示画面部300は、上記実施の形態に係る有機EL表示装置により構成されている。
【0107】
(適用例2)
図10は、上記実施の形態の有機EL表示装置が適用されるデジタルカメラの外観を表したものである。このデジタルカメラは、例えば、フラッシュ用の発光部410、表示部420、メニュースイッチ430およびシャッターボタン440を有しており、その表示部420は、上記実施の形態に係る有機EL表示装置により構成されている。
【0108】
(適用例3)
図11は、上記実施の形態の有機EL表示装置が適用されるノート型パーソナルコンピュータの外観を表したものである。このノート型パーソナルコンピュータは、例えば、本体510,文字等の入力操作のためのキーボード520および画像を表示する表示部530を有しており、その表示部530は、上記実施の形態に係る有機EL表示装置により構成されている。
【0109】
(適用例4)
図12は、上記実施の形態の有機EL表示装置が適用されるビデオカメラの外観を表したものである。このビデオカメラは、例えば、本体部610,この本体部610の前方側面に設けられた被写体撮影用のレンズ620,撮影時のスタート/ストップスイッチ630および表示部640を有しており、その表示部640は、上記実施の形態に係る有機EL表示装置により構成されている。
【0110】
(適用例5)
図13は、上記実施の形態の有機EL表示装置が適用される携帯電話機の外観を表したものである。この携帯電話機は、例えば、上側筐体710と下側筐体720とを連結部(ヒンジ部)730で連結したものであり、ディスプレイ740,サブディスプレイ750,ピクチャーライト760およびカメラ770を有している。そのディスプレイ740またはサブディスプレイ750は、上記実施の形態に係る有機EL表示装置により構成されている。
【実施例】
【0111】
更に、本発明の具体的な実施例について説明する。
【0112】
(実施例1)
赤色有機EL素子10R,緑色有機EL素子10Gおよび青色有機EL素子10Bそれぞれについて、25mmx25mmの基板11で作製した。
【0113】
まず、基板11としてガラス基板(25mmx25mm)を用意し、この基板11に、下部電極14として、厚み120nmのAg−Pd−Cu合金よりなる銀合金層と、厚み10nmのITOよりなる透明導電膜との2層構造を形成した(ステップS101)。
【0114】
続いて、正孔注入層16AR,16AG,16ABとして、大気中でスピンコート法により、ND1501(日産化学製ポリアニリン)を15nmの厚みで塗布したのち、220℃、30分間、ホットプレート上で熱硬化させた(ステップS104)。
【0115】
そののち、N2中(露点−60℃、酸素濃度10ppm)で、正孔注入層16AR,16AGの上に、正孔輸送層16BR,16BGとして、化10に示したポリマー3−(1)をスピンコート法により塗布した。厚みは、赤色有機EL素子10R用の正孔輸送層16BRについては100nm、緑色有機EL素子10G用の正孔輸送層16BGについては90nmとした。そののち、N2中(露点−60℃、酸素濃度10ppm)で、180℃、60分、ホットプレート上で熱硬化させた(ステップS105)。
【0116】
【化10】

【0117】
正孔輸送層16BR,16BGを形成したのち、赤色有機EL素子10Rの正孔輸送層10BRの上に赤色発光層16CRとしてベンゾチアジアゾールをブロックに持つフルオレノン系ポリアリーレン材料を80nmの厚みでスピンコート法により塗布した。また、緑色有機EL素子10Gの正孔輸送層16BGの上に緑色発光層16CGとしてアントラセンをブロックに持つフルオレノン系ポリアリーレン材料を60nmの厚みでスピンコート法により塗布した。続いて、N2中(露点−60℃、酸素濃度10ppm)で、130℃、10分、ホットプレート上で熱硬化させた(ステップS106)。
【0118】
赤色発光層16CR,緑色発光層16CGを形成したのち、青色有機EL素子10B用の正孔注入層16ABの上に、正孔輸送層16BBとして化11に示した構造式1−(56)の低分子材料を50nmの厚みでスピンコート法により塗布した。そののち、N2中(露点−60℃、酸素濃度10ppm)で、100℃、60分、ホットプレート上で加熱した(ステップS107)。
【0119】
【化11】

【0120】
正孔輸送層16BBを形成したのち、赤色発光層16CRまで形成した赤色有機EL素子10R用の基板11と、緑色発光層16CGまで形成した緑色有機EL素子10G用の基板11と、正孔輸送層16BBまで形成した青色有機EL素子10B用の基板11とを真空蒸着機に移動させ、青色発光層16CB以降の層を蒸着した。
【0121】
まず、青色発光層16CBとして、化12に示したADN(9,10−ジ(2-ナフチル)アントラセン)(構造式2−(20))と、化13に示した青色ドーパント(構造式103)とを95:5の割合で共蒸着した(ステップS108)。
【0122】
【化12】

【0123】
【化13】

【0124】
青色発光層16CBを形成したのち、電子輸送層16Dとして化14に示したAlq3(8−ヒドロキシキノリンアルミニウム)(構造式104)を真空蒸着法により、蒸着させた(ステップS109)。続いて、同じく蒸着法により、電子注入層16EとしてLiFを0.3nmの厚みで成膜し(ステップS110)、上部電極17としてMg−Agを10nmの厚みで形成した(ステップS111)。最後に、CVD法によりSiNよりなる保護層20を形成し、透明樹脂を用いて固体封止を行った。このようにして得られた赤色有機EL素子10R,緑色有機EL素子10G,青色有機EL素子10Bを組み合わせることによりフルカラー有機EL表示装置を得た。
【0125】
【化14】

【0126】
(比較例1)
実施例1で説明した有機EL表示装置の作製手順における青色有機EL素子の正孔輸送層の形成工程において、化10に示した高分子材料(構造式3−(1))を用いた。これ以外は、実施例1と同様にして有機EL表示装置を作製した。
【0127】
(比較例2)
実施例1で説明した赤色有機EL素子,緑色有機EL素子の正孔輸送層および青色有機EL素子の正孔輸送層の形成工程において、化15に示した高分子材料(構造式3−(2))を用いた。これ以外は、実施例1と同様にして有機EL表示装置を作製した。
【0128】
【化15】

【0129】
(実施例2)
実施例1で説明した青色有機EL素子10Bの正孔輸送層16BBの形成工程において、化16に示した構造式1−(58)を用いた。これ以外は、実施例1と同様にして有機EL表示装置を作製した。
【0130】
【化16】

【0131】
(実施例3)
実施例1で説明した青色有機EL素子10Bの正孔輸送層16BBの形成工程において、化17に示した構造式1−(22)を用いた。これ以外は、実施例1と同様にして有機EL表示装置を作製した。
【0132】
【化17】

【0133】
(実施例4)
実施例1で説明した青色有機EL素子10Bの正孔輸送層16BBの形成工程において、化18に示した構造式1−(23)を用いた。これ以外は、実施例1と同様にして有機EL表示装置を作製した。
【0134】
【化18】

【0135】
(実施例5〜9:加熱温度の影響)
実施例1で説明した青色有機EL素子10Bの正孔輸送層16BBの形成後の加熱温度を、実施例5では50℃、実施例6では80℃、実施例7では130℃、実施例8では150℃、実施例9では180℃と異ならせた。これ以外は、実施例1と同様にして有機EL表示装置を作製した。
【0136】
(実施例10〜14:加熱時の露点の影響)
実施例1で説明した青色有機EL素子10Bの正孔輸送層16BBの形成後の加熱工程における露点を、実施例10では−80℃、実施例11では−70℃、実施例12では−50℃、実施例13では−40℃、実施例14では−10℃と異ならせた。これ以外は、実施例1と同様にして有機EL表示装置を作製した。
【0137】
(実施例15〜18:加熱時の酸素濃度の影響)
実施例1で説明した青色有機EL素子10Bの正孔輸送層16BBの形成後の加熱工程における酸素濃度を、実施例15では1000ppm、実施例16では100ppm、実施例17では1ppm、実施例18では0.1ppmと異ならせた。これ以外は、実施例1と同様にして有機EL表示装置を作製した。
【0138】
(評価結果)
得られた実施例1〜18および比較例1,2の赤色,緑色および青色有機EL素子について、電流密度10mA/cm2での駆動時における駆動電圧(v)、電流効率(cd/A)、色座標を測定した。また、電流密度100mA/cm2で定電流駆動させた輝度半減時間を測定した。これらの結果を表1〜表5に示す。
【0139】
【表1】

【0140】
表1から分かるように、青色有機EL素子10Bの正孔輸送層16BBを低分子材料の塗布により形成した実施例1では、高分子材料を用いた比較例1,2に比べて、青色の電流効率および寿命のいずれも向上していた。これに対して、比較例1,2では、青色の電流効率および寿命が他の色に比べて著しく劣っていた。
【0141】
【表2】

【0142】
表2から分かるように、青色有機EL素子10Bの正孔輸送層16BBの低分子材料として化合物(1)−56を用いた実施例1、化合物(1)−58を用いた実施例2、化合物 (1)−22を用いた実施例3および化合物(1)−23を用いた実施例4のいずれも、青色の電流効率、寿命は、高い性能を示した。
【0143】
図14および図15は、実施例2および比較例1の青色有機EL素子について、発光スペクトルおよび寿命を調べた結果をそれぞれ表したものである。図14および図15から分かるように、青色有機EL素子10Bの正孔輸送層16BBを低分子材料により構成した実施例2では、高分子材料を用いた比較例1に比べて、青色の発光スペクトルのピーク強度および寿命のいずれも著しく向上していた。
【0144】
すなわち、青色有機EL素子10Bの正孔輸送層16BBを低分子材料の塗布により形成すれば、青色の発光効率および寿命を向上させることができることが分かった。
【0145】
【表3】

【0146】
表3は、青色有機EL素子10Bの正孔輸送層16BBを塗布した後の加熱工程において、加熱温度を変化させた場合の結果を表したものである。表3から分かるように、50℃から温度を増大させるにつれ、電流効率、寿命の向上がみられたが、180℃と高くした実施例9では、駆動電圧の増大、電流効率の低下、寿命の著しい低下がみられた。すなわち、加熱工程を50℃以上150℃以下の温度で行うようにすれば、青色の電流効率および寿命を向上させることができることが分かった。
【0147】
【表4】

【0148】
表4は、青色有機EL素子10Bの正孔輸送層16BBを塗布した後の加熱工程において、雰囲気の露点を変化させた場合の結果である。表4から分かるように、−40℃程度までは顕著な効率・寿命の変化は見られないが、−10℃程度になると、若干の電流効率・寿命の低下が確認された。すなわち、雰囲気の露点を−80℃以上―40℃以下とすれば、青色の電流効率および寿命を向上させることができることが分かった。
【0149】
【表5】

【0150】
表5は、青色有機EL素子10Bの正孔輸送層16BBを塗布した後の加熱工程において、雰囲気の酸素濃度を変化させた場合の結果である。表5から分かるように、100ppm以上の酸素濃度になると、電流効率の低下、寿命の低下が確認された。すなわち、雰囲気の酸素濃度を0.1ppm以上100ppm以下とすれば、青色の電流効率および寿命を向上させることができることが分かった。また、0.1ppm以上10ppm以下とすれば更に好ましいことが分かった。
【0151】
以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、種々変形が可能である。
【0152】
例えば、上記実施の形態および実施例において説明した各層の材料および厚み、または成膜方法および成膜条件などは限定されるものではなく、他の材料および厚みとしてもよく、または他の成膜方法および成膜条件としてもよい。
【0153】
また、上記実施の形態および実施例では、有機EL素子10R,10G,10Bの構成を具体的に挙げて説明したが、全ての層を備える必要はなく、また、他の層を更に備えていてもよい。
【0154】
更に、上記実施の形態では、アクティブマトリクス型の表示装置の場合について説明したが、本発明はパッシブマトリクス型の表示装置への適用も可能である。更にまた、アクティブマトリクス駆動のための画素駆動回路の構成は、上記実施の形態で説明したものに限られず、必要に応じて容量素子やトランジスタを追加してもよい。その場合、画素駆動回路の変更に応じて、上述した信号線駆動回路120や走査線駆動回路130のほかに、必要な駆動回路を追加してもよい。
【符号の説明】
【0155】
10R…赤色有機EL素子、10G…緑色有機EL素子、10B…青色有機EL素子、11…基板、14…下部電極、15…隔壁、16…有機層、16AR,16AG,16AB…正孔注入層、16BR,16BG,16BB…正孔輸送層、16CR…赤色発光層、16CG…緑色発光層、16CB…青色発光層、16D…電子輸送層、16E…電子注入層、17…上部電極、20…保護層、40…封止用基板

【特許請求の範囲】
【請求項1】
基板に下部電極を赤色有機EL素子,緑色有機EL素子および青色有機EL素子の各々ごとに形成する工程と、
前記下部電極の上に正孔注入層を前記赤色有機EL素子,前記緑色有機EL素子および前記青色有機EL素子の各々ごとに塗布法により形成する工程と、
前記正孔注入層の上に高分子材料よりなる正孔輸送層を前記赤色有機EL素子および前記緑色有機EL素子の各々ごとに塗布法により形成する工程と、
前記赤色有機EL素子用の正孔輸送層の上に高分子材料よりなる赤色発光層を塗布法により形成する工程と、
前記緑色有機EL素子用の正孔輸送層の上に高分子材料よりなる緑色発光層を塗布法により形成する工程と、
前記青色有機EL素子の正孔注入層の上に低分子材料よりなる正孔輸送層を塗布法により形成する工程と、
前記赤色発光層,前記緑色発光層および前記青色有機EL素子用の正孔輸送層の全面に低分子材料よりなる青色発光層を蒸着法により形成する工程と、
前記青色発光層の全面に電子輸送層,電子注入層および上部電極を順に形成する工程と
を含む有機EL表示装置の製造方法。
【請求項2】
前記塗布法として、インクジェット法またはノズルコート法を用いる
請求項1記載の有機EL表示装置の製造方法。
【請求項3】
前記青色有機EL素子の正孔輸送層を、化1に示した一般式(1)で表される有機材料により構成する
請求項1記載の有機EL表示装置の製造方法。
【化1】

(ただし、一般式(1)中におけるA1〜A3は、それぞれ独立に置換あるいは無置換のアリール基または置換あるいは無置換の複素環基を示す。)
【請求項4】
前記青色発光層を、化2に示した一般式(2)で表される化合物により構成する
請求項1記載の有機EL表示装置の製造方法。
【化2】

(ただし、一般式(2)中において、R1 〜R6 はそれぞれ独立に、水素、ハロゲン、ヒドロキシル基、炭素数20以下の置換あるいは無置換のカルボニル基、炭素数20以下の置換あるいは無置換のカルボニルエステル基、炭素数20以下の置換あるいは無置換のアルキル基、炭素数20以下の置換あるいは無置換のアルケニル基、炭素数20以下の置換あるいは無置換のアルコキシル基、シアノ基、ニトロ基、炭素数30以下の置換あるいは無置換のシリル基,炭素数30以下の置換あるいは無置換のアリール基、炭素数30以下の置換あるいは無置換の複素環基、もしくは炭素数30以下の置換あるいは無置換のアミノ基を示す。)
【請求項5】
前記正孔注入層を、ポリアニリンおよび/またはオリゴアニリン系の材料により構成する
請求項4記載の有機EL表示装置の製造方法。
【請求項6】
前記赤色有機EL素子および前記緑色有機EL素子の正孔輸送層を形成する工程と、前記赤色発光層を形成する工程と、前記緑色発光層を形成する工程と、前記青色有機EL素子の正孔輸送層を形成する工程とを、主成分が窒素であり、かつ酸素含有率が0.1ppm以上100ppm以下であり、かつ露点が−80℃以上−40℃以下の雰囲気で行う
請求項5記載の有機EL表示装置の製造方法。
【請求項7】
前記赤色有機EL素子および前記緑色有機EL素子の正孔輸送層を形成する工程と、前記赤色発光層を形成する工程と、前記緑色発光層を形成する工程と、前記青色有機EL素子の正孔輸送層を形成する工程とは、
前記正孔輸送層,前記赤色発光層または前記緑色発光層を構成する有機材料と溶媒または分散媒とを含む溶液または分散液を塗布する工程と、
乾燥により前記溶媒または分散媒を除去して前記正孔輸送層,前記赤色発光層または前記緑色発光層を形成する工程と、
前記正孔輸送層,前記赤色発光層または前記緑色発光層を50℃以上150℃以下の温度で加熱する工程と
を含む請求項6記載の有機EL表示装置の製造方法。
【請求項8】
基板に、赤色有機EL素子,緑色有機EL素子および青色有機EL素子の各々ごとに設けられた下部電極と、
前記下部電極の上に前記赤色有機EL素子,前記緑色有機EL素子および前記青色有機EL素子の各々ごとに設けられた正孔注入層と、
前記正孔注入層の上に前記赤色有機EL素子および前記緑色有機EL素子の各々ごとに設けられた高分子材料よりなる正孔輸送層と、
前記赤色有機EL素子用の正孔輸送層の上に設けられた高分子材料よりなる赤色発光層と、
前記緑色有機EL素子用の正孔輸送層の上に設けられた高分子材料よりなる緑色発光層と、
前記青色有機EL素子の正孔注入層の上に設けられた低分子材料よりなる正孔輸送層と、
前記赤色発光層,前記緑色発光層および前記青色有機EL素子用の正孔輸送層の全面に設けられた低分子材料よりなる青色発光層と、
前記青色発光層の全面に順に設けられた電子輸送層,電子注入層および上部電極と
を備えた有機EL表示装置。
【請求項9】
前記青色有機EL素子の正孔輸送層は、化3に示した一般式(1)で表される有機材料により構成されている
請求項8記載の有機EL表示装置。
【化3】

(ただし、一般式(1)中におけるA1〜A3は、それぞれ独立に置換あるいは無置換のアリール基または置換あるいは無置換の複素環基を示す。)
【請求項10】
前記青色発光層は、化4に示した一般式(2)で表される化合物により構成されている
請求項8記載の有機EL表示装置。
【化4】

(ただし、一般式(2)中において、R1 〜R6 はそれぞれ独立に、水素、ハロゲン、ヒドロキシル基、炭素数20以下の置換あるいは無置換のカルボニル基、炭素数20以下の置換あるいは無置換のカルボニルエステル基、炭素数20以下の置換あるいは無置換のアルキル基、炭素数20以下の置換あるいは無置換のアルケニル基、炭素数20以下の置換あるいは無置換のアルコキシル基、シアノ基、ニトロ基、炭素数30以下の置換あるいは無置換のシリル基,炭素数30以下の置換あるいは無置換のアリール基、炭素数30以下の置換あるいは無置換の複素環基、もしくは炭素数30以下の置換あるいは無置換のアミノ基を示す。)
【請求項11】
前記正孔注入層は、ポリアニリンおよび/またはオリゴアニリン系の材料により構成されている
請求項10記載の有機EL表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2011−108462(P2011−108462A)
【公開日】平成23年6月2日(2011.6.2)
【国際特許分類】
【出願番号】特願2009−261354(P2009−261354)
【出願日】平成21年11月16日(2009.11.16)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】