説明

樹脂組成物

【課題】強度と可撓性を両立し、さらに耐衝撃性に優れる樹脂組成物、及び該組成物を成形することにより得られる樹脂成形体を提供すること。
【解決手段】ポリオレフィン樹脂及び/又はスチレン系樹脂に結晶化度が50%未満のセルロースを配合させた組成物を成形して得られる成形体が強度及び可撓性を両立し、さらに耐衝撃性に優れるという優れた効果を奏するものであることに基づくものであり、ポリオレフィン樹脂及び/又はスチレン系樹脂と、結晶化度が50%未満であるセルロースを含有してなる樹脂組成物、ならびに、前記樹脂組成物を成形してなる樹脂成形体。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、樹脂組成物に関する。更に詳しくは、日用雑貨品、家電部品、自動車部品等として好適に使用し得る樹脂組成物、及び該組成物を成形することにより得られる樹脂成形体に関する。
【背景技術】
【0002】
木粉等の有機充填剤と熱可塑性樹脂とを配合して得られる熱可塑性樹脂組成物が成形材料として用いられている。
【0003】
例えば、特許文献1では、成形品の物理的特性を損なうことなく、押出成形における生産性や射出成形における成形品の金型剥離性を向上するために、熱可塑性樹脂及び木粉等の有機充填剤に加えて、オレフィン−無水マレイン酸共重合体及び/又はオレフィン−無水マレイン酸共重合体の変性品と、脂肪酸アミド、流動パラフィン、融点が50℃以下で沸点が150℃以上のアルコールから選ばれる少なくとも1種と、無機充填剤及び/又は有機滑剤を配合した例が開示されている。
【0004】
特許文献2では、実用に耐え得る機械的特性を備えた成形品を提供することを課題として、メルトインデックスが特定のポリプロピレン成分と、30〜100μmの粒径を有する木粉と、変性ポリオレフィンとを配合した組成物が開示されている。
【0005】
特許文献3では、塩素の混入原因であるパルプの漂白処理及び紙シートに処理する導電剤に塩素含有量ができるだけ少ないもので処理された紙を用いることにより、得られる繊維材料を配合した樹脂組成物が機械強度、耐熱性、低収縮性、外観性の良好な成形品を与えることを報告している。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2008−19355号公報
【特許文献2】特開平7−126455号公報
【特許文献3】特開2003−73988号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1〜3を参酌して、木粉や紙等の繊維材料を用いて強度が高い樹脂成形体を得ることは可能である。しかしながら、強度の高い樹脂成形体は可撓性に劣ることから、強度と可撓性を両立させることが要求されている。
【0008】
本発明の課題は、強度と可撓性を両立し、さらに耐衝撃性に優れる樹脂組成物、及び該組成物を成形することにより得られる樹脂成形体を提供することにある。
【課題を解決するための手段】
【0009】
そこで、本発明者らは、前記課題を解決する為に検討を重ねた結果、ポリオレフィン樹脂及び/又はスチレン系樹脂に結晶化度が50%未満のセルロースを配合させた組成物を成形して得られる成形体が強度及び可撓性を両立し、さらに耐衝撃性に優れるという優れた効果を奏するものであることを見出し、本発明を完成するに至った。
【0010】
本発明は、
〔1〕 ポリオレフィン樹脂及び/又はスチレン系樹脂と、結晶化度が50%未満であるセルロースを含有してなる樹脂組成物、ならびに
〔2〕 前記〔1〕記載の樹脂組成物を成形してなる樹脂成形体
に関する。
【発明の効果】
【0011】
本発明の樹脂組成物は、強度と可撓性を両立し、さらに耐衝撃性に優れるという優れた効果を奏するものである。また、フィラーとしてバイオマス資源であるセルロースを含有するため、低コスト化、総酸化炭素の低排出量化が可能となる。
【発明を実施するための形態】
【0012】
本発明の樹脂組成物は、ポリオレフィン樹脂及び/又はスチレン系樹脂(これらをまとめて、本発明における熱可塑性樹脂ともいう)とセルロースを含有するものであるが、該セルロースが結晶化度が50%未満のものであることに大きな特徴を有する。一般的に、樹脂組成物の剛性を向上させるための手段として、セルロース等の天然由来の有機充填剤を補強材として配合することが知られている。このような樹脂組成物においては、通常、結晶化度が80%程度であるセルロースの結晶化度をさらに高めることにより強度の高い樹脂組成物が得られる。しかし、樹脂としてポリオレフィン樹脂やスチレン系樹脂を用いる場合に結晶化度の高いセルロースを用いると、得られる樹脂組成物の可撓性が低下して、セルロースの有する強度増強効果を十分発揮させることができない。また、強度が高い樹脂は可撓性に劣ることから、樹脂強度と可撓性を両立する更なる樹脂組成物が要求される。そこで、本発明者らが検討した結果、驚くべきことに、ポリオレフィン樹脂及び/又はスチレン系樹脂に結晶化度が50%未満であるセルロースを配合したところ、強度に優れながらも可撓性にも優れ、さらに耐衝撃性にも優れるものとなることが判明した。その詳細な理由は不明であるが、結晶化度が50%未満であるセルロースにおいては分子内に強固な水素結合の存在割合が減るため、ポリオレフィン樹脂やスチレン系樹脂との相互作用が高まるとともに、該セルロースが可塑剤的な役割を担うためであると推察される。なお、本明細書において、「強度」は後述の「曲げ弾性率」により、「可撓性」は後述の「曲げ破断歪み率」により評価される特性のことを意味し、「樹脂組成物の強度と可撓性の両立」とは、該組成物を成形して得られる成形体の強度と可撓性の両立を意味する。
【0013】
<樹脂組成物>
[ポリオレフィン樹脂]
本発明に用いられるポリオレフィン樹脂とは、オレフィンが主たる構成単位である重合体を指し、エチレン、プロピレン等のオレフィンのそれぞれ単独重合体、或いはエチレン−プロピレンのブロック共重合体、ランダム共重合体、あるいはエチレン及び/又はプロピレンと、ブテン、ペンテン、ヘキセン等の他のオレフィンとの共重合体、更には、エチレン及び/又はプロピレンと、酢酸ビニル等の他の単量体との共重合体等が挙げられる。これらの中でも、植物由来原料から合成することができる、エチレン単独重合体(ポリエチレン)、プロピレン単独重合体(ポリプロピレン)、プロピレン−エチレンランダム共重合体、及びプロピレン−エチレンブロック共重合体等が好ましい。
【0014】
なお、ポリオレフィン樹脂は、公知の方法により合成することができるが、市販の製品としては、例えば、日本ポリプロ社製ポリプロピレン ノバテックPP MA3、BC8等のM、Bシリーズ、日本ポリエチレン社製ポリエチレン ノバテックHD HJ360、HY420、HE421、HF313等のHJ、HY、HE、HFシリーズ、日本ポリケム社製プロピレン−エチレンランダム共重合体 ウィンテックWFX4Tに代表されるWFXシリーズ等が挙げられる。
【0015】
[スチレン系樹脂]
本発明に用いられるスチレン系樹脂として、単独重合ポリスチレン(GP−PS)、ハイインパクトポリスチレン(HI−PS)、アクリロニトリル−スチレン共重合樹脂(AS樹脂)、アクリロニトリル−ブタジエン−スチレン共重合樹脂(ABS樹脂)等が挙げられる。
【0016】
なお、スチレン系樹脂は、公知の方法により合成することができるが、市販の製品としては、例えば、PSジャパン社製ポリスチレンGPPS HF77に代表されるGPPSシリーズや、HIPS AG102、VS165に代表されるHIPSシリーズ、日本エイアンドエル社製AS樹脂 ライタックA 100PCFに代表されるライタックAシリーズ、テクノポリマー社製ABS樹脂TECHNO ABS 110、300に代表されるABSシリーズ等が挙げられる。
【0017】
本発明で用いられるポリオレフィン樹脂及びスチレン系樹脂のメルトフローレート(MFR)は、樹脂組成物の成形性、耐衝撃性の観点から、0.2〜60g/10minが好ましく、0.5〜55g/10minがより好ましく、1.0〜50g/10minがさらに好ましい。なお、本明細書において、メルトフローレート(MFR)は、後述の実施例に記載の方法により測定される。
【0018】
また、本発明では、前記ポリオレフィン樹脂及びスチレン系樹脂以外に、他の熱可塑性樹脂を含有することができる。他の熱可塑性樹脂としては、ポリカーボネート樹脂、塩化ビニル樹脂、ポリイミド樹脂、ナイロン樹脂の他に、ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリブチレンサクシネート/アジペート、ポリエチレンサクシネート、ポリ乳酸樹脂、ポリリンゴ酸、ポリグリコール酸、ポリジオキサノン、ポリ(2−オキセタノン)等の脂肪族ポリエステル樹脂;ポリブチレンサクシネート/テレフタレート、ポリブチレンアジペート/テレフタレート、ポリテトラメチレンアジペート/テレフタレート等の脂肪族芳香族コポリエステル樹脂;デンプン、セルロース、キチン、キトサン、グルテン、ゼラチン、ゼイン、大豆タンパク、コラーゲン、ケラチン等の天然高分子と前記脂肪族ポリエステル樹脂あるいは脂肪族芳香族コポリエステル樹脂との混合物等が挙げられる。ポリオレフィン樹脂及びスチレン系樹脂の総含有量は、樹脂組成物中、50重量%以上が好ましく、60重量%以上がより好ましく、70重量%以上がさらに好ましい。
【0019】
[セルロース]
本発明で用いられるセルロースは、結晶化度が50%未満のセルロースである。
【0020】
本明細書において、セルロースの結晶化度は、X線回折法による回折強度値からSegal法により算出したセルロースI型結晶化度であり、下記計算式(A)により定義される。
セルロースI型結晶化度(%)=[(I22.6−I18.5)/I22.6]×100 (A)
〔式中、I22.6は、X線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、I18.5は,アモルファス部(回折角2θ=18.5°)の回折強度を示す〕
ここで、セルロースI型結晶化度とは、セルロース全体のうち結晶領域量の占める割合のことを意味する。従って、セルロースI型結晶化度が50%未満であるセルロースとは、結晶領域量が50%未満であるセルロース、即ち、非晶質部分が50%超えて存在するセルロースであることが分かる。本明細書においては、このように非晶質部分が50%超えて存在するセルロースを非晶質セルロース、結晶領域量が50%以上存在するセルロースを結晶性セルロースということもある。なお、セルロースI型とは天然セルロースの結晶形のことであり、セルロースI型結晶化度は、セルロースの物理的性質、及び化学的性質とも関係し、その値が大きいほど硬度、密度等は増すが、伸びや柔軟性、化学反応性は低下する。
【0021】
本発明で用いられるセルロースの結晶化度は、50%未満であり、樹脂組成物の強度及び可撓性を両立する観点から、45%以下が好ましく、30%以下がより好ましく、20%以下がさらに好ましく、10%以下がさらに好ましく、X線回折分析においてI型結晶が検出されない、実質的に0%であることがさらに好ましい。なお、計算式(A)で定義されたセルロースI型結晶化度では、計算上マイナスの値になる場合があるが、マイナスの値の場合はセルロースI型結晶化度は0%とする。また、本発明では、結晶化度が異なるセルロースを2種以上組み合わせて用いてもよいが、その場合のセルロースの結晶化度とは、用いられるセルロースの加重平均により求められる結晶化度を意味し、その値が前記範囲内であることが好ましい。
【0022】
セルロースは、結晶化度が50%未満であれば特に限定はないが、例えば、セルロース含有原料に後述の機械的処理等を施すことにより得られるセルロースであることが好ましい。
【0023】
セルロース含有原料としては、特に制限はなく、幹、枝、葉、茎、根、種子、果実等の植物の各部位、例えば、稲わら、トウモロコシ茎等の植物茎・葉類;籾殻、パーム殻、ココナッツ殻等の植物殻類等が使用できる。また、間伐材、剪定枝、各種木材チップ、木材から製造されるウッドパルプ、綿の種子の周囲の繊維から得られるコットンリンターパルプ等のパルプ類;新聞紙、段ボール、雑誌、上質紙等の紙類を使用してもよいが、着色の少ない樹脂成形体を得る観点からは、パルプが好ましい。またさらに、新聞紙、段ボール、雑誌、上質紙等の紙類(古紙)を再生した再生パルプや再生紙を使用することもできる。
【0024】
再生パルプや再生紙は、脱墨剤使用による脱墨や、脱灰分処理により原料古紙からインキ、灰分を剥離することにより製造することができる。脱墨処理としては、洗浄法とフローテーション法に大別されるが、着色の少ない樹脂成形体を得る観点からは、フローテーション法が好ましい。脱墨剤としては、特に限定されるものではなく公知のものを使用することができるが、脱墨、脱灰分性能の観点から、ポリオキシエチレンアルキルエーテルや、アルコールやフェノール系化合物にエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のアルキレンオキサイドを付加させたノニオン界面活性剤が好ましく、樹脂組成物の強度と可撓性の両立の観点からアルコールにアルキレンオキサイドを付加させたノニオン界面活性剤がより好ましく、下記一般式(B)で表される化合物がさらに好ましい。
−O−(C2xO)(AO)(C2yO)−H (B)
〔式中、
:炭素数8〜24の1価アルコール又は炭素数6〜16の直鎖もしくは分岐のアルキル基もしくはアルケニル基を有するアルキルフェノールから水酸基を除いた残基
AO:エチレンオキサイド基を必須として含む炭素数2〜4の1種類以上のアルキレンオキサイド基がブロック又はランダムに配列する基
x,y:それぞれ3又は4で、同一でも異なっていてもよい
l:1≦l≦300
m:50<m≦300
n:1≦n≦300
を意味する〕
【0025】
また、セルロース含有原料としては、市販の結晶性セルロースも使用できる。市販の結晶性セルロースとしては、例えばKCフロック(日本製紙ケミカル社製)、セオラス(旭化成ケミカルズ社製)等がある。
【0026】
これらのセルロース含有原料の形態は、特に限定はなく、チップ状、シート状等各種形態のものが使用できる。なお、市販のパルプのセルロースI型結晶化度は、通常80%以上であり、市販の結晶性セルロースのセルロースI型結晶化度は、通常80%以上である。
【0027】
前記セルロース含有原料は、該原料から水を除いた場合の残余の成分中のセルロース含有量が好ましくは20重量%以上、より好ましくは40重量%以上、さらに好ましくは60重量%以上のものであることが望ましい。例えば、市販のパルプは、水を除いた場合の残余の成分中のセルロース含有量が、通常75〜99重量%であり、他の成分としてはリグニン等を含有する。なお、原料から水を除く方法としては、特に限定はなく、例えば、真空乾燥やドライエアーによる乾燥により行なうことができる。本明細書において、前記セルロース含有量とはセルロース量及びヘミセルロース量の合計量を意味し、セルロース含有量は、後述の実施例に記載の方法により測定することができる。
【0028】
また、セルロース含有原料としてパルプ類、再生紙等を使用する場合、樹脂成形体の耐衝撃性を向上させる観点から、セルロース含有原料中のリグニン量は、好ましくは15重量%以下、より好ましくは10重量%以下、さらに好ましくは8重量%以下であることが望ましい。なお、リグニンの構造単位としては、特に制限されるものではなく、公知のものが挙げられるが、樹脂成形体の耐衝撃性を向上させる観点から、グアイアシル型、シリンギル型、p−ヒドロキシフェニル型であることが望ましい。
【0029】
リグニンを低減する方法としては、例えば、特開2008−92910号公報記載のアルカリ蒸解法や特開2005−229821号公報記載の硫酸分解法等が挙げられる。
【0030】
アルカリ蒸解(単に、蒸解ともいう)法としては、ソーダ法又はクラフト法を挙げることができる。
【0031】
ソーダ法は、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等のアルカリ薬剤を使用してリグニンを除去する方法である。
【0032】
クラフト法は、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等のアルカリ薬剤と硫化ナトリウム、亜硫酸ナトリウム等のイオウ元素を含む薬剤とを共用してリグニンを除去する方法である。
【0033】
アルカリ薬剤の添加量は、蒸解に供するセルロース含有原料乾燥重量の5〜40重量%とすることが好ましい。
【0034】
また、アルカリ蒸解は、前記アルカリ薬剤以外に、添加剤として、キノン系蒸解助剤、酸素、過酸化水素、ポリサルファイドを使用することができる。これらの添加剤は、含有するリグニンの性質、量に応じて使用できるが、アルカリ薬剤のみで蒸解できる場合には、使用しなくてもよい。添加する場合には、蒸解に供するセルロース含有原料重量の10重量%以下が好ましい。
【0035】
アルカリ蒸解に供するセルロース含有原料は、蒸解を進行しやすくするために、あらかじめ粉砕するか、チップ状に切削・破砕して用いてもよい。アルカリ蒸解時のセルロース含有原料の蒸解混合物中の濃度は5〜50重量%、反応温度は好ましくは100〜200℃、より好ましくは140〜200℃、加熱時間は60〜500分であることが望ましく、前記条件は、チップの形状及び寸法並びに含有するリグニンの性質及びその量に応じて変更することができる。
【0036】
また、セルロース含有原料として再生パルプや再生紙等を使用する場合、ポリオレフィン樹脂及びスチレン系樹脂の結晶性と、樹脂組成物の強度と可撓性の両立の観点から、セルロース含有原料の灰分含量は、好ましくは35重量%以下、より好ましくは20重量%以下、さらに好ましくは10重量%以下である。なお、本明細書において、セルロース含有原料の灰分含量は、後述の実施例に記載の方法により測定することができる。
【0037】
また、セルロース含有原料の水分含量は、20重量%以下が好ましく、15重量%以下がより好ましく、10重量%以下がさらに好ましい。セルロース含有原料の水分含量が20重量%以下であれば、容易に粉砕できるとともに後述の機械的処理により結晶化度を容易に低下させることができる。なお、本明細書において、セルロース含有原料の水分含量は、後述の実施例に記載の方法により測定することができる。
【0038】
機械的処理とは、セルロース含有原料を粉砕処理することであり、かかる処理により、セルロースの結晶化度を低下させ、効率的に非晶化させることができる。なお、効率的に結晶化度を低下させる観点から、嵩密度と平均粒径が調整されたセルロース含有原料を粉砕処理に供してもよいし、樹脂成形体の耐久性の観点から、水分含量が調整されたセルロース含有原料を粉砕処理に供してもよい。
【0039】
(嵩密度と平均粒径が調整されたセルロース含有原料の調製方法)
セルロース含有原料の嵩密度と平均粒径の調整方法としては、特に限定されないが、セルロースの結晶構造を破壊して粉末化させる観点から、圧縮せん断力を作用させて粉砕する方法が好ましい。なお、以降、圧縮せん断力を作用させてセルロース含有原料の嵩密度と平均粒径を調整するために行う粉砕を1次粉砕、1次粉砕により得られたセルロース含有原料又は水分含量が調整されたセルロース含有原料を非晶化するために行う粉砕を2次粉砕という。
【0040】
1次粉砕の前には、セルロース含有原料をチップ状又は直方体状に粗粉砕しておくことが好ましい。チップ状にしたセルロース含有原料の大きさとしては、好ましくは1〜50mm角、より好ましくは1〜30mm角である。1〜50mm角のチップ状に粗粉砕することにより、1次粉砕を効率良く容易に行うことができる。なお、粗粉砕後のセルロース含有原料の大きさは、ノギスを用いて測定することができる。
【0041】
粗粉砕方法としては、シュレッダー、ロータリーカッター、又はスリッターカッター等の裁断機を使用する方法が挙げられる。ロータリーカッターを使用する場合、得られるチップ状セルロース含有原料の大きさは、スクリーン(篩)の目開きを変えることにより、制御することができる。スクリーンの目開きは、1〜50mmが好ましく、1〜30mmがより好ましい。スクリーンの目開きが1mm以上であれば、セルロース含有原料が綿状化することがなく、後の1次粉砕に供するセルロース含有原料として適度な嵩高さを有するために取扱い性が向上する。スクリーンの目開きが50mm以下であれば、後の1次粉砕に供するセルロース含有原料として適度な大きさを有するために1次粉砕において負荷を低減することができる。
【0042】
また、シート状のセルロース含有原料を用いる場合、シュレッダー又はスリッターカッターを使用することが好ましく、生産性の観点から、スリッターカッターを使用することがより好ましい。
【0043】
スリッターカッターでは、シート状のセルロース含有原料を、シートの長手方向に沿った縦方向にロールカッターで縦切りして細長い短冊状とし、次に、固定刃と回転刃でシートの幅方向に沿って短く横切りすることにより、直方体状のセルロース含有原料を容易に得ることができる。スリッターカッターとしては、ホーライ社製のシートペレタイザを好ましく使用でき、この装置を使用すると、シート状のセルロース含有原料を約1〜20mm角に粗粉砕することができる。
【0044】
圧縮せん断力を作用させてセルロース含有原料を機械的に粉砕する方法、即ち、1次粉砕する方法としては、従来よく用いられる衝撃式の粉砕機、例えば、カッターミル、ハンマーミル、ピンミル等や押出機を用いて粉砕する方法が挙げられるが、セルロース含有原料が綿状化して嵩高くなりにくく、所望の嵩密度及び平均粒径を有するセルロース含有原料が得られ、取扱い性が向上することから、押出機を用いる方法が好ましい。
【0045】
押出機としては、単軸、二軸のどちらの形式でもよいが、搬送能力を高める等の観点から、二軸押出機が好ましい。
【0046】
二軸押出機としては、シリンダーの内部に2本のスクリューが回転自在に挿入された押出機であり、従来から公知のものが使用できる。2本のスクリューの回転方向は、同一でも逆方向でもよいが、搬送能力を高める観点から、同一方向の回転が好ましい。また、スクリューの噛み合い条件としては、完全噛み合い、部分噛み合い、非噛み合いの各形式の押出機のいずれでもよいが、処理能力を向上させる観点から、完全噛み合い型、部分噛み合い型が好ましい。
【0047】
押出機としては、強い圧縮せん断力を加える観点から、スクリューのいずれかの部分に、いわゆるニーディングディスク部を備えることが好ましい。
【0048】
ニーディングディスク部とは、複数のニーディングディスクで構成され、これらを連続して、一定の位相で、例えば90°ずつに、ずらしながら組み合わせたものであり、スクリューの回転にともなって、狭い隙間にセルロース含有原料を強制的に通過させることで極めて強いせん断力を付与することができる。スクリューの構成としては、ニーディングディスク部と複数のスクリューセグメントとが交互に配置されることが好ましい。二軸押出機の場合、2本のスクリューが、同一の構成を有することが好ましい。
【0049】
処理方法としては、セルロース含有原料、好ましくは前記チップ状セルロース含有原料を押出機に投入し、連続的に処理する方法が好ましい。せん断速度としては、10sec−1以上が好ましく、20〜30000sec−1がより好ましく、50〜3000sec−1がさらに好ましい。せん断速度が10sec−1以上であれば、有効に高嵩密度化が進行する。その他の処理条件としては、特に制限はなく、処理温度は5〜200℃が好ましい。
【0050】
また、押出機によるパス回数としては、1パスでも十分効果を得ることができるが、セルロース含有原料を高嵩密度化する観点から、1パスで不十分な場合は、2パス以上行うことが好ましい。また、生産性の観点からは、1〜10パスが好ましい。パスを繰返すことにより、粗大粒子が粉砕され、粒径のばらつきが少ない粉末状セルロース含有原料を得ることができる。2パス以上行う場合、生産能力を考慮し、複数の押出機を直列に並べて処理を行ってもよい。
【0051】
前記1次粉砕により嵩密度と平均粒径が調整されたセルロース含有原料(以降、1次粉砕により得られたセルロース含有原料、又は1次粉砕後のセルロース含有原料ともいう)が得られる。なお、1次粉砕によってセルロース含有量は変動することなく、1次粉砕後の原料から水を除いた場合の残余の成分中のセルロース含有量は、好ましくは20重量%以上、より好ましくは40重量%以上、さらに好ましくは60重量%以上である。また、1次粉砕によってセルロース結晶化度は低減するものの、1次粉砕後のセルロース含有原料のセルロース結晶化度は好ましくは60%以上である。
【0052】
1次粉砕後のセルロース含有原料の嵩密度は、100kg/m以上が好ましく、120kg/m以上がより好ましく、150kg/m以上がさらに好ましい。この嵩密度が100kg/m以上であれば、セルロース含有原料が適度な容積を有するために取扱い性が向上する。また、2次粉砕に用いる粉砕機へ原料仕込み量を多くすることができるので、処理能力が向上する。一方、この嵩密度の上限としては、取扱い性及び生産性の観点から、500kg/m以下が好ましく、400kg/m以下がより好ましく、350kg/m以下がさらに好ましい。これらの観点から、嵩密度としては、100〜500kg/mが好ましく、120〜400kg/mがより好ましく、150〜350kg/mがさらに好ましい。なお、本明細書において、セルロース含有原料の嵩密度は、後述の実施例に記載の方法により測定することができる。
【0053】
また、1次粉砕後のセルロース含有原料の平均粒径は、1.0mm以下が好ましく、0.7mm以下がより好ましく、0.5mm以下がさらに好ましい。平均粒径が1.0mm以下であれば、2次粉砕に用いる粉砕機に供給する際に、粉砕機においてセルロース含有原料を効率的に分散させることができ、長時間を要することなく所定の粒径に到達することができる。一方、平均粒径の下限としては、生産性の観点から、0.01mm以上が好ましく、0.05mm以上がより好ましい。これらの観点から、平均粒径としては、0.01〜1.0mmが好ましく、0.01〜0.7mmがより好ましく、0.05〜0.5mmがさらに好ましい。なお、1次粉砕後のセルロース含有原料の平均粒径は、後述の実施例に記載の方法により測定することができる。また、1次粉砕後のセルロース含有原料の水分含量は、4.5重量%超が好ましく、10重量%以下が好ましい。
【0054】
(水分含量が調整されたセルロース含有原料の調製方法)
一方、セルロース含有原料の水分含量の調整方法としては、乾燥処理を行う工程を含む方法であれば、その処理方法としては限定されず公知の乾燥方法を適宜選択すればよい。乾燥方法としては、例えば、熱風受熱乾燥法、伝導受熱乾燥法、除湿空気乾燥法、冷風乾燥法、マイクロ波乾燥法、赤外線乾燥法、天日乾燥法、真空乾燥法、凍結乾燥法等が挙げられる。これらの乾燥方法は、単独でも又は2種以上組み合わせて行ってもよい。また、乾燥処理はバッチ処理、連続処理のいずれでも可能である。
【0055】
前記の乾燥方法において、公知の乾燥機を適宜選択して使用することができ、例えば、「粉体工学概論」(社団法人日本粉体工業技術会編集 粉体工学情報センター、1995年発行)176頁に記載の乾燥機等が挙げられる。乾燥機は1種でも又は2種以上組み合わせて使用してもよい。
【0056】
乾燥処理における温度は、乾燥手段、乾燥時間等により一概には決定できないが、10〜250℃が好ましく、50〜150℃がより好ましく、60〜120℃がさらに好ましい。処理時間としては、0.01〜2hrが好ましく、0.02〜1hrがより好ましい。必要に応じて減圧下で乾燥処理を行ってもよく、圧力としては、1〜120kPaが好ましく、50〜105kPaがより好ましい。
【0057】
また、乾燥処理の前には、セルロース含有原料をチップ状又は直方体状に粗粉砕しておくことが好ましい。粗粉砕したセルロース含有原料の大きさとしては、チップ状とする場合は、好ましくは1〜50mm角、より好ましくは1〜30mm角である。直方体状とする場合は、好ましくは1〜20mm角である。前記大きさに粗粉砕することにより、乾燥処理及び2次粉砕を効率良く容易に行うことができる。なお、粗粉砕方法としては、セルロース含有原料の1次粉砕の前に行う粗粉砕処理と同様の方法が挙げられる。
【0058】
なお、市販のパルプ類、バイオマス資源として利用される紙類、木材類、植物茎・葉類、植物穀類等の一般に利用可能なセルロース含有原料は、5重量%以上、通常5〜30重量%程度の水分を含有している。
【0059】
したがって、本発明における乾燥処理したセルロース含有原料の水分含量は4.5重量%以下が好ましく、4.3重量%以下がより好ましく、4.0重量%以下がさらに好ましく、3.5重量%以下がさらに好ましく、3.0重量%以下がよりさらに好ましい。この水分含量が4.5重量%以下であれば、容易に2次粉砕できるとともに、樹脂成形体の耐久性の観点から好ましい。一方、この水分含量の下限としては、2次粉砕の生産性及び乾燥効率の観点から、0.2重量%以上が好ましく、0.3重量%以上がより好ましく、0.4重量%以上がさらに好ましく、0.6重量%以上がよりさらに好ましい。以上の観点から、2次粉砕に供する乾燥処理したセルロース含有原料の水分含量は、0.2〜4.3重量%が好ましく、0.3〜4.0重量%がより好ましく、0.4〜3.5重量%がさらに好ましく、0.6〜3.0重量%がよりさらに好ましい。
【0060】
また、水分含量が調整されたセルロース含有原料の嵩密度は、前記1次粉砕後のセルロース原料の嵩密度と同様の値を有することが好ましい。なお、乾燥処理によってセルロース含有量は変動することなく、乾燥処理後の原料から水を除いた場合の残余の成分中のセルロース含有量は、好ましくは20重量%以上、より好ましくは40重量%以上、さらに好ましくは60重量%以上である。また、乾燥処理によってセルロース結晶化度も変動せず、乾燥処理後のセルロース結晶化度は、通常、80%以上である。
【0061】
更に前記水分含量が調整されたセルロース含有原料の平均粒径は、1.0mm超50.0mm以下が好ましく、2.0mm超50.0mm以下がより好ましい。なお、前記水分含量が調整されたセルロース含有原料の平均粒径は、後述の実施例に記載の方法により測定することができる。
【0062】
次に、前記1次粉砕又は前記乾燥処理により得られたセルロース含有原料を非晶化するために2次粉砕に供する。
【0063】
2次粉砕に用いる粉砕機(以降、粉砕機Aともいう)としては、媒体式粉砕機が好ましい。媒体式粉砕機には容器駆動式粉砕機と媒体攪拌式粉砕機とがある。容器駆動式粉砕機としては転動ミル、振動ミル、遊星ミル、遠心流動ミル等が挙げられる。この中で、粉砕効率が高く、生産性の観点から、振動ミルが好ましい。媒体攪拌式粉砕機としてはタワーミル等の塔型粉砕機;アトライター、アクアマイザー、サンドグラインダー等の攪拌槽型粉砕機;ビスコミル、パールミル等の流通槽型粉砕機;流通管型粉砕機;コボールミル等のアニュラー型粉砕機;連続式のダイナミック型粉砕機等が挙げられる。この中で、粉砕効率が高く、生産性の観点から、攪拌槽型粉砕機が好ましい。媒体攪拌式粉砕機を用いる場合の攪拌翼の先端の周速は、好ましくは0.5〜20m/s、より好ましくは1〜15m/sである。なお、粉砕機の種類は「化学工学の進歩 第30集 微粒子制御」(社団法人 化学工学会東海支部編、1996年10月10日発行、槇書店)を参照することができる。また、処理方法としては、バッチ式、連続式のどちらでも良い。
【0064】
粉砕機の媒体の材質としては、特に制限はなく、例えば、鉄、ステンレス、アルミナ、ジルコニア、炭化珪素、チッ化珪素、ガラス等が挙げられる。媒体の形状としては、特に制限はなく、ボール、ロッド、チューブ等が挙げられる。なお、ロッドとは棒状の媒体であり、ロッドの断面が四角形、六角形等の多角形、円形、楕円形等のものを用いることができる。
【0065】
粉砕機Aが振動ミルであって、媒体がロッドの場合には、ロッドの外径としては、好ましくは0.5〜200mm、より好ましくは1.0〜100mm、更に好ましくは5〜50mmである。ロッドの大きさが前記の範囲内であれば、所望の粉砕力が得られるとともに、ロッドのかけら等が混入してセルロース含有原料が汚染されることなく効率的にセルロースを非晶化させることができる。
【0066】
ロッドの充填率は、容器駆動式粉砕機の機種により好適な充填率が異なるが、好ましくは10〜70%、より好ましくは15〜60%の範囲である。充填率がこの範囲内であれば、セルロース含有原料とロッドとの接触頻度が向上して、粉砕効率を向上させることができる。ここで充填率とは、容器駆動式粉砕機の攪拌部の容積に対するロッドの見かけの体積をいう。また、セルロース含有原料とロッドとの接触頻度を高め粉砕効率を向上させる観点から、ロッドは複数本使用することが好ましい。
【0067】
また、粉砕機Aが攪拌槽型粉砕機であって、媒体がボールの場合には、ボールの外径としては、好ましくは0.1〜100mm、より好ましくは0.5〜50mmの範囲である。ボールの大きさが前記の範囲内であれば、所望の粉砕力が得られるとともに、ボールのかけら等が混入してセルロース含有原料が汚染されることなく効率的にセルロースを非晶化させることができる。
【0068】
ボールの充填率は、攪拌槽型粉砕機の機種により好適な充填率が異なるが、好ましくは10〜97%、より好ましくは15〜95%の範囲である。充填率がこの範囲内であれば、セルロース含有原料とボールとの接触頻度が向上するとともに、媒体の動きを妨げずに、粉砕効率を向上させることができる。ここで充填率とは、攪拌槽型粉砕機の攪拌部の容積に対するボールの見かけの体積をいう。
【0069】
処理時間としては、粉砕機の種類、媒体の種類、大きさ及び充填率等により一概に決定できないが、結晶化度を低下させる観点から、好ましくは0.01〜50hr、より好ましくは0.05〜20hr、さらに好ましくは0.10〜10hrであり、さらにより好ましくは0.10〜5hrである。処理温度は、特に制限はないが、熱による劣化を防ぐ観点から、好ましくは5〜250℃、より好ましくは10〜200℃である。
【0070】
かくして、結晶化度が50%未満のセルロースが得られる。
【0071】
このようにして得られたセルロースは、結晶化度が50%未満に非晶化されているが、樹脂組成物の強度と可撓性の両立、及び取扱性の観点から、平均粒径が150μm以下であることが好ましく、50μm以下であることがより好ましい。また、樹脂組成物の強度と可撓性の両立の観点から、90nm以上であることが好ましく、100nm以上であることがより好ましい。従って、前記2次粉砕により得られたセルロースは、適宜、分級工程、篩工程等を行って、粒径を調整してもよい。なお、セルロースの平均粒径は、後述の実施例に記載の方法により測定することができる。
【0072】
また、本発明においては、得られる成形体の強度を維持しながら可撓性や耐衝撃性をさらに向上させる観点から、樹脂組成物に含有させるセルロースは、50%未満の結晶化度を有するセルロースに平均粒径が30μm以下となるよう小粒径化処理して得られたものであることが好ましい。
【0073】
小粒径化処理の方法としては、結晶化度が50%未満になるよう調整されたセルロースに、粉砕助剤を添加して粉砕機にて粉砕処理(以降、3次粉砕ともいう)を行う方法が挙げられる。3次粉砕に供するセルロースとしては、結晶化度が50%未満になるよう調整されたものであれば特に限定はないが、前記機械的処理により結晶化度が50%未満になるよう調整されたセルロースであることが好ましい。従って、本発明の組成物に含有される結晶化度が50%未満であるセルロースは、前記機械的処理により得られたセルロース、即ち、粉砕機Aで処理して得られたセルロースに、さらに、粉砕助剤を添加して粉砕処理することにより得られたものであることが好ましい。
【0074】
3次粉砕に用いる粉砕機(以降、粉砕機Bともいう)としては、媒体式粉砕機が好ましく、2次粉砕に好適な粉砕機(粉砕機A)と同様のものが例示される。なお、粉砕機Aと粉砕機Bは同一のものを用いても、異なるものを用いてもよい。
【0075】
粉砕機の媒体の材質としては、特に制限はなく、例えば、鉄、ステンレス、アルミナ、ジルコニア、炭化珪素、チッ化珪素、ガラス等が挙げられる。媒体の形状としては、特に制限はなく、ボール、ロッド、チューブ等が挙げられるが、セルロースの微粒化効率の観点から、粉砕機Bとしては、ロッドを充填した振動ミルが好ましい。
【0076】
ロッドの外径は、好ましくは0.5〜200mm、より好ましくは1〜100mm、さらに好ましくは5〜50mmであり、ロッドの長さは、粉砕機の容器の長さよりも短いものであれば特に限定されない。ロッドの大きさが前記の範囲内にあれば、所望の粉砕力が得られ、効率的にセルロースの平均粒径を低減させることができる。ロッドの充填率は前記と同様である。
【0077】
3次粉砕に用いられる粉砕助剤としては、セルロース中の水酸基との相互作用によりセルロースへの吸着を促進する観点から、アルコール、脂肪族アミド、芳香族カルボン酸アミド、ロジン酸アミド、脂肪酸の金属塩、芳香族スルホン酸ジアルキルエステルの金属塩、フェニルホスホン酸金属塩、リン酸エステルの金属塩、ロジン酸類の金属塩、脂肪酸エステル類、カルボヒドラジド類、N−置換尿素類、メラミン化合物の塩、ウラシル類及びポリエーテルが挙げられる。なかでも、樹脂組成物の熱安定性の観点から、アルコール、脂肪族アミド、芳香族カルボン酸アミド、脂肪酸の金属塩、フェニルホスホン酸金属塩、リン酸エステルの金属塩、脂肪酸エステル類及びポリエーテルからなる群より選ばれる少なくとも1種が好ましく、セルロースの粉砕効率及び樹脂成形体の耐衝撃性を向上させる観点から、アルコール、脂肪族アミド、脂肪酸の金属塩、フェニルホスホン酸金属塩、脂肪酸エステル類及びポリエーテルからなる群より選ばれる少なくとも1種がより好ましい。
【0078】
粉砕助剤に用いられるアルコールとしては、セルロースの凝集抑制及び平均粒径を低減する観点から、好ましくは炭素数5〜40、より好ましくは炭素数10〜30、さらに好ましくは炭素数14〜22の直鎖又は分岐鎖のアルコールが好ましい。また、セルロースへの吸着を促進するためのセルロース中の水酸基との相互作用の観点から、アルコール中にアルデヒド基、カルボニル基、アミノ基、アミド基、イミノ基、イミド基、シアノ基、チオール基、エステル基、エーテル基等の置換基を有していても構わない。
【0079】
前記アルコールとしては、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール、ベヘニルアルコール、セトステアリルアルコール、2−オクチルドデカノール等が挙げられ、その中でもセルロースの粉砕効率と樹脂成形体の耐衝撃性を向上させる観点から、ミリスチルアルコール、ステアリルアルコール、ベヘニルアルコール等が好ましい。
【0080】
粉砕助剤に用いられる脂肪族アミドとしては、セルロースへの吸着を促進するためのセルロース中の水酸基との相互作用の観点から、脂肪族アミド中にアルデヒド基、カルボニル基、アミノ基、イミノ基、イミド基、シアノ基、チオール基、エステル基、エーテル基等の置換基を有していても構わない。
【0081】
前記脂肪族アミドの化合物の具体例としては、12−ヒドロキシステアリン酸モノエタノールアミド、エチレンビスラウリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスカプリル酸アミド、メチレンビス12−ヒドロキシステアリン酸アミド、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド等が挙げられ、その中でもセルロースの粉砕効率及び樹脂成形体の耐衝撃性を向上させる観点から、メチレンビス12−ヒドロキシステアリン酸アミド、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド等のアルキレンビスヒドロキシ脂肪酸アミドが好ましく、エチレンビス12−ヒドロキシステアリン酸アミドがより好ましい。
【0082】
粉砕助剤に用いられる脂肪酸の金属塩としては、セルロースの凝集抑制及び平均粒径を低減する観点から、好ましくは炭素数12〜24、より好ましくは炭素数14〜20の脂肪酸の金属塩が好ましい。また、セルロースへの吸着を促進するためのセルロース中の水酸基との相互作用の観点から、脂肪酸中にアルデヒド基、カルボニル基、アミノ基、アミド基、イミノ基、イミド基、シアノ基、チオール基、エステル基、エーテル基等の置換基を有していても構わない。
【0083】
前記脂肪酸の金属塩としては、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸等のナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩等が挙げられ、その中でもセルロースの粉砕効率及び樹脂成形体の耐衝撃性を向上させる観点から、ミリスチン酸ナトリウム、ステアリン酸ナトリウムが好ましい。
【0084】
粉砕助剤に用いられるフェニルホスホン酸金属塩は、置換基を有しても良いフェニル基とホスホン基〔−PO(OH)〕を有するフェニルホスホン酸の金属塩であり、フェニル基の置換基としては、炭素数1〜10のアルキル基、アルコキシ基の炭素数が1〜10のアルコキシカルボニル基等が挙げられる。フェニルホスホン酸の具体例としては、無置換のフェニルホスホン酸、メチルフェニルホスホン酸、エチルフェニルホスホン酸、プロピルフェニルホスホン酸、ブチルフェニルホスホン酸、ジメトキシカルボニルフェニルホスホン酸、ジエトキシカルボニルフェニルホスホン酸等が挙げられ、無置換のフェニルホスホン酸が好ましい。
【0085】
フェニルホスホン酸の金属塩としては、リチウム、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、バリウム、銅、亜鉛、鉄、コバルト、ニッケル等の塩が挙げられ、樹脂成形体の耐衝撃性を向上させる観点から、亜鉛塩が好ましい。
【0086】
粉砕助剤に用いられる脂肪酸エステル類としては、下記一般式(1)で表される化合物が好ましい。
COOR (1)
式中、R、Rは特に限定はないが、樹脂成形体の耐衝撃性を向上する観点から、Rは、炭素数が好ましくは1〜50、より好ましくは1〜40、更に好ましくは2〜30の直鎖又は分岐鎖のアルキル基、アルケニル基、ヒドロキシアルキル基又はアルキルエーテル基が、Rは、好ましくは炭素数1〜50、より好ましくは1〜30、さらに好ましくは2〜20のアルキル基、アルケニル基、エーテル基、アルキルエーテル基及び水酸基を含むアルキル基、グリセライドから一つのアシルオキシ基を除いた残基、又はアルキレンオキシ基が好ましい。
【0087】
また、セルロースへの吸着を促進するためのセルロース中の水酸基との相互作用の観点から、脂肪酸エステル中にアルデヒド基、カルボニル基、アミノ基、アミド基、イミノ基、イミド基、シアノ基、チオール基、エーテル基等の置換基を有していても構わない。
【0088】
前記脂肪酸エステル類としては、ミリスチン酸イソプロピル、ミリスチン酸オクチルドデシル、パルミチン酸オクチル、ステアリン酸ステアリル、ソルビタンモノオレート、ソルビタンモノステアレート、ペンタエリスリトールモノオレート、ペンタエリスリトールモノステアレート、ポリオキシエチレンソルビタントリステアレート、12−ヒドロキシステアリン酸トリグリセライド、12−ヒドロキシステアリン酸ジグリセライド、12−ヒドロキシステアリン酸モノグリセライド、ペンタエリスリトール−モノ−12−ヒドロキシステアレート、ペンタエリスリトール−ジ−12−ヒドロキシステアレート、ペンタエリスリトール−トリ−12−ヒドロキシステアレート又は、コハク酸とトリエチレングリコールモノメチルエーテルとのエステル化合物等が挙げられ、その中でもセルロースの粉砕効率と樹脂成形体の耐衝撃性を向上させる観点から、12−ヒドロキシステアリン酸トリグリセライド、ペンタエリスリトールモノステアレート、ペンタエリスリトール−モノ−12−ヒドロキシステアレート、ペンタエリスリトール−ジ−12−ヒドロキシステアレート、ペンタエリスリトール−トリ−12−ヒドロキシステアレート又はコハク酸とトリエチレングリコールモノメチルエーテルとのエステル化合物からなる群から選ばれる少なくとも1種が好ましく、ペンタエリスリトールモノステアレート、コハク酸とトリエチレングリコールモノメチルエーテルとのエステル化合物がより好ましい。
【0089】
粉砕助剤に用いられるポリエーテルとしては、下記一般式(2)で表される化合物が好ましい。
−O−〔(RO)−H〕 (2)
式中、R、R、pは特に限定はないが、樹脂成形体の耐衝撃性を向上させる観点から、Rは、水素原子、又は炭素数1〜50のアルキル基もしくはアルケニル基が好ましく、Rは、炭素数2〜4のアルキレン基が好ましく、エチレン基又はプロピレン基がより好ましい。また、pは平均付加モル数を示し、好ましくは2〜400の数、より好ましくは5〜200の数、さらに好ましくは5〜150の数がよい。
【0090】
一般式(2)の化合物の具体例としては、下記一般式(3)で表される化合物がセルロースの粉砕効率と樹脂成形体の耐衝撃性を向上させる観点から好ましい。
−O−(CO)(CO)−H (3)
式中、Rは、水素原子、又は炭素数1〜22のアルキル基であり、s及びtはそれぞれエチレンオキシド(EO)及びプロピレンオキシド(PO)の平均付加モル数を示し、それぞれ独立して、好ましくは0〜200の数、より好ましくは2〜100の数であり(ただし、s=0かつt=0であることはない)、EOとPOの両方を含む場合は、ランダムあるいはブロック付加体であっても良い。
【0091】
におけるアルキル基としては、メチル基、エチル基、イソプロピル基、プロピル基、ブチル基、t−ブチル基、イソブチル基、各種ペンチル基、各種ヘキシル基、各種オクチル基、各種デシル基、各種ドデシル基、各種テトラデシル基、各種ヘキサデシル基、各種オクタデシル基等が挙げられる。Rとしては、セルロースの粉砕効率と樹脂成形体の耐衝撃性を向上させる観点から、水素原子、炭素数1〜18のアルキル基が好ましい。
【0092】
本発明に使用されるポリエーテルの重量平均分子量は、100〜20000の範囲が好ましく、400〜20000の範囲がより好ましい。重量平均分子量は、溶媒としてクロロホルムを用いたGPC法により、標準物質としてポリスチレンを用いて測定される。
【0093】
また、本発明においては、本発明の効果を損なわない範囲で、前記粉砕助剤以外に、他の粉砕助剤を用いることができる。他の粉砕助剤としては、トリメシン酸トリス(t−ブチルアミド)、m−キシリレンビス12−ヒドロキシステアリン酸アミド、1,3,5―ベンゼントリカルボン酸トリシクロヘキシルアミド等の芳香族カルボン酸アミド;p−キシリレンビスロジン酸アミド等のロジン酸アミド;5−スルホイソフタル酸ジメチル二バリウム、5−スルホイソフタル酸ジメチル二カルシウム等の芳香族スルホン酸ジアルキルエステルの金属塩;ナトリウム−2,2‘−メチレンビス(4,6−ジ−t−ブチルフェニル)ホスフェート、アルミニウムビス(2,2’−メチレンビス−4,6−ジ−t−ブチルフェニルホスフェート)等のリン酸エステルの金属塩;メチルデヒドロアビエチン酸カリウム等のロジン酸類の金属塩;デカメチレンジカルボニルジベンゾイルヒドラジド等のカルボヒドラジド類;キシレンビスステアリル尿素等のN−置換尿素類;メラミンシアヌレート等のメラミン化合物の塩;6−メチルウラシル等のウラシル類が挙げられる。
【0094】
前記の粉砕助剤は、単独で又は2種以上を任意の割合で組み合わせて用いることもできる。
【0095】
本発明において、粉砕助剤の添加量は、3次粉砕に供されるセルロース100重量部に対して、好ましくは0.1〜100重量部であり、より好ましくは0.5〜50重量部、さらに好ましくは1.0〜30重量部であり、さらにより好ましくは2〜20重量部である。粉砕助剤の添加量が、3次粉砕に供されるセルロース100重量部に対して、0.1重量部以上であれば、セルロースの平均粒径の低減が可能となり、100重量部以下であれば、平均粒径が30μm以下のセルロースを効率良く得ることができる。
【0096】
3次粉砕の処理時間は、粉砕機の種類や、粉砕機に充填する媒体の種類、大きさ、及び充填率等により適宜調整しうるが、効率的にセルロースの平均粒径を低減させる観点から、好ましくは0.01〜50hr、より好ましくは0.05〜20hr、さらに好ましくは0.10〜10hr、さらに好ましくは0.10〜5hr、さらに好ましくは0.10〜3.5hrである。粉砕処理温度は、特に制限はないが、熱劣化を防ぐ観点から、好ましくは5〜250℃、より好ましくは10〜200℃、さらに好ましくは15〜150℃である。
【0097】
かくして、3次粉砕により、セルロース粒子同士の強い凝集が抑制された微粒化セルロースが得られる。微粒化セルロースの平均粒径は、好ましくは0.1〜30μm、より好ましくは0.1〜20μmである。
【0098】
また、本発明においては、樹脂組成物の可撓性をさらに向上させる観点から、前記2次粉砕により得られた50%未満の結晶化度を有するセルロースや、前記2次粉砕及び3次粉砕を経て得られた、50%未満の結晶化度を有し、かつ30μm以下の平均粒径を有するセルロースの表面を、シランカップリング剤やチタンカップリング剤の表面処理剤等で処理することができる。
【0099】
表面処理剤としては、特に限定はなく公知のものを用いることができ、3−アミノプロピルトリエトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−イソシアネートプロピルトリエトキシシラン等が例示される。
【0100】
表面処理剤の処理量としては、樹脂組成物の強度と可撓性の両立の観点から、表面処理されるセルロース100重量部に対して、0.1〜5重量部が好ましく、0.3〜3重量部がより好ましく、0.5〜2重量部がさらに好ましい。
【0101】
表面処理の方法としては特に限定はなく、公知の方法に従って行うことができる。
【0102】
結晶化度が50%未満であるセルロースの含有量は、ポリオレフィン樹脂及びスチレン系樹脂の総量100重量部に対して、適度な曲げ強度や曲げ弾性率が得られる観点から1重量部以上が好ましく、また、曲げ強度や曲げ弾性率が高くなり過ぎない観点から350重量部以下が好ましい。また、樹脂成形体の可撓性と耐衝撃性の観点から、1〜300重量部が好ましく、5〜100重量部がより好ましく、5〜50重量部がさらに好ましい。すなわち、樹脂成形体の曲げ強度、曲げ弾性率、可撓性及び耐衝撃性を得る観点から、結晶化度が50%未満であるセルロースの含有量は、ポリオレフィン樹脂及びスチレン系樹脂の総量100重量部に対して、1〜300重量部が好ましく、5〜100重量部がより好ましく、5〜50重量部がさらに好ましい。
【0103】
本発明の樹脂組成物には、前記ポリオレフィン樹脂及びスチレン系樹脂、ならびに結晶化度が50%未満であるセルロース以外に、さらに、可塑剤、結晶核剤、無機充填剤、難燃剤、加水分解抑制剤、耐衝撃吸収剤、相溶化剤等が適宜含有されていてもよい。
【0104】
[可塑剤]
本発明の樹脂組成物に含有される結晶化度が50%未満であるセルロースは、従来の樹脂組成物に用いられるセルロースに比べて結晶化度が著しく低減されている。そのため、それ自体で可塑剤的な役割を果たすものであるが、樹脂組成物の強度と可撓性のさらなる向上及び耐衝撃性の観点から、本発明の樹脂組成物は可塑剤を含有することが好ましい。
【0105】
可塑剤としては、特に限定はなく公知のものが挙げられるが、樹脂組成物の強度と可撓性の両立の観点から、例えば、特開2008−115372号公報や特開2008−174718号公報に記載の可塑剤、即ち、分子内に2個以上のエステル基を有し、エステルを構成するアルコール成分の少なくとも1種が水酸基1個当たり炭素数2〜3のアルキレンオキサイドを平均0.5〜5モル付加したエステル化合物を含有することが望ましい。
【0106】
可塑剤が前記エステル化合物を含有する場合、樹脂組成物の耐熱性、ならびにポリオレフィン樹脂、スチレン系樹脂及び結晶化度が50%未満であるセルロースに対する相溶性が良好となる。そのため耐ブリード性が向上するとともに、前記樹脂の軟質化効果も向上する。この樹脂の軟質化向上により、該樹脂が結晶化するときはその成長速度も向上すると考えられる。その結果、低い金型温度でもポリオレフィン樹脂やスチレン系樹脂が柔軟性を保持しているため、短い金型保持時間で該樹脂の結晶化が進み良好な成形性を示すものと考えられる。また、結晶化度が50%未満であるセルロースとの相溶性が向上する結果、両者の相互作用により樹脂組成物の優れた強度と可撓性の両立が達成できるものと考えられる。
【0107】
前記エステル化合物は、例えば、水酸基1個当たり炭素数2又は3のアルキレンオキシ基が平均0.5〜5モル付加したアルコールのアルキレンオキサイド付加物等のアルコール成分と公知のカルボン酸成分との縮重合により得られる。
【0108】
アルコール成分とカルボン酸成分との縮重合は、公知の方法、例えば、特開2008−174735号公報等に記載の方法に従って行うことができる。
【0109】
本発明においては、樹脂組成物の強度と可撓性の両立、成形性、可塑性、及び可塑剤の耐ブリード性の観点から、コハク酸又はアジピン酸とポリエチレングリコールモノメチルエーテルとのエステル化合物、及び酢酸とグリセリン又はエチレングリコールのエチレンオキサイド付加物とのエステル化合物からなる群より選ばれる少なくとも1種が好ましく、コハク酸又はアジピン酸とポリエチレングリコールモノメチルエーテルとのエステル化合物がより好ましい。
【0110】
また、耐揮発性の観点からは、アジピン酸と、ジエチレングリコールモノメチルエーテル/ベンジルアルコール混合物(重量比:1/1)とのエステル化合物が好ましい。
【0111】
なお、前記エステル化合物は、可塑剤としての機能を十分発揮させる観点から、全てエステル化された飽和エステルであることが好ましい。
【0112】
エステル化合物の平均分子量は、樹脂組成物の強度と可撓性の両立、ならびに可塑剤の耐ブリード性及び耐揮発性の観点から、好ましくは250〜700であり、より好ましくは300〜600であり、さらに好ましくは350〜550であり、さらに好ましくは400〜500である。なお、平均分子量は、JIS K0070に記載の方法で鹸化価を求め、次式より計算で求めることができる。
平均分子量=56,108×(エステル基の数)/鹸化価
【0113】
可塑剤には、前記エステル化合物以外に、他の可塑剤が本発明の効果を損なわない範囲で適宜含有されていてもよい。前記エステル化合物の含有量は、特に限定されないが、樹脂組成物の強度と可撓性の両立、及び可塑剤の耐ブリード性の観点から、可塑剤中、60重量%以上が好ましく、70重量%以上がより好ましく、90重量%以上がさらに好ましく、実質100重量%であることがさらにより好ましい。
【0114】
可塑剤の含有量は、樹脂組成物の強度と可撓性の両立、及び耐衝撃性を得る観点から、ポリオレフィン樹脂及びスチレン系樹脂の総量100重量部に対して、5〜50重量部が好ましく、7〜30重量部がより好ましく、8〜30重量部がさらに好ましく、8〜20重量部がさらにより好ましい。
【0115】
[結晶核剤]
結晶核剤としては、樹脂組成物の強度と可撓性の両立、成形性、耐熱性、耐衝撃性及び結晶核剤の耐ブルーム性の観点から、特開2008−115372号公報や特開2008−174718号公報に記載の結晶核剤、即ち、分子中に水酸基とアミド基とを有する化合物及びヒドロキシ脂肪酸エステルからなる群から選ばれる少なくとも1種が好ましく、これらの少なくとも1種とフェニルホスホン酸金属塩とを併用することがより好ましく、分子中に水酸基とアミド基とを有する化合物とフェニルホスホン酸金属塩を併用することがさらに好ましい。
【0116】
分子中に水酸基とアミド基とを有する化合物としては、ポリオレフィン樹脂、スチレン系樹脂との相溶性を向上させ、樹脂組成物の強度と可撓性の両立を図る観点から、水酸基を2つ以上有し、アミド基を2つ以上有する脂肪酸ビスアミドが好ましく、樹脂組成物の成形性、耐熱性、耐衝撃性及び結晶核剤の耐ブルーム性の観点から、メチレンビス12−ヒドロキシステアリン酸アミド、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド等のアルキレンビスヒドロキシステアリン酸アミドがより好ましく、エチレンビス12−ヒドロキシステアリン酸アミドがさらに好ましい。
【0117】
分子中に水酸基とアミド基とを有する化合物の融点は、混練時の結晶核剤の分散性を向上させ、また樹脂組成物の結晶化速度を向上させる観点から、65℃以上が好ましく、70〜220℃がより好ましく、80〜190℃がさら好ましい。
【0118】
ヒドロキシ脂肪酸エステルの具体例としては、12−ヒドロキシステアリン酸トリグリセライド、12−ヒドロキシステアリン酸ジグリセライド、12−ヒドロキシステアリン酸モノグリセライド等のヒドロキシ脂肪酸エステルが挙げられる。樹脂組成物の強度と可撓性の両立、成形性、耐熱性、耐衝撃性及び結晶核剤の耐ブルーム性の観点から、12−ヒドロキシステアリン酸トリグリセライドが好ましい。
【0119】
フェニルホスホン酸金属塩としては、置換基を有しても良いフェニル基とホスホン基〔−PO(OH)〕を有するフェニルホスホン酸の金属塩であり、フェニル基の置換基としては、炭素数1〜10のアルキル基、アルコキシ基の炭素数が1〜10のアルコキシカルボニル基等が挙げられる。フェニルホスホン酸の具体例としては、無置換のフェニルホスホン酸、メチルフェニルホスホン酸、エチルフェニルホスホン酸、プロピルフェニルホスホン酸、ブチルフェニルホスホン酸、ジメトキシカルボニルフェニルホスホン酸、ジエトキシカルボニルフェニルホスホン酸等が挙げられ、無置換のフェニルホスホン酸が好ましい。
【0120】
フェニルホスホン酸の金属塩としては、リチウム、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、バリウム、銅、亜鉛、鉄、コバルト、ニッケル等の塩が挙げられ、樹脂成形体の耐衝撃性を向上させる観点から、亜鉛塩が好ましい。
【0121】
本発明において結晶核剤として、分子中に水酸基とアミド基とを有する化合物及びヒドロキシ脂肪酸エステルからなる群から選ばれる少なくとも1種と、フェニルホスホン酸金属塩とを併用する場合、これらの割合は、本発明の効果を発現する観点から、分子中に水酸基とアミド基とを有する化合物及びヒドロキシ脂肪酸エステルからなる群から選ばれる少なくとも1種/フェニルホスホン酸金属塩(重量比)=20/80〜80/20が好ましく、30/70〜70/30がより好ましく、40/60〜60/40がさらに好ましい。
【0122】
結晶核剤の総含有量は、樹脂組成物の強度と可撓性の両立、及び耐衝撃性を得る観点から、ポリオレフィン樹脂及びスチレン系樹脂の総量100重量部に対して、0.05〜5重量部が好ましく、0.10〜3重量部がより好ましく、0.20〜2重量部がさらに好ましく、0.20〜1重量部がさらにより好ましい。
【0123】
[無機充填剤]
無機充填剤としては、タルク、カオリン、マイカ、モンモリロナイト等のケイ酸塩、シリカ、酸化マグネシウム、水酸化アルミニウム等の無機化合物や、ガラス繊維、炭素繊維、グラファイト繊維、ワラスナイト等の繊維状無機充填剤等が挙げられる。無機充填剤の平均粒径は、良好な分散性を得る観点から、0.1〜10μmが好ましい。無機充填剤の中でも、樹脂成形体の成形性及び耐熱性の観点からケイ酸塩が好ましく、タルク又はマイカがより好ましく、タルクがさらに好ましい。また、樹脂組成物の強度と可撓性の両立、成形性及び透明性の観点からは、シリカが好ましい。
【0124】
無機充填剤の平均粒径は、回折・散乱法によって体積中位粒径を測定することにより求めることができる。例えば市販の装置としてはコールター社製レーザー回折・光散乱法粒度測定装置LS230等が挙げられる。
【0125】
無機充填剤の含有量は、樹脂組成物の強度と可撓性の両立、十分な耐熱性及び耐衝撃性を得る観点から、ポリオレフィン樹脂及びスチレン系樹脂の総量100重量部に対して、1.0〜200重量部が好ましく、1.5〜100重量部がより好ましく、2.0〜80重量部がさらに好ましい。
【0126】
[難燃剤]
本発明に用いられる難燃剤としては、特に限定はなく公知のものが挙げられるが、樹脂組成物の難燃性を向上させる観点から、リン系難燃剤、ハロゲン系化合物、アンチモン化合物、及び無機水和物からなる群より選ばれる少なくとも1種であることが好ましい。
【0127】
リン系難燃剤としては、リン酸エステル、縮合リン酸エステル、リン酸塩及び縮合リン酸塩から選ばれる少なくとも1種が好ましい。ハロゲン系化合物としては、臭素又は塩素を含有する化合物が挙げられる。アンチモン化合物としては、三酸化アンチモンが例示される。無機水和物としては、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物などが挙げられる。水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物は、公知の方法に従って、イソシアネート系シランカップリング剤、アミノ系シランカップリング剤、エポキシ系シランカップリング剤などのカップリング剤で処理されていても良い。
【0128】
難燃剤の含有量は、難燃剤の効果を見ながら決められるが、良好な難燃効果を得、また加工時の流動特性や、成形体の強度や耐衝撃性の低下を抑制する観点から、ポリオレフィン樹脂及びスチレン系樹脂の総量100重量部に対して、10〜60重量部が好ましく、15〜55重量部がより好ましい。
【0129】
[加水分解抑制剤]
加水分解抑制剤としては、ポリカルボジイミド化合物やモノカルボジイミド化合物等のカルボジイミド化合物が挙げられ、樹脂組成物の強度と可撓性の両立、及び成形性の観点からポリカルボジイミド化合物が好ましく、樹脂組成物の耐熱性、耐衝撃性及び加水分解抑制剤の耐ブルーム性の観点から、モノカルボジイミド化合物が好ましい。
【0130】
ポリカルボジイミド化合物としては、ポリ(4,4’−ジフェニルメタンカルボジイミド)、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)等が挙げられ、モノカルボジイミド化合物としては、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミド等が挙げられる。
【0131】
前記カルボジイミド化合物は、樹脂組成物の成形性、耐熱性、耐衝撃性及び加水分解抑制剤の耐ブルーム性を満たすために、単独で又は2種以上組み合わせて用いてもよい。また、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)はカルボジライトLA−1(日清紡績社製)を、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミドはスタバクゾール1、スタバクゾール1−LF(Rhein Chemie社製)をそれぞれ購入して使用することができる。
【0132】
加水分解抑制剤の含有量は、樹脂組成物の成形性の観点から、ポリオレフィン樹脂及びスチレン系樹脂の総量100重量部に対して、0.05〜3重量部が好ましく、0.10〜2重量部がより好ましく、0.20〜1重量部がさらに好ましい。
【0133】
[耐衝撃吸収剤]
本発明の組成物は、可撓性等の物性向上の観点から、更に耐衝撃吸収剤を含有することができる。本発明で使用する耐衝撃吸収剤としては、通常熱可塑性樹脂において柔軟性の向上に用いられる有機繊維、ゴム等を用いることができる。なお、本明細書において、「耐衝撃吸収剤」とは、衝撃を吸収して耐衝撃性を向上する成分のことであり、単に衝撃吸収剤、あるいは耐衝撃改良剤とも言う。
【0134】
有機繊維としては、ポリエチレン繊維、ポリケトン繊維、PET繊維、芳香族ポリアミド繊維(アラミド繊維)、ポリフェニレンサルファイド(PPS)繊維、ポリイミド繊維、フッ素繊維等を好適に用いることができるが、樹脂組成物の可撓性と、剛性及び耐熱性との両立の観点から、芳香族ポリアミド繊維を用いることが好ましい。
【0135】
ゴムの種類は、特に限定されるものではなく、ゴム弾性を有する重合体成分から構成されるものであればよい。例えば、天然ゴム、アクリル成分、シリコーン成分、ニトリル成分、共役ジエン成分、ウレタン成分等を重合させたものから構成されるゴム、エチレン−プロピレン系ゴム、エチレン−ブテン系ゴム等のエチレン−α−オレフィン系ゴム、スチレン−ブタジエン系ゴム(その水素添加物も含む)、スチレン−イソプレン系ゴム(その水素添加物も含む)等が挙げられる。市販品としては、例えば、三菱レイヨン社製〔メタブレンSタイプ(シリコーン・アクリルゴム)、メタブレンWタイプ(アクリルゴム)、メタブレンCタイプ(メチルメタクリレート・ブタジエン・スチレン樹脂)〕、カネカ社製〔カネエース〕、ロームアンドハース社製〔パラロイド(メチルメタクリレート・ブタジエン・スチレン樹脂)〕、ガンツ化成社製〔スタフィロイド(アクリル系ゴム)〕、クラレ社製〔パラフェイス(アクリル系ゴム)〕等が挙げられ、これらは、単独で又は2種以上組み合わせて用いることができる。
【0136】
耐衝撃吸収剤の含有量は、樹脂組成物の成形性及び樹脂成形体の耐衝撃性の観点から、ポリオレフィン樹脂及びスチレン系樹脂の総量100重量部に対し、2〜50重量部が好ましく、3〜40重量部がより好ましく、5〜30重量部がさらに好ましい。
【0137】
[相溶化剤]
相溶化剤は、ポリオレフィン樹脂とスチレン系樹脂を含有する場合に、樹脂同士の相溶性を高めるために好ましく用いられる。前記樹脂を柔軟化するものであれば特に限定されないが、樹脂成形体の耐衝撃性の観点から、
相溶化剤(1):エチレン/酢酸ビニル共重合体
相溶化剤(2):エチレン/(メタ)アクリル酸エステル共重合体
相溶化剤(3):酸無水物基、カルボキシル基、アミノ基、イミノ基、アルコキシシリル基、シラノール基、シリルエーテル基、ヒドロキシル基、及びエポキシ基からなる群より選択される少なくとも1種の官能基(置換基)を有するポリオレフィン系樹脂
相溶化剤(4):酸無水物基、カルボキシル基、アミノ基、イミノ基、アルコキシシリル基、シラノール基、シリルエーテル基、ヒドロキシル基、及びエポキシ基からなる群より選択される少なくとも1種の官能基(置換基)を有するアクリル系樹脂又はスチレン系樹脂
相溶化剤(5):ポリエステル系樹脂、ならびに
相溶化剤(6):アイオノマー樹脂
からなる群より選ばれる少なくとも1種が好ましい。具体的には、住友化学工業社製「ボンドファースト 7M、7B、2C」(エポキシ基を有するポリエチレン樹脂)、東亞合成社製「ARUFON」(エポキシ基を有するアクリル系樹脂又はスチレン系樹脂)、DIC社製「プラメート PD−350」(PLA−脂肪族ポリエステル共重合体)等を好適に用いることができる。
【0138】
これらの相溶化剤は、単独で又は2種以上組み合わせて用いることができる。
【0139】
相溶化剤のメルトフローレート(MFR)は、樹脂組成物の耐衝撃性及び成形性の観点から、3〜15g/10分が好ましく、5〜10g/10分がより好ましい。
【0140】
相溶化剤の含有量は、樹脂組成物の耐衝撃性及び成形性の観点から、ポリオレフィン樹脂及びスチレン系樹脂の総量100重量部に対して、1〜30重量部が好ましく、1〜20重量部がより好ましく、1〜10重量部がさらに好ましい。
【0141】
また、本発明の樹脂組成物には、前記以外に、更にヒンダードフェノール又はフォスファイト系の酸化防止剤、又は炭化水素系ワックス類やアニオン型界面活性剤を含む滑剤等の他の成分を含有することができる。
【0142】
具体的には、2,6−ジ−t−ブチル−4−メチルフェノール、n−オクタデシル−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート、ペンタエリスリチルテトラキス−[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]、ジラウリル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート、トリスノニルフェニルホスファイト等のフェノール系、イオウ系、リン系等の酸化防止剤、ポリオキシエチレンアルキル又はアルケニルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ジヒドロキシエチルアルキルアミン、ポリオキシエチレンアルキルアミン、ジヒドロキシエチルアルキルアミド、ポリオキシエチレンアルキルアミド、多価アルコールのエステル等の界面活性剤、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エルカ酸アミド、オレイン酸アミド、ポリエチレンワックス、酸化型ポリエチレンワックス、高級アルコール等の滑剤が挙げられる。
【0143】
酸化防止剤、及び滑剤のそれぞれの含有量は、ポリオレフィン樹脂及びスチレン系樹脂の総量100重量部に対して、0.05〜3重量部が好ましく、0.10〜2重量部がより好ましい。
【0144】
さらに、本発明の樹脂組成物は、前記以外の他の成分として、帯電防止剤、防曇剤、光安定剤、紫外線吸収剤、顔料、防カビ剤、抗菌剤、発泡剤、金属不活性化剤、分子量調整剤、蛍光増白剤、ブロッキング防止剤等を、本発明の効果を損なわない範囲で含有することができる。
【0145】
具体的には、ビス−(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、[コハク酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン]縮合物等のアミン系、トリアゾール系、ベンゾフェノン系、ベンゾエート系、ニッケル系、サリチル酸系等の光安定剤;2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール等の紫外線吸収剤;縮合アゾ系、イソインドリノン系、キナクリドン系、ペリレン系、ペリノン系、キノフタロン系、アンスラキノン系、フタロシアニン系等の有機系顔料;チタンホワイト(酸化チタン)、チタンイエロー、亜鉛華、鉄黒、カーボンブラック、弁柄、群青等の無機系顔料が挙げられる。
【0146】
本発明の樹脂組成物は、ポリオレフィン樹脂及び/又はスチレン系樹脂、ならびに結晶化度が50%未満であるセルロースを含有するものであれば特に限定なく調製することができるが、結晶化度が50%未満であるセルロースをポリオレフィン樹脂及び/又はスチレン系樹脂へ混合する際に、例えば、あらかじめ所定の粒径を有する結晶化度が50%未満であるセルロースを二軸押出機や溶融ミキサーを用いて、ポリオレフィン樹脂及び/又はスチレン系樹脂に練り込んでコンパウンドを作製する方法を用いてもよい。かかる方法においては、結晶化度が50%未満であるセルロースを押出機にフィードするにあたり、まずポリオレフィン樹脂及び/又はスチレン系樹脂のみを溶融させた後、サイドフィーダー等で二軸押出機の半ばから結晶化度が50%未満であるセルロースをフィードしてもよい。
【0147】
本発明の樹脂組成物は、加工性が良好で、例えば220℃以下の低温で加工することができるため、可塑剤を使用した場合でも可塑剤の分解が起こり難い利点があり、フィルムやシートに成形して、各種用途に用いることができる。
【0148】
<樹脂成形体及びその製造方法>
本発明の樹脂成形体は、本発明の樹脂組成物を成形することにより得られる。具体的には、例えば、押出機等を用いてポリオレフィン樹脂及び/又はスチレン系樹脂、ならびに結晶化度が50%未満であるセルロースを溶融させながら、必要により、可塑剤、結晶核剤、無機充填剤、難燃剤、耐衝撃吸収剤、相溶化剤等を混合し、次に得られた溶融物を射出成形機等により金型に充填して成形する。溶融の際にポリオレフィン樹脂やスチレン系樹脂の可塑性を促進させるため、超臨界ガスを存在させて溶融混合させてもよい。
【0149】
本発明の樹脂成形体は、結晶化度が50%未満であるセルロースを含有しながらも強度と可撓性の両立が可能である。
【0150】
本発明の樹脂成形体の好ましい製造方法は、ポリオレフィン樹脂及び/又はスチレン系樹脂、ならびに結晶化度が50%未満であるセルロースを含有する樹脂組成物を溶融混練する工程〔以下工程(1)という〕と、工程(1)で得られた溶融物を110℃以下の金型内に充填して成形する工程〔以下工程(2)という〕を含む方法である。
【0151】
工程(1)の具体例としては、例えば、ポリオレフィン樹脂及び/又はスチレン系樹脂、ならびに結晶化度が50%未満であるセルロースを、溶融混練機を用いて、160〜250℃で溶融混練する工程等が挙げられる。溶融混練機としては、特に限定はなく、二軸押出機等が例示される。また、溶融混練温度は、樹脂組成物の成形性及び劣化防止の観点から、160〜250℃が好ましく、165〜230℃がより好ましく、170〜220℃がさらに好ましい。
【0152】
本発明においては、工程(1)を経た後、冷却して非晶状態(すなわち高角X線回折法で測定される結晶化度が1%以下となる条件)とした後、工程(2)を行う方法や、工程(1)を経た後、冷却して直ちに工程(2)を行う方法が好ましく、結晶化速度向上効果発現の観点から、工程(1)を経た後、冷却して直ちに工程(2)を行う方法がより好ましい。
【0153】
工程(2)の具体例としては、例えば、射出成形機等により樹脂組成物を110℃以下の金型内に充填し、成形する工程等が挙げられる。工程(2)における金型温度は、結晶化速度向上及び作業性向上の観点から、110℃以下が好ましく、90℃以下がより好ましく、80℃以下がさらに好ましい。また20℃以上が好ましく、25℃以上がより好ましく、30℃以上がさらに好ましい。かかる観点から、金型温度は20〜110℃が好ましく、25〜90℃がより好ましく、30〜80℃がさらに好ましい。
【0154】
工程(2)における金型内での保持時間は、相対結晶化度60%以上を達成し、かつ生産性向上の観点から、5〜60秒が好ましく、8〜50秒がより好ましく、10〜45秒がさらに好ましい。なお、本明細書において、相対結晶化度とは、以下の式で表される結晶化度を言う。
相対結晶化度(%)={(ΔHm−ΔHcc)/ΔHm×100}
具体的には、相対結晶化度は、DSC装置(パーキンエルマー社製ダイアモンドDSC)を用い、1stRUNとして、昇温速度20℃/分で20℃から200℃まで昇温し、200℃で5分間保持した後、降温速度−20℃/分で200℃から20℃まで降温し、20℃で1分間保持した後、さらに2ndRUNとして、昇温速度20℃/分で20℃から200℃まで昇温し、1stRUNに観測されるポリオレフィン樹脂又はスチレン系樹脂の冷結晶化エンタルピーの絶対値ΔHcc、2ndRUNに観測される結晶融解エンタルピーΔHmを用いて求めることができる。
【実施例】
【0155】
〔樹脂のメルトフローレート(MFR)〕
メルトフローレート(MFR、g/10min)は、JIS K7210に記載の方法に従って測定する。なお、ポリオレフィン樹脂は190℃、98.07N荷重の条件下で、スチレン系樹脂は200℃、49.03N荷重の条件下で測定する。
【0156】
〔水分含量が調整されたセルロース含有原料の平均粒径〕
目開きXμm、0.9Xμmの篩を用意し、試料50gを篩の上に置いて篩分けする。その際、目開きXμmの篩を通過し、目開き0.9Xμmの篩を通過せずに篩上に残ったセルロースの重量が90重量%(45g)以上である場合を、セルロース含有原料の平均粒径Xμmとする。
【0157】
〔1次粉砕により得られたセルロース含有原料、非晶質セルロース及び結晶性セルロースの平均粒径〕
1次粉砕により得られたセルロース含有原料、非晶質セルロース及び結晶性セルロースの平均粒径とは、体積中位粒径(D50)のことを意味し、レーザー回折/散乱式粒度分布測定装置「LA−920」(堀場製作所社製)を用いて測定する。測定条件は、粒径測定前に超音波で1分間処理し、測定時の分散媒体として水を用い、体積中位粒径(D50)を、温度25℃にて測定する。
【0158】
〔セルロース含有原料の嵩密度〕
嵩密度は、ホソカワミクロン社製の「パウダーテスター」を用いて測定する。測定は、ふるいを振動させて、サンプルをシュートを通じ落下させ、規定の容器(容量100mL)に受け、該容器中のサンプルの重量を測定することにより算出する。ただし綿状化したサンプルについては、ふるいを通さずにシュートを通じ落下させ、規定の容器(容量100mL)に受け、該容器中のサンプルの重量を測定することにより算出する。
【0159】
〔セルロースI型結晶化度〕
セルロースI型結晶化度は、サンプルのX線回折強度を、リガク社製の「Rigaku RINT 2500VC X−RAY diffractometer」を用いて以下の条件で測定し、前記計算式に基づいて算出する。なお、測定用サンプルは、面積320mm×厚さ1mmのペレットを圧縮して作製する。
X線源:Cu/Kα−radiation
管電圧:40kv
管電流:120mA
測定範囲:回折角2θ=5〜45°
スキャンスピード:10°/min
【0160】
〔セルロース含有原料の水分含量〕
水分含量は、赤外線水分計(ケット科学研究所社製、「FD−610」)を使用し、150℃にて測定を行う。
【0161】
〔セルロース含有量〕
セルロース含有量は、社団法人日本分析化学会編、分析化学便覧(改訂四版、平成3年11月30日、丸善社発行)の1081頁〜1082頁に記載のホロセルロース定量法に準拠して測定する。
【0162】
〔セルロース含有原料の灰分含量〕
灰分含量は、2.0gのセルロース含有原料をるつぼ中に秤量し、電気炉(ADVANTEC社製、KM−600)を使用し、500℃、2時間焼成を行い、残渣の重量から求める。
【0163】
次に、結晶化度が50%未満であるセルロースの製造例を示す。本実施例において、結晶化度が50%未満であるセルロースのことを「非晶質セルロース」、結晶化度が50%以上であるセルロースのことを「結晶性セルロース」と記載し、以下の製造例によって得られた非晶質セルロースの平均粒径及び結晶化度を表1〜5に示す。なお、結晶性セルロースとしては、旭化成ケミカルズ社製のセオラスTG−101(セルロースI型結晶化度82%、セルロース平均粒径30μm)を、木粉としては、富山県砺波森林組合製 木粉80ME(セルロースI型結晶化度74%)を用いた。
【0164】
非晶質セルロースの製造例1
〔粗粉砕処理〕
セルロース含有原料として、シート状木材パルプ(Borregard社製「Blue Bear Ultra Ether」、800mm×600mm×1.5mm、セルロース含有量96重量%(セルロース含有原料から水を除いた残余の成分中の含有量、以下同じ)、セルロースI型結晶化度81%、水分含量7.0重量%、嵩密度200kg/m)をシュレッダー(明光商会社製、「MSX2000−IVP440F」)にかけ、約10mm×5mm×1.5mmのチップ状パルプにした。
【0165】
〔1次粉砕(押出機処理)〕
得られたチップ状パルプを二軸押出機(スエヒロEPM社製、「EA−20」)に2kg/hrで投入し、せん断速度660sec−1、スクリュー回転数300r/minで外部から冷却水を流しながら、1パス処理した。なお、前記二軸押出機は、完全噛み合い型同方向回転二軸押出機であり、2列に配置されたスクリューは、スクリュー径40mmのスクリュー部と、互い違い(90°)に12ブロックを組み合わせたニーディングディスク部とを有し、2本のスクリューは、同じ構成を有するものである。また、二軸押出機の温度は、処理にともなう発熱により、30〜70℃であった。押出機処理後(1次粉砕後)に得られたパルプは、嵩密度219kg/m、平均粒径120μmであった。
【0166】
〔2次粉砕(粉砕機処理)〕
押出機処理後に得られたパルプを、粉砕機Aとしてバッチ式攪拌槽型粉砕機(五十嵐機械社製「サンドグラインダー」:容器容積800mL、5mmΦジルコニアビーズを720g充填、充填率25%、攪拌翼径70mm)に50g投入した。容器ジャケットに冷却水を通しながら、攪拌回転数2000r/minで、180分粉砕処理を行った。操作の際の温度は、30〜70℃の範囲であった。
【0167】
処理終了後、攪拌槽型粉砕機内の壁面や底部にパルプの固着物等は見られなかった。2次粉砕処理後に得られたパルプを前記攪拌槽型粉砕機から取り出し、75μm目開きの篩をかけ、篩下品として、45g(投入量の90重量%)の非晶質セルロースAを得た。
【0168】
非晶質セルロースの製造例2
製造例1と同様にして押出機処理後(1次粉砕後)に得られたパルプ50gを、2次粉砕に用いる粉砕機として振動ミル(中央化工機社製、「MB−1」、容器全容量3.5L)に投入し、ロッド(断面形状:円形、直径:30mm、長さ:218mm、材質:ステンレス)11本を振動ミルに充填(充填率48%)して、振幅8mm、回転数1200回転/分の条件で、60分間処理を行った。操作の際の温度は、30℃であった。
【0169】
処理終了後、振動ミル内の壁面や底部にパルプの固着物等は見られなかった。2次粉砕処理後に得られたパルプを前記振動ミルから取り出し、75μm目開きの篩をかけ、篩下品として、30g(投入量の60重量%)の非晶質セルロースBを得た。
【0170】
非晶質セルロースの製造例3
〔1次粉砕(押出機処理)〕
セルロース含有原料として、松チップ(ドギーマンハヤシ社製 快適ふんわりベッド、セルロース含有量66重量%、セルロースI型結晶化度72%、水分含量7.2重量%、嵩密度160kg/m)を用いる以外は、製造例1と同様にして、1次粉砕を行った。押出機処理後(1次粉砕後)に得られたセルロース含有原料は、嵩密度225kg/m、平均粒径105μmであった。
【0171】
〔2次粉砕(粉砕機処理)〕
押出機処理後(1次粉砕後)に得られたセルロース含有原料50gを、2次粉砕に用いる粉砕機(粉砕機A)として製造例2と同様の粉砕機を用い、製造例2と同様の条件で75分間処理を行った。操作の際の温度は、30℃であった。
【0172】
処理終了後、粉砕機の壁面や底部にチップの固着物等は見られなかった。2次粉砕処理後に得られたチップを粉砕機から取り出し、75μm目開きの篩をかけ、篩下品として、43g(投入量の85重量%)の非晶質セルロースCを得た。
【0173】
非晶質セルロースの製造例4
〔粗粉砕処理〕
セルロース含有原料として、製造例1で用いたパルプと同じパルプを、シートペレタイザ(ホーライ社製、「SG(E)−220」)にかけ、約4mm×4mm×1.5mmの大きさに粗粉砕した。
【0174】
〔乾燥処理〕
粗粉砕処理により得られたパルプを、棚乾燥機〔アドバンテック(ADVANTEC)社製 真空定温乾燥機「DRV320DA」〕を用いて、乾燥後のパルプの水分含量が、0.8重量%になるように乾燥した。
【0175】
〔2次粉砕〕
乾燥処理により得られたパルプ50gを、2次粉砕に用いる粉砕機として製造例2と同様の粉砕機を用い、製造例2と同様の条件で、40分間処理(2次粉砕処理)を行った。操作の際の温度は、30℃であった。
【0176】
処理終了後、粉砕機内の壁面や底部にパルプの固着物等は見られなかった。得られた2次粉砕処理物を粉砕機から取り出し、75μm目開きの篩をかけ、42.5g(投入量の85重量%)の非晶質セルロースDを得た。
【0177】
非晶質セルロースの製造例5
〔粗粉砕処理〕
セルロース含有原料として、脱墨パルプ(國光社製、セルロース含有量92重量%、セルロースI型結晶化度80%、水分含量7.7重量%、嵩密度223kg/m)を、製造例1と同様のシュレッダーにかけ、約10mm×5mm×2.0mmの大きさに粗粉砕した。
【0178】
〔乾燥処理〕
粗粉砕処理により得られたパルプを、製造例4と同様の棚乾燥機を用いて、乾燥後のパルプの水分含量が、1.0重量%になるように乾燥した。
【0179】
〔2次粉砕〕
乾燥処理により得られたパルプ50gを、2次粉砕に用いる粉砕機として製造例2と同様の粉砕機を用い、製造例2と同様の条件で、45分間処理(2次粉砕処理)を行った。操作の際の温度は、30℃であった。
【0180】
処理終了後、粉砕機内の壁面や底部にパルプの固着物等は見られなかった。得られた2次粉砕処理物を粉砕機から取り出し、75μm目開きの篩をかけ、40g(投入量の80重量%)の非晶質セルロースEを得た。
【0181】
非晶質セルロースの製造例6
製造例1において、2次粉砕の処理時間を180分から45分に変更した以外は、製造例1と同様にして、非晶質セルロースFを得た。
【0182】
非晶質セルロースの製造例7
製造例1において、2次粉砕の処理時間を180分から90分に変更した以外は、製造例1と同様にして、非晶質セルロースGを得た。
【0183】
非晶質セルロースの製造例8
〔3次粉砕(粉砕機処理)〕
非晶質セルロースD50gと、粉砕助剤としてPE−MS(ペンタエリスリトールモノステアレート、花王社製、「エキセパールPE−MS」)5gとを混合し、その混合物の全量を、粉砕機Bとして振動ミル(中央化工機社製、「MB−1」、容器全容量3.5L)に投入し、ロッド(断面形状:円形、外径:30mm、長さ:218mm、材質:ステンレス)11本を振動ミルに充填(充填率48%)して、振幅8mm、回転数1200回転/分の条件で15分間粉砕処理を行って、非晶質セルロースHを得た。
【0184】
非晶質セルロースの製造例9
粉砕助剤の種類を、MA−PP(マレイン酸変性ポリプロピレン、三洋化成工業社製、ユーメックス1010)に変更した以外は、製造例8と同様にして、非晶質セルロースIを得た。
【0185】
非晶質セルロースの製造例10
粉砕助剤の種類を、ステアリルアルコール(花王社製、カルコール8098)に変更した以外は、製造例8と同様にして、非晶質セルロースJを得た。
【0186】
非晶質セルロースの製造例11
粉砕助剤の種類を、ステアリン酸ナトリウム(花王社製、ルナックS−98)に変更した以外は、製造例8と同様にして、非晶質セルロースKを得た。
【0187】
非晶質セルロースの製造例12
粉砕助剤の種類を、SEBS(スチレン−エチレン/ブチレン−スチレンブロックコポリマー、旭化成ケミカルズ社製、タフテック H1041)に変更した以外は、製造例8と同様にして、非晶質セルロースLを得た。
【0188】
非晶質セルロースの製造例13
粉砕助剤の種類を、OHC18EB(エチレンビス12−ヒドロキシステアリン酸アミド、日本化成社製、「スリパックスH」)に変更した以外は、製造例8と同様にして、非晶質セルロースMを得た。
【0189】
非晶質セルロースの製造例14
〔1次粉砕(押出機処理)〕
セルロース含有原料として、木粉(富山県砺波森林組合製 木粉80ME、パウダー状、セルロース含有量92重量%、セルロースI型結晶化度74%、水分含量7.2重量%、嵩密度210kg/m)を用いる以外は、製造例1と同様にして、1次粉砕を行った。押出機処理後(1次粉砕後)に得られたセルロース含有原料は、嵩密度246kg/m、平均粒径108μmであった。
【0190】
〔2次粉砕(粉砕機処理)〕
押出機処理後(1次粉砕後)に得られたセルロース含有原料50gを、2次粉砕に用いる粉砕機(粉砕機A)として製造例2と同様の粉砕機を用い、製造例2と同様の条件で75分間処理を行った。操作の際の温度は、30℃であった。
【0191】
処理終了後、粉砕機の壁面や底部にチップの固着物等は見られなかった。2次粉砕処理後に得られたチップを粉砕機から取り出し、75μm目開きの篩をかけ、篩下品として、43g(投入量の85重量%)の非晶質セルロースNを得た。
【0192】
非晶質セルロースの製造例15
〔粗粉砕処理〕
セルロース含有原料として、雑誌(集英社製「MORE」、297mm×210mm×0.5mm、結晶化度81%、セルロース含有量60重量%、水分含量7.7重量%、嵩密度200kg/m、灰分含量32.6重量%)を、シュレッダー(明光商会社製、「MSX2000−IVP440F」)にかけ、約10mm×5mm×0.5mmの大きさに粗粉砕した。
【0193】
〔乾燥処理〕
粗粉砕処理により得られた雑誌小片を、製造例4と同様の棚乾燥機を用いて、乾燥後の水分含量が、0.7重量%になるように乾燥した。
【0194】
〔2次粉砕〕
乾燥処理により得られた雑誌小片50gを、2次粉砕に用いる粉砕機として製造例2と同様の粉砕機を用い、製造例2と同様の条件で、40分間処理(2次粉砕処理)を行った。操作の際の温度は、30℃であった。
【0195】
処理終了後、粉砕機内の壁面や底部に雑誌小片の固着物等は見られなかった。得られた2次粉砕処理物を粉砕機から取り出し、75μm目開きの篩をかけ、42g(投入量の84重量%)の非晶質セルロースOを得た。
【0196】
非晶質セルロースの製造例16
〔脱墨処理(脱墨・脱灰分処理)〕
セルロース含有原料として、雑誌(集英社製「MORE」、297mm×210mm×0.5mm、結晶化度81%、セルロース含有量60重量%、水分含量7.7重量%、嵩密度200kg/m、灰分含量32.6重量%)を、シュレッダー(明光商会社製、「M400」により約20mm×50mm×0.5mmの大きさに裁断後、その一定量を卓上離解機に入れて、そこに50℃の温水、苛性ソーダ0.2重量%(対原料古紙)、及び脱墨剤(アルコールアルキレンオキサイド付加物:DI−7250、花王社製)0.1重量%(対原料古紙)加えて、古紙濃度5重量%の溶液を調製した。その後、温度50℃にて15分間離解し、古紙をパルプスラリー化した。離解後、脱水してパルプ濃度を18重量%としたところに、温水、苛性ソーダ0.6重量%(対原料古紙)、珪酸ソーダ2.2重量%(対原料古紙)、30%−過酸化水素水3.5重量%(対原料古紙)及び脱墨剤(DI−7250、花王社製)0.2重量%(対原料古紙)を加えて、パルプ濃度15重量%に調整し、再び、卓上離解機で1分間混合し、温度55℃で120分間熟成処理を行った。その後、水を加えてパルプ濃度を4重量%まで希釈し、さらに卓上離解機で3分間離解した。次いで、温水を加えてパルプ濃度を1重量%に調整し、温度30℃で10分間フローテーション処理を施して脱墨、脱灰分処理を行い、所定の灰分含量のパルプスラリーを得た。得られたパルプスラリーは、メッシュワイヤー(#80)でパルプ濃度6重量%まで濃縮後、水を加えてパルプ濃度を1重量%まで希釈し、TAPPIシートマシンにてパルプシートを調製した(灰分含有量15.9重量%)。
【0197】
得られた脱墨処理パルプシートを用いる以外は、製造例15と同様にして、粗粉砕処理、乾燥処理、2次粉砕を順に行って非晶質セルロースPを得た。
【0198】
非晶質セルロースの製造例17
脱墨処理において、フローテーション処理の処理時間を20分間に変更して灰分含有量6.0重量%のパルプシートを調製して用いる以外は、製造例16と同様にして、非晶質セルロースQを得た。
【0199】
非晶質セルロースの製造例18〜23
表5に示す非晶質セルロース100重量部に対して、表5に示す種類と量のシランカップリング剤を添加して、ヘンシェルミキサー(三井三池化工機社製、FM−10B)を用いて混合して表面処理を行って、非晶質セルロースR〜Wを得た。
【0200】
【表1】

【0201】
【表2】

【0202】
【表3】

【0203】
【表4】

【0204】
【表5】

【0205】
実施例1〜50及び比較例1〜13
原料として、表6〜11に示す熱可塑性樹脂、耐衝撃吸収剤、難燃剤、相溶化剤、及び充填剤(非晶質セルロース、結晶性セルロース又は木粉)を用いて、これらを二軸押出機(池貝鉄工社製、PCM−45)にて190℃で溶融混練し、ストランドカットを行い、樹脂組成物のペレットを得た。なお、得られたペレットは、70℃減圧下で1日乾燥し、水分含量を1重量%以下とした。
【0206】
得られたペレットを、シリンダー温度を200℃とした射出成形機(日本製鋼所社製、J75E−D)を用いて射出成形し、金型温度40℃、成形時間10分でテストピース〔角柱状試験片(125mm×12mm×6mm、及び63mm×12mm×5mm)〕を成形し、以下の試験例1〜2の方法に従って特性を調べた。結果を表6〜11に示す。
【0207】
<試験例1>〔強度(曲げ弾性率)、可撓性(曲げ破断歪み率)〕
角柱状試験片(125mm×12mm×6mm)について、JIS K7203に基づいて、テンシロン(オリエンテック社製テンシロン万能試験機 RTC−1210A)を用いて、クロスヘッド速度を3mm/minに設定して曲げ試験を行い、曲げ弾性率、曲げ破断歪み率を求めた。いずれも数値が高いほど、強度、可撓性が優れていることを示す。なお、曲げ破断歪み率については、測定範囲内の荷重をかけて破断しなかったものは、破断せずとした。
【0208】
<試験例2>〔耐衝撃性〕
角柱状試験片(63mm×12mm×5mm)について、JIS K7110に基づいて、衝撃試験機(上島製作所社製 863型)を使用して、Izod衝撃強度(J/m)を測定した。Izod衝撃強度(J/m)が高いほど耐衝撃性に優れることを示す。
【0209】
なお、表6〜11における原料は以下の通りである。
〔熱可塑性樹脂〕
ポリプロピレン樹脂:日本ポリプロ社製、「ノバテックPP MA3」、メルトフローレート(MFR)=11
ポリエチレン樹脂:日本ポリエチレン社製、「HJ362N」、MFR=5
ポリスチレン樹脂:PSジャパン社製、「GPPS HF77」、MFR=7.5
ABS樹脂(アクリロニトリル−ブタジエン−スチレン共重合樹脂):テクノポリマー社製、「テクノABS 110」、MFR=22
NW4032D:ポリ乳酸樹脂、Nature Works社製、融点160℃
〔耐衝撃吸収剤〕
メタブレンS−2001:シリコーン・アクリルゴム、三菱レイヨン社製
〔難燃剤〕
水酸化マグネシウム:日本軽金属社製
〔相溶化剤〕
Bondfast 7M:エポキシ基を有するポリエチレン樹脂、住友化学工業社製
【0210】
【表6】

【0211】
【表7】

【0212】
【表8】

【0213】
【表9】

【0214】
【表10】

【0215】
【表11】

【0216】
表6〜11の結果から明らかなように、本発明の樹脂組成物の成形体(実施例1〜50)は、充填剤以外は同じ組成の樹脂組成物に比べて、より高い曲げ弾性率及び曲げ破断歪み率を示している。このように結晶化度が50%未満である非晶質セルロースを含有した場合でも強度と可撓性を両立させることができることが示唆される。さらに、結晶化度が50%未満の非晶質セルロースを粉砕助剤と混合粉砕(3次粉砕)することにより、樹脂とセルロースの界面密着性が向上し、耐衝撃性がさらに向上することが示唆される。
【産業上の利用可能性】
【0217】
本発明の樹脂組成物は、日用雑貨品、家電部品、自動車部品等の様々な工業用途に好適に使用することができる。

【特許請求の範囲】
【請求項1】
ポリオレフィン樹脂及び/又はスチレン系樹脂と、結晶化度が50%未満であるセルロースを含有してなる樹脂組成物。
【請求項2】
結晶化度が50%未満であるセルロースが、結晶化度が50%以上のセルロースを含有する、嵩密度が100〜500kg/m、平均粒径が0.01〜1.0mmのセルロース含有原料であって、かつ該原料から水を除いた場合の残余の成分中のセルロース含有量が20重量%以上であるセルロース含有原料を、粉砕機で処理して得られたものである、請求項1記載の樹脂組成物。
【請求項3】
結晶化度が50%未満であるセルロースが、結晶化度が50%以上のセルロースを含有する、平均粒径が1.0mm超50mm以下のセルロース含有原料であって、水分含量が4.5重量%以下であり、該原料から水を除いた場合の残余の成分中のセルロース含有量が20重量%以上であるセルロース含有原料を、粉砕機で処理して得られたものである、請求項1記載の樹脂組成物。
【請求項4】
請求項1〜3いずれか記載の樹脂組成物を成形してなる樹脂成形体。

【公開番号】特開2011−137094(P2011−137094A)
【公開日】平成23年7月14日(2011.7.14)
【国際特許分類】
【出願番号】特願2009−298137(P2009−298137)
【出願日】平成21年12月28日(2009.12.28)
【出願人】(000000918)花王株式会社 (8,290)
【Fターム(参考)】