説明

検査装置および検査方法

【課題】多層構造の検査対象物の内部の層の画像を良好な画質で取得し、その結果、内部の層の検査精度を向上させる。
【解決手段】波長選択フィルタ113は、検査対象物に照射する照明光の波長を変更する。照明波長設定部173は、検査対象物の第1の層を通して第2の層の検査を行う場合に、第1の層の透光特性に基づいて、波長選択フィルタ113を用いて照明光の波長を設定する。撮影制御部175は、検査用撮像素子120を制御して、照明光が照射された検査対象物を撮影させる。検査部172は、撮影の結果得られた検査画像に基づいて、第2の層の検査を行う。本発明は、例えば、TFTアレイ基板の検査装置に適用できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、検査装置および検査方法に関し、特に、多層構造の検査対象物の検査を行う場合に用いて好適な検査装置および検査方法に関する。
【背景技術】
【0002】
図1は、フラットパネルディスプレイ等に用いられるTFT(Thin Film Transistor)アレイ基板の断面の構成の一例を示している。
【0003】
このTFTアレイ基板1は、ガラス基板11の上に金属配線12が形成され、ガラス基板11および金属配線12の表面全体を覆うように絶縁膜13が形成されている。また、絶縁膜13の上に金属配線14が形成され、絶縁膜13および金属配線14の表面全体を覆うように絶縁膜15が形成されている。さらに、絶縁膜15の上に、機能性膜16および機能性膜17が形成されている。また、機能性膜16および機能性膜17の上に、透明電極18および機能性膜19が形成されている。一例として、機能性薄膜16および機能性薄膜17は、カラーフィルタであり、機能性薄膜19はブラックマトリクスである。
【0004】
ここで、金属配線14の欠陥を検出するための検査を行う場合について検討する。なお、以下、説明を簡単にするために、特に言及する場合を除いて、機能性膜19の特性のみを考慮し、他の層の特性は考慮しないものとする。
【0005】
例えば、機能性膜19が、ブラックマトリックスにより構成される場合、可視光を照明光として用いたのでは、機能性膜19の下にある金属配線14の鮮明な画像を得ることが難しい。
【0006】
そこで、例えば、機能性膜19を透過する赤外光を照明光として用いることが考えられる(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2010−276767号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、波長帯域が狭いほぼ単色の赤外光源を用いた場合、対応可能な機能性膜19の種類が限定されてしまう。そのため、例えば、仕様変更等により機能性膜19の代わりに透過特性が異なる別の機能性膜がTFTアレイ基板1に用いられた場合、金属配線14の鮮明な画像を得ることが困難になる。これは、例えば、TFTアレイ基板1とは機能性膜の透過特性が異なるTFTアレイ基板を検査する場合も同様である。
【0009】
一方、透過特性が異なる機能性膜に対応できるように、特許文献1に記載の発明のように、波長帯域が広い(例えば、100nm以上)赤外光源を用いることが考えられる。しかしながら、機能性膜19の波長特性は、照明光の波長により様々に変化するため、照明光の波長帯域が広くなるほど、ノイズが発生しやすくなり、検査画像の画質が低下する恐れがある。これは、機能性膜19以外の他の層についても同様である。
【0010】
本発明は、このような状況に鑑みてなされたものであり、多層構造の検査対象物の内部の層の画像を良好な画質で取得し、その結果、内部の層の検査精度を向上させるようにするものである。
【課題を解決するための手段】
【0011】
本発明の一側面の検査装置は、検査対象物に照射する照明光の波長を変更する照明波長変更部と、検査対象物の第1の層を通して第2の層の検査を行う場合に、第1の層の透光特性に基づいて、照明波長変更部を用いて照明光の波長を設定する照明波長設定部と、照明光が照射された検査対象物の画像の撮影を制御する撮影制御部と、照明光が照射された検査対象物の画像に基づいて、第2の層の検査を行う検査部とを備える。
【0012】
本発明の一側面の検査装置においては、検査対象物の第1の層を通して第2の層の検査を行う場合に、第1の層の透光特性に基づいて、照明波長変更部を用いて照明光の波長が設定され、照明光が照射された検査対象物の画像の撮影が制御され、照明光が照射された検査対象物の画像に基づいて、第2の層の検査が行われる。
【0013】
従って、多層構造の検査対象物の内部の層(第2の層)の画像を良好な画質で取得することができる。その結果、多層構造の検査対象物の内部の層の検査精度を向上させることができる。
【0014】
この照明波長変更部は、例えば、波長特性が異なる複数のフィルタを備える波長選択フィルタ、AOTF(音響光学可変波長フィルタ)、波長の異なる複数の光源を切り替える装置により構成される。この波長設定部、撮影制御部、検査部は、例えば、コンピュータ、または、各種の制御装置により構成される。
【0015】
この照明波長設定部には、第1の層の透光特性が未知である場合、照明波長変更部を用いて照明光の波長を所定の範囲内で異なる複数の値に設定させ、この撮影制御部には、各波長の照明光が照射された検査対象物の画像をそれぞれ撮影するように制御させ、この検査部には、各波長の照明光がそれぞれ照射された検査対象物の複数の画像に基づいて、第2の層の検査を行わせることができる。
【0016】
これにより、第1の層の透光特性が未知の場合にも、多層構造の検査対象物の内部の層(第2の層)の画像を良好な画質で取得することができる。その結果、多層構造の検査対象物の内部の層の検査精度を向上させることができる。
【0017】
この照明波長設定部には、第1の層の透光特性に基づいて設定した波長の照明光が照射された検査対象物の画像に基づいて所望の検査結果が得られなかった場合、照明波長変更部を用いて照明光の波長を所定の範囲内で異なる複数の値に設定させ、この撮影制御部には、各波長の照明光が照射された検査対象物の画像をそれぞれ撮影するように制御させ、この検査部には、各波長の照明光がそれぞれ照射された検査対象物の複数の画像に基づいて、第2の層の検査を行わせることができる。
【0018】
これにより、多層構造の検査対象物の内部の層(第2の層)の画像を良好な画質で取得することができる可能性が高くなる。その結果、多層構造の検査対象物の内部の層の検査精度を向上させることができる。
【0019】
この検査装置には、検査対象物の第2の層の深さに基づいて、検査対象物を撮影する際のフォーカス位置を設定するフォーカス設定部をさらに設けることができる。
【0020】
これにより、多層構造の検査対象物の内部の層(第2の層)の画像をより良好な画質で取得することができる。その結果、多層構造の検査対象物の内部の層の検査精度を向上させることができる。
【0021】
このフォーカス設定部は、例えば、コンピュータ、または、各種の制御装置により構成される。
【0022】
このフォーカス設定部には、検査対象物の第2の層の深さが未知の場合、フォーカス位置を所定の範囲内で異なる複数の位置に設定させ、この撮影制御部には、各フォーカス位置において検査対象物の画像を撮影するように制御させ、この検査部には、各フォーカス位置において撮影された検査対象物の複数の画像に基づいて、第2の層の検査を行わせることができる。
【0023】
これにより、多層構造の検査対象物の内部の層(第2の層)の深さが未知の場合にも、内部の層の画像を良好な画質で取得することができる。その結果、多層構造の検査対象物の内部の層の検査精度を向上させることができる。
【0024】
この照明波長変更部は、所定の光源から発せられる光から抽出する波長を変更することにより、検査対象物に照射する照明光の波長を変更させることができる。
【0025】
この照明波長変更部には、それぞれ異なる波長の光を発する複数の光源の中から使用する光源を選択することにより、検査対象物に照射する照明光の波長を変更させることができる。
【0026】
本発明の一側面の検査方法は、検査対象物に照射する照明光の波長を変更する照明波長変更部を備える検査装置が、検査対象物の第1の層を通して第2の層の検査を行う場合に、第1の層の透光特性に基づいて、照明波長変更部を用いて照明光の波長を設定し、照明光が照射された検査対象物の画像の撮影を制御し、照明光が照射された検査対象物の画像に基づいて、第2の層の検査を行うステップを含む。
【0027】
本発明の一側面の検査方法においては、検査対象物の第1の層を通して第2の層の検査を行う場合に、第1の層の透光特性に基づいて、照明波長変更部を用いて照明光の波長が設定され、照明光が照射された検査対象物の画像の撮影が制御され、照明光が照射された検査対象物の画像に基づいて、第2の層の検査が行われる。
【0028】
従って、多層構造の検査対象物の内部の層(第2の層)の画像を良好な画質で取得することができる。その結果、多層構造の検査対象物の内部の層の検査精度を向上させることができる。
【0029】
この照明波長変更部は、例えば、波長特性が異なる複数のフィルタを備える波長選択フィルタ、AOTF(音響光学可変波長フィルタ)、波長の異なる複数の光源を切り替える装置により構成される。
【発明の効果】
【0030】
本発明の一側面によれば、多層構造の検査対象物の内部の層の画像を良好な画質で取得することができる。また、本発明の一側面によれば、多層構造の検査対象物の内部の層の検査精度を向上させることができる。
【図面の簡単な説明】
【0031】
【図1】TFTアレイ基板の構成例を示す断面図である。
【図2】本発明を適用した検査装置の一実施の形態を示すブロック図である。
【図3】波長選択フィルタの構成例を示す図である。
【図4】検査制御部の機能の構成例を示すブロック図である。
【図5】検査処理を説明するためのフローチャートである。
【図6】検査処理を説明するためのフローチャートである。
【図7】検査対象物の構成例を示す断面図である。
【発明を実施するための形態】
【0032】
以下、本発明を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
1.実施の形態
2.変形例
【0033】
<1.実施の形態>
[検査装置101の構成例]
図2は、本発明を適用した検査装置101の一実施の形態を示すブロック図である。
【0034】
検査装置101は、検査対象物102を撮影することにより得られる画像に基づいて、検査対象物102の回路パターンの欠陥の検出等を行う検査装置である。
【0035】
検査装置101は、光源111、レンズ112、波長選択フィルタ113、ハーフミラー114、ダイクロイックミラー115、全反射ミラー116、対物レンズ117、ハーフミラー118、結像レンズ119、検査用撮像素子120、結像レンズ121、観察用撮像素子122、検査制御部123、および、フォーカス制御部124を含むように構成される。
【0036】
光源111は、例えば、所定の範囲の波長帯域の赤外光を発するハロゲンランプにより構成される。光源111から発せられた照明光は、レンズ112よりコリメートされた後、波長選択フィルタ113に入射する。
【0037】
図3は、波長選択フィルタ113の構成例を示している。
【0038】
波長選択フィルタ113は、フィルタ151a乃至151dの4種類のフィルタを備えている。フィルタ151a乃至151dは、それぞれ異なる透過波長帯域を有している。また、フィルタ151a乃至151dの透過波長帯域の幅ほぼ等しく、かつ狭い範囲に限定されている。従って、フィルタ151a乃至151dをそれぞれ透過することにより抽出される照明光は、ほぼ単色光に近い光となる。さらに、例えば、フィルタ151a乃至151dの透過波長帯域は、光源111の波長帯域内において、ほぼ等間隔になるように設定される。
【0039】
また、波長選択フィルタ113は、検査制御部123の制御の下に、矢印Aの方向に物理的に移動させることができ、光源111から発せられる照明光の光路上に設置するフィルタを切り替えることができる。これにより、検査対象物102に照射する照明光の波長が変更される。
【0040】
なお、以下、フィルタ151a乃至151dを個々に区別する必要がない場合、単にフィルタ151と称する。
【0041】
また、波長選択フィルタ113に設けられるフィルタ151の数は、この例に限定されるものではなく、任意の数に設定することが可能である。
【0042】
図2に戻り、波長選択フィルタ113のいずれかのフィルタ151を透過した照明光は、ハーフミラー114により一部がダイクロイックミラー115の方向に反射され、残りがハーフミラー114を透過する。ダイクロイックミラー115の方向に反射された照明光は、ダイクロイックミラー115を透過し、全反射ミラー116により反射された後、対物レンズ117を介して、検査対象物102に照射される。
【0043】
照明光の反射光等を含む検査対象物102からの観察光は、対物レンズ117を透過し、全反射ミラー116により反射され、ダイクロイックミラー115により一部が反射されて、フォーカス制御部124に入射し、残りがダイクロイックミラー115を透過する。
【0044】
ダイクロイックミラー115を透過した観察光は、ハーフミラー114により一部が反射され、残りがハーフミラー114を透過する。ハーフミラー114を透過した観察光は、ハーフミラー118により一部が反射され、残りがハーフミラー118を透過する。
【0045】
ハーフミラー118を透過した観察光は、結像レンズ119により、検査用撮像素子120の結像面において結像する。検査用撮像素子120は、検査制御部123の制御の下に、観察光による像、すなわち、検査対象物102の像を撮影し、その結果得られる画像(以下、検査画像と称する)を検査制御部123に供給する。
【0046】
一方、ハーフミラー118により反射された観察光は、結像レンズ121により、観察用撮像素子122の結像面において結像する。観察用撮像素子122は、制御部(不図示)の制御の下に、観察光による像、すなわち、検査対象物102の像を撮影し、その結果得られる画像(以下、観察画像と称する)をモニタ(不図示)に供給し、モニタに表示させる。
【0047】
検査制御部123は、例えば、コンピュータ、あるいは、各種の制御装置により構成される。検査制御部123は、検査用撮像素子120から供給される検査画像に基づいて、検査対象物102の検査を行い、検査結果を外部に出力する。
【0048】
フォーカス制御部124は、オートフォーカス機能により対物レンズ117のフォーカス位置を制御したり、検査制御部123の制御の下に、対物レンズ117のフォーカス位置を指定された位置に設定したりする。
【0049】
[検査制御部123の構成例]
図4は、検査制御部123の機能の構成例を示すブロック図である。
【0050】
検査制御部123は、入力部171、検査部172、照明波長設定部173、フォーカス設定部174、撮影制御部175、および、出力部176を含むように構成される。
【0051】
入力部171は、各種の入力装置により構成され、例えば、検査対象物102の特性データ等の各種のデータや、検査装置101に対する各種の指令が入力される。入力部171は、入力されたデータおよび指令を検査部172に供給する。
【0052】
検査部172は、入力部171から供給される検査対象部102の特性データに含まれるデータを、必要に応じて照明波長設定部173およびフォーカス設定部174に供給する。また、検査部172は、照明波長設定部173、撮影制御部175、および、フォーカス設定部174に各種の指令を与え、所定の処理を実行させる。
【0053】
さらに、検査部172は、撮影制御部175を介して、検査用撮像素子120から供給される検査画像に基づいて、検査対象物102の検査を行う。そして、検査部172は、検査対象物102の検査結果を、出力部176を介して外部に出力する。
【0054】
照明波長設定部173は、検査部172の指令の基に、波長選択フィルタ113を制御して、検査対象物102に照射される照明光の波長を設定する。
【0055】
フォーカス設定部174は、検査部172の指令の基に、フォーカス制御部124を制御して、対物レンズ117のフォーカス位置を設定する。
【0056】
撮影制御部175は、検査部172の指令の基に、検査用撮像素子120による検査画像の撮影を制御する。また、撮影制御部175は、検査用撮像素子120から検査画像を取得し、検査部172に供給する。
【0057】
[検査処理]
次に、図5および図6のフローチャートを参照して、検査装置101により実行される検査処理について説明する。
【0058】
なお、以下、検査対象物102が図7に示される構成を有しており、金属配線214の欠陥の検出を行う場合を具体例に挙げて説明する。
【0059】
図7の例において、検査対象物102は、図1のフラットパネルディスプレイ等に用いられるTFTアレイ基板1と同様の構成を有している。なお、図中、図1と対応する部分には、下二桁が同じ符号を付している。
【0060】
具体的には、検査対象物102は、ガラス基板211の上に金属配線212が形成され、ガラス基板211および金属配線212の表面全体を覆うように絶縁膜213が形成されている。また、絶縁膜213の上に金属配線214が形成され、絶縁膜213および金属配線214の表面全体を覆うように絶縁膜215が形成されている。さらに、絶縁膜215の上に、例えばカラーフィルタなどにより構成される機能性膜216および機能性膜217が形成されている。また、機能性膜216および機能性膜217の上に、透明電極218、および、例えばカラーフィルタまたはブラックマトリックスなどにより構成される機能性膜219が形成されている。
【0061】
なお、以下、説明を簡単にするために、特に言及する場合を除いて、機能性膜219の特性のみを考慮し、他の層の特性は考慮しないものとする。
【0062】
ステップS1において、検査部172は、入力部171を介して検査対象物102の特性データが入力された場合、その特性データを取得する。
【0063】
なお、特性データが入力されなかった場合、ステップS1の処理は行われない。
【0064】
ステップS2において、検査部172は、機能性膜219の透光特性が既知であるか否かを判定する。検査部172は、取得した特性データに機能性膜219の透光特性が含まれる場合、機能性膜219の透光特性が既知であると判定し、処理はステップS3に進む。
【0065】
ステップS3において、検査装置101は、機能性膜219の透光特性に基づいて、照明光の波長を設定する。具体的には、検査部172は、機能性膜219の透光特性を照明波長設定部173に供給するとともに、照明光の波長の設定を指令する。照明波長設定部173は、波長選択フィルタ113のフィルタ151a乃至151dの中から、機能性膜219の透過波長帯域に含まれる波長の光(すなわち、機能性膜219を透過する波長の光)を透過するフィルタ151を選択する。そして、照明波長設定部173は、選択したフィルタ151が照明光の光路上にくるように、波長選択フィルタ113の位置を制御する。
【0066】
ステップS4において、検査部172は、検査対象となる層の深さが既知であるか否かを判定する。検査部172は、取得した特性データに検査対象となる層(いまの場合、金属配線214)の検査対象物102の表面からの深さが含まれる場合、検査対象となる層の深さが既知であると判定し、処理はステップS5に進む。
【0067】
ステップS5において、検査装置101は、検査対象となる層の深さに基づいて、フォーカス位置を設定する。具体的には、検査部172は、検査対象となる金属配線214の深さをフォーカス設定部174に通知するとともに、フォーカス位置の設定を指令する。フォーカス設定部174は、フォーカス制御部124に指令して、通常のオートフォーカスで設定される位置(すなわち、検査対象物102の表面)より金属配線214の深さだけ深い位置に対物レンズ117のフォーカス位置を設定させる。これにより、金属配線214の表面にフォーカス位置が設定される。
【0068】
ステップS6において、検査装置101は、検査画像を取得する。具体的には、検査部172は、検査画像の取得を撮影制御部175に指令する。撮影制御部175は、検査用撮像素子120を制御して、検査対象物102を撮影させ、その結果得られた検査画像を取得する。撮影制御部175は、取得した検査画像を検査部172に供給する。
【0069】
このとき取得される検査画像は、機能性膜219の透光特性に基づいて設定された波長の照明光が照射され、金属配線214の表面にフォーカス位置が設定された状態で撮影されたものである。
【0070】
その後、処理はステップS11に進む。
【0071】
一方、ステップS4において、検査部172は、取得した特性データに検査対象となる層(いまの場合、金属配線214)の検査対象物102の表面からの深さが含まれない場合、または、特性データを取得できなかった場合、検査対象となる層の深さが未知であると判定し、処理はステップS7に進む。
【0072】
ステップS7において、検査装置101は、フォーカス位置を検査対象物102の表面に設定する。具体的には、検査部172は、検査対象物102の表面にフォーカス位置を設定するようにフォーカス設定部174に指令する。フォーカス設定部174は、フォーカス制御部124に指令して、通常のオートフォーカスで設定される位置(すなわち、検査対象物102(機能性膜219)の表面)に対物レンズ117のフォーカス位置を設定させる。
【0073】
ステップS8において、ステップS6の処理と同様に、検査画像が取得される。
【0074】
ステップS9において、検査部172は、全てのフォーカス位置について検査画像を取得したか否かを判定する。まだ全てのフォーカス位置について、検査画像を取得していないと判定された場合、処理はステップS10に進む。
【0075】
ステップS10において、検査装置101は、フォーカス位置をシフトする。具体的には、検査部172は、フォーカス位置を現在の位置から所定の距離だけ深い位置に設定するようにフォーカス設定部174に指令する。フォーカス設定部174は、フォーカス制御部124に指令して、対物レンズ117のフォーカス位置を現在の位置から所定の距離だけ深い位置にシフトさせる。
【0076】
その後、処理はステップS8に戻り、ステップS9において、全てのフォーカス位置について検査画像を取得したと判定されるまで、ステップ8乃至S10の処理が繰り返し実行される。これにより、検査対象物102の表面から所定の深さまで、フォーカス位置を所定の距離ずつシフトしながら、検査対象物102が撮影され、各フォーカス位置での検査画像が取得される。
【0077】
なお、フォーカス位置の設定範囲、および、1回あたりのシフト量は、例えば、ユーザが設定することができる。
【0078】
一方、ステップS9において、全てのフォーカス位置について検査画像を取得したと判定された場合、処理はステップS11に進む。
【0079】
ステップS11において、検査部172は、検査処理演算を実行する。例えば、検査部172は、取得した全ての検査画像について、正常な金属配線214のパターンを含む画像とのパターンマッチングを行い、検査対象となる金属配線214の欠陥の検出を試みる。
【0080】
なお、検査処理演算に用いる手法には、パターンマッチングに限定されるものではなく、検査画像を用いる任意の手法を採用することができる。
【0081】
ステップS12において、検査部172は、検査処理演算の結果に基づいて、欠陥を検出できたか否かを判定する。欠陥を検出できたと判定された場合、処理はステップS13に進む。
【0082】
ステップS13において、検査部172は、出力部176を介して、欠陥の検出結果を出力する。
【0083】
その後、検査処理は終了する。
【0084】
一方、ステップS12において、欠陥を検出できなかったと判定された場合、処理はステップS14に進む。
【0085】
なお、欠陥の検出を失敗する場合の例としては、パターンマッチングの結果、実際に欠陥を検出できなかった場合の他、例えば、検査画像の画質が悪くて、十分な量の特徴点が抽出できない等の要因により、パターンマッチングに失敗した場合等も含む。
【0086】
また、ステップS2において、検査部172は、取得した特性データに機能性膜219の透光特性が含まれない場合、または、特性データを取得できなかった場合、機能性膜219の透光特性が未知であると判定し、処理はステップS14に進む。
【0087】
ステップS14において、検査装置101は、照明光の波長を初期値に設定する。具体的には、検査部172は、照明光の波長を初期値に設定するように照明波長設定部173に指令する。照明波長設定部173は、例えば、予め設定されている順番に従って、最初に使用するフィルタ151を選択する。そして、照明波長設定部173は、選択したフィルタ151が照明光の光路上にくるように、波長選択フィルタ113の位置を制御する。
【0088】
ステップS15において、ステップS4の処理と同様に、検査対象となる層の深さが既知であるか否かが判定され、検査対象となる層の深さが既知であると判定された場合、処理はステップS16に進む。
【0089】
ステップS16において、ステップS5の処理と同様に、検査対象となる層の深さに基づいて、フォーカス位置が設定される。
【0090】
なお、先にステップS5において、検査対象となる層の深さに基づいて、フォーカス位置が設定されている場合、このステップS16の処理は省略することができる。
【0091】
ステップS17において、ステップS6の処理と同様に、検査画像が取得される。
【0092】
ステップS18において、検査部172は、照明光の全ての波長の範囲について、検査画像を取得したか否かを判定する。検査部172は、波長選択フィルタ113のフィルタ151a乃至151dのうち、まだ検査画像の取得に使用していないフィルタがある場合、照明光の全ての波長の範囲について、検査画像を取得していないと判定し、処理はステップS19に進む。
【0093】
ステップS19において、検査装置101は、照明光の波長をシフトする。具体的には、検査部172は、照明光の波長をシフトするように照明波長設定部173に指令する。照明波長設定部173は、例えば、予め設定されている順番に従って、次に使用するフィルタ151を選択する。そして、照明波長設定部173は、選択したフィルタ151が照明光の光路上にくるように、波長選択フィルタ113の位置を制御する。
【0094】
その後、処理はステップS17に戻り、ステップS18において、照明光の全ての波長の範囲について、検査画像を取得したと判定されるまで、ステップS17乃至S19の処理が繰り返し実行される。これにより、フィルタ151a乃至151dをそれぞれ用いて、それぞれ異なる波長の照明光が照射された状態で検査対象物102が撮影され、各波長に対応する複数の検査画像が取得される。
【0095】
なお、先にステップS6の処理で、機能性膜219の透光特性に基づく波長の照明光を用いて検査画像を取得済みである場合、ステップS17乃至S19の処理で、その波長の照明光を用いた検査画像を、改めて取得しないようにすることが可能である。
【0096】
一方、ステップS18において、検査部172は、波長選択フィルタ113のフィルタ151a乃至151dのうち、検査画像の取得に使用していないフィルタがない場合、照明光の全ての波長の範囲について、検査画像を取得したと判定し、処理はステップS26に進む。
【0097】
また、ステップS15において、検査対象となる層の深さが未知である判定された場合、処理はステップS20に進む。
【0098】
ステップS20において、ステップS7の処理と同様に、フォーカス位置が検査対象物102の表面に設定される。
【0099】
ステップS21において、ステップS8の処理と同様に、検査画像が取得される。
【0100】
ステップS22において、ステップS9の処理と同様に、全てのフォーカス位置について、検査画像を取得したか否かが判定され、まだ全てのフォーカス位置について、検査画像を取得していないと判定された場合、処理はステップS23に進む。
【0101】
ステップS23において、ステップS10の処理と同様に、フォーカス位置がシフトされる。
【0102】
その後、処理はステップS21に戻り、ステップS22において、全てのフォーカス位置について、検査画像を取得したと判定されるまで、ステップS21乃至S23の処理が繰り返し実行される。
【0103】
一方、ステップS22において、全てのフォーカス位置について、検査画像を取得したと判定された場合、処理はステップS24に進む。
【0104】
ステップS24において、ステップS18の処理と同様に、照明光の全ての波長の範囲について、検査画像を取得したか否かが判定され、まだ照明光の全ての波長の範囲について、検査画像を取得していないと判定された場合、処理はステップS25に進む。
【0105】
ステップS25において、ステップS19の処理と同様に、照明光の波長がシフトされる。
【0106】
その後、処理はステップS20に戻り、ステップS24において、照明光の全ての波長の範囲について、検査画像を取得したと判定されるまで、ステップS20乃至S25の処理が繰り返し実行される。これにより、設定可能な照明光の波長とフォーカス位置の全ての組み合わせについて、検査画像が取得される。
【0107】
なお、先にステップS7乃至S10の処理で、機能性膜219の透光特性に基づく波長の照明光を用いて検査画像を取得済みである場合、ステップS20乃至S25の処理で、その波長の照明光を用いた検査画像を、改めて取得しないようにすることが可能である。
【0108】
一方、ステップS24において、照明光の全ての波長の範囲について、検査画像を取得したと判定された場合、処理はステップS26に進む。
【0109】
ステップS26において、ステップS11の処理と同様に、検査処理演算が実行される。このとき、例えば、取得した複数の検査画像に対して、それぞれ個別に検査処理演算を実行するようにしてもよいし、同じフォーカス位置で、異なる波長の照明光を用いて撮影した複数の検査画像を合成して、合成した画像に対して検査処理演算を実行するようにしてもよい。あるいは、個々の検査画像と合成画像の両方に対して検査処理演算を実行するようにしてもよい。
【0110】
ステップS27において、ステップS12の処理と同様に、欠陥を検出できたか否かが判定され、欠陥を検出できたと判定された場合、処理はステップS28に進む。
【0111】
ステップS28において、ステップS13の処理と同様に、欠陥の検出結果が出力され、検査処理は終了する。
【0112】
一方、ステップS27において、欠陥を検出できなかったと判定された場合、処理はステップS29に進む。
【0113】
ステップS29において、検査部172は、出力部176を介して、欠陥検出NGを出力する。すなわち、検査部172は、欠陥を検出できなかったことを外部に通知する。
【0114】
その後、検査処理は終了する。
【0115】
このようにして、機能性膜219の透光特性が既知である場合、その透光特性に基づいて照明光の波長が設定されるので、迅速かつ簡単に金属配線214の画像を良好な画質で取得することができる。その結果、金属配線214の検査精度を向上させることができるとともに、検査時間を短縮することができる。
【0116】
また、検査対象物102に照射される照明光が単色光に近い光となるため、例えば、100nm以上の広い波長帯の照明光を用いる場合と比較して、ノイズの発生を抑制し、検査画像の画質を向上させることができる。
【0117】
さらに、機能性膜219の透光特性に基づいて設定した照明光の波長で金属配線214の欠陥を検出できなかった場合、所定の範囲内で照明光の波長をシフトさせながら、各波長に対応する複数の検査画像が取得され、取得した複数の検査画像に基づいて検査が実行される。これにより、例えば、照明光の波長によって金属配線214のエッジの強度が変化するなど、機能性膜219の透光特性以外に検査画像の画質が変動する要因がある場合に、金属配線214の検査に適した検査画像を取得できる可能性が高くなる。その結果、金属配線214の検査精度を向上させることができるとともに、検査時間を短縮することができる。これは、機能性膜219の透光特性が未知の場合も同様である。
【0118】
また、金属配線214の深さが既知である場合、その深さに基づいて、対物レンズ117のフォーカス位置が設定されるので、迅速かつ簡単に金属配線214の画像を良好な画質で取得することができる。その結果、金属配線214の検査精度を向上させることができるとともに、検査時間を短縮することができる。
【0119】
さらに、金属配線214の深さが未知である場合、所定の範囲内でフォーカス位置をシフトしながら、各フォーカス位置での複数の検査画像が取得され、取得した複数の検査画像に基づいて検査が実行される。これにより、金属配線214の検査に適した検査画像を取得できる可能性が高くなる。その結果、金属配線214の検査精度を向上させることができるとともに、検査時間を短縮することができる。
【0120】
<2.変形例>
以下、本発明の実施の形態の変形例について説明する。
【0121】
[変形例1]
例えば、照明光の波長を変更する手段または方法として、上述した複数のフィルタを切り替える以外にも、例えば、AOTF(音響光学可変波長フィルタ)のような透過波長帯域が可変のフィルタを用いて、抽出する照明光の波長を連続的に変更できるようにしてもよい。あるいは、波長が異なる光源を複数設けて、使用する光源を選択するようにしてもよい。
【0122】
[変形例2]
さらに、以上の説明では、先に照明光の波長およびフォーカス位置をシフトさせながら複数の検査画像を取得した後、検査処理演算を実行する例を示したが、検査画像を1つ取得する毎に、取得した検査画像を用いて検査処理演算を実行するようにしてもよい。これにより、全ての検査画像を取得する前に、検査を終了させることが可能になる。
【0123】
また、この場合、機能性膜19の透過特性に基づいて設定された波長の照明光により金属配線214の欠陥を検出できなかった場合、その波長に近い順に照明光の波長を設定するようにしてもよい。これにより、より検査が成功する可能性が高い検査画像から検査を実行することができ、検査画像を取得する数を減らすことが可能になる。
【0124】
[変形例3]
また、以上の説明では、検査対象となる層の上方の層のうちの1層のみの透光特性に基づいて、照明光の波長を設定する例を示したが、2層以上の透光特性に基づいて、照明光の波長を設定するようにしてもよい。例えば、図7の検査対象物102においては、機能性膜216、機能性膜217、および、機能性膜219の透光特性に基づいて、照明光の波長を設定するようにしてもよい。
【0125】
[変形例4]
さらに、以上の説明では、検査対象物102の反射光による像を用いて検査を行う例を示したが、本発明は、検査対象物102の透過光による像を用いて検査を行う場合にも適用することができる。
【0126】
[変形例5]
さらに、本発明は、反射光または透過光による直接的な画像(検出画像)を用いて検査する以外に、検査対象物に含まれる物質が発生する蛍光スペクトルまたは反射スペクトルを用いて検査する場合にも適用できる。
【0127】
例えば、上述したように複数の波長の照明光を照射して検出される検査対象物のスペクトルから、本来材料として用いる物質以外のスペクトルを検出することにより、異物欠陥や混入物の検出を容易に行うことができる。
【0128】
また、例えば、取得した検査対象物のスペクトルに基づいて、本来遮光されるべき層の下の層の物質のスペクトルを検出することにより、検査画像だけでは判別できないような、その上層の欠損を検出することができる。さらに、スペクトルから各層の物質の特定が行える場合、どの層で欠損が発生しているかを検出することができる。
【0129】
このように、検査画像の他に、スペクトル情報を用いることにより、検査画像の実解像度では検出できない欠陥を検出することが可能になる。
【0130】
[変形例6]
また、以上の説明では、赤外光を照明光として用いる例を示したが、本発明は、赤外光以外の波長帯域の照明光を使用する場合にも適用することができる。
【0131】
[変形例7]
さらに、以上の説明では、照明光の波長およびフォーカス位置の両方を制御する例を示したが、いずれか一方のみを制御するようにすることも可能である。
【0132】
[変形例8]
また、本発明は、上述したTFTアレイ基板以外の、多層構造の検査対象物を検査する場合に適用することができる。また、本発明は、基板のパターンの欠陥の検出以外の検査を行う場合にも適用することができる。すなわち、本発明は、多層構造の検査対象物の内部の層を撮影した画像に基づいて、その内部の層を検査したり、多層構造の検査対象物のスペクトルに基づいて、検査対象物を検査したりする場合に適用することができる。
【0133】
上述した検査制御部123の一連の処理は、ハードウエアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
【0134】
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
【0135】
また、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
【符号の説明】
【0136】
101 検査装置
102 検査対象物
111 光源
112 レンズ
113 波長選択フィルタ
117 対物レンズ
119 結像レンズ
120 検査用撮像素子
123 検査制御部
124 フォーカス制御部
151a乃至151d フィルタ
172 検査部
173 照明波長設定部
174 フォーカス設定部
175 撮影制御部
214 金属配線
219 機能性膜

【特許請求の範囲】
【請求項1】
検査対象物に照射する照明光の波長を変更する照明波長変更部と、
前記検査対象物の第1の層を通して第2の層の検査を行う場合に、前記第1の層の透光特性に基づいて、前記照明波長変更部を用いて前記照明光の波長を設定する照明波長設定部と、
前記照明光が照射された前記検査対象物の画像の撮影を制御する撮影制御部と、
前記照明光が照射された前記検査対象物の画像に基づいて、前記第2の層の検査を行う検査部と
を備えることを特徴とする検査装置。
【請求項2】
前記照明波長設定部は、前記第1の層の透光特性が未知である場合、前記照明波長変更部を用いて前記照明光の波長を所定の範囲内で異なる複数の値に設定し、
前記撮影制御部は、各波長の前記照明光が照射された前記検査対象物の画像をそれぞれ撮影するように制御し、
前記検査部は、各波長の前記照明光がそれぞれ照射された前記検査対象物の複数の画像に基づいて、前記第2の層の検査を行う
ことを特徴とする請求項1に記載の検査装置。
【請求項3】
前記照明波長設定部は、前記第1の層の透光特性に基づいて設定した波長の前記照明光が照射された前記検査対象物の画像に基づいて所望の検査結果が得られなかった場合、前記照明波長変更部を用いて前記照明光の波長を所定の範囲内で異なる複数の値に設定し、
前記撮影制御部は、各波長の前記照明光が照射された前記検査対象物の画像をそれぞれ撮影するように制御し、
前記検査部は、各波長の前記照明光がそれぞれ照射された前記検査対象物の複数の画像に基づいて、前記第2の層の検査を行う
ことを特徴とする請求項1に記載の検査装置。
【請求項4】
前記検査対象物の前記第2の層の深さに基づいて、前記検査対象物を撮影する際のフォーカス位置を設定するフォーカス設定部を
さらに備えることを特徴とする請求項1乃至3のいずれかに記載の検査装置。
【請求項5】
前記フォーカス設定部は、前記検査対象物の前記第2の層の深さが未知の場合、フォーカス位置を所定の範囲内で異なる複数の位置に設定し、
前記撮影制御部は、各フォーカス位置において前記検査対象物の画像を撮影するように制御し、
前記検査部は、各フォーカス位置において撮影された前記検査対象物の複数の画像に基づいて、前記第2の層の検査を行う
ことを特徴とする請求項4に記載の検査装置。
【請求項6】
前記照明波長変更部は、所定の光源から発せられる光から抽出する波長を変更することにより、前記検査対象物に照射する前記照明光の波長を変更する
ことを特徴とする請求項1に記載の検査装置。
【請求項7】
前記照明波長変更部は、それぞれ異なる波長の光を発する複数の光源の中から使用する光源を選択することにより、前記検査対象物に照射する前記照明光の波長を変更する
ことを特徴とする請求項1に記載の検査装置。
【請求項8】
検査対象物に照射する照明光の波長を変更する照明波長変更部を備える検査装置が、
前記検査対象物の第1の層を通して第2の層の検査を行う場合に、前記第1の層の透光特性に基づいて、前記照明波長変更部を用いて前記照明光の波長を設定し、
前記照明光が照射された前記検査対象物の画像の撮影を制御し、
前記照明光が照射された前記検査対象物の画像に基づいて、前記第2の層の検査を行う
ステップを含むことを特徴とする検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−189348(P2012−189348A)
【公開日】平成24年10月4日(2012.10.4)
【国際特許分類】
【出願番号】特願2011−51053(P2011−51053)
【出願日】平成23年3月9日(2011.3.9)
【出願人】(000002945)オムロン株式会社 (3,542)
【Fターム(参考)】