説明

水素化処理触媒の再生方法

【課題】比較的短い時間で活性金属成分を再分散させ、高い水素化処理活性を得ることが可能な使用済み水素化処理触媒の再生方法を提供する。
【解決手段】使用済み水素化処理触媒の再生方法において、第1工程では、担体に、周期表第6族および第8〜10族から選ばれる少なくとも1種の活性金属成分が担持された炭化水素油の使用済み水素化処理触媒を、300℃を超える温度で焼成し、第2工程ではこの第1工程にて焼成された水素化処理触媒を無機酸とキレート剤との双方を含む酸溶液に接触させて、前記活性金属成分を担体上に再分散させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、使用済みの水素化処理触媒を再生する技術に関する。
【背景技術】
【0002】
灯・軽油などの燃料油中の硫黄分を水素化処理により除去する際には、水素化処理触媒が用いられている。近年、環境保護の観点から硫黄分の品質規制が強化されており、より脱硫性能の高く低コストの水素化処理触媒が望まれている。
水素化処理触媒は、使用過程で炭素(コーク)が付着し、また活性金属である第6族や第8族〜第10族の活性金属成分の凝集が起こって、脱硫性能が徐々に低下してしまうため再生処理が必要である。一般的に水素化処理触媒の再生では、脱脂、焼成によるコーク除去といった処理が行われ、これらの処理により使用前触媒と比較してその性能が9割程度まで再生すると言われている。
また水素化処理触媒を製造する方法には、例えば活性金属成分を含む溶液を含浸させた担体を焼成せず、乾燥させる工程までで触媒の製造を終了することにより、担体上の活性金属成分を高分散状態に保つ技術がある。こうした方法により製造された水素化処理触媒を再生する場合には、一般的な水素化処理触媒の再生に加えてコーク除去時の焼成工程で凝集した活性金属成分を再分散させるため、有機添加剤やキレート剤を水溶液として再含浸させ再度乾燥させるという処理が必要であった。
しかしながら有機添加剤やキレート剤を利用する上述の手法においては、水素化処理触媒に再含浸したキレート剤や有機添加剤が活性金属成分の再分散を十分に進行させるまで、長時間の熟成工程が必要であり、商業的には生産性が悪く、コストが高くなっていた。
【0003】
ここで特許文献1には、使用済み触媒を焼成し、その焼成処理触媒にモリブデンおよびニッケルのいずれか一方又は双方を再含浸させることによって活性を同等程度まで回復させる方法が記載され、その際にクエン酸やリンゴ酸などのキレート剤を利用する手法も記載されている。しかしながらこの特許文献1には、キレート剤を用いたときにおける熟成時間を短縮する手法の記述はない。
また特許文献2には、水素化処理触媒に再生処理(油分除去および焼成)を施したあと、当該触媒に所定量の有機物を担持させて、水素化処理触媒に担持された2種類の活性金属成分のうちの一方側と優先的に錯体を形成させることにより、活性金属の硫化処理を行う際に形成される活性点を増加させる技術が記載されている。そしてこの有機物としてクエン酸やリンゴ酸などの有機物が例示されているが、活性金属成分の再分散に関する詳細な記述はなく、その処理時間を短縮する手法の記載もない。
さらに特許文献3には、水素化処理触媒を酸およびエチレングリコールなどの有機添加剤と接触させることにより、当該触媒の活性の向上させる技術が記載されている。このうち酸は、触媒中の結晶質の量を低減する役割を果たし、その具体例として硝酸やリン酸などの無機酸、クエン酸やリンゴ酸などの有機酸が列挙されている。しかしながら当該特許文献3ではこれらの酸は触媒の活性を向上させるという共通の作用を発揮する添加剤として並列に列記されているものであり、クエン酸やリンゴ酸をキレート剤として使用する際の熟成時間を短縮する手法には言及されていない。
次いで特許文献4には、IUPAC表記の周期表で第6族(モリブデン、タングステンなど)および第8族〜第10族(鉄、コバルト、ニッケルなど)の活性金属につき、各族の活性金属を少なくとも1つ担体に担持して水素化処理触媒を製造する方法が記載されている。当該技術においては、担体および活性金属を含む分散液に、キレート剤(クエン酸やリンゴ酸など)とリン含有酸性成分(リン酸など)とを添加して活性金属の分散性を向上させている。しかしながら、本技術は活性金属が担持されていない担体へ新たに活性金属を担持する技術であり、使用済みの水素化処理触媒を再生する技術についての言及はない。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2009−160498号公報:請求項1、8、段落0012
【特許文献2】特開2008−290071号公報:請求項2、段落0038〜0039
【特許文献3】特表2007−507334号公報:請求項1、段落0021、0027、0029、0032〜0033
【特許文献4】特表2009−519815号公報:請求項1、段落0009、0011
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は、このような事情を鑑みてなされたものであり、その目的は比較的短い熟成時間で活性金属成分を再分散させ、高い水素化処理活性を得ることが可能な水素化処理触媒の再生方法を提供することにある。
【課題を解決するための手段】
【0006】
第1の発明は、担体に、周期表周期表第6族および第8〜10族から選ばれる少なくとも1種の活性金属成分が担持された、使用済みの炭化水素油の水素化処理触媒を、300℃を超える温度で焼成する第1工程と、
この第1工程にて焼成された水素化処理触媒を無機酸とキレート剤との双方を含む酸溶液に接触させて、前記活性金属成分を担体上に分散させる第2工程と、を含むことを特徴とする水素化処理触媒の再生方法である。
第2の発明は、前記第2工程で用いる酸溶液に含まれるキレート剤のモル数に対する無機酸のモル数の比が0.01〜0.2の範囲内にあることを特徴とする。
第3の発明は、前記第2工程にて無機酸とキレート剤との双方を含む酸溶液に接触させた水素化処理触媒に対し、乾燥または焼成の少なくとも一方の処理を行う第3工程を含むことを特徴とする。
第4の発明は、前記活性金属成分は、モリブデン、コバルト、およびニッケルから選択された少なくとも1つ以上の金属であることを特徴とする。
【0007】
第5の発明は、前記第2工程の無機酸とキレート剤との双方を含む酸溶液には、前記周期表第6族および第8〜10族から選ばれる少なくとも1種の活性金属成分が添加されており、当該第2工程では、これら活性金属成分を含む酸溶液に水素化処理触媒を接触させることにより、前記担体に担持されている活性金属成分の分散と、酸溶液に添加されている活性金属成分の当該担体への担持と、が行われることを特徴とする。
第6の発明は、第6の発明における酸溶液には、モリブデン、コバルト、およびニッケルから選択された少なくとも1つ以上の活性金属成分が、第1工程で得た水素化処理触媒の質量を基準にして、活性金属成分の酸化物に換算して1質量%以下に相当する量だけ含まれていることを特徴とする。
【発明の効果】
【0008】
本発明によれば、焼成した後の水素化処理触媒を、無機酸とキレート剤との双方を含む酸溶液に接触させるので、無機酸により担体の細孔内への活性金属成分の浸透を促進させる効果および酸溶液の粘性を低減する効果と、キレート剤による担体−活性金属成分間の相互作用を軽減する効果とが発揮され、比較的短い時間で活性金属成分を再分散させることができる。
【発明を実施するための形態】
【0009】
本発明の実施の形態に係る水素化処理触媒の再生方法について説明する。
(水素化処理触媒)
本発明が適用される炭化水素油の水素化処理触媒は、高温高圧雰囲気下で、炭化水素油である軽質油や重質油と水素とを当該触媒の存在下で接触させることにより、脱硫や脱窒素、脱メタルや水素化分解などの反応を進行させる一般的な水素化処理触媒である。軽質油の例としてはナフサ、灯油、軽質軽油(Light Gas Oil、LGO)、重質軽油(Heavy Gas Oil、HGO)、減圧軽油(Vacuum Gas Oil、VGO)等が挙げられ、重質油の例としては常圧残油(Atmospheric Residue、AR)、減圧残油(Vacuum Residue、VR)などが挙げられる。
前記水素化処理触媒を構成する担体としては、無機酸化物から構成され、例えば、アルミナ、シリカ、チタニア、シリカ−アルミナ、アルミナ−チタニア、アルミナ−ジルコニア、アルミナ−ボリア、リン−アルミナ、シリカ−アルミナ−ボリア、リン−アルミナ−ボリア、リン−アルミナ−シリカ、シリカ−アルミナ−チタニア、シリカ−アルミナ−ジルコニアなどを例示することができる。
【0010】
前記担体に担持される活性金属成分は、周期表の第6族および第8族〜第10族から少なくとも1種類の活性金属成分が選ばれ、より好適には第6族および第8族〜第10族の各族からすくなくとも1種類ずつの活性金属成分が選ばれる。第6族の活性金属成分としてはモリブデン(Mo)、タングステン(W)、クロム(Cr)などが挙げられ、第8族〜第10族の活性金属成分としてはニッケル(Ni)、コバルト(Co)などが挙げられる。またこれらの活性金属成分に加え、リンやホウ素などの他の元素を適宜添加してもよい。選択される活性金属成分の種類やその担持量は、処理対象の炭化水素油の種類やプロセス条件などに応じて適宜設定される。
また使用済み触媒とは、炭化水素油の水素化処理に使用された後の水素化処理触媒を意味し、具体例としては水素化処理装置から回収された水素化処理触媒などを挙げることができる。使用済み触媒の表面には、炭化水素油から析出したコークなどの炭素質や、重質油に多く含まれるバナジウム(V)や鉄(Fe)、ニッケル(Ni)などの金属不純物などが付着している。
【0011】
(第1工程)
本工程では、使用済みの水素化処理触媒を、300℃を超える温度で焼成する。使用済み触媒を焼成する場合には、前処理として例えば180〜220℃の窒素などの不活性ガス雰囲気中で触媒に付着している油分(軽質油分)を除去する処理を行った後に焼成を行ってもよい。ここで例えば窒素雰囲気の場合、空気よりも酸素濃度が低い状態、すなわち、窒素濃度が80容量%以上、好ましくは90容量%以上、より好ましくは95容量%以上の状態で前処理を行うとよい。
必要に応じて前処理が行われた使用済み触媒は、空気(酸素濃度約21容量%)などの含酸素雰囲気中で焼成されることにより、表面に付着している炭素質などを燃焼して除去する。また焼成雰囲気としては、空気に酸素を添加して、焼成時の酸素濃度が21容量%を超える富酸素雰囲気としてもよい。焼成温度は、300℃以上、好ましくは320〜500℃、より好ましくは350℃を超え450℃以下の温度範囲にて行う場合が好適である。焼成時間は、焼成前後に水素化処理触媒に付着している炭素質の量により、適宜変化するが、例えば60〜300分間、好ましくは120〜240分間程度の焼成が行われる。これらの焼成条件は、焼成後の水素化処理触媒に付着している炭素質が、当該炭素質を含む水素化処理触媒の全重量の3質量%以下、好ましくは1質量%以下、より好ましくは0.1質量%程度となるように設定される。
【0012】
(第2工程)
次に、第1工程にて得られた焼成処理後の水素化処理触媒(以下、焼成触媒という)を無機酸とキレート剤との双方を含む酸溶液に接触させる処理について説明する。例えば使用済みの触媒は、実運転や焼成処理により触媒内の活性金属成分が凝集した状態となっているため、これら凝集した活性金属成分を再分散させる必要がある。この点、担体に担持された活性金属成分を酸溶液などに溶解してから同担体に再含浸させることにより、活性金属成分の分散性を向上させ、高活性の水素化処理触媒を得ることができる。
ここで、発明者らは、硝酸やリン酸などの無機酸は水素化処理触媒を構成する担体の細孔内を拡散して浸透する速度が大きいことを把握している。その一方で、無機酸溶液中に溶解して触媒表面から脱離した活性金属成分は、例えば担体表面の塩基性水酸基と、活性金属のカチオンが静電気的に引き合って活性金属が強く固定される等、担体から受ける相互作用が大きく、細孔内部への拡散が遅くなってしまうという現象が発生することも判明している。
この点、キレート剤を含むキレート溶液は、溶液中に溶解した活性金属成分とキレート剤とが錯体を形成することにより、活性金属成分と担体との相互作用を小さくし、活性金属成分の細孔の内部への拡散を妨げる力を低減する作用を持っている。しかしながらキレート剤は溶液の粘性を増大させるため、活性金属成分を担体の細孔の内部にまで十分に拡散させるためには長い熟成時間を必要とするという問題がある。
【0013】
そこで、本発明者らは、無機酸とキレート剤との双方を含む酸溶液を調製し、この酸溶液に水素化処理触媒を分散(接触)させることにより、キレート剤による活性金属成分と担体との相互作用の低減効果、無機酸によるキレート剤を含む溶液の粘性を低下させる効果、および無機酸により酸溶液が担体の細孔内に浸透する効果を並行に発揮させることが可能となることを見いだした。この結果、キレート剤単独の溶液を使用して活性金属成分を再分散させる場合と比較して、短い時間で担体の細孔内部まで活性金属成分を再分散させることが可能となる。
酸溶液に添加される無機酸としては、リン酸、硝酸、塩酸、硫酸などを採用することができ、キレート剤としては、リンゴ酸、クエン酸、酒石酸、シュウ酸などの多座配位子を持つ有機酸(カルボン酸)などが選択される。無機酸およびキレート剤は、例えば水に溶解された水溶液として調製される。酸溶液に添加するキレート剤の量は、第1工程にて得られた焼成触媒の重量を基準として、1〜20質量%、好ましくは3〜15質量%、より好ましくは5〜12質量%程度添加される。キレート剤の添加量が、3質量%未満では、活性金属成分を再分散させるのに十分な作用が得られ難くなる一方で、添加量が20質量%を超えると、経済性が悪くなると共に、触媒の活性が低下するおそれがある。
【0014】
一方、酸溶液に添加される無機酸の量は、第1工程にて得られた焼成触媒の重量を基準として、0.05〜2.0質量%、好ましくは0.1〜1.7質量%、より好ましくは0.15〜1.4質量%程度添加される。無機酸の添加量が、0.05質量%未満では、酸溶液を担体の細孔内に浸透させる作用や酸溶液の粘性を低下させる作用が十分に得られなくなる。また添加量が2.0質量%を超えると、触媒の活性が低下するおそれがある。
ここで、既述のように、本発明においては酸溶液中に無機酸とキレート剤とが同時に存在している相乗効果により、活性金属成分の再分散と熟成工程に要する時間の短縮が図られている。このため、前記酸溶液においては、無機酸およびキレート剤の各々の添加量が上述の範囲内の値に調整されるのみならず、キレート剤のモル数に対する無機酸のモル数の比も所定の範囲内の値となっていることがより好ましい。後述する実施例によれば、当該モル比の範囲は、0.01〜0.2の範囲内とすることが好ましい。前記モル比が0.01を下回ると、無機酸の添加効果が低下し、0.2を超えると、キレート剤の作用が十分に得られなくなってしまうものと考えられる。また、無機酸としてリン酸を採用する場合には、リンは再生された触媒上にPとして担持される。このことから、前記の比の値が0.2を超えると、既に表面積が小さくなっている使用済み触媒において、Pが担持されることによるさらなる表面積の低下の影響が大きくなって好ましくない。
【0015】
また、使用済み触媒の場合には、炭化水素油を処理する際の摩耗やシンタリングにより水素化処理触媒の比表面積が低下したり、活性金属成分の一部が炭化水素油中に流出したりすることにより、水素化処理触媒の活性が低下することがある。このような理由により、水素化処理触媒の活性が低下した場合には、炭素質を除去したり、活性金属成分を際分散したりするだけでは水素化処理触媒の活性が未使用触媒と同等程度まで回復できない場合もある。そこで、活性金属成分を再分散するために使用する前記酸溶液中に活性金属成分を新たに添加し、上述の理由による水素化処理触媒の活性の低下を補ってもよい。
【0016】
このとき酸溶液には、水素化処理触媒に担持されている活性金属成分の全種類を添加してもよいし、その一部の種類を添加してもよく、さらには活性金属成分の種類を追加して添加してもよい。酸溶液に添加する活性金属成分は、例えば酸溶液に活性金属成分の酸化物を溶解してもよいし、活性金属成分の各種の塩を添加してもよい。
焼成触媒を投入する前の酸溶液に添加される活性金属成分の量は、第1工程で得られた焼成触媒の重量を基準にして、活性金属成分の酸化物に換算して1質量%以下の範囲が好適である。ここでは、第6族の活性金属成分としてモリブデン(Mo)が担持され、第8族〜第10族の活性金属成分としてニッケル(Ni)、コバルト(Co)の少なくとも一方が担持されている水素化処理触媒を例に挙げて説明する。
この場合にモリブデンやニッケル、コバルトを酸化物の状態で担持する場合には、MoO、NiO、CoOなどを焼成触媒の1質量%以下の範囲内で酸溶液に添加する。一方、これらの活性金属成分を他の塩の状態で添加する場合には、上述の各酸化物に換算したとき焼成触媒の1質量%以下に相当する量を添加する。このように酸溶液に活性金属成分を加えることにより、焼成触媒上に既に担持されている活性金属成分を再分散させるだけでは回復できない触媒活性を補うことができる。第2工程にて酸溶液に添加する活性金属成分は、酸化物として焼成触媒の1質量%を超えて担持したとしても、水素化処理触媒の活性の回復の幅が小さくなり新たな活性金属成分を添加するというコスト以上のメリットが得られない場合がある。
モリブデンやニッケル、コバルト以外の活性金属成分を担持する場合についても同様の考え方に基づいて酸溶液への活性金属成分の添加量が調整される。
【0017】
以上に説明した考え方に基づいて、酸溶液(必要に応じて活性金属成分を含んでいる)が調製されたら、第1工程にて得られた焼成触媒に当該酸溶液を含浸させる。そして例えば室温〜80℃の温度範囲で0.5〜3時間熟成させることにより、焼成触媒上に担持されていた活性金属成分が酸溶液中に溶解し、担体表面に分散する。また酸溶液に予め活性金属成分が添加されている場合には、当該活性金属成分も担体に含浸される。ここで酸溶液を含浸させる法は所定の手法に限定されるものではなく、減圧含浸法、ポアフィリング法、平衡吸着法など、どのような手法を使用してもよい。
このとき酸溶液中に無機酸とキレート剤とを含んでいることにより、キレート剤による活性金属成分と担体との相互作用の低減効果、無機酸による酸溶液の粘性を低下させる効果、および無機酸により酸溶液が担体の細孔内に浸透する効果が並行に発揮される。この結果、活性金属成分の再分散の進行速度が向上し、比較的短い時間で熟成工程を終えることができる。
【0018】
(第3工程)
第2工程にて所定時間の熟成を終えたら、酸溶液を含浸させた水素化処理触媒(以下、含浸触媒という)を乾燥し、焼成する処理を行う。ここで本発明における含浸触媒の乾燥は、担体の表面や細孔内など、含浸触媒触媒上に存在する酸溶液の液体分を蒸発させることを意味する。従って含浸触媒の液体分を蒸発させるのに十分な条件下で乾燥が行われればよく、活性金属成分やキレート剤、無機酸は乾燥の過程において化学的な性状の変化が起こってもよいし、起こらなくてもよい。乾燥処理は、例えば室温から300℃まで、好ましくは室温から270℃まで、更に好ましくは室温から250℃までの温度範囲内で液体分を蒸発させるのに十分な時間行われる。また乾燥処理が行われる雰囲気は、大気雰囲気など、含酸素雰囲気でもよいし、酸素ガスを含まない不活性ガス雰囲気でもよい。そして、乾燥処理を終えた水素化処理触媒上の活性金属成分は、キレート剤と錯体を形成した状態のまま担持されている場合もあるし、乾燥処理によりキレート剤が分解して金属の状態で担持されている場合もある。また、含酸素雰囲気中で乾燥した場合には、活性金属成分の一部が酸化していてもよい。
これに対して含浸触媒の焼成は、含浸触媒やこれを乾燥させた触媒を大気雰囲気などの含酸素雰囲気中で加熱し、活性金属成分を酸化させて酸化物を得る処理である。焼成処理は、例えば400〜700℃、好ましくは500〜600℃までの温度範囲で行われ、酸化物を得るのに十分な時間、例えば30〜120分間、好ましくは45〜90分間程度、焼成が行われる。このような高温の雰囲気下では、キレート剤や無機酸は燃焼、分解してしまう場合があり、例えば無機酸を構成していたリンや窒素などの元素は水素化処理触媒上に残留してもよいし、焼成雰囲気中に流出してもよい。また、例えば酸化物中の酸素を利用する場合などには、焼成は不活性ガス雰囲気下で行ってもよい。
【0019】
以上に説明した手法により再生した水素化処理触媒は、炭化水素油の水素化処理装置の反応塔などに充填され、担体上の活性金属成分を硫化する予備硫化処理などが行われる。そして、所定の温度、圧力条件に調整された反応塔に炭化水素油と水素との混合流体を供給することにより、脱硫や水素化分解などの水素化処理が実行される。
本実施の形態に関わる水素化処理触媒の再生方法によれば以下の効果がある。焼成した後の水素化処理触媒を、無機酸とキレート剤との双方を含む酸溶液に接触させるので、無機酸により担体の細孔内への活性金属成分の浸透を促進させる効果および酸溶液の粘性を低減する効果と、キレート剤による担体−活性金属成分間の相互作用を軽減する効果とが発揮され、比較的短い時間で活性金属成分を再分散させることができる。
【実施例】
【0020】
(炭化水素油の水素化処理触媒の再生処理試験)
炭化水素油である軽質軽油(以下、LGOという)または減圧軽油(以下、VGOという)の水素化処理触媒について、キレート剤および無機酸を含む溶液と、キレート剤、無機酸のいずれか一方のみを含む酸溶液を用いて再生処理を行い、触媒活性の向上の程度を調べた。
【0021】
1.水素化処理触媒
触媒A:モリブデンおよびコバルトの前駆体と、無機酸(リン酸)とキレート剤(クエン酸)とを含む酸溶液を、アルミナ担体に含浸させ、110℃の大気雰囲気下で乾燥させてLGO用の水素化処理触媒を得た。リン酸の添加量は、アルミナ担体重量に対して1.0質量%、キレート剤の添加量は、キレート剤に対する無機酸のモル比(無機酸モル数/キレート剤モル数)が0.09となるように調製した。得られたモリブデンの酸化物(MoO)換算の担持量は、全触媒質量の18質量%、同じくコバルト酸化物(CoO)換算の担持量は4.5質量%であった。
触媒B:モリブデンおよびコバルトの前駆体と、無機酸(リン酸)とを含む酸溶液(キレート剤は含んでいない)を、アルミナ担体に含浸させ、250℃の大気雰囲気下で乾燥させ、次いで550℃の大気雰囲気下で1時間、焼成処理を行ってLGO用の水素化処理触媒を得た。リン酸の添加量は、アルミナ担体重量に対して3.0質量%となるように調製した。モリブデン酸化物(MoO)の担持量は、全触媒質量の19質量%、同じくコバルト酸化物(CoO)の担持量は3.5質量%であった。
触媒C:モリブデン、コバルトおよびニッケルの前駆体と、無機酸(リン酸)とを含む酸溶液(キレート剤は含んでいない)を、アルミナ担体に含浸させ、250℃の大気雰囲気下で乾燥させ、次いで550℃の大気雰囲気下で1時間、焼成処理を行ってVGO用の水素化処理触媒を得た。リン酸の添加量は、アルミナ担体重量に対して3.0質量%となるように調製した。モリブデン酸化物(MoO)の担持量は、全触媒質量の19質量%、同じくコバルト酸化物(CoO)の担持量は3.0質量%、同じくニッケル酸化物(NiO)の担持量は0.5質量%であった。
【0022】
2.使用済み触媒の調製
触媒A〜Cの未使用触媒に対し、(表1)に示す性状のLGO(触媒A、B)、またはVGO(触媒C)を、(表2)に示す脱硫条件で、16000時間通油して水素化処理を行い、使用済みの水素化処理触媒(使用済み触媒)を得た。各水素化処理の反応温度は、反応器出口のLGOの硫黄含有量が7質量ppm、同じくVGOの硫黄含有量が0.2質量%となるように調整した。
【0023】
【表1】

【0024】
【表2】

【0025】
3.再生処理
(1)第1工程
上述の1、2の条件で調製された使用済みの触媒A〜Cについて以下の要領で再生処理をおこなった。まず前処理として、使用済みの触媒A〜Cについては、200℃に保持された窒素雰囲気中に配置し、表面に付着した油分を除去した。しかる後、430℃に保持された空気雰囲気中で3時間焼成した(第1工程)。この焼成により、使用済みの触媒に付着していたコークなどの炭素質は、触媒Aでは0.3質量%、触媒Bでは0.3質量%、触媒Cでは0.5質量%となった。
【0026】
(2)第2工程
第1工程にて得られた使用済みの焼成触媒A〜Cについて、炭素質を除いた条件で1000gに相当する量を秤量し、各焼成触媒の細孔容積に相当する量の酸溶液を減圧含浸法によって含浸させた。各焼成触媒に含浸させた酸溶液の組成(使用済み触媒、添加活性金属、無機酸量の合計を100質量%とする)を(表3)に示す。各触媒は、室温の大気雰囲気下で2時間熟成させて、使用済みの含浸触媒を得た。ここで、無機酸がリン酸の場合には、焼成後の触媒にはリンがPとして担持される一方、硝酸は焼成後の触媒に残らないことを考慮し、モル換算の無機酸添加量は、下記式に基づいて計算した。
a.無機酸がリン酸の場合
(無機酸添加量[mol])=
(使用済み触媒1000[g])×(無機酸添加量[質量%])
/{100−(活性金属添加量[質量%]+無機酸添加量[質量%])}
/(リン酸分子量98[g/mol]) …(1)
b.無機酸が硝酸の場合
(無機酸添加量[mol])=
(使用済み触媒1000[g])×(無機酸添加量[質量%])
/(100−活性金属添加量[質量%])
/(硝酸分子量63[g/mol]) …(2)
【0027】
【表3】

【0028】
(3)第3工程
第2工程にて得られた含浸触媒につき、触媒Aについては110℃の大気雰囲気下で乾燥させ、触媒B、Cについては250℃の大気雰囲気下で乾燥させ、さらに550℃の大気雰囲気中で1時間焼成した。こうして(第1工程)〜(第3工程)の再生処理が行われた未使用触媒、および使用済み触媒A〜Cを得た。
【0029】
(脱硫活性評価試験)
再生処理を行った触媒A〜Cを反応器に充填し、硫化水素を通流させて硫化処理を行った後、(表2)に示した水素化処理条件にて、(表1)に示したLGO、VGOの水素化脱硫処理を行った。反応器を通過する前後での炭化水素油中の硫黄濃度の変化から、下記(3)式に基づいて反応速度定数を求めた。そして、未使用触媒A〜Cの反応速度定数(Kn0)に対する、再生触媒の反応速度定数(Kn)の比をパーセント表示で表した値((K/Kn0)×100[%])を相対活性とした。
=LHSV×1/(n−1)×(1/Sn−1−1/Sn−1) …(3)
ここで、
:反応速度定数
n:脱硫反応速度が原料油の硫黄濃度の何乗に比例するか(LGOでは1.5、VGOでは2.0)
S:処理油中の硫黄濃度(%)
:原料油中の硫黄濃度(%)
LHSV:液空間速度(hr−1
【0030】
(実施例1〜8)使用済み触媒Aに、各々酸溶液a〜hを含浸させて再生処理を行い、LGOを処理して触媒の相対脱硫活性を求めた。
(実施例9〜16)使用済み触媒Bに、各々酸溶液a〜hを含浸させて再生処理を行い、LGOを処理して触媒の相対脱硫活性を求めた。
(実施例17〜24)使用済み触媒Cに、各々酸溶液a〜hを含浸させて再生処理を行い、VGOを処理して触媒の相対脱硫活性を求めた。
(比較例1、2)使用済み触媒Aに、各々酸溶液i、jを含浸させて再生処理を行い、LGOを処理して触媒の相対脱硫活性を計測した。
(比較例3、4)使用済み触媒Bに、各々酸溶液i、jを含浸させて再生処理を行い、LGOを処理して触媒の相対脱硫活性を計測した。
(比較例5、6)使用済み触媒Cに、各々酸溶液i、jを含浸させて再生処理を行い、VGOを処理して触媒の相対脱硫活性を計測した。
【0031】
上述の(実施例1〜24)、(比較例1〜6)の結果を(表4)にまとめた。(表4)において、同じ行に示した実施例は、共通の酸溶液を用いて再生処理が行われている。(実施例1〜8)、(比較例1〜2)は、触媒A(乾燥処理品)にてLGOを処理した結果を示しており、(実施例9〜16)、(比較例3〜4)は触媒B(焼成品)にてLGOを処理した結果を示している。また(実施例17〜24)、(比較例5〜6)は触媒C(焼成品)にてVGOを処理した結果である。(表3)に示したように、全ての実施例に関わる触媒の再生処理に用いた酸溶液(酸溶液a〜h)には、無機酸(リン酸または硝酸)とキレート剤(クエン酸またはリンゴ酸)の双方が含まれている。これに対して比較例に関わる触媒を再生処理した酸溶液には、無機酸(酸溶液j(硝酸))またはキレート剤(酸溶液i(クエン酸))のいずれか一方が含まれている。
【0032】
【表4】

【0033】
(表4)に示した各実施例の結果によれば、無機酸とキレート剤との双方を含む酸溶液a〜hを利用して再生処理を行った場合の相対的脱硫活性は、使用済み触媒Aの場合で81〜103%(実施例1〜8)、使用済み触媒Bの場合で83〜101%(実施例9〜16)、使用済み触媒Cの場合で80〜96%(実施例17〜24)であった。
実施例に関わる再生処理の結果を概観すると、同じ酸溶液を使用した場合使用済み触媒A〜C(実施例1〜24)においては、より重質の炭化水素油を処理している使用済み触媒C(実施例17〜24)にてやや再生処理の効果が低い。これは、LGOに比べてVGOの水素化処理の条件が過酷なため、LGOを処理した触媒(使用済み触媒A、B)と同じ熟成時間では、活性金属成分の再分散の効果が十分でないためではないかと考えられる。また、同じLGOを処理した使用済み触媒A、Bの間では、乾燥品であるか焼成品であるかにかかわらず、酸溶液が同じであれば、ほぼ同等の相対的脱硫活性が得られている。
【0034】
これに対して、無機酸のみを含む酸溶液jを利用して再生処理を行った触媒の相対的脱硫活性を見ると、使用済み触媒Aでは75%(比較例2)、使用済み触媒Bでは83%(比較例4)、使用済み触媒触媒Cでは73%(比較例6)であった。これらの結果は、相対的脱硫活性の値が等しい(実施例16)と(比較例4)の場合を除き、無機酸とキレート剤の双方を含む酸溶液a〜hを用いて再生処理を行った方が、無機酸のみを含む酸溶液jを用いる場合よりも、処理後の相対的脱硫活性が高くなることを示している。これは、無機酸のみを含む酸溶液jでは、水素化処理触媒の担体と活性金属成分との間に働く相互作用が抑制されず、活性金属成分を十分に分散させることができなかったためではないかと考えられる。
また、キレート剤のみを含む酸溶液iを利用して再生処理を行った触媒の相対的脱硫活性を見ると、使用済み触媒Aでは84%(比較例1)、使用済み触媒Bでは86%(比較例3)、使用済み触媒触媒Cでは78%(比較例5)であった。
【0035】
これらの結果は、酸溶液hを用いた(実施例8、16、24)の場合を除いて、無機酸とキレート剤の双方を含む酸溶液a〜hを用いて再生処理を行った方が、キレート剤のみを含む酸溶液iを用いる場合よりも、同じ時間熟成を行った場合の相対的脱硫活性が高くなることを示している。そして発明者らは、酸溶液iを利用した場合においても、各比較例よりも長い熟成時間を確保することによって相対的脱硫活性の値を向上させることが可能であることを確認している。
ここで酸溶液hが無機酸とキレート剤との双方を含んでいるにもかかわらず、キレート剤のみを含む酸溶液iと比較して触媒を再生する効果が低い理由について検討する。酸溶液hは実施例に関わる酸溶液の中では無機酸(リン酸)の添加量が最も多く、キレート剤に対する無機酸のモル比(無機酸/キレート剤)の値も0.428と最も高い。このため、キレート剤の添加効果が弱まり、高い再生効果が発揮されなかったのではないかと考えられる。この観点から、既述のように前記モル比の値は、0.01〜0.2の範囲内が好適であり、さらには0.04〜0.18がより好ましいといえる。但し、酸溶液hを用いた場合であっても無機酸のみを含む酸溶液jと同等かそれ以上の再生効果が得られていることから、酸溶液hが触媒の活性を向上させる効果を備えていることは否定されない。
【0036】
次いで、活性金属成分の添加効果について確認する。酸溶液dは、酸化物としてモリブデンを0.5質量%、コバルトを0.25質量%、ニッケルを0.25質量%含んでいる。一方でこの酸溶液dと「無機酸(リン酸)/キレート剤(クエン酸)」のモル比がほぼ同じ値となっている酸溶液aは、活性金属成分の添加量がゼロである。そこで、両実施例(酸溶液d;実施例4、12、20、酸溶液a;実施例1、9、17)を比較すると、いずれの実施例も酸溶液dを用いた方の相対的脱硫活性が高く、活性金属成分を添加することによる再生処理効果の向上を確認できる。
一方で、酸化物としてモリブデンおよびコバルトを3質量%ずつ添加した酸溶液gについては、(実施例7、15、23)の相対化脱硫活性の値は89〜101程度である。この値は他の実施例における脱硫活性(酸溶液hを利用した実施例は除く)の値である90〜107と比較して低めの活性値となっている。従って、活性金属成分の添加量を増やすだけで、無機酸およびキレート剤の添加効果を上回る触媒の再生効果が得られる訳ではないことが確認できる。

【特許請求の範囲】
【請求項1】
担体に、周期表第6族および第8〜10族から選ばれる少なくとも1種の活性金属成分が担持された、使用済みの炭化水素油の水素化処理触媒を、300℃を超える温度で焼成する第1工程と、
この第1工程にて焼成された水素化処理触媒を無機酸とキレート剤との双方を含む酸溶液に接触させて、前記活性金属成分を担体上に分散させる第2工程と、を含むことを特徴とする水素化処理触媒の再生方法。
【請求項2】
前記第2工程で用いる酸溶液に含まれるキレート剤のモル数に対する無機酸のモル数の比が0.01〜0.2の範囲内にあることを特徴とする請求項1に記載の水素化処理触媒の再生方法。
【請求項3】
前記第2工程にて無機酸とキレート剤との双方を含む酸溶液に接触させた水素化処理触媒に対し、乾燥または焼成の少なくとも一方の処理を行う第3工程を含むことを特徴とする請求項1〜3のいずれか1または2に記載の水素化処理触媒の再生方法。
【請求項4】
前記活性金属成分は、モリブデン、コバルト、およびニッケルから選択された少なくとも1つ以上の金属であることを特徴とする請求項1〜3のいずれか1項に記載の水素化処理触媒の再生方法。
【請求項5】
前記第2工程の無機酸とキレート剤との双方を含む酸溶液には、周期表第6族および第8〜10族から選ばれる少なくとも1種の活性金属成分が添加されており、当該第2工程では、これら活性金属成分を含む酸溶液に水素化処理触媒を接触させることにより、前記担体に担持されている活性金属成分の分散と、酸溶液に添加されている活性金属成分の当該担体への担持と、が行われることを特徴とする請求項1〜4のいずれか1項に記載の水素化処理触媒の再生方法。
【請求項6】
前記酸溶液には、モリブデン、コバルト、およびニッケルから選択された少なくとも1つ以上の活性金属成分が、第1工程で得た水素化処理触媒の質量を基準にして、活性金属成分の酸化物に換算して1質量%以下に相当する量だけ含まれていることを特徴とする請求項5に記載の水素化処理触媒の再生方法。

【公開番号】特開2012−139626(P2012−139626A)
【公開日】平成24年7月26日(2012.7.26)
【国際特許分類】
【出願番号】特願2010−293091(P2010−293091)
【出願日】平成22年12月28日(2010.12.28)
【出願人】(000190024)日揮触媒化成株式会社 (458)
【Fターム(参考)】