説明

波力発電装置、波力発電方法

【課題】波力発電装置及び波力発電方法を提供する。
【解決手段】海面上に設置された全体浮体12と、前記海面上の波浪を受けて前記全体浮体12に対して所定の固有周期で相対運動が可能な発電浮体22と、前記全体浮体12と前記発電浮体22に跨って取り付けられ、前記相対運動に負荷を与えることより誘導起電力を発生する誘導起電力発生機構120と、前記波浪の周期を測定し、前記固有周期を前記波浪の周期に同期させる同期制御手段(質量調整機構30、復元力発生機構100)と、を有することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、海上での波力を駆動力とする、高効率の浮体型の波力発電装置、及び波力発電方法に関する。
【背景技術】
【0002】
地球温暖化防止のためのCO削減、化石燃料の枯渇に対応するリニューアブルエネルギーの開発は世界的に重要な課題となっている。リニューアブルエネルギーには太陽光発電、風力発電、バイオマス発電、波力発電等があるが、四方を海に囲まれた日本にとっては波のエネルギーを利用した波力発電の開発は極めて重要である。波力発電の歴史は長く、1980年代の石油危機を契機として石油に替わる代替エネルギーの一つとして、研究開発が活発かつ積極的に行われ、波浪エネルギー吸収方法がいろいろ考案されている(特許文献1参照)。また沿岸固定式や浮体運動利用型、浮遊型浮体空気式など実用化に向けて実海域での実験も積極的に行われているが、実用化に至っていないのが実情である。
【0003】
波力発電装置の開発で重要なことの一つは、変動する波浪条件に対して広い波周期範囲で高い波浪エネルギー吸収効率の得られる機構を持っていることである。もう一つ重要なことは、低波高に対しても有効な発電ができ、高い稼働率を維持することである。従来の開発ではこれらの課題が充分に解決されていないことが実用化を妨げている。
【0004】
特許文献1に見られるような従来の波力発電装置のうち、空気室を有する沿岸固定波力発電や浮体式波力発電においては、波浪エネルギーを空気の運動エネルギーに変え、この空気の運動によってタービンを回転させ、発電機で発電している。
【0005】
しかし、この波力発電装置で高効率の発電効率を得るためには、波浪エネルギーを空気の運動エネルギーに変える一次変換効率、空気の運動エネルギーをタービンの回転運動に変える二次変換効率、及び発電機の効率を高める必要がある。また、空気室を用いないで波浪による浮体運動を利用する場合でも、浮体の上下運動を回転運動に変換後に、その回転運動により発電機を駆動させて電力を得るものであり、夫々の変換効率を高くする必要がある。これらの波力発電装置は波浪エネルギーを空気室の空気の運動エネルギーや浮体の運動に変換した後に発電機で発電するため、一次変換、二次変換するたびに変換ロスが生じ、トータルのエネルギー変換効率を高めるのに問題があった。
【0006】
また、従来の波力発電装置では、空気室の大きさや浮体の大きさで、空気室運動及び浮体の運動の固有周期が決まることから、高い波浪エネルギー吸収効率は限られた周期の波浪に対して得られるのみであって、実海域の色々な波周期を持つ不規則波中では波浪エネルギーを充分に回収できないという問題があった。
【0007】
このような問題を解決するため、特許文献2においては、波面に浮かべた浮動体上に重量物を弾性部材で弾性的に支持し、浮動体と重量物間に重量物の移動に対し減衰力を生じさせ、かつその移動エネルギーを電気エネルギーに変換する発電手段を設け、弾性部材の不減衰固有振動数が浮動体を加振する波の振動数と互いに振動数比ω/ωの所定範囲内で近くなるように弾性部材のばね定数を設定し、弾性部材と波との共振現象を利用するようにした波力発電装置が開示されている。このように浮動体が共振する振動数を波の振動数に近づけることにより波の周波数が変動した場合でも波のエネルギーを効率よく吸収することができる。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2005−2919881号公報
【特許文献2】特願2005−514932号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかし、特許文献2に係る発明においては浮動体に弾性部材を付加するので、浮動体の振動数を、浮動体の固有の振動数よりも高くすることは可能であるが、逆に低くすることはできない。したがって波力発電装置を構成する浮動体は用いられる波浪条件に応じて設計変更をしなければならず、コストがかかるといった問題があった。
【0010】
さらに、従来の波力発電装置では、設計入射波で諸要素が設計されているため、低い波高では発電機の初期負荷が大きいため発電に至らず、稼働率が低くなるという問題があった。
そこで、本発明は上記問題点に着目し、エネルギー変換におけるエネルギー損失を低減し、かつ不規則波においても波浪エネルギーを充分に変換可能な波力発電装置、及び波力発電方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記目的を達成するため、本発明に係る波力発電装置は、第1には、海面上に設置された全体浮体と、前記海面上の波浪を受けて前記全体浮体に対して所定の固有周期で相対運動が可能な発電浮体(前記浮動体に相当)と、前記全体浮体と前記発電浮体に跨って取り付けられ、前記相対運動により誘導起電力を発生する誘導起電力発生機構と、前記波浪の周期を測定し、前記固有周期を長周期側または短周期側にシフトさせることにより前記波浪の周期に同期させる同期制御手段と、を有することを特徴とする。
【0012】
上記構成により、発電浮体の全体浮体に対する相対運動そのものから直接的に誘導起電力を発生させることができるため、波浪エネルギーから電力への変換効率を大幅に高めることができる。また発電浮体の固有周期を長周期側または短周期側にシフトさせることにより波浪の周期に同期させるので、広範囲の波周期に対して発電浮体の運動応答を大きくすることができ、広範囲の波周期に対して高い発電効率を得ることが可能な波力発電装置となる。
【0013】
第2には、前記同期制御手段は、前記発電浮体に取り付けられ、前記発電浮体に取り込むバラストの量を調整することにより前記発電浮体の質量を調整する質量調整機構と、前記全体浮体と前記発電浮体に跨って取り付けられ、前記発電浮体に弾性力を与えることにより前記発電浮体に復元力を与える復元力発生機構と、を有し、前記質量調整機構及び前記復元力調整機構は、前記固有周期を前記波浪の周期に同期させるように駆動することを特徴とする。
【0014】
上記構成により、復元力発生機構の発電浮体に対する復元力を大きくすると発電浮体の固有周期を短くすることができる。一方。質量調整機構を駆動させて発電浮体の発電浮体に取り込むバラストの量を増やすと質量が大きくなり、発電浮体の固有周期を長くすることができる。このため、全体浮体に対して相対運動を行なう発電浮体本来の固有周期が波浪の周期より短いものに設計されていても、波浪エネルギーを効果的に吸収するための周期への調整が可能となるので、簡易な構成で広範囲の波周期に対して発電浮体の運動応答を大きくすることができ、広範囲の波周期に対して高い発電効率を得ることが可能な波力発電装置となる。
【0015】
第3には、前記質量調整機構は、前記発電浮体にバラスト水を取り込む増量用ポンプと、前記発電浮体に取り込まれたバラスト水を外部に排出する減量用ポンプと、前記波浪の周期と前記発電浮体の周期との差分に基づいて前記増量用ポンプ及び前記減量用ポンプのいずれか一方を駆動させる比較器と、を有することを特徴とする。
【0016】
上記構成により、前記発電浮体にバラスト水を取り込む増量用ポンプと、前記発電浮体に取り込まれたバラスト水を外部に排出する減量用ポンプと、により発電浮体に取り込むバラスト水の出し入れを容易に行い、これに基づいて発電浮体の質量の調整を容易に行うことができる。
【0017】
第4には、前記質量調整機構は、前記全体浮体に固定され前記発電浮体を吊り上げるジャッキと、前記ジャッキと前記発電浮体との間に介装され、弾性力により前記発電浮体を吊り上げる吊り上げバネと、前記質量調整機構の駆動に対応して前記発電浮体の初期位置を維持するように前記ジャッキの駆動量を調整する変位制御手段と、を有することを特徴とする。
【0018】
上記構成により、発電浮体の初期位置を常に維持することができるので、波力発電装置において発電浮体の固有周期以外の特性の変動を抑制して効率的に発電を行なうことができる。
【0019】
第5には、前記質量調整機構は、前記発電浮体上に載置される複数のバラストウエイトと、前記全体浮体側に取り付けられ、各バラストウエイトを吊り上げ可能な複数の巻上げモータと、前記波浪の周期と前記発電浮体の周期との差分に基づいて前記巻き上げモータの駆動数を制御して前記バラストウエイトの前記発電浮体に載置する個数を制御するシフトレジスタと、を有することを特徴とする。
【0020】
上記構成により、発電浮体にバラストウエイトを載置することにより発電浮体の固有周期を長くすることができる。またその載置する数を調整することにより、その長波長側への変化量を調整することができる。したがって簡易な構成で発電浮体の周期の調整を行うことができる。
【0021】
第6には、前記復元力発生機構は、前記全体浮体及び前記発電浮体に接続され、前記発電浮体の振幅方向に弾性力を与えることにより前記発電浮体に復元力を与える複数の周期調整バネと、前記周期調整バネと前記全体浮体との間及び前記周期調整バネと前記発電浮体との間のいずれか一方に介装され、前記周期調整バネの前記全体浮体及び前記発電浮体のいずれか一方との接続及び解除が可能な固定手段と、前記固有周期を前記波浪の周期に同期させるように各固定手段のオンオフ制御を行う周期比較器と、を有することを特徴とする。
【0022】
上記構成により、発電浮体に復元力を与える周期調整バネと、前記復元力のオンオフ切り替えを行う固定手段により、復元力発生機構全体のバネ定数に相当する物理量を変化させることができる。よって復元力発生機構の復元力の調整は、復元力発生機構のバネ定数に相当する物理量を制御することにより行うことになるので、簡単な構成で復元力の調整を行うことができる。
【0023】
第7には、前記復元力発生機構は、前記全体浮体及び前記発電浮体に接続され、前記発電浮体の振幅方向に弾性力を与えることにより前記発電浮体に復元力を与えるエアシリンダーと、前記固有周期を前記波浪の周期に同期させるように前記エアシリンダー内の気圧を調整することにより前記発電浮体への復元力を調整する気圧調整機構と、を有することを特徴とする。
【0024】
上記構成により、復元力発生機構の復元力の調整は復元力発生機構を構成するエアシリンダー内の気圧を制御することにより行うので、簡単な構成で復元力の調整を行うことができるとともに、気圧の調整は無段階に行うことができるので、発電浮体の固有周期の調整を精度よく行うことができる。
【0025】
第8には、前記誘導起電力発生機構は、前記全体浮体に取り付けられ、前記発電浮体を挿通するとともに前記相対運動の方向に並べて取り付けられた複数の発電コイルと、前記発電浮体に取り付けられ、前記複数の発電コイルを挿通するとともに各発電コイルの取り付け間隔に対応して取り付けられ前記複数の発電コイルに誘導起電力を発生させる複数の磁石と、前記発電浮体から得られる電力が最大となるように前記複数の発電コイルのうち送電側に接続する発電コイルの個数の制御を行なうスイッチ論理計算部と、を有することを特徴とする。
【0026】
上記構成により、誘導起電力発生機構は、多段階に設けられた発電コイルと、発電コイルの取り付け位置に対応して取り付けられた磁石を用いる。よって、磁石に発電コイルの厚み程度の相対運動をさせるだけで誘導起電力を発生させることができるため、波高が小さい場合でも電力を発生させることができる。そして相対運動が発電コイルの複数段分に相当する振幅を持つ場合は、1周期の相対運動で誘導起電力を複数段分発生させることができるので効率よく電力を発生させることができる。さらに誘導起電力発生機構の発電浮体からのエネルギー吸収効率を最大にすることにより、発電浮体の位置エネルギーの損失を最小に抑え、発電効率を大幅に高めることが可能な波力発電装置となる。
【0027】
第9には、前記スイッチ論理計算部は、前記発電浮体の振幅が所定の値以上であるときに前記複数の発電コイルを全て送電側に接続する制御を行い、前記発電浮体にかかる負荷を最大にし、前記相対運動に制動をかけることを特徴とする。
上記構成により、波浪が所定の振幅を超えた場合に、負荷が最大となるように制御するため、発電浮体の振幅を抑えて発電浮体の破損を防止することができる。
【0028】
第10には、前記スイッチ論理計算部は、所定時間ごとに前記発電浮体から得られる電力を測定し、前記電力が最大となるように前記発電コイルの送電側に接続する個数の制御を行なうことを特徴とする。
上記構成により、波浪エネルギーの時間的な変動に対応して負荷の大きさを調整するので、波浪から効率よく電力を取得することができる。
【0029】
第11には、前記発電浮体は、海面下で前記相対運動を行う運動浮体と、前記浮体部の上部に取り付けられ、鉛直方向に伸びて海面上に露出するとともに、前記露出した位置に前記誘導起電力発生機構が取り付けられた柱部と、からなることを特徴とする。
【0030】
上記構成により、海面に露出した柱部の断面積を小さくすることが可能である、よってこの断面積を小さくすることにより波浪による影響を小さくして発電浮体の固有周期を容易に制御することができる。
【0031】
第12には、前記発電浮体は、水平方向を回転軸として前記全体浮体にピン結合されて前記全体浮体に対して所定の固有周期で振子運動が可能とされ、前記誘導起電力発生機構は、前記全体浮体と前記発電浮体に跨って形成され、前記振子運動により起電力を発生させ、前記同期制御手段は、前記発電浮体に取り付けられたウエイトを前記発電浮体の動径方向にスライドさせることにより前記発電浮体の慣性モーメントを調整する慣性モーメント調整機構と、前記全体浮体と前記発電浮体に跨って取り付けられ、前記振子運動の方向から前記発電浮体に弾性力を与えることにより前記発電浮体に復元力を与える復元モーメント発生機構と、を有し、前記慣性モーメント調整機構及び前記復元モーメント発生機構は、前記固有周期を前記波浪の周期に同期させるように駆動することを特徴とする。
【0032】
上記構成により、発電浮体が受ける水平方向からの力により発電浮体が全体浮体に対して振子運動を行なう構成にすることにより、水平方向の力が大きい波浪から効果的に波浪エネルギーを吸収することが可能な波力発電装置となる。
【0033】
第13には、前記発電浮体は、前記全体浮体に複数設けられ、各発電浮体に前記誘導起電力発生機構、前記同期制御手段がそれぞれ設けられたことを特徴とする。
上記構成により、全体浮体に対して、誘導起電力発生機構、及び同期制御手段を個別に備えた発電浮体を複数取り付けることによって大きな電力を得ることができる。さらに取り付け範囲を波浪の波長以上の範囲に分布させることにより、各発電浮体に与えた負荷の全体浮体に対する反力を相殺することができるので、各発電浮体において効率よく発電することができる。
【0034】
一方、本発明に係る波力発電方法は、海面上に設置された全体浮体と、前記海面上の波浪を受けて振幅する発電浮体と、の相対運動により誘導起電力を発生させるとともに、前記発電浮体の固有周期を長周期側または短周期側にシフトさせることにより前記波浪の周期に同期させることを特徴とする。
【0035】
上記方法により、発電浮体の全体浮体に対する相対運動そのものから直接的に誘導起電力を発生させることができるため、波浪エネルギーから電力への変換効率を大幅に高めることができる。また発電浮体の固有周期を長周期側または短周期側にシフトさせることにより波浪の周期に同期させるので、広範囲の波周期に対して発電浮体の運動応答を大きくすることができ、広範囲の波周期に対して高い発電効率を得ることができる。
【発明の効果】
【0036】
本発明に係る波力発電装置及び波力発電方法によれば、発電浮体の全体浮体に対する相対運動そのものから直接的に誘導起電力を発生させることができるため、波浪エネルギーから電力への変換効率を大幅に高めることができる。また発電浮体の固有周期を波浪の周期に同期させるので、広範囲の波周期に対して発電浮体の運動応答を大きくすることができ、広範囲の波周期に対して高い発電効率を得ることが可能となる。
【図面の簡単な説明】
【0037】
【図1】第1実施形態に係る波力発電装置の模式図である。
【図2】第1実施形態に係る質量調整機構の制御ブロック図である。
【図3】第1実施形態に係る高さ調整機構の制御ブロック図である。
【図4】第1実施形態に係る復元力発生機構の動作及び制御ブロックの模式図である。
【図5】第1実施形態に係る誘導起電力発生機構の制御ブロック図である。
【図6】第2実施形態に係る波力発電装置の模式図である。
【図7】第3実施形態に係る波力発電装置の模式図である。
【図8】第4実施形態に係る波力発電装置の模式図である。
【図9】本実施形態の変形例を示す模式図である。
【図10】円柱浮体の上下運動のシミュレーション結果を示す図である。
【図11】円柱浮体のエネルギー吸収のシミュレーション結果を示す図である。
【発明を実施するための形態】
【0038】
以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
【0039】
図1に第1実施形態に係る波力発電装置10の模式図を示す。第1実施形態に係る波力発電装置10は、海面上に設置された全体浮体12と、前記海面上の波浪を受けて前記全体浮体12に対して所定の固有周期で相対運動が可能な発電浮体22と、前記全体浮体12と前記発電浮体22に跨って取り付けられ、前記相対運動により誘導起電力を発生する誘導起電力発生機構120と、前記波浪の周期を測定し、前記固有周期を前記波浪の周期に同期させる同期制御手段と、を有するものである。
【0040】
前記同期制御手段は、前記発電浮体22に取り付けられ、前記発電浮体22に取り込むバラスト(第1実施形態ではバラスト水60)の量を調整することにより前記発電浮体22の質量を調整する質量調整機構30と、前記全体浮体12と前記発電浮体22に跨って取り付けられ、前記発電浮体22に弾性力を与えることにより前記発電浮体22に復元力を与える復元力発生機構100と、を有し、前記質量調整機構30及び前記復元力調整機構100は、前記固有周期を前記波浪の周期に同期させるように駆動するものである。
【0041】
質量調整機構30は、詳細は後述するが発電浮体22からバラスト水60の出し入れを行なうことにより発電浮体22の質量を調整するものである。さらに質量の調整により発電浮体22の初期位置(発電浮体22が振動していないときの高さ、または振動しているときの平均の高さ)が変動するが、その変動分を高さ調整機構31を構成するジャッキ76により補正し初期位置を維持する構成を有している。
【0042】
まず、第1実施形態の波力発電装置10の構成を詳細に説明する前に、波力発電装置10の動作について簡単に説明する。本実施形態に係る波力発電装置10において、発電浮体22にバラスト水60がない場合には、発電浮体22本来の固有周期で振動することになる。そして復元力発生機構100(周期調整バネ106)により発電浮体22に復元力を与えると、発電浮体22の固有周期は短くなる。
【0043】
一方、質量調整機構30によりバラスト水60を導入することにより発電浮体22の質量が大きくなり、発電浮体22の固有周期は長くなる。このとき発電浮体22の初期位置が変位(低下)するため、この変位量に応じてジャッキ76の駆動量を調整し、吊り上げバネ80により発電浮体22を引き上げて初期位置の変動を抑制している。これにより波力発電装置10において発電浮体22の固有周期以外の特性の変動を抑制して効率的に発電を行なうことができる。
【0044】
また誘導起電力発生機構120は、発電浮体22の相対運動から誘導起電力を発生させるとともに、負荷を発電浮体22に与える。この負荷を発電浮体22の造波減衰力と等しくなるように制御した場合において後述の理由により発電浮体22から最も効率的に電力を抽出することができる。
【0045】
したがって、波力発電装置10を用いた波力発電方法は、海面上に設置された全体浮体12と、前記海面上の波浪を受けて振幅する発電浮体22と、の相対運動により(誘導起電力発生機構120を用いて)誘導起電力を発生させるとともに、前記発電浮体22の固有周期を前記波浪の周期に同期させるものである。
【0046】
また、前記固有周期の前記波浪の周期への同期は、(質量調整機構30を用いて)前記発電浮体22に取り込むバラスト(バラスト水60)の量を調整する、及び/もしくは、(復元力発生機構100を用いて)前記発電浮体22の振幅の方向に与える弾性力を調整する、ことにより行なうものである。
【0047】
さらに、前記波浪の波高に合わせて(誘導起電力発生機構120を用いて)前記発電浮体22の前記波浪からの吸収エネルギーを前記固有周期から算出し、発電に起因する前記発電浮体22への負荷を調整するものである。
【0048】
このように質量調整機構30及び復元力発生機構100を用いて発電浮体22の相対運動の周期を波浪の周期に同期するように制御する一方、誘導起電力発生機構120は質量調整機構30及び復元力発生機構100とは独立に制御できるが、これは以下の理由による。
【0049】
いま、海面上を進行する波浪が単一の周波数ωで振動しているものとする。この場合、発電浮体の鉛直方向の変位ξに関する運動方程式は以下のようになる。
【数1】

【0050】
ここで、Mは発電浮体の質量、mは発電浮体の付加質量、Nは発電浮体の造波減衰力、cは発電浮体の固有の復元力の係数、dは発電に起因する発電浮体への負荷、mは外部から発電浮体に付加する質量(バラスト)、kは外部から発電浮体に与える復元力の係数(バネ定数)、Fwは波浪強制力である。またN、m、Fwはωに依存する物理量である。
【0051】
このような規則波における単位幅あたりの波のパワーEwは以下のようになる。
【数2】

【0052】
ここで、ρは海水密度、gは重力加速度、Hは波高である。一方、発電浮体が吸収できるパワーEは以下のようになる。
【数3】

【0053】
数式3に数式1を代入することによって吸収効率ηは以下で求められる。
【数4】

【0054】
ここで、吸収効率ηは、以下の条件のとき最大となる。
【数5】

【数6】

ここで負荷dは数式3に示すように吸収パワーと関連しており、発電に寄与するコイルの数を変化させることにより負荷dも変更できる。すなわち、発電出力を小さくすればdも小さくなり、逆に大きくすればdも大きくなる。
【0055】
したがって、発電浮体から最大の電力を得るためには、数式5の関係を満たすように、外部からの復元力の係数k(バネ定数)と付加する質量m(バラスト)を調整して発電浮体の上下動を波浪の周期に同期させ、かつ発電に起因する負荷dが、発電浮体の造波減衰力Nと等しくなることが条件であることがわかる。さらに数式4、数式5から、復元力の係数k(バネ定数)と負荷dは、ωに依存するものの、互いに独立に制御可能であるから、質量調整機構30(付加する質量(バラスト)mを制御)、復元力発生機構100(復元力の係数k(バネ定数)を制御)及び誘導起電力発生機構120(負荷dを制御)は、互いに独立に制御可能であることがわかる。
【0056】
なお、実際の波浪の周期は単一の周期ではなく、様々な周期の波の重ね合わせにより形成されたものである。すなわち、波浪を周期方向で見るとデルタ関数的なスペクトルではなく、周期方向に広がったスペクトルを有している。ただし、波浪スペクトルは明確なピーク周期をもつスペクトルであるので、発電浮体22の固有周期を波浪の周期に同期させるとは、発電浮体22の固有周期を波浪スペクトルのピーク周期に合わせることを意味する。
【0057】
以下、各構成要件について詳細に説明する。
全体浮体12は、海面上に設置された浮体であって、チェーン等(不図示)で陸地や海底に係留されている。全体浮体12は、中心に貫通孔20を有する平板状のデッキ14と、デッキ14下面の所定位置に取り付けられ鉛直下方に伸びる複数の脚16と、脚16の下端に取り付けられ浮力を発生させる浮体18とを有する。浮体18は、デッキ14が海上に浮いた状態になる程度の浮力があることが望ましく、このとき脚16の適当な位置が海面と高さ方向で重なることになる。このように全体浮体12を半没水型とすることにより波に対して揺れにくくすることができる。なお脚16と脚16の下端に取り付けられた浮体18は同じ断面を有し、一つの円柱もしくは角柱を形成してもよい。
【0058】
また全体浮体12は、海面上に浮かせつつ陸地に固定して、波に対して揺れないようにしても良い。さらに脚16を海底にまで伸ばして固定することにより、全体浮体を固定しても良い。
【0059】
発電浮体22は、全体浮体12に取り付けられ、波力を受けて全体浮体12との間で鉛直方向に相対運動するものである。発電浮体22は、海面下で前記相対運動を行う運動浮体24と、前記運動浮体24の上部に取り付けられ、前記運動浮体24より細身で鉛直方向に伸びて海面上に露出した柱部26と、を有し、全体としてフーティング・カラム型の浮体形状を有している。このような形状を有することにより、海面に露出した柱部の断面積を小さくすることが可能である、よってこの断面積を小さくすることにより波浪による影響を小さくして発電浮体22の固有周期を容易に制御することができる。
【0060】
柱部26は円筒形の形状を有し、デッキ14の貫通孔20を貫通し、その上端がデッキ14より所定の高さ位置だけ露出している。一方、運動浮体24は少なくとも貫通孔20の直径より大きな寸法を有している。柱部26の上端には、復元力発生機構を構成し少なくとも貫通孔20より大きな直径を有する後述の第2のフランジ102が取り付けられ、第2のフランジ102と運動浮体24とを複数のガイドシャフト28で接続している。このためデッキ14の所定位置には各ガイドシャフト28を鉛直方向に挿通するガイド孔14aが複数形成されている。このように発電浮体22に第2のフランジ102を取り付けることによって、発電浮体22が全体浮体12から外れることはなく、また上述のようにガイドシャフト28を接続することにより、発電浮体22は全体浮体12に対して1方向(鉛直方向)のみに相対運動を行うことができる。
【0061】
発電浮体22は、固有の復元力を有するため、波を受けると固有の周期で鉛直方向に振動する。発電浮体22は中立時及び振動時において、細身の柱部26の所定位置に海面が来るように運動浮体24の浮力を調整する。浮力の調整は運動浮体24の内部に海水等の錘を充填することによって行う。このように、水線面の小さい柱部26の範囲に波の変位(水面)が来るようにすることで、発電浮体22を鉛直方向以外の方向に揺れにくくし、固有の周期による振動を得やすくするとともに、後述の復元力発生機構による固有周期の制御が容易となる。発電浮体22の固有周期は、柱部26及び運動浮体24の質量や大きさ、上述の水線面の断面積、運動浮体24に設けられた錘の重さ等に依存する。また発電浮体22の固有周期が一度設計されてしまうと、波浪の周期が固有周期から離れた場合に、発電浮体22は充分に波浪エネルギーを吸収できなくなる。そこで後述の質量調整機構30、復元力発生機構100により固有周期の調整を行う。
【0062】
図2に本実施形態のバラスト水による質量調整機構の制御ブロック図を示す。質量調整機構30は、発電浮体22の質量を調整して発電浮体22の固有周期を調整するものであるが、特に発電浮体22の固有周期を発電浮体22本来の固有周期より長くするときに用いられる。
【0063】
質量調整機構30は、発電浮体22に形成された海水取入口32からバラスト水60を発電浮体22内に取り込む増量用ポンプ34と、発電浮体22内に取り込まれたバラスト水60を発電浮体22に形成された海水排出口36から排出する減量用ポンプ38と、発電浮体22に残留するバラスト水60の量から発電浮体22の固有周期を算出する浮体固有周期計算器40と、波浪の周期と前記固有周期の差分に基づいた周期差分信号68を出力する加算器62と、周期差分信号68に基づいて前記増量用ポンプ34及び前記減量用ポンプ38のいずれか一方を駆動させる比較器70と、を有する。
【0064】
また質量調整機構30は、発電浮体22中にバラスト水60を貯水する水槽50、増量用ポンプ34の流量を積算する流量積算器52、減量用ポンプ38の流量を積算する流量積算器54、流量積算器52、54が出力する積算量の差分を算出して流量差分信号58を浮体固有周期計算器40に出力する加算器56、を有する。
【0065】
よって浮体固有周期計算器40は流量差分信号58に基づいて水槽50に残留するバラスト水60の量を算出し、このバラスト水60の量と発電浮体22本来の質量や固有周期により、現在の発電浮体22の固有周期を算出し、浮体固有周期信号42を加算器62に出力する。
【0066】
加算器62は海面上に配置された波周期検知器64から出力された波浪の周期信号66と浮体固有周期信号42を入力し、両者の差分すなわち大小関係を示す周期差分信号68(a)を比較器70に出力するものである。
【0067】
比較器70は周期差分信号68に基づいて、増量用ポンプ34及び減量用ポンプ38のいずれか一方を駆動させるものである。ここで、周期差分信号68が正(a>0)の場合、すなわち発電浮体22の固有周期が波浪の周期より短い場合は増量用ポンプ34を駆動させ、周期差分信号68が負(a>0)の場合、すなわち発電浮体22の固有周期が波浪の周期より長い場合は減量用ポンプ38を駆動させる。
【0068】
ここで、上述の浮体固有周期信号42、流量差分信号58、波浪の周期信号66、周期差分信号68は常時出力されるため、発電浮体22の固有周期は所定の時定数で波浪の周期に収束する。しかし波浪の周期が、バラスト水60が水槽50に完全に満たされたときの発電浮体22の周期より長い場合は、バラスト水60が水槽50に完全に満たされた状態を維持することになる。また逆に波浪の周期が、水槽50のバラスト水60が空になったときの発電浮体22本来の周期より短い場合は、水槽50のバラスト水60が空になった状態を維持することになる。
【0069】
このように、発電浮体22にバラスト水60を取り込む増量用ポンプ34と、発電浮体22に取り込まれたバラスト水60を外部に排出する減量用ポンプ38と、により発電浮体22に取り込むバラスト水60の出し入れを容易に行い、これに基づいて発電浮体22の質量の調整を容易に行うことができる。
【0070】
図3に本実施形態に係る高さ調整機構の制御ブロック図を示す。高さ調整機構31は質量調整機構30に属するものであり、質量調整機構30の駆動に伴って駆動するものである。高さ調整機構31は、前記全体浮体12に固定されたポール72と、前記ポール72に支持され前記発電浮体22の上方を覆うように配置されたフランジ74と、前記フランジ74と前記ポール72との間に介装され、前記フランジ74の高さを調整するジャッキ76と、前記フランジ74と前記発電浮体22とを接続する吊り上げバネ80と、前記質量調整機構30の駆動に対応して前記発電浮体22の初期位置を維持するように前記ジャッキ76の駆動量を調整する変位制御手段82と、を有する。
【0071】
ポール72は、全体浮体12を構成するデッキ14上に鉛直方向に延びた状態で接続されている。ジャッキ76はポール72の先端に接続され、後述の変位制御手段82に基づいてその上面の高さが制御される。ここでポール72、ジャッキ76は複数用いられているが、ジャッキ76の上面の高さはデッキ14を基準として全て同じになるように設計されている。フランジ74はジャッキ76の上面に取り付けられ、下面には発電浮体22と接続する吊り上げバネ80が接続されている。
【0072】
吊り上げバネ80は、前述の第2のフランジ102に接続しているが発電浮体22全体を引き上げる目的を有するものである。ここで、吊り上げバネ80のバネ定数は後述の周期調整バネのバネ定数より小さいことが望ましい。これにより吊り上げバネ80の発電浮体22の引き上げにより復元力発生機構への影響を小さくすることができる。
【0073】
変位制御手段82は、発電浮体22の高さと初期位置との大小関係を算出し、ジャッキ76に付属するアクチュエータ78に正転(上昇)信号、または逆転(下降)信号を出力するものである。
【0074】
変位制御手段82は、発電浮体22の高さを測定して浮体高さ信号86を出力する浮体高さ測定器84と、発電浮体22の初期位置が入力された浮体高さ設定器88と、浮体高さ測定器84から入力される発電浮体22の高さと、浮体高さ設定器88から入力される発電浮体22の初期位置との差分に基づいた高さ差分信号90を出力する加算器92と、高さ差分信号90に基づいてジャッキ76に付属するアクチュエータ78に正転(上昇)信号96及び逆転(下降)信号98のいずれか一方を出力する比較器94と、を有する。
【0075】
浮体高さ測定器84は、例えば発電浮体22にレーザー光を照射してその反射光が戻るまでの時間を用いて発電浮体22の高さを算出して浮体高さ信号86を出力するものである。ここで発電浮体22が波浪により高さ方向に振動している場合は、発電浮体22の高さの平均値を算出するものとする。浮体高さ信号86、高さ差分信号90は質量調整機構30が駆動する限り常時出力されるので、発電浮体22の高さは所定の時定数で初期位置に収束する。なお浮体高さ測定器84は、これ以外にも、後述の磁石124から得られる磁力をモニターしてその変化から発電浮体22の高さを算出するようにしても良い。
【0076】
このように、発電浮体22の質量を調整しても発電浮体22の初期位置を常に維持することができるので、波力発電装置10において発電浮体22の固有周期以外の特性の変動を抑制して効率的に発電を行なうことができる。
【0077】
図4に第1実施形態に係る復元力発生機構の動作及び制御ブロックを示す模式図を示す。図4(a)は周期調整バネ106の圧縮時、図4(b)は周期調整バネ106の伸長時を示す。復元力発生機構100は、発電浮体22に機械的な弾性力を与えて、発電浮体22の復元力を制御することにより、発電浮体22の固有周期を所定の周期に調整するものである。ここで復元力発生機構100が発電浮体22に与える弾性力の方向は発電浮体22の運動方向(鉛直方向)と平行で、かつ同相であるので、復元力発生機構100が発電浮体22に弾性力を与えることにより発電浮体22の復元力は増加し、これにより発電浮体22の周期が短くなる。
【0078】
復元力発生機構100は、発電浮体22に設けられ、全体浮体12との間で高さ方向に隙間104を形成する第2のフランジ102と、隙間104に介装された複数の周期調整バネ106と、第2のフランジ102において、第2のフランジ102に接続された各周期調整バネ106の位置に対応して形成され、前記各周期調整バネ106の一端106aにそれぞれ接続し、前記一端106aを前記第2のフランジ102に固定または前記第2のフランジ102から開放可能な複数の固定手段108と、発電浮体22の固有周期を前記波浪の周期に同期させるように各固定手段108のオンオフ制御を行う周期比較器118と、を有する。
【0079】
第2のフランジ102は、平面視して円形形状を有し、その中心と柱部26の上端とが接続している。周期調整バネ106及び固定手段108は、第2のフランジ102の中心、すなわち柱部26の軸心に対して中心対称性を有するように複数設けられている。図1では、簡単のため周期調整バネ106及び固定手段108はそれぞれ2つ記載している。また各周期調整バネ106は同一の寸法で同一のバネ定数を有するものが望ましい。
【0080】
固定手段108は、各周期調整バネ106の一端106aを第2のフランジ102に固定し、またはその固定を解除する電磁クラッチ構造を有するものである。固定手段108は、周期調整バネ106の一端106aに取り付けられた被固定部材110と、第2のフランジ102に形成され周期調整バネ106を挿通する貫通孔112と、同様に第2のフランジ102に固定され貫通孔112の上部及び下部にはみ出るように貫通孔112内壁に取り付けられ、被固定部材110(周期調整バネ106)の振動方向を鉛直方向に定めるとともに周期比較器118から入力される駆動信号により被固定部材110を鉛直方向の所定位置に固定するガイド部材114と、を有する。なお被固定部材110の形状は円形でも矩形でもよく、これに対応してガイド部材114の内壁も被固定部材110の外形に倣った形状としてもよい。
【0081】
図4(a)、(b)に示すように、左側の被固定部材110のみがガイド部材114に固定された場合、左側の被固定部材110に固定された周期調整バネ106は発電浮体22の相対運動により圧縮応力または引張応力を受けるとともに、発電浮体22に対して弾性力を与えることになり、発電浮体22の復元力が増加する。一方、右側の被固定部材110がガイド部材114に固定されていないので、右側の被固定部材110に接続する周期調整バネ106は自然長を維持しつつガイド部材114に対して鉛直方向にスライドすることになり、発電浮体22に対して弾性力は与えないことになる。
【0082】
上述のように周期調整バネ106及び固定手段108は複数配設されている。よって波力発電装置10において、発電浮体22の全体浮体12に対する相対運動の周期は、発電浮体22の固有の周期、周期調整バネ106の周期(バネ定数)、第2のフランジ102に固定された周期調整バネ106の個数によって決定される。したがって、相対運動の周期の波浪の周期への同期は、第2のフランジ102に固定された周期調整バネ106の個数を固定手段108を介した制御により行うことができる。特に発電浮体22に復元力を与える周期調整バネ106の個数を増やすと復元力発生機構100全体のバネ定数に相当する物理量が増加するため相対運動の固有周期は短くなる。よって波力発電装置10の同期可能な周期の範囲を広げるためには発電浮体22の固有の周期を長くし、かつ周期調整バネ106(固定手段108)の個数を増やす必要がある。
【0083】
周期比較器118は、発電浮体22の固有周期を波周期検知器64から入力される波浪の周期信号66に同期させるように第2のフランジ102に固定する周期調整バネ106の個数を制御するものである。周期比較器118は、周期調整バネ106への固定数を制御することにより発電浮体22の固有周期を離散的に変化させることができる。
【0084】
周期比較器118は、例えば周期調整バネ106の個数がn個ある場合に、周期調整バネ106の固定を全て解除した場合からn個全て固定した場合までの互いに異なる固有周期となる全ての組み合わせ(T1、T2、・・・Tk)についての情報を有し、入力された波浪の周期信号66に最も近い固有周期となる組み合わせを選択し、その組み合わせに係る周期調整バネ106を第2のフランジ102に固定するように対応する固定手段108に駆動信号を出力する。
【0085】
ここで各組み合わせ(T1、T2、・・・Tk)に従って接続される周期調整バネ106は、発電浮体22の柱部26を中心として中心対称となるように割り当てることが望ましい。これにより周期調整バネ106から発電浮体22に対して鉛直方向以外の方向への力が及ぶことを抑制して発電浮体22の発電効率の低下を防止することができる。
【0086】
復元力発生機構100において、波浪の周期がすべての周期調整バネ106を第2のフランジ102に接続したときの発電浮体22の固有周期より短い場合は、すべての周期調整バネ106を第2のフランジ102に固定した状態を維持することになる。また逆に波浪の周期が周期調整バネ106を全て第2のフランジ102から切り離したときの発電浮体22の固有周期より長い場合は、周期調整バネ106を全て第2のフランジ102から切り離した状態を維持することになる。
【0087】
このように復元力発生機構100は、発電浮体22に復元力を与える周期調整バネ106と、復元力のオンオフ切り替えを行う固定手段108により、復元力発生機構100全体のバネ定数に相当する物理量を変化させることができる。よって復元力発生機構100の復元力の調整は、復元力発生機構100のバネ定数に相当する物理量を制御することにより行うことになるので、簡単な構成で復元力の調整を行うことができる。なお復元力発生機構100において、周期調整バネ106は、全体浮体12のデッキ14に接続された形となっているが、全体浮体12側に接続されたフランジ74に周期調整バネ106の一端106aの反対側の他端106bを接続してもよい。また固定手段108も同様にフランジ74(全体浮体12側)に設け、周期調整バネ106の一端106aを第2のフランジ102に接続し、他端106bを固定手段108に接続してもよい。
【0088】
上述の質量調整機構30と復元力発生機構100においては、結果的に波浪の周期が発電浮体22本来の固有周期以下であれば復元力発生機構100が駆動し、発電浮体22本来の固有周期以上であれば質量調整機構30が駆動するものとして説明した。しかし、これらを共に駆動させることは可能であり、本実施形態においては、発電浮体22の周期を決定する2つのパラメータ(復元力、質量)を有することになるので、波力発電装置10の設計及び波浪の状態に対応して2つのパラメータの重み付けを適宜設計する構成としても良い。なお質量調整機構30(高さ調整機構31)を駆動させる際には、復元力発生機構100の周期調整の誤差を無くすため、発電浮体22の高さが初期位置に戻るまで周期調整バネ106の第2のフランジ102への固定を全て解除する必要がある。
【0089】
図1に示すように、誘導起電力発生機構120は、全体浮体12及び発電浮体22に跨って取り付けられ、発電浮体22の全体浮体12に対する相対運動を利用して誘導起電力を発生させるものである。
【0090】
図5に誘導起電力発生機構の制御ブロック図を示す。誘導起電力発生機構120は、前記全体浮体12に取り付けられ、前記発電浮体22を挿通するとともに前記相対運動の方向に並べて取り付けられた複数の発電コイル122と、前記発電浮体22に取り付けられ、前記複数の発電コイル122を挿通するとともに各発電コイル122の取り付け間隔に対応して取り付けられ前記複数の発電コイル122に誘導起電力を発生させる複数の磁石124と、前記発電浮体22から得られる電力が最大となるように前記複数の発電コイル122のうち送電側に接続する発電コイル122の個数の制御を行なうスイッチ論理計算部136と、を有するものである。
【0091】
発電コイル122は複数(n個)用意され、全体浮体12の貫通孔20に嵌め込み可能な円筒部材126に、発電浮体22の相対運動の方向に多段階(等間隔)に巻きつけたのち、発電コイル122を巻きつけた円筒部材126を貫通孔20に嵌め込むことで、発電コイル122は全体浮体12に取り付けられる。
【0092】
リング形状の磁石124は、その内径が発電浮体22を構成する円筒形の柱部26の外径とほぼ同一で、第2のフランジ102を取り付ける前の柱部26の上端から挿通することができる。そして、各発電コイル122の取り付け間隔に対応した所定位置に多段階に取り付けられる。
【0093】
誘導起電力発生機構120において、磁石124が発電コイル122に対して鉛直方向の運動をすることになるが、磁石124の厚みを発電コイル122と同程度に設計し、発電浮体22が平衡の位置にあるとき、磁石124と発電コイル122が水平方向で互いに対向する位置になるように配置すればよい。これにより磁石124の発電コイル122に対する変動幅(発電浮体22の全体浮体12に対する相対運動の幅)が、少なくとも発電コイル122の厚み程度あれば発電が可能となり、波高が低い場合でも充分に発電することができるとともに、波高が発電コイル122の間隔の数倍あれば、一回の波浪の周期で発電コイル122において複数回発電ができるので効率的に発電を行うことができる。
【0094】
図5に示すように、誘導起電力発生機構120において、発電コイル122は互いに並列に接続され、各発電コイル122が発生した交流電圧は整流回路128を介して直流に変換され蓄電部130に電力として蓄えられる。また各発電コイル122と蓄電部130とを結ぶ回路上には第1のスイッチ132(Sa1、Sa2、・・・San)が介装され、第1のスイッチ132をオンオフ制御することにより発電コイル122の稼動数を制御することができる。また各回路には各回路を短絡可能とし一定の内部抵抗を有する第2のスイッチ134(Sb1、Sb2、・・・、Sbn)が接続されている。第2のスイッチ134は通常の発電時は開放されているが、発電浮体22の振幅が所定の振幅を超えた場合には、第2のスイッチ134が全て接続され、発電コイル22は全て短絡させて発電浮体22に最大負荷を与え、発電浮体22の振幅を抑制する。この第1のスイッチ132及び第2のスイッチ134はスイッチ論理計算部136により制御される。
【0095】
さらに各回路の整流回路128と蓄電部130との間には電力計131が設けられ、各発電コイル122からの電力は加算器131aにより加算され、総和の平均値を算出してスイッチ論理計算部136にその値(E)を出力する。
【0096】
スイッチ論理計算部136は、第1のスイッチ132(Sa1、Sa2、・・・San)のオンオフ制御により発電コイル122の稼動数(蓄電部130への接続数)を制御して、発電浮体22に対する負荷を与えるとともに、磁石124の厚み程度の発電浮体22の相対運動においても発電を可能にするものである。またスイッチ論理計算部136は、発電浮体22に与える負荷が発電浮体22の造波減衰力と等しくなるように(造波減衰力に最も近くなるように)前記複数の発電コイル122のうち送電側に接続する発電コイル122の個数の制御を行うこともできる。上述のように発電浮体22に与える負荷が浮体の造波減衰力に等しいときに発電浮体22から最大電力を得ることができる。
【0097】
ここで発電コイル122がn個あるとすると、誘導起電力発生機構120は互いに値の異なる負荷を離散的にn個有することになる。よって発電浮体22に与える負荷が発電浮体22の造波減衰力に最も近い負荷となる個数を計算することになる。このときその個数がk個(k:nまでの任意の正の整数)である場合は、Sa1からSakまでのスイッチをONとし、1番目の発電コイル122からk番目の発電コイル122を蓄電部130に接続する。なお、k個の発電コイル122を蓄電部130に接続する際、発電コイル122の柱部26における並び順に関わらず任意に選択することができる。
【0098】
またスイッチ論理計算部136は、浮体振幅計測器138、最大振幅設定器144に接続されている。浮体振幅計測器138は、例えば高さ調整機構31の浮体高さ測定器84から出力される浮体高さ信号86の最大値と最小値の差分から発電浮体22の振幅を算出し、その値(Y)をスイッチ論理計算部136に出力する。また最大振幅設定器144には予め発電浮体22の最大許容振幅が入力され、その値(A)をスイッチ論理計算部136に出力する。そしてスイッチ論理計算部136は、発電浮体22の振幅(Y)と許容最大振幅(A)とを比較し、発電浮体22の振幅(Y)が許容最大振幅(A)より大きいと判断した場合には、第2のスイッチ134(Sb1、Sb2、・・・Sbn)が全てオンとなる信号を出力し、発電コイル122を全て短絡させて発電浮体22に最大負荷を与え、発電浮体22の振幅を抑制する。なお、このとき第1のスイッチ132は全てOFFとなるように制御する。
【0099】
さらにスイッチ論理計算部136は平均時間設定器140に接続されている。平均時間設定器140は、スイッチ論理計算部136が上述の制御を行なうための所定時間(X)が設けられ、所定時間(X)ごとにスイッチ論理計算部136を駆動させる信号をスイッチ論理計算部136に出力するものである。よって、スイッチ論理計算部136は、所定時間(X)ごとに発電浮体22の振幅を測定するとともに、所定時間(X)ごとに発電浮体22から得られる電力(E)を測定し、電力(E)が最大となるように発電コイル122の送電側に接続する個数の制御を行なうことができる。これにより、波浪エネルギーの時間的な変動に対応して負荷の大きさを調整するので、波浪から効率よく電力を取得することができる。また発電浮体22から十分なエネルギーを得られない場合においても、効率は下がるものの一定の電力を取得することができ、波力発電装置10の発電の歩留を高めることができる。
【0100】
誘導起電力発生機構120は、多段階に設けられた発電コイル122と、発電コイル122の取り付け位置に対応して取り付けられた磁石124を用いることによって、磁石124に発電コイル122の厚み程度の相対運動をさせるだけで誘導起電力を発生させることができるため、波高が小さい場合でも電力を発生させることができる。そして相対運動が発電コイル122の複数段分に相当する振幅を持つ場合は、1周期の相対運動で誘導起電力を複数周期分発生させることができるので効率よく電力を発生させることができる。さらに誘導起電力発生機構120の発電浮体22からのエネルギー吸収効率を最大にすることにより、発電浮体22の位置エネルギーの損失を最小に抑え、発電効率を大幅に高めることが可能となる。
【0101】
したがって、第1実施形態に係る波力発電装置10によれば、発電浮体22の全体浮体12に対する相対運動そのものから直接的に誘導起電力を発生させることができるため、波浪エネルギーから電力への変換効率を大幅に高めることができる。また発電浮体22の固有周期を長周期側または短周期側にシフトさせることにより波浪の周期に同期させるので、広範囲の波周期に対して発電浮体の運動応答を大きくすることができ、広範囲の波周期に対して高い発電効率を得ることが可能となる。
【0102】
また、復元力発生機構100の発電浮体22に対する弾性力を大きくすると発電浮体22の固有周期を短くすることができる。一方。質量調整機構30を駆動させて発電浮体22に取り込むバラスト水の量を増やすと発電浮体22の質量が大きくなり、発電浮体22の固有周期を長くすることができる。このため、全体浮体に対して相対運動を行なう発電浮体22本来の固有周期が波浪の周期より短いものに設計されていても、波浪エネルギーを効果的に吸収するための周期への調整が可能となるので、簡易な構成で広範囲の波周期に対して発電浮体22の運動応答を大きくすることができ、広範囲の波周期に対して高い発電効率を得ることが可能となる。
【0103】
図6に第2実施形態に係る波力発電装置200を示す。図6(a)は波力発電装置の要部外略図、図6(b)は波力発電装置の部分詳細図である。第2実施形態に係る波力発電装置200の構成は基本的には第1実施形態の構成と共通するが、復元力発生機構202は、発電浮体22に設けられ、前記全体浮体12との間で高さ方向に隙間104を形成する第2のフランジ102と、隙間104に介装されたエアシリンダー204と、発電浮体22の固有周期を前記波浪の周期に同期させるように前記エアシリンダー204内の気圧の調整を行う気圧調整機構210と、を有する点で相違する。
【0104】
エアシリンダー204は、全体浮体12に取り付けられたシリンダー206と、第2のフランジ102に取り付けられ、シリンダー206の気密を保ちつつシリンダー206内を空間的に2つに分離するピストン208からなり、シリンダー206内に一定の気圧を有し気密が保たれた2つの内部空間206a、206bが形成される。この内部空間206a、206bは互いに空間的に分離しており、それぞれの気圧を高くするほど、エアシリンダー204のバネ定数に相当する物理量が増加するため、復元力発生機構202の復元力が増加する。
【0105】
気圧調整機構210は、シリンダー206の内部空間206a、206bに接続され、内部区間206a、206bにそれぞれ独立に圧縮した空気を送り込むコンプレッサー212と、同様に内部空間206a、206bに接続され,内部空間206a、206bの空気をリークするリークバルブ214とからなる。コンプレッサー212及びリークバルブ214はそれぞれ気圧調整機構210から出力される駆動信号が入力されて駆動する。
【0106】
気圧調整機構210は、波周期検知器64から得られる波浪の周期信号66に対応して、コンプレッサー212またはリークバルブ214に駆動信号を出力して内部空間206a、206b内の気圧を調整することにより、復元力発生機構202の復元力を調整して発電浮体22の周期を波浪の周期に同期させるものである。
【0107】
このように復元力発生機構202の復元力の調整は復元力発生機構202を構成するエアシリンダー204内の気圧を制御することにより行うので、簡単な構成で復元力の調整を行うことができるとともに、気圧の調整は無段階に行うことができるので、発電浮体22の固有周期の調整を精度よく行うことができる。
【0108】
第2実施形態においては、復元力発生機構202のみならず第1実施形態と同様に質量調整機構30及び誘導起電力発生機構120も有するが、復元力発生機構202を構成する気圧調整機構210は復元力発生機構202のバネ定数に相当する物理量を変化させることになるので、第1実施形態に係る復元力発生機構100と同じ作用を発電浮体22に与えることになる。よって、復元力発生機構202は誘導起電力発生機構120とは互いに独立に制御することができる。また第1実施形態と同様に復元力発生機構202は、波浪の周期が発電浮体22本来の固有周期より短いときに駆動して、逆に発電浮体22本来の固有周期より長いときは質量調整機構30を駆動させてもよく、また両者を共に駆動させても良い。ただし第1実施形態と同様の理由により、質量調整機構30(高さ調整機構31)を駆動する際は、発電浮体22の高さが初期位置に戻るまでリークバルブ214を開放にしておく必要がある。
【0109】
図7に第3実施形態に係る波力発電装置300を示す。第3実施形態に係る波力発電装置300は第1実施形態と原理は類似するが、発電浮体304は、水平方向を回転軸として全体浮体302にピン結合されて全体浮体302に対して回転する相対運動が可能とされ、誘導起電力発生機構310は、全体浮体302と発電浮体304に跨って形成され、前記回転する相対運動により起電力を発生させ、前記同期制御手段は、前記発電浮体に取り付けられた錘を、前記発電浮体304との取り付け位置を前記ピン結合位置を中心として動径方向にスライドさせることにより前記発電浮体304の慣性モーメントを調整する慣性モーメント調整機構318と、前記全体浮体302と前記発電浮体304に跨って取り付けられ、前記発電浮体304に弾性力を与えることにより前記回転する相対運動に復元力を与える復元モーメント発生機構322と、を有し、前記慣性モーメント調整機構318及び前記復元モーメント発生機構322は、前記回転する相対運動の固有周期を前記波浪の周期に同期させるように駆動する点で相違する。
【0110】
発電浮体304は、海水に浸漬する運動浮体306と、運動浮体306に取り付けられ、全体浮体302に回転支持ピン302aによりピン結合されるアーム308からなる。そしてアーム308の中央部で全体浮体302にピン結合され、ピン結合の回転軸は水平方向に向いている。これにより発電浮体304は波浪の横方向からの力を受けて全体浮体302に対して回転する相対運動(スイング運動)を行い、所定の固有周期で振動することになる。
【0111】
誘導起電力発生機構310は、第1実施形態の発電コイル122と磁石124の配置を、スイング運動をする際の発電浮体304のアーム308の上端の円弧状の軌跡に倣って変形させたものである。例えば、発電コイル312は全体浮体302に所定の間隔で接続する。そしてアーム308の上端の円弧状に軌跡に倣って形成され、前記スイング運動において前記軌跡内を通過するように軸棒316を接続し、磁石314は軸棒316に所定の間隔で挿通されて軸棒316に接続される。または発電コイル312を発電浮体304側に接続し、磁石314を全体浮体302側に接続する構成にしても良い。いずれにしても誘導起電力発生機構310の制御は、第1実施形態の誘導起電力発生機構120と同様の制御を行なうので説明を省略する。
【0112】
慣性モーメント調整機構318は、発電浮体304のアーム308のピン結合より上の部分に設けられた錘320と、前記錘320をアーム308の動径方向(長手方向)にスライドさせるアクチュエータ(不図示)と、発電浮体304の固有周期が波浪の周期に同期するようにアクチュエータ(不図示)の駆動量を制御して発電浮体304の慣性モーメントを制御することにより発電浮体304の周期を調整する制御部(不図示)と、を有する。
【0113】
慣性モーメント調整機構318は、発電浮体304の固有周期を、発電浮体304本来の固有周期(錘320が無いときの固有周期)より長い周期にすることができる点において、第1実施形態の質量調整機構30と目的を共通とする。また質量調整機構30は発電浮体22の質量を変化させるバラスト水60の量を制御し、慣性モーメント調整機構318は発電浮体304の慣性モーメントを変化させる錘320の位置を制御する点で異なるが、慣性モーメント調整機構318の電気的な制御機構は質量調整機構30と同様なので説明を省略する。
【0114】
復元モーメント発生機構322は、第1実施形態と同様に一方を全体浮体302に固定され、他方が発電浮体304に固定または固定解除可能な複数の周期調整バネ324と、前記複数の周期調整バネ324を発電浮体304への接続のオンオフ制御を行なう複数の固定手段(不図示)と、発電浮体304の固有周期を前記波浪の周期に同期させるように固定手段(不図示)の稼働数を制御する周期比較器(不図示)と、を有する。復元モーメント発生機構322は第1実施形態の復元力発生機構100を基準として周期調整バネ324や固定手段(不図示)の取り付け位置が変化したのみである。よって復元モーメント発生機構322の制御方法は復元力発生機構100と相違はないため説明を省略する。
【0115】
第3実施形態の波力発電装置300によれば、発電浮体304が受ける水平方向からの力により発電浮体304が全体浮体302に対して振子運動を行なう構成にすることにより、波浪の水平方向の力から効果的に波浪エネルギーを吸収することが可能となる。
【0116】
図8に第4実施形態の波力発電装置を示す。第4実施形態の波力発電装置400は、基本的構成は第1実施形態と類似するが、質量調整機構402は、発電浮体22上に載置される複数のバラストウエイト404と、全体浮体12側に取り付けられ、各バラストウエイト404を吊り上げ可能な複数の巻上げモータ406と、波浪の周期と発電浮体の周期との差分(周期差分信号68)に基づいて巻き上げモータ406の駆動数を制御してバラストウエイト404の発電浮体22に載置する個数を制御するシフトレジスタ408と、を有する点で相違する。また質量調整機構402は、第1実施形態の質量調整機構30と同様に、波周期検知器64、加算器62、浮体固有周期計算器40を有し、更に比較器410、モータ制御器414を有する。
【0117】
一定の重量を有するバラストウエイト404(W1、W2、・・・、Wn、n個)は複数用意され、それぞれ対応する巻き上げモータ406(M1、M2、・・・、Mn、n個)により吊り上げられ、または発電浮体22上に載置される。よってバラストウエイト404の発電浮体22に載置する個数を増やすと発電浮体22の質量が大きくなり、発電浮体22の周期が長くなる。なお発電浮体22の上端には第1実施形態と同様に第2のフランジ102が設けられ、バラストウエイト404の置き場所として利用するものとする。また巻き上げモータ406は、例えば第1実施形態で述べたフランジ74に固定すればよい。
【0118】
このように質量調整機構402は、発電浮体にバラストウエイトを多く載置するほど発電浮体の固有周期を長くすることができ、またその載置する数を減らすと固有周期は短くなる。したがって簡易な構成で発電浮体の周期の調整を行うことができる。
【0119】
なお、質量調整機構402は第1実施形態の質量調整機構30と同様に高さ調整機構を有しているが、動作は第1実施形態の高さ調整機構31と同様なので説明を省略する。また質量調整機構402は第1実施形態で述べたように復元力発生機構100と独立に制御してもよいし、互いに重み付けを与えて同時に制御してもよい。
【0120】
図9に本実施形態の波力発電装置の変形例を示す。いずれの実施形態においても、発電浮体22、304は、図9に示すように、全体浮体12、302に複数設けられ、各発電浮体22、304に質量調整機構30、402、復元力発生機構100、202、誘導起電力発生機構120、310、がそれぞれ設けられた構成としても良い。全体浮体12、302に対して、質量調整機構30、402、復元力発生機構100、202、誘導起電力発生機構120、310等をそれぞれ個別に備えた発電浮体22、304を複数取り付けることによって大きな電力を得ることができる。さらに取り付け範囲を波浪の波長以上の範囲に分布させることにより各発電浮体22、304に与えた負荷の全体浮体12に対する反力を相殺することができるので、各発電浮体22、304において効率よく発電することができる。
【0121】
なお各発電浮体22、304において出力される誘導起電力は波浪の位相が一致しないため、互いに同期しない。よって各発電浮体22、304に対応した整流回路(整流回路128)の入力側に接続し、整流回路の出力側を並列接続することにより、送電先に直流で電力を送る、または蓄電地(蓄電部130)等に蓄えることができる。
【0122】
図10に円柱浮体の単位振幅の規則波中の上下運動のシミュレーション結果を、図11に円柱浮体の単位振幅の規則波中のエネルギー吸収のシミュレーション結果を示す。本願発明者は、本実施形態における波力発電装置のエネルギー吸収について調査した。図10に示すシミュレーションにおいては、本実施形態における発電浮体22に相当する円柱浮体を採用し、円柱の半径を3m、喫水を5mとした。また本実施形態で述べた発電浮体22に作用する質量調整機構に対応して、円柱浮体にバラストを取り込む場合についてシミュレーションを行なうが、円柱浮体の質量の増加率は波浪の周期に同期するような調整は行わず、50パーセントに固定した。またこの質量の増加に対応して円柱浮体を引き上げる吊り上げバネ80に見立てた復元力(バネ定数)を、周期調整バネ106に見立てた復元力(バネ定数)の10パーセントとした。さらに本実施形態で述べた復元力発生機構に対応して復元力を与える場合は、波浪の周期に同期するように所定の値まで変化させた。そして発電浮体において「復元力なし、バラストなし」、「復元力あり、バラストなし」、「復元力なし、バラストあり」、「復元力あり、バラストあり」とする初期振動に対して発電を行なうための負荷を与えたときのエネルギー吸収について検討した。なお、いずれの場合においても円柱浮体への負荷は、円柱浮体の造波減衰力に等しくなるように調整した。
【0123】
図10に示すように、「復元力なし、(エネルギー)吸収なし、バラストなし」の場合の第1の運動特性曲線500は円柱浮体の固有周期においてピークを有する曲線となる。また第1の運動特性曲線500に前述の負荷を与えてエネルギー吸収を行った場合の第2の運動特性曲線502は第1の運動特性曲線500の相似形で全体的に振幅が小さくなった形状を有している。
【0124】
次に、「復元力あり、吸収なし、バラストなし」の場合の第3の特性曲線504は、第1の運動特性曲線500と比較すると、固有周期を示すピークから短波長側では、付加復元力をゼロとする円柱浮体の固有周期から、短波長側の一定の周期まで円柱浮体の固有周期を波浪の周波数に同期するように付加復元力を調整しているので、その波長範囲において第1の運動特性曲線500よりも高い振幅応答を有する曲線となる。また第3の運動特性曲線504に前述の負荷を与えた場合の第4の運動特性曲線506は第3の運動特性曲線504の相似形で全体的に振幅が小さくなった形状を有している。
【0125】
一方、「復元力なし、吸収なし、バラストあり」の場合の第5の運動特性曲線508は、第1の運動特性曲線500が示す円柱浮体の固有周期を示すピークより長波長側にピークがシフトしており、その値も大きくなっている。また第5の運動特性曲線508に前述の負荷を与えた場合の第6の運動特性曲線510は第5の運動特性曲線508の相似形で全体的に振幅が小さくなった形状を有している。
【0126】
次に、「復元力あり、吸収なし、バラストあり」の場合の第7の運動特性曲線512は、第5の運動特性曲線508と比較すると、円柱浮体に質量を与えた場合の固有周期を示すピークから短波長側では、付加復元力をゼロとしバラストを付加した円柱浮体の固有周期から、短波長側の一定の周期まで円柱浮体の固有周期を波浪の周期に同期させているので、その波長範囲において第5の運動特性曲線508より高い振幅応答を有する曲線となる。また第7の運動特性曲線512に前述の負荷を与えた場合の第8の運動特性曲線514は第7の運動特性曲線512の相似形で全体的に振幅が小さくなった形状を有している。
【0127】
図11に示すように、第1の吸収特性曲線516は、円柱浮体の上下運動の特性曲線である第1の運動特性曲線500に相当する吸収特性であり、第2の吸収特性曲線518は、第3の運動特性曲線504に相当する吸収特性であり、第3の吸収特性曲線520は、第5の運動特性曲線508に相当する吸収特性であり、第4の吸収特性曲線522は、第7の運動特性曲線512に相当する吸収特性である。
【0128】
従って、発電浮体に相当する円柱浮体に復元力及びバラストを追加して適切に制御することにより、第2の吸収特性曲線518と第4の吸収特性曲線522を合わせたエネルギー吸収が可能となる。このエネルギー吸収は、復元力やバラストを与えない元の円柱浮体の第1の吸収特性曲線516よりもはるかに大きいことから、円柱浮体に対して復元力とバラストを与えて適切に制御することにより、元の円柱浮体の固有周期よりも短周期側、長周期側両方で大きなエネルギー吸収が可能となることがわかる。したがって、円柱浮体の固有周期を短周期側及び長周期側にシフト可能とすることにより、円柱浮体は波浪からより多くの波浪エネルギーを吸収することができることがわかる。
【産業上の利用可能性】
【0129】
波力発電浮体の固有周期を短周期側、長周期側両方に移動できる機構を有することにより、波浪エネルギーの吸収効率を高めた波力発電装置及び波力発電方法として利用できる。
【符号の説明】
【0130】
10………波力発電装置、12………全体浮体、14………デッキ、16………脚、18………浮体、20………貫通孔、22………発電浮体、24………運動浮体、26………柱部、28………ガイドシャフト、30………質量調整機構、31………高さ調整機構、32………海水取入口、34………増量用ポンプ、36………海水排出口、38………減量用ポンプ、40………浮体固有周期計算器、42………浮体固有周期信号、50………水槽、52………流量積算器、54………流量積算器、56………加算器、58………流量差分信号、60………バラスト水、62………加算器、64………波周期検知器、66………波浪の周期信号、68………周期差分信号、70………比較器、72………ポール、74………フランジ、76………ジャッキ、78………アクチュエータ、80………吊り上げバネ、82………変位制御手段、84………浮体高さ測定器、86………浮体高さ信号、88………浮体高さ設定器、90………高さ差分信号、92………加算器、94………比較器、96………正転信号、98………逆転信号、100………復元力発生機構、102………第2のフランジ、104………隙間、106………周期調整バネ、106a………一端、106b………他端、108………固定手段、110………被固定部材、112………貫通孔、114………ガイド部材、118………周期比較器、120………誘導起電力発生機構、122………発電コイル、124………磁石、126………円筒部材、128………整流回路、130………蓄電部、132………第1のスイッチ、134………第2のスイッチ、136………スイッチ論理計算部、138………浮体振幅計測器、140………平均時間設定器、142………加算器、144………最大振幅設定器、146………差分信号、200………波力発電装置、202………復元力発生機構、204………エアシリンダー、206………シリンダー、206a………内部空間、206b………内部空間、208………ピストン、210………気圧調整機構、212………コンプレッサー、214………リークバルブ、300………波力発電装置、302………全体浮体、302a………回転支持ピン、304………発電浮体、306………運動浮体、308………アーム、310………誘導起電力発生機構、312………発電コイル、314………磁石、316………軸棒、318………慣性モーメント調整機構、320………錘、322………復元モーメント発生機構、324………周期調整バネ、400………波力発電装置、402………質量調整機構、404………バラストウエイト、406………巻上げモータ、408………シフトレジスタ、410………比較器、412………可変クロック発生器、414………モータ制御器、416………ワイヤー、418………シフトデータ、420………シフトクロック、500………第1の運動特性曲線、502………第2の運動特性曲線、504………第3の運動特性曲線、506………第4の運動特性曲線、508………第5の運動特性曲線、510………第6の運動特性曲線、512………第7の運動特性曲線、514………第8の運動特性曲線、516………第1の吸収特性曲線、518………第2の吸収特性曲線、520………第3の吸収特性曲線、522………第4の吸収特性曲線。

【特許請求の範囲】
【請求項1】
海面上に設置された全体浮体と、
前記海面上の波浪を受けて前記全体浮体に対して所定の固有周期で相対運動が可能な発電浮体と、
前記全体浮体と前記発電浮体に跨って取り付けられ、前記相対運動により誘導起電力を発生する誘導起電力発生機構と、
前記波浪の周期を測定し、前記固有周期を長周期側または短周期側にシフトさせることにより前記波浪の周期に同期させる同期制御手段と、を有することを特徴とする波力発電装置。
【請求項2】
前記同期制御手段は、
前記発電浮体に取り付けられ、前記発電浮体に取り込むバラストの量を調整することにより前記発電浮体の質量を調整する質量調整機構と、
前記全体浮体と前記発電浮体に跨って取り付けられ、前記発電浮体に弾性力を与えることにより前記発電浮体に復元力を与える復元力発生機構と、を有し、
前記質量調整機構及び前記復元力調整機構は、前記固有周期を前記波浪の周期に同期させるように駆動することを特徴とする請求項1に記載の波力発電装置。
【請求項3】
前記質量調整機構は、
前記発電浮体にバラスト水を取り込む増量用ポンプと、
前記発電浮体に取り込まれたバラスト水を外部に排出する減量用ポンプと、
前記波浪の周期と前記発電浮体の周期との差分に基づいて前記増量用ポンプ及び前記減量用ポンプのいずれか一方を駆動させる比較器と、を有することを特徴とする請求項2に記載の波力発電装置。
【請求項4】
前記質量調整機構は、
前記全体浮体に固定され前記発電浮体を吊り上げるジャッキと、
前記ジャッキと前記発電浮体との間に介装され、弾性力により前記発電浮体を吊り上げる吊り上げバネと、
前記質量調整機構の駆動に対応して前記発電浮体の初期位置を維持するように前記ジャッキの駆動量を調整する変位制御手段と、
を有することを特徴とする請求項3に記載の波力発電装置。
【請求項5】
前記質量調整機構は、
前記発電浮体上に載置される複数のバラストウエイトと、
前記全体浮体側に取り付けられ、各バラストウエイトを吊り上げ可能な複数の巻上げモータと、
前記波浪の周期と前記発電浮体の周期との差分に基づいて前記巻き上げモータの駆動数を制御して前記バラストウエイトの前記発電浮体に載置する個数を制御するシフトレジスタと、を有することを特徴とする請求項2に記載の波力発電装置。
【請求項6】
前記復元力発生機構は、
前記全体浮体及び前記発電浮体に接続され、前記発電浮体の振幅方向に弾性力を与えることにより前記発電浮体に復元力を与える複数の周期調整バネと、
前記周期調整バネと前記全体浮体との間及び前記周期調整バネと前記発電浮体との間のいずれか一方に介装され、前記周期調整バネの前記全体浮体及び前記発電浮体のいずれか一方との接続及び解除が可能な固定手段と、
前記固有周期を前記波浪の周期に同期させるように各固定手段のオンオフ制御を行う周期比較器と、を有することを特徴とする請求項2乃至5のいずれか1項に記載の波力発電装置。
【請求項7】
前記復元力発生機構は、
前記全体浮体及び前記発電浮体に接続され、前記発電浮体の振幅方向に弾性力を与えることにより前記発電浮体に復元力を与えるエアシリンダーと、
前記固有周期を前記波浪の周期に同期させるように前記エアシリンダー内の気圧を調整することにより前記発電浮体への復元力を調整する気圧調整機構と、を有することを特徴とする請求項2乃至5のいずれか1項に記載の波力発電装置。
【請求項8】
前記誘導起電力発生機構は、
前記全体浮体に取り付けられ、前記発電浮体を挿通するとともに前記相対運動の方向に並べて取り付けられた複数の発電コイルと、
前記発電浮体に取り付けられ、前記複数の発電コイルを挿通するとともに各発電コイルの取り付け間隔に対応して取り付けられ前記複数の発電コイルに誘導起電力を発生させる複数の磁石と、
前記発電浮体から得られる電力が最大となるように前記複数の発電コイルのうち送電側に接続する発電コイルの個数の制御を行なうスイッチ論理計算部と、を有することを特徴とする請求項1乃至7のいずれか1項に記載の波力発電装置。
【請求項9】
前記スイッチ論理計算部は、
前記発電浮体の振幅が所定の値以上であるときに前記複数の発電コイルを全て送電側に接続する制御を行い、前記発電浮体にかかる負荷を最大にし、前記相対運動に制動をかけることを特徴とする請求項8に記載の波力発電装置。
【請求項10】
前記スイッチ論理計算部は、
所定時間ごとに前記発電浮体から得られる電力を測定し、前記電力が最大となるように前記発電コイルの送電側に接続する個数の制御を行なうことを特徴とする請求項8乃または9に記載の波力発電装置。
【請求項11】
前記発電浮体は、
海面下で前記相対運動を行う運動浮体と、
前記浮体部の上部に取り付けられ、鉛直方向に伸びて海面上に露出するとともに、前記露出した位置に前記誘導起電力発生機構が取り付けられた柱部と、からなることを特徴とする請求項1乃至10のいずれか1項に記載の波力発電装置。
【請求項12】
前記発電浮体は、水平方向を回転軸として前記全体浮体にピン結合されて前記全体浮体に対して所定の固有周期で振子運動が可能とされ、
前記誘導起電力発生機構は、前記全体浮体と前記発電浮体に跨って形成され、前記振子運動により起電力を発生させ、
前記同期制御手段は、
前記発電浮体に取り付けられたウエイトを前記発電浮体の動径方向にスライドさせることにより前記発電浮体の慣性モーメントを調整する慣性モーメント調整機構と、
前記全体浮体と前記発電浮体に跨って取り付けられ、前記振子運動の方向から前記発電浮体に弾性力を与えることにより前記発電浮体に復元力を与える復元モーメント発生機構と、を有し、
前記慣性モーメント調整機構及び前記復元モーメント発生機構は、前記固有周期を前記波浪の周期に同期させるように駆動することを特徴とする請求項1に記載の波力発電装置。
【請求項13】
前記発電浮体は、
前記全体浮体に複数設けられ、
各発電浮体に前記誘導起電力発生機構、前記同期制御手段がそれぞれ設けられたことを特徴とする請求項1乃至12のいずれか1項に記載に波力発電装置。
【請求項14】
海面上に設置された全体浮体と、前記海面上の波浪を受けて振幅する発電浮体と、の相対運動により誘導起電力を発生させるとともに、
前記発電浮体の固有周期を長周期側または短周期側にシフトさせることにより前記波浪の周期に同期させることを特徴とする波力発電方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2011−220283(P2011−220283A)
【公開日】平成23年11月4日(2011.11.4)
【国際特許分類】
【出願番号】特願2010−92426(P2010−92426)
【出願日】平成22年4月13日(2010.4.13)
【出願人】(000144049)株式会社三井造船昭島研究所 (27)
【出願人】(509273396)株式会社エス・ケー・イー (2)
【Fターム(参考)】