説明

樹脂被覆光ファイバ

【課題】外部応力によるマイクロベンドロス等の伝送損失の増加を抑制すると共に、ガラス光ファイバの破断を抑制して長期信頼性を向上させる。
【解決手段】少なくとも、コアおよび前記コアを被覆するクラッドからなるガラス光ファイバと、前記ガラス光ファイバに接する紫外線硬化樹脂のプライマリ層と、前記プライマリ層の外周に配置される紫外線硬化樹脂のセカンダリ層と、を備える樹脂被覆光ファイバにおいて、前記プライマリ層が前記クラッドの表面に接する内層と前記内層を被覆する外層との2層構造であって、前記内層の紫外線硬化樹脂は、JIS規格K7113のフィルム状での常温ヤング率が0.9MPa以上3.0MPa以下であり、前記外層の紫外線硬化樹脂は、前記常温ヤング率が0.1MPa以上0.7MPa以下である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガラス光ファイバを紫外線硬化樹脂で被覆した樹脂被覆光ファイバに関する。
【背景技術】
【0002】
従来、図10(a)に示すように、コア211およびクラッド212からなるガラス光ファイバ201の外周に、紫外線硬化樹脂(以下、UV樹脂とも記す)からなる低ヤング率のプライマリ層(一次被覆層)202と高ヤング率のセカンダリ層(二次被覆層)203とを順次、被覆形成した2層樹脂構造の樹脂被覆光ファイバ200が知られている(例えば、特許文献1参照)。ガラス光ファイバ201に接するプライマリ層202は、ヤング率が0.1MPa〜1.5MPa程度の柔らかいUV樹脂層であり、セカンダリ層203は、ヤング率が600MPa〜2000MPa程度の硬い殻構造のUV樹脂層である。このプライマリ層202及びセカンダリ層203のヤング率の異なる2層樹脂構造によって、樹脂被覆光ファイバ200が曲げ等を受けたときのガラス光ファイバ201への側圧などの外部応力を緩和・緩衝して、光ファイバのマイクロベンドロス等の伝送損失の増加を抑制している。
【0003】
また、ガラス光ファイバ201表面のOH基によるガラス腐食の進行速度を抑制するため、ガラス光ファイバ201に接するプライマリ層202にシランカップリング剤を添加する方法が提案されている(例えば、特許文献2参照)。シランカップリング剤は、ガラス光ファイバ201表面のOH基とメタロキサン結合またはシラノール結合して脱水縮合するため、OH基を低減してガラス腐食の進行を抑える。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2001−83381号公報
【特許文献2】特開2003−95706号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上記の2層樹脂構造の樹脂被覆光ファイバでは、プライマリ層202及びセカンダリ層203の紫外線硬化樹脂のヤング率を種々に変更しても、外部応力を緩和・緩衝してガラス光ファイバのマイクロベンドロス等の伝送損失の増加を抑制することと、ガラス光ファイバの破断強度を長期に亘って維持して長期信頼性を実現することとを両立させるのは困難であった。
【0006】
本発明は、外部応力によるマイクロベンドロス等の伝送損失の増加を抑制できると共に、ガラス光ファイバの破断を抑制して長期信頼性に優れる樹脂被覆光ファイバを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の第1の態様は、少なくとも、コアおよび前記コアを被覆するクラッドからなるガラス光ファイバと、前記ガラス光ファイバに接する紫外線硬化樹脂のプライマリ層と、前記プライマリ層の外周に配置される紫外線硬化樹脂のセカンダリ層と、を備える樹脂被覆光ファイバにおいて、前記プライマリ層が前記クラッドの表面に接する内層と前記内層を被覆する外層との2層構造であって、前記内層の紫外線硬化樹脂は、JIS規格K7113のフィルム状での常温ヤング率が0.9MPa以上3.0MPa以下であり、前記外
層の紫外線硬化樹脂は、前記常温ヤング率が0.1MPa以上0.7MPa以下の樹脂被覆光ファイバである。
【0008】
上記樹脂被覆光ファイバにおいて、前記内層の膜厚は、前記ガラス光ファイバを線引きする際に前記クラッド表面に形成される凹部の深さより大きいことが好ましい。
【0009】
上記樹脂被覆光ファイバにおいて、前記セカンダリ層の紫外線硬化樹脂は、JIS規格K7113のフィルム状での常温ヤング率が600MPa以上であることが好ましい。
【0010】
上記樹脂被覆光ファイバにおいて、温度85℃、相対湿度85%、30日間による加速劣化試験後の前記樹脂被覆光ファイバにおける前記クラッドの表面の平均ラフネスが0.6nm以下であることが好ましい。
【発明の効果】
【0011】
本発明によれば、外部応力によるマイクロベンドロス等の伝送損失の増加を抑制できると共に、ガラス光ファイバの破断を抑制して長期信頼性に優れる樹脂被覆光ファイバが得られる。
【図面の簡単な説明】
【0012】
【図1】(a)は本発明の一実施形態に係る樹脂被覆光ファイバの横断面図であり、(b)は本発明の一実施形態に係る樹脂被覆光ファイバの一部を示す縦断面図である。
【図2】本発明の一実施形態にかかる樹脂被覆光ファイバを製造する製造装置の一例を示す概略構成図である。
【図3】マイクロベンドロスとケーブル化増加ロスとの関係を示す図である。
【図4】外層ヤング率とマイクロベンドロスとの関係を示す図である。
【図5】樹脂被覆光ファイバを伝送させる光の波長と、マイクロベンドロス、ケーブル化増加ロスとの関係を示す図である。
【図6】(a)は実施例1における破断強度とワイブル破断確率との関係を示す図であり、(b)は比較例1における破断強度とワイブル破断確率との関係を示す図である。
【図7】Med値と加速劣化試験後の平均ラフネスとの関係を示す図である。
【図8】ガラス光ファイバに接するUV樹脂のヤング率と加速劣化試験後の平均ラフネスとの関係を示す図である。
【図9】(a)は実施例1における破断引張速度と破断強度との関係を示す図であり、(b)は比較例1における破断引張速度と破断強度との関係を示す図である。
【図10】(a)は従来の樹脂被覆光ファイバの横断面図であり、(b)は従来の樹脂被覆光ファイバの一部を示す縦断面図である。
【発明を実施するための形態】
【0013】
樹脂被覆光ファイバは、ガラス光ファイバ母材(プレフォーム)を加熱線引きして形成されるガラス光ファイバに、紫外線硬化樹脂(UV樹脂)を被覆して製造される。この製造工程で、ガラス光ファイバは高温から常温へと冷却されるため、ガラス光ファイバのクラッド表面には微小な凹凸が生じる。この凹凸を原子間力顕微鏡(AFM:Atomic ForceMicroscope)により観察すると、線引き後の凹凸の平均ラフネスは、通常0.5nm以下となっている。
【0014】
図10(b)には、従来の低ヤング率のプライマリ層202と高ヤング率のセカンダリ層203とからなる2層樹脂構造の樹脂被覆光ファイバ200において、クラッド212表面に生じた凹凸の一つの凹部206を示している。図10(a)、図10(b)によれば、ガラス光ファイバ201表面のクラッド212に接するプライマリ層202は、凹部206を含むクラッド212表面に吸着することにより、ガラス光ファイバ201の破断
強度の低下を抑制している。
【0015】
ところで、ガラス光ファイバ201への側圧などの外部応力を緩和して、マイクロベンドロスなどを小さく抑えるためには、プライマリ層202のヤング率を0.1MPa〜0.8MPa程度に小さく設定することが有効であることが分かってきた。
しかし、プライマリ層202のヤング率を0.1MPa〜0.8MPa程度に小さくすると、プライマリ層202のヤング率が小さすぎるため、外部応力によって凹部206の底部206aに生じる応力集中を緩和できずに、凹部206の底部206aに大きな応力(集中応力)207が発生してしまうことが判明した。この大きな応力207により、ガラス光ファイバ201の破断が進行し、凹部206が拡大する。しかも、凹部206の底部206aにかかる応力207の増加にともないガラス光ファイバ201表面のOH基による腐食速度も速まり、凹部206はさらに拡大する。したがって、従来の2層樹脂構造の樹脂被覆光ファイバ200においては、凹部206が、時間の経過とともに拡大しガラス光ファイバ201の破断強度が低下するため、長期信頼性が低かった。
本発明は、上記ガラス光ファイバ表面の凹部にかかる応力集中に着目し、この応力集中を緩和・低減すべくなされたものである。
【0016】
以下に、本発明の一実施形態に係る樹脂被覆光ファイバを図面を用いて説明する。図1(a)に本発明の一実施形態に係る樹脂被覆光ファイバの横断面図を、図1(b)に本発明の一実施形態に係る樹脂被覆光ファイバの一部を示す縦断面図を示す。
【0017】
[樹脂被覆光ファイバ]
本実施形態に係る樹脂被覆光ファイバ100は、図1(a)に示すように、コア11およびコア11を被覆するクラッド12からなるガラス光ファイバ1の表面にUV樹脂のプライマリ層2およびセカンダリ層3が順次被覆されている。プライマリ層2は、低ヤング率の柔らかいUV樹脂層であり、セカンダリ層3は、高ヤング率の硬い殻構造のUV樹脂層である。本実施形態のプライマリ層2は、ガラス光ファイバ1表面のクラッド12に接する内層4と内層4を被覆する外層5との2層構造である。つまり、本実施形態のガラス光ファイバ1外周のUV樹脂層は、プライマリ層2の内層4とプライマリ層2の外層5とセカンダリ層3との3層構造となっている。そして、内層4のUV樹脂のヤング率が外層5のUV樹脂のヤング率よりも高くなっている。
【0018】
ガラス光ファイバ1は、例えば合成シリカガラスを主成分として、Ge(ゲルマニウム)やF(フッ素)などが添加された高屈折率領域のコア11と、シリカガラス単体またはF(フッ素)などが添加された低屈折率領域のクラッド12が形成されている。本発明においては、ガラス光ファイバ1の構造は特に限定されず、ガラス光ファイバ1はシングルモードファイバまたはマルチモードファイバのいずれでもよい。
上述したように、プレフォームを加熱線引きして形成されるガラス光ファイバ1は高温から常温へと冷却されるため、ガラス光ファイバ1のクラッド12の表面には微小な凹凸が存在する。図1(b)に、本実施形態の3層樹脂被覆構造の樹脂被覆光ファイバ100におけるクラッド12表面に生じた凹凸のうちの、一つの凹部6を示す。ガラス光ファイバ1のクラッド12に接するプライマリ層2の内層4は、凹凸を有するクラッド12表面に吸着することにより、ガラス光ファイバ1の破断強度の低下を抑制している。また、内層4のUV樹脂には、シランカップリング剤が添加されている。内層4に添加されたシランカップリング剤は、クラッド12表面のOH基とメタロキサン結合またはシラノール結合して脱水縮合するため、OH基を低減してガラス腐食の進行を抑える。なお、シランカップリング剤の種類は特に限定されない。
【0019】
本実施形態の樹脂被覆光ファイバ100のUV樹脂被覆は、柔らかいUV樹脂からなるプライマリ層2が、外層5と、その内側にガラス光ファイバ1に接して設けられる内層4
との2層構造であり、プライマリ層2の外周にはプライマリ層2よりも硬いUV樹脂からなる殻構造のセカンダリ層3が被覆された3層樹脂被覆構造となっている。そして、ガラス光ファイバ1表面に接する内層4のUV樹脂は、JIS規格K7113のフィルム状での常温ヤング率(以下、単に常温ヤング率という)が0.9MPa以上3.0MPa以下であり、プライマリ層2の外層5のUV樹脂は、常温ヤング率が0.1MPa以上0.7MPa以下となっている。すなわち、ガラス光ファイバ1表面に接する内層4は、外層5よりもヤング率の高いUV樹脂層となっている。
この構造では、樹脂被覆光ファイバ100に加わる外からの力を、まず、殻構造のセカンダリ層3で受け止めて緩衝・緩和し、更にセカンダリ層3からガラス光ファイバ1へ伝わる外部応力を、柔らかいプライマリ層2で緩和・緩衝して、ガラス光ファイバ1に加わる外部応力を低減する。このため、樹脂被覆光ファイバ100の曲げ等によるマイクロベンドロスや樹脂被覆光ファイバ100をケーブルに用いたときのケーブル化増加ロスなどの伝送損失を小さく抑えることができる。
更に、プライマリ層2の内層4を外層5よりもヤング率を高くし、ガラス光ファイバ1表面をヤング率を高めた内層4で覆っているので、ガラス光ファイバ1表面、特に凹部6の底部6aに発生する応力集中を分散ないし緩和でき、図10(b)に示すような従来の2層樹脂被覆構造の樹脂被覆光ファイバに比べて、凹部6の底部6aの応力(集中応力)7を低減できる。このため、応力7によるガラス光ファイバ1の破断を抑制でき、応力7の大きさに対応したガラス光ファイバ1表面のOH基による腐食速度も抑えられ、ガラス光ファイバ1の破断強度を長期に亘って維持でき、樹脂被覆光ファイバ100の長期信頼性を向上できる。
すなわち、本実施形態の樹脂被覆光ファイバ100では、内層4と外層5との2層構造のプライマリ層2を採用することで、プライマリ層2におけるUV樹脂層のヤング率の低さに起因する長期信頼性の低下と、プライマリ層2におけるUV樹脂層のヤング率の高さに起因するマイクロベンドロス等の伝送損失の増加と、の相反する技術的課題を同時に解決することができる。
【0020】
ガラス光ファイバ1表面に接する内層4のUV樹脂の常温ヤング率を上記範囲内とする理由は、常温ヤング率が0.9MPaより小さくなると、上記の凹部6の応力7の集中を十分に低減できず、ガラス光ファイバ1の破断や腐食の抑制が難しくなり、ガラス光ファイバ1の長期信頼性を実現できなくなるためである(後述の実施例の図7,図8参照)。一方、内層4のUV樹脂の常温ヤング率が3.0MPaより大きくなると、凹部6への外部応力の集中は低減できるものの、ガラス光ファイバ1へ伝わる外部応力を十分に緩和できず、ケーブル化増加ロス、マイクロベンドロスを小さく抑えられなくなるためである。JIS規格K7113のフィルム状での常温ヤング率は、UV樹脂フィルムを引張試験機で引っ張り、その時の伸びと応力の変化率から測定される。
【0021】
また、プライマリ層2の外層5のUV樹脂の常温ヤング率を上記範囲内とする理由は、常温ヤング率が0.7MPaよりも大きくなると、ガラス光ファイバ1へ伝わる外部応力を十分に緩和できず、マイクロベンドロスやケーブル化増加ロスを小さく抑えられなくなるためである(実施例の図3、図4参照)。一方、外層5のUV樹脂の常温ヤング率が0.1MPaよりも小さくなると、光ファイバの製造や実使用で必要な機械強度を十分に得られなくなるためである。
【0022】
本実施形態においては、セカンダリ層3のUV樹脂の常温ヤング率は600MPa以上2000MPa以下であることが好ましい。セカンダリ層3の常温ヤング率が、600MPaよりも小さいと、セカンダリ層3の殻構造が十分に形成されず、セカンダリ層3による緩衝・緩和が十分に発揮されなくなるからである。また、セカンダリ層3の常温ヤング率が2000MPaよりも大きいと、剛性が高すぎて光ファイバとしてのしなやかさに欠けるからである。
【0023】
内層4と外層5とで構成されるプライマリ層2およびセカンダリ層3に使用されるUV樹脂の種類は特に限定されないが、光硬化性および取り扱い性などの点からウレタンアクリル系の紫外線硬化樹脂が好ましい。なお、UV樹脂のヤング率(常温ヤング率)はUV樹脂中のオリゴマー成分の分子量やモノマー成分の配合量などを変更することにより適宜調整される。
【0024】
本実施形態の樹脂被覆光ファイバ100の各部の寸法を一例として記載すると、ガラス光ファイバ1の外径が125μm、プライマリ層2(内層4および外層5)の外径が180μm以上210μm以下、セカンダリ層3の外径が250μmである。プライマリ層2の内層4の厚さは、上記のクラッド12表面の凹凸を覆い凹部6内にUV樹脂が充填され、上記応力集中を緩和できるように、凹部6の深さよりも大きくするのが好ましい。また、内層4の厚さは、凹部6の深さより大きければできるだけ薄い方が良く、10μm以下であることが好ましい。
【0025】
なお、上記実施形態においては2層構造のプライマリ層とセカンダリ層との3層構造の樹脂被覆光ファイバについて説明したが、本発明は上記実施形態に限定されない。例えば、セカンダリ層とヤング率の異なる樹脂層を、プライマリ層とセカンダリ層との間に介在させる、またはセカンダリ層の外周に配置し被覆させるといったように、4層以上の構造とすることができる。
【0026】
次に、上記実施形態に係る樹脂被覆光ファイバ100を、図2に示す線引装置を用いて製造する製造方法を説明する。本実施形態に係る樹脂被覆光ファイバ100の製造方法は、ガラス光ファイバ1を線引きする工程と、ガラス光ファイバ1表面に内層4及び外層5からなるプライマリ層2を形成する工程と、外層5表面にセカンダリ層3を形成する工程と、を有している。
【0027】
まず、図2に示すように、コアおよびクラッドからなるプレフォーム20を線引炉21で加熱溶融し、一定速度で線引きすることにより、外径125μmのガラス光ファイバ1を形成する。そして、形成したガラス光ファイバ1を冷却筒22を通過させ常温まで冷却する。この冷却に際して、ガラス光ファイバ1表面のクラッドには微小な凹凸(ラフネス)が形成される。
【0028】
続いて、冷却したガラス光ファイバ1に、Wet-On-Wet法(最初にガラス光ファイバ1に塗布したUV樹脂液体がウェットの状態のまま、次のUV樹脂液体を重ねて塗る方法)により、内層用UV樹脂液体と外層用UV樹脂液体を塗布した後、両樹脂液体に紫外線を照射し、一括して光硬化させて内層4と外層5を形成する。Wet-On-Wetダイス23は、UV樹脂塗布カップが上下2段に一括装備されたダイスであって、上段のUV樹脂塗布カップにはシランカップリング剤が添加された所定ヤング率の内層用UV樹脂液体が供給され、下段のUV樹脂塗布カップには所定ヤング率の外層用UV樹脂液体が供給される。ガラス光ファイバ1がWet-On-Wetダイス23を通過することにより、ガラス光ファイバ1表面に、内層用UV樹脂液体と外層用UV樹脂液体とがそれぞれ所定厚さで重ね塗りされる。そして、UVランプ25を備えるUV照射装置24により内層用UV樹脂液体と外層用UV樹脂液体を一括して光硬化し、プライマリ層2の内層4と外層5を同時に形成する。Wet-On-Wet法によれば、内層4と外層5を一括して形成することが可能となり、工程数を低減することができ、また、内層4の塗布装置(ダイス及びUV照射装置からなる)の長さの縮小、従来の線引装置へのわずかな変更での適用が可能となる。更に、一層毎に塗布および光硬化を行って内層4と外層5と別々に形成する場合よりも、内層用UV樹脂液体を薄く塗膜でき、薄い内層4の形成が可能となる。
【0029】
続いて、プライマリ層2の内層4および外層5が形成されたガラス光ファイバ1をダイス26に導入して、セカンダリ層用UV樹脂液体を塗布する。その後、上下二段に設けられたUVランプ28を備えるUV照射装置27およびUVランプ30を備えるUV照射装置29により、塗布されたセカンダリ層用UV樹脂液体を光硬化してプライマリ層2上にセカンダリ層3を形成し、本実施形態にかかる樹脂被覆光ファイバ100を得る。その後、形成された樹脂被覆光ファイバ100はターンプーリ31,32,33でそれぞれ方向転換された後、ボビン34に巻き取られる。
【0030】
なお、上記実施形態では、Wet-On-Wet法により内層4および外層5を一括して形成したが、内層4、外層5を一層毎に形成するようにしてもよい。また、Wet-On-Wet法により、内層4、外層5、およびセカンダリ層3の3層を一括して形成することも可能である。
【実施例】
【0031】
次に、本発明の実施例を具体的に説明する。実施例の樹脂被覆光ファイバは、図1(a)に示す上記実施形態の樹脂被覆光ファイバ100と同様の構造を有する。
【0032】
(実施例1)
実施例1では、図2に示す線引装置を用いて、まず、コア部およびクラッド部を備えるガラス光ファイバ母材であるプレフォームを、加熱線引きして、外径125μmのガラス光ファイバを形成した。この時、ガラス光ファイバが高温から常温に冷却されるため、ガラス光ファイバ表面に凹凸が形成される。次に、得られたガラス光ファイバ表面に厚さ10μmの内層(常温ヤング率:1.2MPa)と、外層(常温ヤング率:0.5MPa)を形成し、内層と外層とからなるプライマリ層の外径が187.5μmとなるように形成した。そして、プライマリ層の外層表面にセカンダリ層(常温ヤング率:600MPa)を形成して、外径250μmの実施例1に係る樹脂被覆光ファイバを得た。内層、外層、セカンダリ層には紫外線架橋型ウレタンアクリル樹脂を用いた。なお、上記常温ヤング率を、実施例においては、単にヤング率とも記す。
【0033】
(比較例1)
比較例1の樹脂被覆光ファイバは、実施例1におけるプライマリ層の内層を有さない、図10(a)に示す2層樹脂被覆構造の樹脂被覆光ファイバである。比較例1の樹脂被覆光ファイバは、外径125μmのガラス光ファイバ表面に、外径が約187.5mmとなるように1層のプライマリ層(常温ヤング率:0.5MPa)を形成し、さらにプライマリ層の表面に、外径が250μmとなるようにセカンダリ層(常温ヤング率:600MPa)を形成した。
【0034】
上記で得られた樹脂被覆光ファイバに対して、伝送損失、長期信頼性、およびUV密着性を評価した。伝送損失としては、マイクロベンドロスおよびケーブル化増加ロスを測定した。長期信頼性としては、加速劣化試験後の樹脂被覆光ファイバに、破断試験による破断強度、およびガラス光ファイバ表面の平均ラフネスで評価した。以下に、それぞれについて説明する。
【0035】
(ケーブル化増加ロスおよびマイクロベンドロスの評価)
本明細書において、マイクロベンドロスは、JIS♯150のサンドペーパを表面に敷いた胴径300mmのボビンに、長さ400mの樹脂被覆光ファイバを張力150gで巻きつけた時の損失増加量とした。また、ケーブル化増加ロスは、樹脂被覆光ファイバ表面に、押え巻き、シース、アーマ、防食層を順次被覆してケーブル化することにより、ケーブル化前後での伝送損失の増加量とした。
【0036】
図5に、実施例1、比較例1の樹脂被覆光ファイバに対して、樹脂被覆光ファイバを伝
送させる光の各波長におけるマイクロベンドロス、ケーブル化増加ロスを測定した測定結果を示す。比較例1の2層被覆構造の樹脂被覆光ファイバは、耐マイクロベンドロス対策を施した樹脂被覆光ファイバであるが、実施例1の3層被覆構造の樹脂被覆光ファイバのマイクロベンドロスは、比較例1のマイクロベンドロスと遜色がなく、十分に小さく抑えられることが確認された。また、ケーブル化増加ロスに関しても、実施例1と比較例1は同等であって、実施例1の樹脂被覆光ファイバのケーブル化増加ロスも十分に小さくできることが確認された。なお、一般的に、長距離通信用の光ファイバにおけるケーブル化増加ロスは0.08dB/km(波長1550nmのとき)以下であることが要求されている。
【0037】
次に、伝送損失(マイクロベンドロス、ケーブル化増加ロス)と外層ヤング率との関係について、マイクロベンドロスとケーブル化増加ロスとの関係を示す図3と、外層ヤング率とマイクロベンドロスとの関係を示す図4を用いて説明する。なお、図3、図4における菱形のプロットは、実施例1の樹脂被覆光ファイバにおける外層のヤング率を種々に変更(0.4〜1.0MPaの範囲でヤング率を変更)した樹脂被覆光ファイバのマイクロベンドロスおよびケーブル化増加ロスのデータである。
図3に示すように、ケーブル化増加ロスはマイクロベンドロスの低下にともない低下する。ケーブル化増加ロスは、上述したように0.08dB/km以下であることが要求され、これを満足するためには、図3のグラフより、マイクロベンドロスの増加は0.3dB/km以下にすればよい。また、図4に示すように、外層のヤング率を低くするほど、外部応力を緩衝・緩和することができるため、マイクロベンドロスの増加を抑制できる。図4のグラフより、マイクロベンドロスを0.3dB/km以下にするには、外層のヤング率を0.7MPa以下にすればよい。したがって、外層ヤング率を0.7MPa以下とすることにより、マイクロベンドロスを0.3dB/km以下にでき、ケーブル化増加ロスを0.08dB/km以下に抑えられることが分かった。
【0038】
(長期信頼性の評価)
シランカップリング剤が有効で長期寿命期間25年の間に、ガラス腐食が所定の許容範囲にあることを保証する試験として、温度85℃、相対湿度85%、30日間の加速試験(以下、加速劣化試験という)がある。加速劣化試験をしたガラス光ファイバのガラス腐食程度或いは破断強度の状況は、破断試験(試験方法規格IEC60793-1-31またはTLA/EIA-455-28に準拠)で判断される。上記加速劣化試験後の樹脂被覆光ファイバに上記破断試験
を行い、破断強度を評価した。破断試験での破断状況は、ワイブル確率分布の破断強度中央値(Median値、以下Med値とする)、md値(低強度分布の破断確率と破断強度との傾斜)で判定した。Med値は破断強度のワイブル確率分布における破断強度の中央値であり、ガラス光ファイバ1が破断される破断強度の指標となる。md値はワイブルパラメータであり、破断強度のワイブル確率分布の状態を示す。
【0039】
加速劣化試験後の実施例1の樹脂被覆光ファイバに、破断試験(引張速度V)を行った。この破断試験から、図6(a)に示すように、実施例1の樹脂被覆光ファイバにおける破断強度とワイブル破断確率との関係が得られた。図6(a)において、初期状態のデータ(菱形のプロット)と加速劣化試験後のデータ(四角のプロット)とを比較すると、実施例1の樹脂被覆光ファイバでは、加速劣化試験による劣化は確認されなかった。また、ワイブル確率分布から求められるMed値は、初期状態が5.7GPa、加速劣化試験後が6.0GPaであって、劣化は確認されなかった。なお、ガラス光ファイバの破断強度として、Med値5.5GPa以上であれば、十分な破断強度を有するといえる。また、実施例1においては、md値が75(初期)から80(加速劣化試験後)とほぼ変わらず、破断強度のワイブル確率分布の状態にほとんど変化はなく、劣化による破断強度の低下は認められなかった。
一方、比較例1の樹脂被覆光ファイバにおける破断強度とワイブル破断確率との関係を
示す図6(b)によれば、比較例1では、劣化が進みワイブル確率分布が大きく変動し、Med値が5.9GPa(初期)から3.9GPa(加速劣化試験後)に減少した。また、比較例1では、md値が120(初期)から7.4(加速劣化試験後)へと大きく減少し、劣化により破断強度が大きく減少していることが分かった。なお、md値は、樹脂被覆光ファイバの10mm径曲げの25年寿命許容敷設長が1m以上であるため、18以上であることが好ましい。
【0040】
次に、加速劣化試験後のガラス光ファイバ表面の平均ラフネスを測定した。具体的には、加速劣化試験後の樹脂被覆光ファイバのUV樹脂層をはぎ取り、ガラス光ファイバを露出させ、露出したガラス光ファイバの表面を原子間力顕微鏡(AFM)の非接触モードで表面の凹凸を測定する。そして、得られたスキャンデータから算術平均粗さを算出して平均ラフネスとした。実施例1においては、加速劣化試験後の平均ラフネスが0.2nmであり、初期状態からの変化はほとんど確認されなかった。一方、比較例1においては、平均ラフネスが1.4nmまで増加していた。
【0041】
ここで、平均ラフネスとガラス光ファイバに接するUV樹脂のヤング率との関係について、Med値と加速劣化試験後の平均ラフネスとの関係を示す図7、ガラス光ファイバに接するUV樹脂のヤング率と平均ラフネスとの関係を示す図8を用いて説明する。図7によれば、平均ラフネスの増加にともないMed値が減少して破断強度が低下することが示されている。また、図8によれば、ガラス光ファイバに接するUV樹脂のヤング率の増加にともない、加速劣化試験後の平均ラフネスが低下することが示されている。ガラス光ファイバに接するUV樹脂のヤング率を1.2MPaとする実施例1と、0.5MPaとする比較例1とでは、ラフネスの凹部底部へ集中する応力の大きさが異なるため、劣化による平均ラフネスの増加に違いが生じている。図7、図8、および後述の実施例3の結果から、ガラス光ファイバに接するUV樹脂のヤング率を0.9MPa以上にすると、加速劣化試験後の平均ラフネスを0.6nm以下に抑えられ、かつ、5.5GPa以上のMed値が得られることが分かる。すなわち、樹脂被覆光ファイバにおけるガラス光ファイバは、時間の経過とともに劣化したとしても、平均ラフネスが0.6nm以下であれば十分な破断強度を有することになる。なお、図7、図8において、三角形のプロットは実施例1、比較例1のデータを示し、菱形のプロットは比較例1におけるガラス光ファイバに接するUV樹脂のヤング率を種々に変更して得られたデータを示す。
【0042】
(UV樹脂の密着性)
ガラス光ファイバとそれに接するUV樹脂との結合状態(密着性)を、ガラス腐食速度を示す動的疲労定数としてのnd値により判断した。nd値はガラス光ファイバ表面の凹部底部にかかる応力により促進されるラフネスの増加を示すものではないが、nd値によりガラス腐食の促進速度を判断することができる。nd値は、破断引張速度と破断強度との関係を示す図9によれば、例えば4点の破断引張速度とその時の破断強度から得られる対数表示グラフの傾きから算出される。図9(a)に示す実施例1では加速劣化試験によりnd値が22.8から24.7へと変化し、図9(b)に示す比較例1では加速劣化試験によりnd値が24.5から24へと変化しているが、実施例1、比較例1ともにnd値の変化は少なく、UV樹脂の密着性は低下していないことが確認された。
【0043】
以上の結果を纏めると、下記の表1に示すように、実施例1においては、波長1550nmのときのマイクロベンドロスが0.24dB/km、ケーブル化増加ロスが0.04dB/kmであり、加速劣化試験後のMed値が6.0GPa、md値が80、平均ラフネスが0.2nmであった。すなわち、実施例1の樹脂被覆光ファイバは、マイクロベンドロスおよびケーブル化増加ロスの増加を抑制するとともに、破断強度などの劣化が少なく長期信頼性に優れることがわかる。
それに対して、比較例1においては、マイクロベンドロスが0.24dB/km、ケー
ブル化増加ロスが0.03dB/km、Med値が3.9、md値が7.4、そして、平均ラフネスが1.4nmであった。比較例1の樹脂被覆光ファイバは、伝送損失の増加を抑制できるものの、ガラス光ファイバの破断またはガラス腐食を十分に抑制できず、長期信頼性が低下している。この理由は、低ヤング率の一層のプライマリ層では、ガラス光ファイバの凹部底部への外部応力の集中を抑制することができず、ガラス光ファイバの破断または腐食が進行してしまうためである。
【0044】
(実施例2〜実施例4、比較例2、比較例3)
実施例2〜4、比較例2、比較例3における樹脂被覆光ファイバは、上記実施例1および比較例1とほぼ同様に形成し(以下では実施例1、比較例1との相違点のみ述べる)、上記と同じ評価を行った。評価結果を、実施例1および比較例1とともに表1に纏めて示す。以下、それぞれについて説明する。
【0045】
(実施例2)
実施例2は、セカンダリ層のヤング率を1200MPaに変更した点が実施例1と異なるだけであり、その他の構成については実施例1と同様に形成した。表1に示すように、実施例2は加速劣化試験後において実施例1と同様に長期信頼性に優れ、かつマイクロベンドロス、ケーブル化増加ロスも十分に小さく抑えられている。
【0046】
(実施例3)
実施例3は、実施例1おける内層のヤング率を0.9MPa、外層のヤング率を0.7MPaに変更している。表1より、Med値の加速劣化試験後の減少は確認されず、また、加速劣化試験後の平均ラフネスは0.6nmに抑えられており、十分な破断強度を有することがわかる。なお、実施例3においては、加速劣化試験によりmd値が100から25へと低下しているが、18以上であるので問題とはならない。また、マイクロベンドロス、ケーブル化増加ロスも十分に小さい。
【0047】
(実施例4)
実施例4は、実施例1おける内層のヤング率を3.0MPa、外層のヤング率を0.7MPaに変更している。表1によれば、マイクロベンドロスは0.30dB/km、ケーブル化増加ロスは0.08dB/kmであって合格基準にあり、また、Med値、md値は加速劣化試験後も減少せず、加速劣化試験後の平均ラフネスは0.15nmとなっており、長期信頼性に優れていることが分かる。
【0048】
(比較例2)
比較例2は、セカンダリ層のヤング率を1200MPaに変更した点が比較例1と異なるだけである。評価結果についても、比較例1と同様に、マイクロベンドロス、ケーブル化増加ロスは抑制できるものの、加速劣化試験によりMed値が5.9から3.9へ、md値が120から7.4へとそれぞれ大きく減少して、加速劣化試験後の平均ラフネスが1.4nmまで増加している。比較例2は、比較例1と同様に、ガラス光ファイバの破断またはガラス腐食を抑制できず、長期信頼性が低いことが確認された。
【0049】
(比較例3)
比較例3は、比較例1おけるプライマリ層のヤング率を1.0MPa、セカンダリ層のヤング率を1200MPaに変更している。表1に示すように、比較例3では、加速劣化試験後の平均ラフネスが0.5nmであり、加速劣化試験後のMed値およびmd値も低下していないことから、ガラス光ファイバの破断または腐食は抑制されていることが確認された。しかし、伝送損失に関しては、マイクロベンドロスが0.4dB/km、ケーブル化増加ロスが0.28dB/kmとなっており、長距離通信伝送には適さないことが確認された。これは、ガラス光ファイバに接するUV樹脂層(プライマリ層)のヤング率を
比較的に大きくしているため、ガラス光ファイバ表面の凹部への外部応力の集中およびガラス腐食を抑制できるが、プライマリ層のヤング率が高いため、外部応力自体を緩和しきれず、マイクロベンドロス等の伝送損失を抑えられないからである。
【0050】
【表1】

合否判定基準 (1)Med値:5.5GPa以上、(2)md値:18以上、(3)平均ラフネス:0.6nm以下、(4)ケーブル化増加ロス:0.08dB/km以下
【符号の説明】
【0051】
1 ガラス光ファイバ
2 プライマリ層
3 セカンダリ層
4 内層
5 外層
6 凹部
6a 底部
7 底部にかかる応力
11 コア
12 クラッド
100 樹脂被覆光ファイバ

【特許請求の範囲】
【請求項1】
少なくとも、コアおよび前記コアを被覆するクラッドからなるガラス光ファイバと、前記ガラス光ファイバに接する紫外線硬化樹脂のプライマリ層と、前記プライマリ層の外周に配置される紫外線硬化樹脂のセカンダリ層と、を備える樹脂被覆光ファイバにおいて、
前記プライマリ層が前記クラッドの表面に接する内層と前記内層を被覆する外層との2層構造であって、
前記内層の紫外線硬化樹脂は、JIS規格K7113のフィルム状での常温ヤング率が0.9MPa以上3.0MPa以下であり、前記外層の紫外線硬化樹脂は、前記常温ヤング率が0.1MPa以上0.7MPa以下であることを特徴とする樹脂被覆光ファイバ。
【請求項2】
請求項1に記載の樹脂被覆光ファイバにおいて、前記内層の膜厚は、前記ガラス光ファイバを線引きする際に前記クラッド表面に形成される凹部の深さより大きいことを特徴とする樹脂被覆光ファイバ。
【請求項3】
請求項1または2に記載の樹脂被覆光ファイバにおいて、前記セカンダリ層の紫外線硬化樹脂は、JIS規格K7113のフィルム状での常温ヤング率が600MPa以上であることを特徴とする樹脂被覆光ファイバ。
【請求項4】
請求項1から3のいずれか1項に記載の樹脂被覆光ファイバにおいて、温度85℃、相対湿度85%、30日間による加速劣化試験後の前記樹脂被覆光ファイバにおける前記クラッドの表面の平均ラフネスが0.6nm以下であることを特徴とする樹脂被覆光ファイバ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−136401(P2012−136401A)
【公開日】平成24年7月19日(2012.7.19)
【国際特許分類】
【出願番号】特願2010−290658(P2010−290658)
【出願日】平成22年12月27日(2010.12.27)
【出願人】(000005120)日立電線株式会社 (3,358)
【Fターム(参考)】