説明

流体動圧軸受装置

【課題】軸受スリーブへの圧入によるシール部材の損傷を防止する。
【解決手段】シール部材9の射出成形により形成されるウェルドラインWを、薄肉部となる軸方向溝9b20の最深部Pを避けた円周方向位置(好ましくは軸方向溝9b20の円周方向間の円筒面9b21の領域)に形成することにより、シール部材9に強度の非常に低い部分が形成されることを回避でき、圧入による損傷を防止できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、軸受隙間に生じる潤滑油の動圧作用で軸部材を相対回転自在に支持する流体動圧軸受装置に関する。
【背景技術】
【0002】
例えば特許文献1に示されている流体動圧軸受装置は、有底筒状のハウジングの内周に焼結金属製の軸受スリーブが固定されると共に、軸受スリーブの内周に軸部材が挿入され、軸部材の外周面と軸受スリーブの内周面との間のラジアル軸受隙間に生じる潤滑油の動圧作用で軸部材を支持している。軸受スリーブの端部にはシール部材が固定され、このシール部材でハウジングの内部に満たされた潤滑油をシールしている。具体的には、シール部材が、軸受スリーブの端面に当接する円盤状の第1シール部と、軸受スリーブの外周面に当接する円筒状の第2シール部とを一体に有し、第1シール部の内周面と軸部材の外周面との間に第1のシール空間が形成されると共に、第2シール部の外周面とハウジングの内周面との間に第2のシール空間が形成される。このように、ラジアル軸受隙間よりも外径側に第2のシール空間を形成することにより、ラジアル軸受隙間と軸方向に並べて配された第1のシール空間の軸方向寸法を縮小することができるため、軸受装置の軸方向寸法の縮小、あるいは、ラジアル軸受スパンの拡大による軸受剛性の向上を図ることができる。
【0003】
上記のシール部材は、例えば樹脂の射出成形により形成される。
【0004】
また、上記の流体動圧軸受装置では、シール部材と軸受スリーブとの間に、第1のシール空間と第2のシール空間とを連通する連通路が形成される。この連通路により、両シール空間内に保持された潤滑油の圧力バランスを適正に保つことができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2007−255593号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記のような流体動圧軸受装置において、シール空間の容積が高精度に設定されていないと、容積不足による油漏れや、容積過大による軸受装置の大型化を招く恐れがある。このため、シール部材の寸法精度を高めて、シール空間の容積を高精度に設定する必要がある。しかし、上記のようにシール部材を樹脂の射出成形で形成すると、樹脂の固化時に成形収縮が生じるため、シール部材の寸法精度、特に外周面の寸法精度が低下する恐れがある。
【0007】
例えば、シール部材(第2シール部)を軸受スリーブの外周面に圧入すれば、シール部材の外周面の形状を軸受スリーブの外周面の形状に倣わせることができる。これにより、シール部材単体では外周面の精度が低い場合でも、高精度に加工した軸受スリーブの外周面にシール部材を倣わせることにより、シール部材の外周面の精度を高めることができる。しかし、このようにシール部材を軸受スリーブに圧入すると、シール部材に大きな負荷が加わるため、シール部材に割れ等の損傷が生じる恐れがある。
【0008】
例えば、上記のようにシール部材が樹脂の射出成形品である場合、キャビティに射出された樹脂の合流部にはウェルドラインが形成される場合がある。このようなウェルドラインの形成部は、他の領域に比べて脆弱であるため、上記のような圧入による損傷の起点となりやすい。特に、シール空間の内周面に軸方向溝を形成し、この軸方向溝で第1のシール空間と第2のシール空間とを連通する連通路を構成する場合、軸方向溝を形成した分だけシール部材の肉厚が薄くなり強度が低下する。このような薄肉部にウェルドラインによる脆弱部が形成されると、この部分の強度が局部的に非常に低くなり、上記のような圧入による損傷が生じる恐れが高くなる。
【0009】
例えば、シール部材を全体的に厚肉にして強度を高めれば、圧入による損傷を防止できるが、材料コストが嵩む上、流体動圧軸受装置全体の寸法が大きくなるため、好ましくない。
【0010】
あるいは、シール部材をウェルドラインが形成されない方法で射出成形すれば、強度を高めることができる。例えば、図10(a)に示すように、有底筒状のキャビティ101の底部102の中心にピンゲート103を設け、このピンゲート103から溶融樹脂を射出すれば、溶融樹脂が分流することなく円周方向全方向に流れるため(図10(b)参照)、ウェルドラインは形成されない。しかし、この場合、図11に示すように、有底筒状の成形品110の底部111の中心部分120を除去する工程が必要となり、加工に手間がかかる。
【0011】
この他、シール部材を成形する金型に環状のフィルムゲートを設けた場合(図示省略)もウェルドラインは形成されないが、この場合、成形品に環状のゲート跡が形成されるため、ゲート跡の除去作業に手間がかかる。
【0012】
本発明の解決すべき課題は、シール部材を厚肉化したり、手間のかかる製法を採用することなく、軸受スリーブへの圧入によるシール部材の損傷を防止することにある。
【課題を解決するための手段】
【0013】
前記課題を解決するために、本発明は、軸部材と、内周に軸部材が挿入された軸受スリーブと、内周に軸受スリーブを保持したハウジングと、大径内周面及び小径内周面を有する樹脂の射出成形品であり、大径内周面が軸受スリーブの端部の外周面に圧入固定されたシール部材と、軸部材の外周面と軸受スリーブの内周面との間のラジアル軸受隙間に生じる潤滑油の動圧作用により軸部材をラジアル方向に支持するラジアル軸受部と、シール部材の小径内周面と軸部材の外周面との間に形成され、ハウジング内部に満たされた潤滑油をシールする第1のシール空間と、シール部材の外周面とハウジングの内周面との間に形成され、ハウジング内部に満たされた潤滑油をシールする第2のシール空間と、シール部材と軸受スリーブとの間に形成され、第1のシール空間と第2のシール空間とを連通する連通路とを備えた流体動圧軸受装置であって、シール部材の大径内周面に前記連通路を構成する軸方向溝が形成され、前記軸方向溝の最深部を避けた円周方向位置に、射出成形によるウェルドラインが形成されたことを特徴とする。
【0014】
このように、シール部材の射出成形により形成されるウェルドラインを、薄肉部となる軸方向溝の最深部を避けた円周方向位置に形成することにより、シール部材に、局部的に強度の低い部分が形成されることを回避でき、圧入による損傷を防止できる。例えば、シール部材の大径内周面に前記軸方向溝が複数形成される場合、前記ウェルドラインを、前記複数の軸方向溝の円周方向間の領域に形成することが好ましい。
【0015】
同様の趣旨から、シール部材の内部側端面に前記連通路の一部が構成する径方向溝を形成する場合、前記ウェルドラインは前記径方向溝の最深部を避けた円周方向位置に形成することが好ましい。
【0016】
シール部材の線膨張係数が軸受スリーブの線膨張係数よりも大きい場合、高温環境下では、熱膨張によるシール部材の内周面の拡径量が軸受スリーブの外周面の拡径量を上回るため、シール部材と軸受スリーブとの間の圧入代が小さくなる。このような場合でも、シール部材と軸受スリーブとの固定力を確保するために、常温時における圧入代は大きめに設定する必要がある。このため、圧入によりシール部材に加わる負荷がさらに大きくなり、シール部材が損傷する恐れが高くなる。従って、シール部材の線膨張係数が軸受スリーブの線膨張係数よりも大きい場合は、本発明の構成を適用することが特に好ましい。
【0017】
例えば、HDDのディスク駆動装置に用いられるような軸径(軸部材の直径)が2〜4mmの流体動圧軸受装置の場合、シール部材と軸受スリーブとの圧入代(両部材の直径の差)を40μm以上に設定すれば、十分な固定力を得ることができ、且つ、シール部材の外周面を軸受スリーブの形状に倣わせることができる。尚、圧入代が大きすぎると圧入作業が困難となるため、両部材の圧入代は60μm以下にすることが好ましい。
【0018】
ハウジング内部に満たされる潤滑油は、例えばエステル系潤滑油を使用することができる。
【0019】
ところで、樹脂の射出成形品のウェルドライン形成部における強度は、キャビティに充填された溶融樹脂の固化速度に影響される。すなわち、樹脂の固化速度が早いとウェルドライン形成部の強度が弱くなり、固化速度の遅いとウェルドライン形成部の強度が強くなる傾向がある。一方、シール部材は、ハウジング内部に満たされる潤滑油(特にエステル系潤滑油)と常に接触するため、シール部材を形成する樹脂の耐油性が低いと、シール部材の強度低下やストレスクラックを生じる恐れがある。従って、シール部材を形成する樹脂は、固化速度が遅く、且つ、耐油性に優れていることが好ましい。このような樹脂として、例えば結晶性樹脂、特に、PPS,ETFE,PEEK,PA66,PA46,PA6T,PA9Tの中から選択された結晶性樹脂を使用することができる。
【0020】
前記連通路は、例えば、軸受スリーブの外周面に形成した軸方向溝とシール部材の前記軸方向溝とで構成することができる。
【0021】
例えば、シール部材の内周面に前記軸方向溝が奇数本形成される場合、シール部材の射出成形のゲートを前記軸方向溝の円周方向位置に設ければ、ウェルドラインを前記軸方向溝の最深部を避けた円周方向位置に設けることができる。
【発明の効果】
【0022】
以上のように、本発明によれば、シール部材を厚肉化したり、手間のかかるシール部材の製法を要することなく、軸受スリーブへの圧入によるシール部材の損傷を防止することができる。
【図面の簡単な説明】
【0023】
【図1】HDD用ディスク駆動装置のスピンドルモータの断面図である。
【図2】流体動圧軸受装置の断面図である。
【図3】軸受スリーブの断面図である。
【図4】シール部材のA−A線(図5参照)における断面図である。
【図5】図4のB方向から見たシール部材の平面図である。
【図6】シール部材を射出成形するための金型の断面図である。
【図7】図6の金型のX−X線における断面図である。
【図8】軸受スリーブとシール部材とを圧入固定した状態の断面図である。
【図9】実施例を説明する断面図である。
【図10】(a)はシール部材を射出成形するための金型の参考例を示す断面図であり、(b)は(a)図のY−Y線における断面図である。
【図11】参考例のシール部材を形成する方法を示す断面図である。
【発明を実施するための形態】
【0024】
以下、本発明の実施形態を図面に基づいて説明する。
【0025】
図1は、本発明の一実施形態に係る流体動圧軸受装置1を組み込んだ情報機器用スピンドルモータを示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸径が2〜4mmの軸部材2を回転自在に支持する流体動圧軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はブラケット6の外周面に取付けられ、ロータマグネット5はディスクハブ3の内周面に取付けられる。流体動圧軸受装置1は、ブラケット6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが所定の枚数(図示例では2枚)保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、これによってディスクハブ3および軸部材2が一体となって回転する。
【0026】
図2に示す流体動圧軸受装置1は、軸部材2と、一端を開口すると共に他端を閉塞した有底筒状のハウジング7と、ハウジング7の内周面に固定され、内周に軸部材2が挿入された軸受スリーブ8と、ハウジング7の開口部をシールするシール部材9とを主要な構成部品としている。なお、以下では、説明の便宜上、軸方向でハウジング7の開口側を上側、その反対側を下側として説明を進める。
【0027】
軸部材2は、例えば、ステンレス鋼等の金属材料で形成され、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備えている。軸部材2は、その全体を金属材料で形成する他、例えばフランジ部2bの全体あるいはその一部(例えば両端面)を樹脂で構成し、金属と樹脂のハイブリッド構造とすることもできる。
【0028】
軸受スリーブ8は、例えば銅(あるいは銅及び鉄)を主成分とする焼結金属で円筒状に形成される。この他、黄銅等の軟質金属で軸受スリーブ8を形成することも可能である。
【0029】
軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域(図2の点線部分)が軸方向に離隔して設けられ、これらの2つの領域には、例えば図3に示すようなヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成される。上側の動圧溝8a1は、丘部(図3にクロスハッチングで示す)の軸方向中央部の帯状部分に対して軸方向非対称に形成されており、具体的には帯状部分より上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。
【0030】
軸受スリーブ8の下側端面8bには第1スラスト軸受部T1のスラスト軸受面となる領域(図2の点線部分)が設けられ、該領域には、図示は省略するが、例えばスパイラル形状の動圧溝が形成されている。軸受スリーブ8の外周面8dには、両端面8b、8cを連通する軸方向溝8d1が形成され、本実施形態では、例えば3本の軸方向溝8d1が円周方向に等配されている(図8参照)。
【0031】
ハウジング7は、図2に示すように、円筒状の小径部7aと、小径部7aの上側に配置された円筒状の大径部7bと、小径部7aの下端開口部を封止する底部7cとで構成され、各部7a〜7cは一体に形成されている。小径部7aの内周面と大径部7bの内周面7b1とは、軸方向と直交する方向の平坦面状に形成された段差面7dで連続している。
【0032】
ハウジング7の底部7cの内底面7c1には、第2スラスト軸受部T2のスラスト軸受面となる領域(図2の点線部分)が設けられ、該領域には、図示は省略するが、例えばスパイラル形状の動圧溝が形成されている。
【0033】
上記構成のハウジング7は、樹脂で射出成形される。成形収縮時の収縮量の差による変形を防止するため、ハウジング7の各部7a〜7cは略均一厚に形成されている。ハウジング7を形成する樹脂は主に熱可塑性樹脂であり、例えば、非晶性樹脂として、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)、ポリアミド(PA)等を用いることができる。また、上記の樹脂に、充填材として、例えばガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。
【0034】
シール部材9は、図4に示すように、円盤状の第1シール部9aと、第1シール部9aの外径端から下方に張り出した円筒状の第2シール部9bとを備えた断面L字形に形成される。第1シール部9aの内周面9a2はシール部材9の小径内周面を構成し、第2シール部9bの内周面9b2はシール部材9の大径内周面を構成する。第1シール部9aの内部側端面(下側端面9a1)には、下側端面9a1を径方向に横断する所定本数の径方向溝9a10が形成され、第2シール部9bの内周面9b2には、内周面9b2を軸方向に縦断する所定本数の軸方向溝9b20が、前記径方向溝9a10と同じ円周方向位置に形成される。本実施形態では、第1シール部9aの径方向溝9a10は断面矩形(図示省略)に形成され、第2シール部9bの軸方向溝9b20は断面円弧形状に形成される(図5参照)。また、径方向溝9a10及び軸方向溝9b20はそれぞれ3本ずつ形成され、円周方向に等配されている。
【0035】
第2シール部9bの外周面9b1の上端部には、面取り部9cが形成される(図4参照)。この面取り部9cのうち、軸方向溝9b20の最深部Pの円周方向位置にゲート跡24’が形成される(図5参照)。このゲート跡24’と軸心を挟んで反対側の位置に、ウェルドラインWが形成される。ウェルドラインWは、第1シール部9aを径方向に横断し、且つ、第2シール部9bを軸方向に縦断して形成される。第2シール部9bのウェルドラインWは、軸方向溝9b20の最深部Pを避けた円周方向位置に形成され、本実施形態では軸方向溝9b20の円周方向間の円筒面9b21の領域に形成される。また、第1シール部9aのウェルドラインWは、径方向溝9a10の最深部を避けた円周方向位置に形成され、本実施形態では、径方向溝9a10の円周方向間の平坦面9a11の領域に形成される。以上のように、ウェルドラインWは、シール部材9の薄肉部を避けた位置に形成される。
【0036】
上記構成のシール部材9は、樹脂の射出成形で形成される。シール部材9を形成する樹脂は、固化速度が比較的遅く、且つ、耐油性に優れた材料を選択することが好ましく、例えば結晶性樹脂、特に、PPS,ETFE,PEEK,PA66,PA46,PA6T,PA9Tの中から選択された結晶性樹脂が好適に使用できる。具体的には、例えば、PPSとしてAGCマテックス社製架橋型PPS RG−40JA及び直鎖型PPS RE−04、ETFEとしてダイキン工業社製ネオフロンEP−521,EP−541、PEEKとしてビクトレックス社製PEEK150GL15,PEEK150GL30,PEEK450GL15,PEEK450GL30、PA66としてBASF社製A3HG5、PA46としてDSM社製TW300、PA6Tとして三井化学社製アーレンRA230NK、PA9Tとしてクラレ社製ジェネスタGR2300を使用することができる。これらのうち、PA6Tは、ウェルドラインW形成部の強度及びエステル系潤滑油に対する耐油性に関して最も優れた特性を示すため、シール部材に最適な材料と言える。尚、これらの結晶性樹脂は、単独で使用しても複数種を混ぜて使用してもよく、また、上記のハウジング7の材料で示したような充填材を加えても良い。
【0037】
ここで、シール部材9の射出成形について説明する。シール部材9の射出成形に使用される金型は、図6に示すような固定型21及び可動型22からなり、型締めした状態でキャビティ23及びゲート24が形成される。ゲート24は、固定型21及び可動型22の型締め面に設けられたいわゆるサイドゲートであり、面取り部9cを成形するテーパ面25に設けられ、且つ、第2シール部9bの軸方向溝9b20を成形する成形部26の円周方向位置に配される(図7参照)。この状態でゲート24から溶融樹脂を射出すると、第1シール部9aの軸心の中空部を成形する突出部27により樹脂の流れが二手に分かれ、ゲート24の反対側で合流する。本実施形態では、第2シール部9bの内周面に奇数本(3本)の軸方向溝9b20が等配されているため、各軸方向溝9b20の軸心を挟んで反対側は、他の軸方向溝9b20の円周方向中央部となる。従って、ゲート24を一つの軸方向溝9b20の最深部の円周方向位置に配することにより、他の軸方向溝9b20の円周方向中央部にウェルドラインWが形成される。
【0038】
上記のようにして形成されたシール部材9は、図2に示すように、軸受スリーブ8の外周上端に圧入固定される。具体的には、シール部材9の第2シール部9bの内周面9b2が軸受スリーブ8の外周面8dに上方から圧入される。このとき、シール部材9と軸受スリーブ8との圧入代は40〜60μmの範囲内に設定される。これにより、第2シール部9の外周面9b1が軸受スリーブ8の外周面8dに倣って変形し、寸法精度が高められる。このとき、上記のように、脆弱なウェルドラインWが、シール部材9の薄肉部(第1シール部9aの径方向溝9a10の最深部、第2シール部9bの軸方向溝9b20の最深部)を避けた位置に形成されているため、シール部材9に、局部的に強度の非常に低い部分が形成されることを回避でき、圧入による損傷を防止できる。
【0039】
シール部材9を軸受スリーブ8に固定した状態では、シール部材9の第1シール部9aの下側端面9a1は軸受スリーブ8の上側端面8cと当接し、第2シール部9bの下側端面は所定の軸方向隙間11を介してハウジング7の段差面7dと対向する。また、第1シール部9aの内周面9a2と軸部2aの外周面2a1との間に所定容積の第1のシール空間S1が形成されると共に、第2シール部9bの内周面9b2とハウジング7の大径部7bの内周面7b1との間に所定容積の第2のシール空間S2が形成される。本実施形態では、第1シール部9aの内周面9a2およびハウジング7の大径部7bの内周面7b1は、何れも上方を拡径させたテーパ面状に形成され、そのため第1および第2のシール空間S1,S2は下方に向かって漸次縮小したテーパ形状を呈する。
【0040】
このとき、第1シール部9aの下側端面9a1と軸受スリーブ8の上側端面8cとの間、及び、第2シール部9bの内周面9b2と軸受スリーブ8の外周面8dとの間には、第1のシール空間S1と第2のシール空間S2とを連通する連通路12が形成される。具体的には、第1シール部9aの下側端面9a1に形成された径方向溝9a10と軸受スリーブ8の上側端面8cとで径方向の連通路12aが形成されると共に、第2シール部9bの内周面9b2に形成された軸方向溝9b20と軸受スリーブ8の外周面8dに形成された軸方向溝8d1とで軸方向の連通路12bが形成される(図8参照)。
【0041】
連通路12は、両シール空間S1,S2内の潤滑油の圧力バランスを適正範囲に保つために、所定以上の流路面積が必要となる。例えば、第2シール部9bに形成された軸方向溝9b20の断面積を拡大すると、第2シール部9bが部分的に薄肉になって強度が低下する。しかし、第2シール部9bは軸受スリーブ8に圧入されることにより大きな負荷を受けるため、なるべく強度を確保する必要がある。そこで、図8に示すように、第2シール部9bの軸方向溝9b20と軸受スリーブ8の軸方向溝8d1とで協働して軸方向の連通路12bを形成することで、第2シール部9bの軸方向溝9b20の大きさを抑えてシール部材9の強度を確保しながら、軸方向の連通路12bの流路面積を確保する構造としてもよい。
【0042】
以上のようにして、シール部材9で密封されたハウジング7の内部空間に、軸受スリーブ8の内部気孔を含め、潤滑油(例えばエステル系潤滑油)を充満させることにより、図2に示す流体動圧軸受装置1が完成する。
【0043】
軸部材2が回転すると、軸受スリーブ8の内周面8aのラジアル軸受面と軸部2aの外周面2a1との間にラジアル軸受隙間が形成される。また、軸受スリーブ8の下側端面8bのスラスト軸受面とフランジ部2bの上側端面2b1との間、及び、ハウジング7の内底面7c1のスラスト軸受面とフランジ部2bの下側端面2b2との間に、それぞれスラスト軸受隙間が形成される。そして、軸部材2の回転に伴い、ラジアル軸受面の動圧溝8a1,8a2により上記ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2の軸部2aが上記ラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。同時に、スラスト軸受面の動圧溝により上記スラスト軸受隙間に潤滑油の動圧が発生し、軸部材2が上記スラスト軸受隙間内に形成される潤滑油の油膜によってスラスト方向に回転自在に非接触支持される。これにより、軸部材2を両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが構成される。
【0044】
また、軸部材2の回転時には、上述のように、第1および第2のシール空間S1、S2が、ハウジング7の内部側に向かって漸次縮小したテーパ形状を呈しているため、両シール空間S1、S2内の潤滑油は毛細管力による引き込み作用により、シール空間が狭くなる方向、すなわちハウジング7の内部側に向けて引き込まれる。これにより、ハウジング7の内部からの潤滑油の漏れ出しが効果的に防止される。また、シール空間S1、S2は、ハウジング7の内部空間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内では、潤滑油の油面は常にシール空間S1、S2内にある。
【0045】
上述したように、上側の動圧溝8a1は軸方向非対称に形成されている(図3参照)ため、軸部材2の回転時、ラジアル軸受隙間の潤滑油を下方に押し込む力が生じ、これにより第1スラスト軸受部T1のスラスト軸受隙間→軸受スリーブ8の軸方向溝8d1によって形成される流体通路→シール部材9と軸受スリーブ8との間の連通路12という経路を循環させることができる。これにより、潤滑油の圧力バランスが保たれると同時に、局部的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。上記の循環経路には、第1のシール空間S1が連通し、さらに軸方向隙間11を介して第2のシール空間S2が連通しているので、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S1、S2内の潤滑油の油面から外気に排出されるため、気泡による悪影響をより一層効果的に防止できる。
【0046】
本発明は上記の実施形態に限られない。例えば、以上の実施形態では、シール部材9を射出成形する際のゲート24が一箇所に設けられているが、これに限らず、ゲートを複数箇所に設けても良い。
【0047】
また、以上の実施形態では、第1シール部9aの内周面9a2がテーパ面状に形成されているが、これに限らず、第1シール部9aの内周面9a2を円筒面とする一方、これに対向する軸部2aの外周面をテーパ面状としてもよい。また、以上の実施形態では、ハウジング7の大径部7bの内周面7b1がテーパ面状に形成されているが、この面を円筒面とする一方、これに対向する第2シール部9bの外周面9b1をテーパ面状に形成してもよい。
【0048】
また、以上の実施形態では、軸受スリーブ8にヘリングボーン形状やスパイラル形状の動圧溝からなる動圧発生部が形成されているが、これに限らず、他の形状の動圧溝を形成したり、軸受スリーブ8の内周面8aを複数の円弧を組み合わせた多円弧形状とすることにより、動圧発生部を構成してもよい。また、軸受スリーブ8の内周面8a及び下側端面8bやハウジング7の内底面7c1に動圧発生部を形成する替わりに、これらの面と軸受隙間を介して対向する部材(軸部材2の軸部2aの外周面2a1及びフランジ部2bの両端面2b1,2b2)に動圧発生部を形成してもよい。さらには、軸受スリーブ8の内周面8a及び軸部材2の軸部2aの外周面2a1の双方を円筒面状とした、いわゆる真円軸受を構成してもよい。この場合、動圧作用を積極的に発生させる動圧発生部は形成されないが、軸部2aの僅かな振れ回りにより動圧作用が発生する。
【実施例1】
【0049】
本発明による効果を確認するために、図9に示すように、上記実施形態の軸受スリーブ8と同じ構成のスリーブ試験片30を、上記シール部材9と同じ構成のシール試験片40の内周に圧入し、シール試験片40に破損が生じるか否かを確認する試験を行った。シール試験片40は、ウェルドラインが軸方向溝の円周方向中間部に形成された実施例(図5参照)と、ウェルドラインが軸方向溝の最深部の円周方向位置に形成された比較例(図示省略)とを準備した。また、実施例及び比較例のシール試験片40として、円筒部41の内径寸法の異なる複数種の試験片、すなわち、スリーブ試験片30との圧入代が異なる複数種の試験片を準備した。スリーブ試験片30は金属(黄銅)で形成し、シール試験片40は樹脂(PA6T)で形成した。シール試験片40は、円筒部41の内径を約7.5mm、外径を9mmに設定した。スリーブ試験片30とシール試験片40との圧入部の軸方向長さは2.45mmとした。
【0050】
上記試験の結果、下記の表1に示すように、実施例では圧入代が90μmのシール試験片40に破損が初めて発生したのに対し、比較例では圧入代が50μmのシール試験片40に破損が初めて発生した。このことから、実施例に係るシール試験片は、比較例に係るシール試験片と比べて、スリーブ試験片の圧入に対する強度が高いことが確認された。
【0051】
【表1】

【0052】
尚、上記のようなスリーブ試験片30及びシール試験片40は、例えばHDDのディスク駆動装置に組み込まれる軸径2〜4mmの流体動圧軸受装置に適合した大きさであるが、このような流体動圧軸受装置では、スリーブとシールとの間に40μm程度の圧入代が要求される。比較例に係るシール試験片は、圧入代50μmで破損が生じているため、安全率を考慮すると実際の製品として使用することは難しい。これに対し、実施例に係るシール試験片は、圧入代80μmまで耐え得る強度を有しているため、圧入代40μm以上の条件の下でも十分に使用できる。
【符号の説明】
【0053】
1 流体動圧軸受装置
2 軸部材
7 ハウジング
8 軸受スリーブ
9 シール部材
9a 第1シール部
9a10 径方向溝
9b 第2シール部
9b20 軸方向溝
P 軸方向溝の最深部
W ウェルドライン
12 連通路
D ディスク
R1,R2 ラジアル軸受部
T1,T2 スラスト軸受部
S1,S2 シール空間

【特許請求の範囲】
【請求項1】
軸部材と、内周に軸部材が挿入された軸受スリーブと、内周に軸受スリーブを保持したハウジングと、大径内周面及び小径内周面を有する樹脂の射出成形品であり、大径内周面が軸受スリーブの端部の外周面に圧入固定されたシール部材と、軸部材の外周面と軸受スリーブの内周面との間のラジアル軸受隙間に生じる潤滑油の動圧作用により軸部材をラジアル方向に支持するラジアル軸受部と、シール部材の小径内周面と軸部材の外周面との間に形成され、ハウジング内部に満たされた潤滑油をシールする第1のシール空間と、シール部材の外周面とハウジングの内周面との間に形成され、ハウジング内部に満たされた潤滑油をシールする第2のシール空間と、シール部材と軸受スリーブとの間に形成され、第1のシール空間と第2のシール空間とを連通する連通路とを備えた流体動圧軸受装置であって、
シール部材の大径内周面に前記連通路を構成する軸方向溝が形成され、前記軸方向溝の最深部を避けた円周方向位置に、射出成形によるウェルドラインが形成された流体動圧軸受装置。
【請求項2】
シール部材の大径内周面に前記軸方向溝が複数形成され、前記ウェルドラインが、前記複数の軸方向溝の円周方向間の領域に形成された請求項1記載の流体動圧軸受装置。
【請求項3】
シール部材の内部側端面に前記連通路を構成する径方向溝が形成され、前記径方向溝の最深部を避けた円周方向位置に前記ウェルドラインが形成された請求項1又は2記載の流体動圧軸受装置。
【請求項4】
シール部材の線膨張係数が軸受スリーブの線膨張係数よりも大きい請求項1〜3の何れかに記載の流体動圧軸受装置。
【請求項5】
軸径が2〜4mmであり、シール部材と軸受スリーブとの圧入代が40μm以上である請求項1〜4の何れかに記載の流体動圧軸受装置。
【請求項6】
潤滑油がエステル系潤滑油である請求項1〜5の何れかに記載の流体動圧軸受装置。
【請求項7】
シール部材を結晶性樹脂で形成した請求項1〜6の何れかに記載の流体動圧軸受装置。
【請求項8】
結晶性樹脂が、PPS,ETFE,PEEK,PA66,PA46,PA6T,PA9Tの中から選択されたものである請求項7記載の流体動圧軸受装置。
【請求項9】
軸受スリーブの外周面に軸方向溝が形成され、該軸方向溝とシール部材の前記軸方向溝とで前記連通路を構成した請求項1〜8の何れかに記載の流体動圧軸受装置。
【請求項10】
シール部材の大径内周面に前記軸方向溝が奇数本形成され、シール部材の射出成形のゲートが前記軸方向溝の円周方向位置に設けられた請求項1〜9の何れかに記載の流体動圧軸受装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2011−133023(P2011−133023A)
【公開日】平成23年7月7日(2011.7.7)
【国際特許分類】
【出願番号】特願2009−292554(P2009−292554)
【出願日】平成21年12月24日(2009.12.24)
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】