説明

液体吐出方法、及び、液体吐出装置

【課題】高粘度液体を利用して吐出特性を安定させつつより幅広い階調表現を実現することが可能な液体吐出方法、及び、液体吐出装置を提供する。
【解決手段】8ミリパスカル秒以上のインクが吐出される側のノズルの開口面積は、インク供給路の圧力室側の開口面積の1/9以下であり、吐出パルスPSは、基準電位から動作電位まで一定勾配で電位が変化して圧力室を膨張させる第1波形部と、動作電位を一定時間維持する第2波形部と、動作電位から基準電位まで一定勾配で電位が変化して圧力室内を加圧する第3波形部と、を有し、単位周期T内において先に発生される吐出パルスPS1の次に発生される吐出パルスPS2がアクチュエーターに印加されるときの、先の吐出パルスを用いて液体を吐出した後の残留振動の位相が一定に揃うように、これらのパルスの間隔Δtを圧力室内のインクに生じる固有振動周期Tcに基づき設定した。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、インクジェット式プリンター等の液体吐出装置の液体吐出方法、及び、液体吐出装置に関するものである。
【背景技術】
【0002】
液体吐出装置は、液体を吐出するノズルを有する液体吐出ヘッドを備え、この液体吐出ヘッドから各種の液体を吐出する装置である。この液体吐出装置の代表的なものとして、例えば、液体吐出ヘッドとしてのインクジェット式記録ヘッド(以下、単に記録ヘッドという)を備え、この記録ヘッドのノズルから液体状のインクを記録紙等の記録媒体(着弾対象)に対して吐出・着弾させてドットを形成することで画像等の記録を行うインクジェット式プリンター(以下、単にプリンターという。)等の画像記録装置を挙げることができる。また、近年においては、この画像記録装置に限らず、液晶ディスプレー等のカラーフィルターの製造装置等、各種の製造装置にも液体吐出装置が応用されている。
【0003】
例えば、上記プリンターには、複数のノズルを列設して成るノズル列(ノズル群)を有し、吐出パルスを圧力発生部(例えば、圧電振動子、発熱素子、又は静電式アクチュエーター等)に印加してこれを駆動することにより圧力室内の液体に圧力変化を与え、この圧力変化を利用して圧力室に連通したノズルから液体を吐出させるように構成されたものがある。圧力発生部(アクチュエーター)として静電式アクチュエーターを採用するプリンターでは、圧力室(インク室)の一部を形成している振動板電極と、これに対向配置されている個別電極(固定電極)とを備え、これらの間に吐出パルスを印加すると、振動板電極が個別電極に吸引され、吐出パルスの印加を解除すると、振動板電極が個別電極から開放されて弾性復帰する。この振動板電極の変位によって圧力室内のインクの圧力が変動して、振動板電極が個別電極から開放されて弾性復帰する過程で、圧力室に連通しているノズルからインクが吐出される。上記の吐出パルスは、例えば、基準電位から膨張電位まで一定勾配で電位が上昇する膨張要素と、膨張電位を一定時間維持するホールド要素と、膨張電位から基準電位まで膨張要素の電位勾配よりも急峻な電位勾配で電位が降下する収縮要素と、から略台形状の波形で構成される。
【0004】
ところで、インク吐出後には、圧力室内におけるインクの残留振動が問題となる。即ち、この残留振動によってメニスカスの挙動が乱れ、これにより次に行うインク滴の吐出動作に悪影響を及ぼす虞がある。特に、記録速度の高速化や記録画像の高解像度化に伴って、極く微小(例えば、数pl)なインク滴を非常に短い時間(例えば、数μs)で連続的に吐出する場合、上記の残留振動を可及的に抑制することが望まれる。このため、例えば、圧力発生部として圧電振動子を採用するプリンターでは、駆動信号中においてインク滴を吐出するための波形要素(吐出要素)の後に制振要素を含ませ、この制振要素によって残留振動を低減するようにしている(例えば、特許文献1参照)。
【0005】
しかしながら、圧力発生部として上記の静電式アクチュエーターを採用するプリンターでは、吐出パルスに制振要素を入れたとしても、細かい電位の変化に振動板電極が追従できないため、このようなプリンターで使用される吐出パルスは、上記したように略台形型の波形であり、制振要素を有さないものが一般的である。
【0006】
そして、上記の静電式アクチュエーターを採用するプリンターにおいて、1回の印刷単位周期内で吐出するインク滴の数に応じて記録媒体に形成する画素の階調表現を行う構成の場合、即ち、多ショット/画素印字の場合、上記の残留振動の影響を受けて、インク滴を連続して吐出した際に各吐出時のインク吐出特性が変動する。すなわち、単位周期において先にインク滴を吐出した後に続いて次にインク滴を吐出する場合、圧力室内に生じる圧力振動は、振動板電極の駆動によって生じる圧力振動と、先のインク滴の吐出時に生じた残留振動との重ね合わせになる。したがって、残留振動に起因して、振動板電極の駆動を開始する時点におけるメニスカスの変位状態が、1回の駆動のみでインク滴を1滴だけ吐出する場合と多ショットでインク滴を複数滴吐出する場合とで相違することがある。
【0007】
そこで、従来においては、連続したインク滴の吐出により1画素分の印字を行う場合に、2回目以降の吐出パルスを印加し終わった時点から次の吐出パルスを印加するまでの駆動間隔を、インク液滴吐出後の振動板電極の残留振動波形に基づき決定する方法が提案されている(例えば、特許文献2参照。)。即ち、この特許文献2の構成では、各インク液滴の吐出のために印加される第1〜第n番目までの各吐出パルスの各パルス間隔が、インク液滴吐出後の振動板電極の残留振動波形に基づき個別に設定されることにより、所望の吐出特性が得られるようになっている。より具体的には、インク滴吐出後の振動板電極の残留振動が中立位置(ゼロクロス点)となるタイミングで次のパルスによる振動板電極の駆動が開始されるように設定されている。これにより、インク滴の吐出の安定化を計っている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2002−127418号公報
【特許文献2】特開2005−305866号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
連続してインク滴を吐出する場合における2回目以降のインクの吐出特性、即ち、ノズルから吐出されるインクの量(重量・体積)や飛翔速度の変動は、特に圧力室内のインクに生じるヘルムホルツ周期Tc(以下、適宜、固有振動周期Tcとも言う。)の振動に基づく残留振動に因るところが大きい。そして、例えば、一般的に家庭用のプリンターで用いられている水性インクのように、粘度が8ミリパスカル秒(mPa・s)未満の比較的低粘度(例えば、1ミリパスカル秒)のインクでは、上記の残留振動に起因するメニスカスの変位が大きくなりやすいため、インク吐出特性が大幅に変動してしまう。かかる特性変動は、2回目以降のインクを吐出する動作を開始する時点での残留振動の振幅が大きいほど顕著になり、印字品質が大幅に劣化するおそれがある。そして、圧力室内のインクに生じる固有振動周期Tcは、記録ヘッドの製造誤差などに起因して記録ヘッド毎に所定のばらつきがある。したがって、例えば、基準となるヘッドで、上記多ショット/画素印字の際に所望のインク重量が得られるように吐出パルスが設計されたものを、この基準ヘッドとは異なる他の記録ヘッドに適用してインクを吐出させた場合、所望のインク重量が得られない可能性があった。したがって、従来の水性インクを対象としたプリンターでは、先の吐出パルスによってインクが吐出された後の残留振動が中立位置或いはその近傍となるタイミングで次の吐出パルスによる吐出動作の駆動が開始されるようにパルス同士の間隔を設定せざるを得なかった。その結果、パルス間隔の設定自由度が狭くなり、また、多ショット/画素印字による画素の階調表現の幅が制限されていた。
【0010】
本発明は、このような事情に鑑みてなされたものであり、その目的は、高粘度液体を用いて吐出特性を安定させつつより幅広い階調表現を実現することが可能な液体吐出方法、及び、液体吐出装置を提供することにある。
【課題を解決するための手段】
【0011】
本発明は、上記目的を達成するために提案されたものであり、液体供給源からの液体が供給部を通じて供給される圧力室と、当該圧力室に連通し、液体が吐出されるノズルと、前記液体を前記ノズルから吐出させるために前記圧力室内の液体に圧力変化を与える動作を行う圧力発生部と、を有する液体吐出ヘッド、及び、前記ノズルから液体を吐出させるべく前記圧力発生部を動作させる吐出パルスを単位周期内に複数発生するパルス発生部を備えた液体吐出装置における液体吐出方法であって、
前記液体の粘度は、8ミリパスカル秒以上であって、
前記液体が吐出される側の前記ノズルの開口面積は、前記供給部の前記圧力室側の開口面積の1/9以下であり、
前記吐出パルスは、基準電位から動作電位まで一定勾配で電位が変化して前記圧力室内を減圧すべく前記圧力発生部を動作させる第1波形部と、前記動作電位を一定時間維持する第2波形部と、動作電位から基準電位まで一定勾配で電位が変化して前記圧力室内を加圧すべく前記圧力発生部を動作させる第3波形部と、を有し、
前記単位周期内において先に発生される吐出パルスの次に発生される吐出パルスが前記圧力発生部に印加されるときの、前記先の吐出パルスを用いて液体を吐出した後の残留振動の位相が一定に揃うように、先の吐出パルスと次の吐出パルスとの間隔を前記圧力室内の液体に生じる固有振動周期Tcに基づき設定することを特徴とする。
【0012】
本発明によれば、単位周期内において先に発生される吐出パルスの次に発生される吐出パルスが圧力発生部に印加されるときの、先の吐出パルスを用いて液体を吐出した後の残留振動の位相が一定に揃うように、先の吐出パルスと次の吐出パルスとの間隔を圧力室内の液体に生じる固有振動周期Tcに基づき設定するので、単位周期内で複数の吐出パルスを圧力発生部に連続的に印加することで液体を複数回吐出したときの液体の総量を、液体吐出ヘッドの個体差によらず一定に揃えることができる。特に、8ミリパスカル秒以上の高粘度の液体を吐出する場合、当該液体自体が残留振動を抑えるダンパー効果を発揮するため、例えば、残留振動を強め合うタイミングで次の吐出パルスによる液体の吐出動作が行われるようにパルス間隔を設定しても、メニスカスの動きが過大になることが抑制され、液体の吐出を安定化することができる。これにより、残留振動の位相に対する次の吐出パルスによる液体の吐出動作が行われるタイミング、即ち、先の吐出パルスと次の吐出パルスとの間隔を比較的広い範囲で設定することができ、設定自由度が広がる。その結果、単位周期内で複数の吐出パルスを用いて液体を複数回吐出したときの液体の総量を従来よりも幅広く定めることができる。したがって、多ショット/画素印字による画素の階調表現の幅を広げることが可能となる。また、上記の高粘度の液体を使用する場合においても、ノズルから吐出される液体の量と圧力室へ供給される液体の量を、ノズルの開口の大きさと供給部の開口の大きさとによって最適化できるので、圧力室への液体の供給不足が改善され、より高い周波数で液体を吐出する場合においても、液体の吐出を安定化できる。
【0013】
上記液体吐出方法において、前記液体が吐出される側の前記ノズルの開口面積が、前記供給部の前記開口の面積の1/20以上であることが望ましい。
また、上記液体吐出方法において、前記ノズルの長さが、40μm以上であって100μm以下の範囲内であることが望ましい。
このような液体吐出方法によれば、液体の吐出をより安定化することができる。
【0014】
上記液体吐出方法において、前記供給部の前記開口が矩形状であり、当該開口が有する一方の辺の長さが、30μm以上であって500μm以下の範囲内であり、当該開口が有する他方の辺の長さが、20μm以上であって300μm以下の範囲内であることが望ましい。
このような液体吐出方法によれば、粘度が8ミリパスカル秒以上の液体を、圧力室へ確実に供給することができる。
【0015】
上記液体吐出方法において、前記供給部の前記開口の外縁が、前記圧力室を区画する面であって前記供給部と連通する面の外縁よりも小さいことが望ましい。
このような液体吐出方法によれば、液体に与えた圧力振動を供給部で減衰させることが
できる。これにより、液体の吐出周波数を高めることができる。
【0016】
上記液体吐出方法において、前記ノズルのイナータンスが、前記供給部のイナータンスよりも小さいことが望ましい。
このような液体吐出方法によれば、液体に与えた圧力振動によって液体を効率よく吐出
することができる。
【0017】
上記液体吐出方法において、前記圧力発生部は、前記圧力室の一部を区画し、変形によって前記液体に圧力変化を与える変形部を有することが望ましい。
また、上記液体吐出方法において、前記圧力発生部は、印加された吐出パルスにおける電位の変化パターンに応じた度合いで、前記変形部を変形させることが望ましい。
このような液体吐出方法によれば、圧力室内の液体の圧力を精度良く制御できる。
【0018】
また、本発明は、液体供給源からの液体が供給部を通じて供給される圧力室と、当該圧力室に連通し、液体が吐出されるノズルと、前記液体を前記ノズルから吐出させるために前記圧力室内の液体に圧力変化を与える動作を行う圧力発生部と、を有する液体吐出ヘッド、及び、前記ノズルから液体を吐出させるべく前記圧力発生部を動作させる吐出パルスを単位周期内に複数発生するパルス発生部を備えた液体吐出装置であって、
前記液体が吐出される側の前記ノズルの開口面積が、前記供給部の前記圧力室側の開口面積の1/9以下であり、
前記吐出パルスは、基準電位から動作電位まで一定勾配で電位が変化して前記圧力室内を減圧すべく前記圧力発生部を動作させる第1波形部と、前記動作電位を一定時間維持する第2波形部と、動作電位から基準電位まで一定勾配で電位が変化して前記圧力室内を加圧すべく前記圧力発生部を動作させる第3波形部と、を有し、
前記単位周期内において先に発生される吐出パルスの次に発生される吐出パルスが前記圧力発生部に印加されるときの、前記先の吐出パルスを用いて液体を吐出した後の残留振動の位相が一定に揃うように、先の吐出パルスと次の吐出パルスとの間隔が前記圧力室内の液体に生じる固有振動周期Tcに基づき設定されたことを特徴とする。
【図面の簡単な説明】
【0019】
【図1】印刷システムの構成を説明するブロック図である。
【図2】(a)はヘッドの断面図であり、(b)は液体流路の構造を模式的に説明する図である。
【図3】駆動信号生成回路等の構成を説明するブロック図である。
【図4】(a)駆動信号の一例を説明するための波形図、(b)は先の吐出パルスによるインク吐出後の残留振動を説明する模式図である。
【図5】吐出パルスについて説明する波形図である。
【図6】(a)は高粘度インクが安定して吐出されている様子を示す図、(b)は高粘度インクが不安定な状態で吐出されている様子を示す図である。
【図7】ノズルの開口の面積をインク供給路における圧力室側の開口面積の約1/9に定めたヘッドによる、インク滴の吐出を説明する図である。
【図8】比較例のヘッドによるインク滴の吐出を説明する図である。
【図9】インク供給路の開口面積を圧力室の面積の0.34倍にしたヘッドによるインク滴の吐出を説明する図である。
【図10】インク供給路の開口面積を圧力室40の面積の0.32倍にしたヘッドによるインク滴の吐出を説明する図である。
【図11】ワースト状態のヘッドによるインク滴の吐出を説明する図である。
【図12】粘度が5ミリパスカル秒のインクを吐出させた場合における、インク滴の吐出を説明する図である。
【図13】粘度が6ミリパスカル秒のインクを吐出させた場合における、インク滴の吐出を説明する図である。
【図14】他のヘッドを説明する断面図である。
【図15】他のヘッド用の吐出パルスを説明する図である。
【図16】(a)は略漏斗状のノズルを説明する図、(b)は略漏斗状のノズルの解析用のモデルを説明する図、(c)はインク供給路と圧力室の変形例を説明する図である。
【発明を実施するための形態】
【0020】
以下、本発明を実施するための形態を、添付図面を参照して説明する。なお、以下に述べる実施の形態では、本発明の好適な具体例として種々の限定がされているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。また、以下においては、本発明の液体吐出装置として、インクジェット式記録装置(以下、プリンター)を例に挙げて説明する。
【0021】
図1に例示したプリンター1は、記録用紙、布、フィルム等の記録媒体に向けて、液体の一種であるインクを吐出する。記録媒体は、液体が吐出されて着弾する対象となる着弾対象である。外部装置としてのコンピューターCPは、プリンター1と通信可能に接続されている。プリンター1に画像を印刷させるため、コンピューターCPは、その画像に応じた印刷データをプリンター1に送信する。
【0022】
プリンター1は、用紙搬送機構2、キャリッジ移動機構3、駆動信号生成回路4、ヘッドユニット5、検出器群6、及び、プリンターコントローラー7を有する。用紙搬送機構2は、用紙を搬送方向に搬送させる。キャリッジ移動機構3は、ヘッドユニット5が取り付けられたキャリッジを所定の移動方向(例えば紙幅方向)に移動させる。駆動信号生成回路4は、駆動信号COMを生成する。この駆動信号COMは、記録用紙(記録媒体)への印刷時に記録ヘッド8のアクチュエーター10(図2(a)参照)へ印加されるものであり、図4に一例を示すように、発生単位周期T内に吐出パルスPSを複数含む一連の信号である。ここで、吐出パルスPSとは、記録ヘッド8から液滴状のインクを吐出させるために、アクチュエーター10に所定の動作を行わせるものである。本実施形態における駆動信号COMには、合計2つの吐出パルスPS1,PS2が含まれるが、3つ以上の吐出パルスを含むものであっても良い。駆動信号COMが複数の吐出パルスPSを含むことから、駆動信号生成回路4は、パルス発生部に相当する。なお、駆動信号生成回路4の構成や吐出パルスPSの詳細については後述する。
【0023】
ヘッドユニット5は、記録ヘッド8とヘッド制御部11とを有する。記録ヘッド8は液体吐出ヘッドの一種であり、インクを記録媒体に向けて吐出させて、当該記録媒体に着弾させる。ヘッド制御部11は、プリンターコントローラー7からのヘッド制御信号に基づき、記録ヘッド8を制御する。なお、記録ヘッド8については後で説明する。検出器群6は、プリンター1の状況を監視する複数の検出器によって構成される。これらの検出器による検出結果は、プリンターコントローラー7に出力される。プリンターコントローラー7は、プリンター1における全体的な制御を行う。このプリンターコントローラー7についても後で説明する。
【0024】
図2(a)は、本実施形態の記録ヘッド8の構成を示す圧力室長手方向の要部断面図である。この記録ヘッド8は、シリコン製の流路基板15の一方の面に、同じくシリコン製のノズル基板16を、流路基板15の他方の面に、ガラス製の電極基板17を各々配置して積層し、各部材間を接着剤によって接合することで3層構造となっている。
【0025】
上記ノズル基板16は、ドット形成密度に対応したピッチ(例えば180dpi)で複数のノズル14を列状に開設した板材である。上記流路基板15には、その表面から異方性エッチングを施すことにより、インク流路となる溝部が形成されており、この溝部の開口部分がノズル基板16によって塞がれることにより、各ノズル14に対応して設けられた複数の圧力室19、各圧力室共通のインクが導入されるリザーバー20、及び、リザーバー20と各圧力室19との間を連通するインク供給路21から成る一連のインク流路が区画される。リザーバー20は、インクカートリッジ(液体供給源の一種。図示せず。)から供給されたインクを一旦貯留する部分であり、ノズル列を構成する各ノズル14に共通の液体貯留室に相当する。インク供給路21は、本発明における供給部に相当する。
【0026】
流路基板15において、リザーバー20となる溝部の底面には、基板厚さ方向に貫通したインク導入口22が開設されている。また、各圧力室19となる溝部の底面(一方の面)には、ヘッド積層方向(図2(a)において上下方向)に弾性変位可能な弾性面として機能する薄肉部23が形成されている。そして、流路基板15には共通電極端子18が形成されており、この流路基板15は導電性を有するので、上記薄肉部23は、共通電極(可撓性電極であり、本発明における変形部に相当。)としても機能するようになっている。
【0027】
上記電極基板17は、例えば、ホウ珪酸ガラスによって作製されている。このホウ珪酸ガラスは、熱膨張率がシリコンと同程度である。このため、温度変化によるヘッド構成部材間の剥離が生じ難くなっている。この電極基板17の流路基板15に接合される面において、圧力室19の薄肉部23に対向する位置には、トレイ状に浅くエッチングされた凹部24が、各圧力室19に対応して形成されている。この凹部24の底面には、インジウムスズ酸化物(ITO)などの薄膜を積層して形成された個別電極(固定電極)25がそれぞれ敷設されている。各個別電極25は、各圧力室19に対応して延在するセグメント電極25aと、外部に露出している電極端子部25(b)とから構成されている。そして、電極基板17を流路基板15に接合すると、各圧力室19の薄肉部23と各個別電極25のセグメント電極25aとが、狭小な隙間を形成した状態でそれぞれ対向する。
【0028】
また、この電極基板17には、基板厚さ方向を貫通したインク導入路17′が形成されており、このインク導入路17′は、流路基板15との接合状態でインク導入口22と連通するようになっている。このインク導入路17′とインク導入口22を通じて、例えばプリンター本体側に設けられたインクカートリッジからのインクがリザーバー20内に導入されるようになっている。そして、リザーバー20のインクは、このリザーバー20から分岐したインク供給路21を通って各圧力室19に分配供給される。
【0029】
流路基板15の共通電極端子18と、電極基板17の個別電極25との間には、プリンターコントローラー7側からの駆動信号(吐出パルスPS)が印加される。駆動電圧が基準電位(又は接地電位)よりも+側に変化することにより、可撓性電極或いは変形部として機能する薄肉部23と個別電極25との間に静電気力が発生し、この静電気力によって、薄肉部23が弾性変形して個別電極25側に撓み、セグメント電極25aの表面に吸着する。この結果、圧力室19の容積が増加して、インク供給路21を通じてリザーバー20側からインクが圧力室19内に流入する。そして、駆動電圧が−側(接地電位側)に急激に変化して静電気力が急激に減少すると、薄肉部23はその弾性力によってセグメント電極25aの表面から離れて圧力室19側に変位する。その結果、圧力室19の容積が急激に減少する。これにより、圧力室19内のインクに圧力変動が生じ、この圧力変動によってノズル14からインクが吐出(噴射)される。即ち、薄肉部23、共通電極端子18、個別電極25、及び薄肉部23は、アクチュエーター10(本発明における圧力発生部)として機能する。アクチュエーター10は、印加された吐出パルスPSにおける電位の変化パターンに応じた度合いで、薄肉部23(変形部)を変形させる手段といえる。そして、圧力室19内のインクに対する加圧度合いや減圧度合いは、個別電極25における単位時間あたりの電位変化量等によって大凡定めることができる。
【0030】
上記のように記録ヘッド8には、リザーバー20からノズル14に至る一連のインク流路(液体で満たされる液体流路に相当する)が、ノズル14の数に応じて複数設けられている。このインク流路では、太い流路の圧力室19に対して、細い流路のノズル14及びインク供給路21がそれぞれ連通している。このため、インクの流れなどの特性を解析する場合、ヘルムホルツの共鳴器の考え方が適用される。図2(b)は、この考え方に基づく記録ヘッド8の液体流路の構造を模式的に説明する図である。このため、インク流路は、実際とは異なる形状で示されている。
【0031】
一般的な記録ヘッド8において、圧力室19の長さL19は200μmから2000μmの範囲内に定められる。圧力室19の幅W19は20μm以上300μm以下の範囲内に定められ、圧力室19の高さH19は30μm以上500μm以下の範囲内に定められる。そして、インク供給路21の長さL21は50μm以上2000μm以下の範囲内に定められる。インク供給路21の幅W21は20μm以上300μm以下の範囲内に定められ、インク供給路21の高さH21は30μm以上500μm以下の範囲内に定められる。また、ノズル14の直径φ14は10μm以上40μm以下の範囲内に定められ、ノズル14の長さL14は40μm以上100μm以下の範囲内に定められる。
【0032】
本実施形態の記録ヘッド8では、ノズル14の吐出側端部の開口面積Snzlが、インク供給路21の開口面積Ssupに基づいて定められており、ノズル14の吐出側の開口面積Snzlが、インク供給路21の圧力室19側の開口面積Ssupの1/9以下になるように構成されている。
【0033】
なお、インク供給路21に関し、幅W21や高さH21は、圧力室19の幅W19や高さH19以下に定められる。また、インク供給路21の幅W21や高さH21の一方を、圧力室19の幅W19や高さH19の一方に揃えた場合、インク供給路21の幅W21や高さH21の他方は、圧力室19の幅W19や高さH19の他方よりも小さいサイズに定められる。
【0034】
ここで、図2(b)はインク流路を模式的に説明する図である。しかし、インク供給路21は、図2(a)に示すように圧力室19やリザーバー20に対応する凹部よりも浅くエッチングされた狭小な流路であり、実際も矩形状の開口を有する直方体状の空間として構成されている。従って、インク供給路21の開口の大きさは、圧力室19を区画する面であってインク供給路21と連通する面の外縁よりも小さく定められている。
【0035】
このようなインク流路では、圧力室19内のインクに圧力変化を与えることで、ノズル14からインクを吐出させる。このとき、圧力室19、インク供給路21、及び、ノズル14は、ヘルムホルツの共鳴器のように機能する。このため、圧力室19内のインクに圧力が加わると、この圧力の大きさはヘルムホルツ周期と呼ばれる固有の周期Tcで変化する。すなわち、インクには圧力振動が生じる。
【0036】
ここで、ヘルムホルツ周期(インクの固有振動周期)Tcは、一般的には次式(1)で表すことができる。
Tc=2π√〔(Mn+Ms)/(Mn×Ms×(Cc+Ci))〕・・・(1)
式(1)において、Mnはノズル14のイナータンス(単位断面積あたりのインクの質量、後述する。)、Msはインク供給路21のイナータンス、Ccは圧力室19のコンプライアンス(単位圧力あたりの容積変化、柔らかさの度合いを示す。)、Ciはインクのコンプライアンス(Ci=体積V/〔密度ρ×音速c〕)である。
この圧力振動の振幅は、インク流路をインクが流れることで次第に小さくなる。例えば、ノズル14やインク供給路21における損失、及び、圧力室19を区画する壁部等における損失により、圧力振動は減衰する。
【0037】
一般的な記録ヘッド8において、圧力室19におけるヘルムホルツ周期は5μsから10μsの範囲内に定められる。例えば、図2(b)のインク流路において、圧力室19の幅W19を100μm、高さH19を70μm、長さL19を1000μmとし、インク供給路21の幅W21を50μm、高さH21を70μm、長さL21を500μmとし、ノズル14の直径φ14を30μm、長さL14を100μmとした場合、ヘルムホルツ周期は8μs程度になる。なお、このヘルムホルツ周期は、隣り合う圧力室19同士を区画する壁部の厚さ、薄肉部23の厚さやコンプライアンス、流路基板15やノズル基板16の素材によっても変化する。したがって、同種の記録ヘッドであっても、製造時の寸法誤差等によってヘルムホルツ周期がヘッド毎に異なる場合がある。この点の詳細については後述する。
【0038】
プリンターコントローラー7は、プリンター1における全体的な制御を行う。例えば、コンピューターCPから受け取った印刷データや各検出器からの検出結果に基づいて制御対象部を制御し、用紙に画像を印刷させる。図1に示すように、プリンターコントローラー7は、インターフェース部28と、CPU29と、メモリー30とを有する。インターフェース部28は、コンピューターCPとの間でデータの受け渡しを行う。CPU29は、プリンター1の全体的な制御を行う。メモリー30は、コンピュータープログラムを格納する領域や作業領域等を確保する。CPU29は、メモリー30に記憶されているコンピュータープログラムに従い、各制御対象部を制御する。例えば、CPU29は、用紙搬送機構2やキャリッジ移動機構20を制御する。また、CPU29は、記録ヘッド8の動作を制御するためのヘッド制御信号をヘッド制御部11に送信したり、駆動信号COMを生成させるための制御信号を駆動信号生成回路4に送信したりする。
【0039】
ここで、駆動信号COMを生成させるための制御信号はDACデータとも呼ばれ、例えば複数ビットのデジタルデータである。このDACデータは、生成される駆動信号COMの電位の変化パターンを定める。従って、このDACデータは、駆動信号COMや吐出パルスPSの電位を示すデータともいえる。このDACデータは、メモリー30の所定領域に記憶されており、駆動信号COMの生成時に読み出されて駆動信号生成回路4へ出力される。
【0040】
駆動信号生成回路4は、パルス発生部として機能し、DACデータに基づき、吐出パルスPSを有する駆動信号COMを生成する。図3に示すように、駆動信号生成回路4は、DAC回路31と、電圧増幅回路32と、電流増幅回路33とを有する。DAC回路31は、デジタルのDACデータをアナログ信号に変換する。電圧増幅回路32は、DAC回路31で変換されたアナログ信号の電圧を、アクチュエーターを駆動できるレベルまで増幅する。このプリンター1では、DAC回路31から出力されるアナログ信号は最大3.3Vであるのに対し、電圧増幅回路32から出力される増幅後のアナログ信号(便宜上、波形信号ともいう。)は最大42Vである。電流増幅回路33は、電圧増幅回路32からの波形信号について電流の増幅をし、駆動信号COMとして出力する。この電流増幅回路33は、例えば、プッシュプル接続されたトランジスタ対によって構成される。
【0041】
ヘッド制御部11は、駆動信号生成回路4で生成された駆動信号COMの必要部分をヘッド制御信号に基づいて選択し、アクチュエーター10へ印加する。このため、図3に示すように、ヘッド制御部11は、駆動信号COMの供給線の途中に、アクチュエーター10毎に設けられた複数のスイッチ34を有する。そして、ヘッド制御部11は、ヘッド制御信号からスイッチ制御信号を生成する。このスイッチ制御信号によって各スイッチ34を制御することで、駆動信号COMの必要部分(例えば吐出パルスPS)がアクチュエーター10へ印加される。このとき、必要部分の選択の仕方次第で、ノズル14からのインクの吐出を制御できる。
【0042】
次に、駆動信号生成回路4によって生成される駆動信号COMについて説明する。図4(a)に示すように、駆動信号COMには、繰り返し生成される複数の吐出パルスPSが含まれている。本実施形態において、駆動信号COMの繰り返し周期であり、記録媒体上に画像を構成する単位である画素を形成するための周期である単位周期T内に、合計2つの吐出パルスPS1及びPS2が含まれる。これらの吐出パルスPSは、いずれも同じ波形をしている。すなわち、電位の変化パターンが同じである。前述したように、この駆動信号COMは、アクチュエーター10の個別電極25に印加される。これにより、固定電位とされた薄肉部23との間に、吐出パルスPSの電位の変化パターンに応じた電位差が生じる。その結果、アクチュエーター10は、電位の変化パターンに応じて薄肉部23を静電気力によって変位させることで圧力室19の容積を変化させる。
【0043】
図5は、上記吐出パルスPS1の構成を説明する波形図である。なお、吐出パルスPS2については、吐出パルスPS1と同一の波形であるので、その説明を省略する。また、図5において、縦軸は駆動信号の電位であり、基準電位としての基準電位VBを0Vにしている。また、横軸は時間である。
吐出パルスPS1は、第1波形部P1と、第2波形部P2と、第3波形部P3とからなる略台形状の波形である。第1波形部P1は、タイミングt0aからタイミングt1aに亘って生成される部分である。この第1波形部P1は、タイミングt0aにおける電位(始端電位に相当する)が基準電位VBであり、タイミングt1aにおける電位(終端電位に相当する)が最高電位(動作電位の一種)VHである。このため、第1波形部P1がアクチュエーター10に印加されると、圧力室19は、基準容積から最大容積まで、第1波形部P1の生成期間に亘って膨張する。この第1波形部P1は、インク滴を吐出させるための準備動作として圧力室19を膨張させている。
【0044】
この吐出パルスPS1における基準電位VBは、吐出パルスPS1における基準電位VBよりも、吐出パルスPS1における最高電位VHから基準電位VBまでの差(以下、駆動電圧Vhともいう)は数十Vである。この駆動電圧Vhの設定については、例えば、駆動電圧が異なる2つの評価用パルスを用いて、アクチュエーター10を駆動してノズル14から吐出されるインクの量をそれぞれ取得し、これらの駆動電圧とインク量とに基づき、目標とする吐出量(吐出パルス単発で用いてインクを吐出したときのインク量)が得られる駆動電圧を設定する。具体的には、吐出量の変化量が電圧の変化量に比例するものとして、プリンターの仕様上目標とするインク量に対応する駆動電圧を取得し、この値を吐出パルスPS1,PS2の駆動電圧Vhとして設定する。
【0045】
第2波形部P2は、タイミングt1aからタイミングt2aに亘って生成される部分である。この第2波形部P2は、最高電位VHで一定である。このため、第2波形部P2がアクチュエーター10に印加されると、圧力室19は、第2波形部P2の生成期間に亘って最大容積が維持される。第3波形部P3は、タイミングt2aからタイミングt3aに亘って生成される部分である。この第3波形部P3は、始端電位が最高電位VHであり、終端電位が基準電位VBである。このため、第3波形部P3がアクチュエーター10に印加されると、圧力室19は、最大容積から基準容積(或いはそれを越える程度)まで第3波形部P3の生成期間に亘って収縮する。この圧力室19の収縮に伴ってインクが吐出されるので、第3波形部P3はインク滴を吐出させるための部分に相当する。この吐出パルスPS1には、インク滴を吐出した後の残留振動を抑制するための制振部分が含まれないので、インク吐出後には、残留振動が生じる。
【0046】
インクの最大吐出周波数は、単位周期Tにおいて生成される各吐出パルスPSの間隔によって定められる。例えば、図4の駆動信号COMでは、各吐出パルスPS1,PS2を順に連続的にアクチュエーター10に印加することで、インクが期間Δt毎に吐出される。そして、この吐出パルスPS1を1つだけアクチュエーター10に印加することでノズル14から1回だけ吐出されるインクの重量は、例えば約7ngである。即ち、単位周期Tにおいて、この吐出パルスPS1のみを選択してアクチュエーター10を駆動してインク滴を吐出させると、記録媒体上にはミドルドットに対応する大きさのドットが形成される。また、単位周期Tにおいて、吐出パルスPS1と吐出パルスPS2の両方を選択してアクチュエーター10に印加すると、ノズル14からはインク滴が2回連続して吐出されて、記録媒体上にはラージドットに対応する大きさのドットが形成される。
【0047】
ところで、記録媒体に印刷される画像の画質を向上させるには、記録ヘッド8の個体差に拘わらず、一定の吐出特性が得られることが望まれる。
図4(b)は、単位周期T中で先に発生される吐出パルスPS1を用いてインクを吐出したときのノズル14におけるメニスカス(ノズル14で露出しているインクの自由表面)の振動状態を模式的に示すグラフである(より詳しい振動状態については、図7〜13を用いて説明する)。なお、当該グラフにおいて横軸は時間を表し、縦軸はメニスカスの吐出方向(ノズル14の軸方向)の位置を表している。縦軸における0の位置はノズル面(詳しくは、基準電位VBに対応するメニスカスの定常位置)に対応しており、これによりも波形が上へ向かうほどノズル面よりも外側(吐出側)にメニスカスが移動し、逆に下へ向かうほど圧力室側にメニスカスが引き込まれることを意味する。また、グラフにおいてDaで示す時点が、インク滴の吐出タイミングである。また、Dbで示す時点が吐出パルスPS2の始端であり、当該吐出パルスPS2によってアクチュエーター10の駆動(吐出動作)が開始される時点である。
【0048】
同図に示すように、本実施形態においては、インク滴の吐出後(時点Daの後)には上記のヘルムホルツ周期(固有振動周期Tc)の残留振動が生じることが判る。この固有振動周期Tcは、記録ヘッド毎に異なるので、残留振動の周期もヘッド毎に相違することになる。例えば、実線で示す残留振動の周期と比較して、破線で示す残留振動の周期が長くなっている。したがって、全ての記録ヘッドについて吐出パルス同士の間隔Δtを一定の値とした場合、単位周期内において先に発生される吐出パルスPS1の次に発生される吐出パルスPS2がアクチュエーター10に印加される時点Db(即ち、吐出パルスPS2によってアクチュエーター10の駆動が開始されるタイミング)の残留振動の位相が記録ヘッド毎に異なる。
【0049】
即ち、図4(b)において実線で示す残留振動の場合、時点Dbでは吐出側から圧力室側に移動しているタイミングでアクチュエーター10の駆動が開始されてメニスカスが圧力室側に引き込まれるので、振動が強められる。これにより、吐出パルスPS2によって吐出されるインクの重量や飛翔速度が増加する。これに対し、破線で示す残留振動の場合、時点Dbでは圧力室側から吐出側に移動しているタイミングでアクチュエーター10の駆動が開始されるので、振動が弱められる。これにより、吐出パルスPS2によって吐出されるインクの重量や飛翔速度が低下する。このように、吐出パルスPS1,PS2を連続的にアクチュエーター10に印加して吐出されるインクの総量がヘッド毎に相違する可能性があった。
【0050】
このため、本発明に係るプリンター1では、単位周期T内の駆動信号COMに含まれる先の吐出パルスPS1と、この次に発生される吐出パルスPS2との間隔Δtが、記録ヘッド毎のヘルムホルツ周期(固有振動周期Tc)に基づき設定される。これにより、吐出パルスPS2がアクチュエーター10に印加される時点Dbの、先に吐出パルスPS1を用いてインクを吐出した後の残留振動の位相が、記録ヘッドの個体差によらず一定に揃うように構成されている。なお、本実施形態においてはパルス同士の間隔Δtをパルス始端(即ち、第1波形部P1の始端)同士の間隔としているが、これには、限られず、例えば、パルス終端(第3波形部P3の終端)同士の間隔でも良いし、第3波形部P3の始端同士の間隔でも良い。このようにパルス同士の間隔Δtを定めることにより、単位周期T内で複数の吐出パルスをアクチュエーター10に連続的に印加することでインク滴を複数回吐出させて所定の大きさのドットを記録媒体上に形成する構成(多ショット/画素印字)において、記録ヘッドの個体差に拘わらず、吐出されるインクの総量を一定に揃えることが可能となる。
【0051】
記録ヘッド毎の固有振動周期Tcは、当該記録ヘッドの製造工程において測定される。Tcの測定方法としては、種々の方法が提案されているが、例えば、吐出パルスPSの第2波形部の発生時間Pwh(第2波形部の始端t1aから終端t2aまでの時間)を所定範囲で変化させつつ、当該吐出パルスPSでインクを吐出したときのインクの飛翔速度Vmやインク重量を測定して、その変化を観察し、変化カーブの隣り合う極大値同士或いは極小値同士の間隔をTcとして取得する方法等、既存の方法を採用することができる。
【0052】
ここで、従来の水性インク等のように粘度が8ミリパスカル秒未満(例えば、約1ミリパスカル秒)の比較的低粘度のインクを対象とするプリンターでは、例えば、先の吐出パルスPS1によってインクが吐出された後の残留振動を強め合うタイミングで次の吐出パルスPS2によるインクの吐出動作が行われるようにパルスの間隔Δtを設定した場合、吐出パルスPS2によって吐出されるインクの量が、吐出パルスPS1によって吐出されるインクの量よりも増加する。しかしながら、この場合、低粘度(例えば、1ミリパスカル秒)のインクではメニスカスの挙動が大きくなりすぎる傾向がある。これにより、吐出パルスPS2によって吐出されるインクの飛翔方向が曲がったりする等、吐出が不安定になる可能性があった。
【0053】
このため、低粘度のインクを扱うプリンターでは、残留振動の影響をなるべく小さくするべく、先の吐出パルスPS1によるインク吐出後のメニスカスの残留振動が可及的に中立位置に近いタイミングで次のパルスPS2によるインクの吐出動作が開始されるようにパルス間隔が設定される。つまり、パルス間隔の設定自由度が制限される。したがって、この構成では、吐出パルスPS1のみを用いてインクを吐出したときのインクの重量が7ngであるとすると、吐出パルスPS1と吐出パルスPS2の両方を用いて連続的にインクを吐出したときのインクの総量が、単体で吐出したときの重量の倍の14ng或いはそれに近い値しか得られず、画素における階調表現の自由度が制限される。
【0054】
これに対し、本発明に係るプリンター1では、一般的な水性インクの粘度よりも十分に高い粘度のインク、具体的には粘度が8ミリパスカル秒以上のインク(便宜上、高粘インクともいう。)を使用し、パルス同士の間隔Δtを変化させることで、多ショット/画素印字におけるインクの総量を任意に変えることができる。例えば、先の吐出パルスPS1によってインクが吐出された後の残留振動を強め合うタイミングで次の吐出パルスPS2によるインクの吐出動作が行われるようにパルスの間隔Δtを設定した場合、吐出パルスPS2によって吐出されるインクの量が、吐出パルスPS1によって吐出されるインクの量よりも増加する。高粘度のインクは、振動を抑えるダンパー効果を発揮するので、メニスカスの動きが過大になることを防止することができる。このため、残留振動を強め合うタイミングで吐出パルスPS2によりインクが吐出されるようにパルス間隔Δtを設定しても、インクの吐出が不安定になることが抑制される。その結果、パルスの間隔Δtの設定自由度が広がる。即ち、残留振動の振幅が大きい(極大又は極小に近い)位相で吐出パルスPS2によるインク吐出動作が開始されるようにパルス間隔Δtを設定することも可能となる。そして、単位周期内で吐出パルスPS1のみを選択してインクを吐出したときのインク重量が7ngであるとして、吐出パルスPS1と吐出パルスPS2の両方を選択してインクを吐出したときの総重量を、単体で吐出したときの重量の倍の14ngのみならず、倍の値よりも多く又は少なくすることも可能となる。これにより、残留振動の位相に対する次の吐出パルスによるインクの吐出動作が行われるタイミング、即ち先の吐出パルスと次の吐出パルスとの間隔Δtを比較的広い範囲で設定することができ、設定自由度が広がる。その結果、単位周期内で複数の吐出パルスを用いてインクを複数回吐出したときのインクの総量を従来よりも幅広く定めることができる。したがって、多ショット/画素印字による画素の階調表現の幅を広げることが可能となる。
【0055】
ところで、上記の高粘度インクを、従来のヘッドで連続的に吐出させた場合、特に、より高い周波数でインク滴を吐出させた場合にインクの吐出が不安定になってしまうという問題があった。しかしながら、以下で説明するように、高粘度インクを使用する場合においても、ノズル14から吐出されるインクの量と圧力室19へ供給されるインクの量を、ノズル14の開口の大きさとインク供給路21の開口の大きさとによって最適化できるので、圧力室19へのインクの供給不足が改善され、より高い周波数でインクを吐出する場合においても、インクの吐出を安定化できる。
【0056】
図6(a)は、高粘度インクが比較的安定な状態で吐出されている様子を示している。これに対し、図6(b)は、高粘度インクが不安定な状態で吐出されている様子を示している。これらの図を比較すると、不安定な状態では、飛行速度が不足しているインク滴や吐出曲がりが生じているインク滴があることが判る。
【0057】
インクの吐出を不安定にする要因は種々考えられるが、その要因の一つに圧力室19へのインクの供給不足があると考えられる。高粘度インクは、通常のインクよりもインク供給路21を通過しにくい特性を有する。このため、圧力室19へのインクの供給が追いつかず、インクが不足した状態でインクの吐出動作が行われると、インクの吐出が不安定になると考えられる。
【0058】
このような事情に鑑み、本実施形態の記録ヘッド8では、ノズル14の開口面積を、インク供給路21の開口面積に基づいて定めている。すなわち、図2(b)に示すように、ノズル14の吐出側の開口面積Snzlが、インク供給路21の圧力室19側の開口面積Ssupの1/9以下になるように構成されている。これにより、ノズル14からのインク滴の吐出量を制限しつつ、圧力室19へのインクの供給量を確保している。その結果、圧力室19へのインクの供給不足を解消でき、インクの吐出が安定化される。以下、詳細に説明する。
【0059】
図7は、ノズル14の開口面積Snzlをインク供給路21の開口面積Ssupの1/9以下に定めた記録ヘッド8による、インク滴の吐出を説明する図である。図2(b)に示すように、開口面積Snzlは、ノズル14におけるインク滴が吐出される側に位置する開口の面積である。また、開口面積Ssupは、インク供給路21が有する2つの開口のうち、圧力室19と連通する方の開口の面積である。
【0060】
図7において、縦軸はメニスカスの状態をインクの量で示しており、図4(b)と同様に、横軸は時間である。縦軸に関し、0ngは、定常状態におけるメニスカスの位置を示す。そして、正側に値が大きくなるほどメニスカスが吐出方向に押し出された状態を示し、負側に値が大きくなるほどメニスカスが圧力室19側に引き込まれた状態を示す。なお、この図7は、シミュレーションによって得られたものである。そして、以降で示すインク滴の吐出を説明する他の図も、シミュレーションによって得られたものである。なお、同シミュレーションは、図2(b)で示す模式的な液体流路の構造によるインク吐出時のメニスカスの変化を説明するものである。
【0061】
このシミュレーションにおいて、圧力室19の幅W19は100μmであり、高さH19は70μmであり、長さL19は1000μmである。ノズル14の直径φ14は25μmであり、ノズル14の長さは100μmである。インク供給路21の幅W21は100μmであり、高さH21は55μmであり、長さL21は500μmである。このため、ノズル14の開口面積Snzlは約500μm(より正確には491μm)となり、インク供給路21の開口面積Ssupは5500μmとなる。従って、ノズル14の開口面積はインク供給路21の開口面積の1/9以下となっている。
【0062】
このようなインクの流路において、図6の吐出パルスPS1をアクチュエーター10へ印加してノズル14からインク滴が吐出されると、メニスカスは図7のように移動する。まず、第1波形部P1がアクチュエーター10に印加されると、圧力室19は基準容積から最大容積まで膨張する。この膨張に伴い圧力室19内のインクが負圧となり、インクがインク供給路21を通じて圧力室19側に流入する。また、インクが負圧になったことに伴って、メニスカスがノズル14内で圧力室19側に引き込まれる。
【0063】
メニスカスの圧力室19側への移動は、第1波形部P1の印加終了後も継続される。すなわち、圧力室19を区画する壁部や薄肉部23のコンプライアンス等により、メニスカスは第2波形部P2の印加期間中も圧力室19側へ移動する。その後、メニスカスの移動方向は、圧力室19から遠ざかる方向に反転する(図7中に符号A1で示すタイミング)。このとき、第3波形部P3の印加に伴う圧力室19の収縮も加わるため、メニスカスの移動速度は速い。第3波形部P3の印加に伴って移動したメニスカスは柱状になる。その後、柱状になったメニスカスの先端側の一部分が切れ、滴状になって吐出される(図7中に符号B1で示すタイミング)。
【0064】
インク滴が吐出された後、メニスカスは、移動方向を吐出側と圧力室19側とに切り替えながら(例えば、図7中に符号C1,D1で示すタイミング)、徐々に定常状態(インク量0ng)の位置へ近付く。このときの振動周期は、上述したように記録ヘッド毎に異なる。メニスカスが定常状態の位置に近付く理由は、圧力室19内のインクが増えているからと考えられる。このため、メニスカスが定常状態の位置に近付いている間は、インク供給路21から圧力室19内にインクが供給されているといえる。そして、メニスカスが定常状態の位置まで戻ったということは、圧力室19内に十分な量のインクが供給されたことを意味する。従って、この時点以降に吐出パルスPS1をアクチュエーター10に印加すれば、インクの供給不足に起因するインクの吐出不良は防止できる。図7の例において、メニスカスは、第1波形部P1のアクチュエーターへの印加開始から100μsを経過した時点で、ほぼ定常状態の位置まで戻っている。
【0065】
なお、本実施形態では、第1波形部P1の印加開始から100μsを経過した時点でメニスカスが定常状態の位置に戻っていることを、40kHz以上の高い周波数であっても安定した吐出が行えることの判断基準にしている。100μsという時間だけで考えると、吐出周波数は、最高でも10kHz程度になってしまうとも思われる。しかし、吐出周波数を高めた場合、インク滴が次々と吐出されることから、インク流路(リザーバー20からノズル14に至る一連の流路)には、リザーバー20側からノズル14側に向かうインクの流れが生じると考えられる。このインクの流れは吐出周波数を高めるほど速くなる。そして、この流れによっても圧力室19内にインクが供給されることから、上記の判断基準が定められている。
【0066】
メニスカスが速やかに定常状態の位置に戻る理由の1つに、ノズル14の開口面積Snzlとインク供給路21の開口面積Ssupの比率があると考えられる。すなわち、この記録ヘッド8では、ノズル14の開口面積Snzlをインク供給路21の開口面積Ssupの約1/9に定めている。これにより、圧力室19内のインクの圧力を変化させた際のインクの流れやすさを、ノズル14の内部とインク供給路21の内部とで異ならせることができる。すなわち、インク供給路21の方をノズル14よりも、インクが流れやすいようにしていると考えられる。また、ノズル14の開口面積Snzlをインク供給路21の開口面積Ssupよりも十分に小さくしているので、インク滴の吐出能力を抑えているともいえる。
【0067】
これにより、圧力室19内のインクが減圧された場合において、インク供給路21から圧力室19へインクが供給されやすくなり、インクの供給不足が改善される。このことは、図7のタイミングC1とタイミングD1との間でメニスカスが大きく移動していることからも理解できる。すなわち、タイミングC1にてインクが大きく減圧された反動でインク供給路21からインクが圧力室19側に流れ込み、タイミングD1ではメニスカスが定常状態の位置に近付いたと考えられる。
【0068】
図8は、比較例の記録ヘッド8によるインク滴の吐出を説明する図である。比較例の記録ヘッド8では、ノズル14の開口面積Snzlを、インク供給路21の開口面積Ssupの約1/6.7(比率0.15)に定めた点で、図7で用いた記録ヘッド8と相違している。図8と図7とを比較すると、比較例の記録ヘッド8の方がインクを多く吐出していることが判る。すなわち、タイミングB2におけるインク量が12ngであるのに対し、タイミングB1におけるインク量は7ngである。また、メニスカスの引き込み量に関しても、比較例の記録ヘッド8の方が大きいことが判る。すなわち、タイミングC2におけるインク量は−15ngであるのに対し、タイミングC1におけるインク量は−10.5ngである。これらは、比較例の記録ヘッド8の方が図7で用いた記録ヘッド8よりも、ノズル14の内部でインクが流れやすくなっているためと考えられる。
【0069】
しかしながら、比較例の記録ヘッド8では図7で用いた記録ヘッド8よりもメニスカスの戻り量が少ない。具体的には、タイミングD2におけるインク量は−6ngであるのに対し、タイミングD1におけるインク量は−2ngである。前述したように、メニスカスの戻り量は、圧力室19内へのインクの供給量に関連している。すなわち、圧力室19にインクが供給されるほど、メニスカスは定常状態の位置に近付く。従って、図7で用いた記録ヘッド8では、インク滴の吐出後において、インク供給路21を通じて十分な量のインクが速やかに圧力室19に供給されているといえる。これに対し、比較例の記録ヘッド8では、インク滴の吐出後において、圧力室19に供給されるインクの量が、図7で用いた記録ヘッド8よりも少なくなっているといえる。これに伴って、メニスカスが定常状態の位置に戻るまでの時間が長くなっている。このことは、比較例の記録ヘッド8は、図7で用いた記録ヘッド8に比べてインクの供給不足が生じやすいことを示しているといえる。
【0070】
次に、圧力室19の面積Scavとインク供給路21の開口面積Ssupとの関係について説明する。図2(b)に示すように、圧力室19の面積Scavとは、インクの流れ方向と交差する面の断面積、要するに圧力室19の太さである。以下の説明において、単に圧力室19の面積Scavと記載されている場合、インクの流れ方向と交差する面の断面積を意味する。
【0071】
図9は、インク供給路21の開口面積Ssupを圧力室19の面積Scavの0.34倍にした記録ヘッド8によるインク滴の吐出を説明する図である。図10は、インク供給路21の開口面積を圧力室19の面積の0.32倍にした記録ヘッド8によるインク滴の吐出を説明する図である。図9で用いた記録ヘッド8は、Scav<3×Ssupの条件を満たし、かつ、この条件における境界のヘッドといえる。一方、図10で用いた記録ヘッド8は、Scav<3×Ssupの条件を満たさず、かつ、この条件の境界のヘッドといえる。なお、これらの図において、吐出対象のインクの粘度は20ミリパスカル秒である。
【0072】
図9と図10とを比較すると、インク滴が吐出されて圧力室19内のインクが減圧されるまでのメニスカスの動きについては、図9で用いた記録ヘッド8と図10で用いた記録ヘッド8とで大きな違いはないといえる。例えば、タイミングB3におけるインク量が11ng弱であるのに対し、タイミングB4におけるインク量は11ng強である。また、タイミングC3におけるインク量が−15ng強であるのに対し、タイミングC4におけるインク量は−15ng弱である。
【0073】
しかし、これらの記録ヘッド8では、インク滴吐出後のメニスカスの戻り方に違いがある。例えば、タイミングD3におけるインク量が−3ngであるのに対し、タイミングD4におけるインク量は−4ngである。また、タイミングE3におけるインク量が−1ngであるのに対し、タイミングE4におけるインク量は−3ngである。そして、図9で用いた記録ヘッド8の方が図10で用いた記録ヘッド8よりも、メニスカスが定常状態の位置に近づくまでに要する時間が短くなっている。この特性から、図9で用いた記録ヘッド8の方が図10で用いた記録ヘッド8よりも、インク滴の吐出後におけるインクの供給量が多いことが理解できる。
【0074】
従って、Scav<3×Ssupの条件を満たす記録ヘッド8を用いることで圧力室19へのインクの供給不足が生じ難くなり、高粘度インクに対する吐出安定性をより高めることができるといえる。
【0075】
前述の結果より、ノズル14の開口面積Snzl(インク滴が吐出される側の開口の面積)を、インク供給路21の開口面積Ssup(圧力室19側の開口の面積)の1/9以下に定めることで、ノズル14から吐出されるインクの量と圧力室19へ供給されるインクの量とのバランスを最適化でき、圧力室19へのインクの供給不足が改善できることが判った。その結果、高粘度インクであってもインクの供給不足を抑制でき、より高い周波数でのインク滴の吐出を安定化できることが判った。
【0076】
ところで、前述したように、ノズル14の開口面積Snzlや長さL14、インク供給路21の開口面積Ssupや長さL21は、種々の値を取り得る。そして、これらの値を変化させることで、ノズル14側におけるインクの流れやすさとインク供給路21側におけるインクの流れやすさのバランスを変えられるとも考えられる。
【0077】
ここで、圧力室19へのインクの供給不足を抑制し、吐出を安定化するという効果を考慮すると、ノズル14側において最もインクが流れやすく、インク供給路21側において最もインクが流れ難い状態(ワースト状態)であってもインクの供給不足が生じなければ、ノズル14の長さL14やインク供給路21の長さL21といった他の要素に関わらず、上記の効果が得られると解される。
【0078】
この観点に基づき、ワースト状態において、ノズル14の開口面積Snzlをインク供給路21の開口面積Ssupの1/9に定めた記録ヘッド8を用いてシミュレーションを行った。図11は、このシミュレーション結果、すなわち、ワースト状態の記録ヘッド8によるインク滴の吐出を説明する図である。
【0079】
図11で用いた記録ヘッド8は、ノズル14の直径φ14が50μm(開口面積Snzl:約1963μm)、ノズル14の長さL14が40μm、インク供給路21の幅W21が200μm、高さH21が100μm(開口面積Ssup:20000μm)、インク供給路21の長さL21が2000μmである。また、圧力室19に関し、幅W19が300μm、高さH19が100μm、長さL19が800μmである。すなわち、この記録ヘッド8は、ノズル14の直径φ14が最も大きく、ノズル14の長さL14が最も短く、インク供給路21の長さL21が最も長く、かつ、ノズル14の開口面積Snzlがインク供給路21の開口面積Ssupのほぼ1/10になっている。なお、吐出対象のインクの粘度は20ミリパスカル秒である。
【0080】
この記録ヘッド8では、前述の各記録ヘッド8に比べてインクの吐出量が多くなっている。すなわち、タイミングB5におけるインク量は30ngである。これは、ノズル14の直径φ14を一般的な記録ヘッド8が採りうる最大値に定め、かつ、ノズル14の長さL14を一般的な記録ヘッド8が採りうる最小値に定めたことが影響していると考えられる。
【0081】
インク滴の吐出後のタイミングD5やタイミングE5にて、インク量は−11ng程度であるが、その後メニスカスは定常状態の位置に近づき、第1波形部P1の印加開始から75μs経過後のタイミングでほぼ定常状態の位置まで戻っている。このことから、インク滴の吐出後において、圧力室19へインクが速やかに供給されていることが判る。従って、ノズル14の開口面積Snzlをインク供給路21の開口面積Ssupの少なくとも1/10以下、好ましくは1/9以下に定めることで、高粘度インクを吐出させてもインクの圧力室19への供給不足を抑制でき、インク滴の吐出を安定化できるといえる。
【0082】
上記の実施形態は、粘度が20ミリパスカル秒の高粘度インクについての実験結果(シミュレーション結果)であるが、高粘度インクの粘度には幅がある。そこで、インクの粘度の違いによる影響について検討する。図12は、粘度が5ミリパスカル秒のインクを吐出させた場合における、インク滴の吐出を説明する図である。図13は、粘度が6ミリパスカル秒のインクを吐出させた場合における、インク滴の吐出を説明する図である。なお、これらの図で用いた記録ヘッド8は、図7で用いた記録ヘッド8と同じものである。
【0083】
図12を参照すると、インク滴の吐出後における期間X1においてインク量が正側に凸となっている。これは、インクの圧力室19への供給が過多になり、メニスカスがノズル14の開口縁よりも吐出側に位置していることを意味する。このようなメニスカスの凸側への移動は、インクの吐出を不安定にする一因となるので、好ましくない。一方、図13を参照すると、インク滴の吐出後における期間X2においてインク量は正側になっているが、ほぼ定常状態の位置に近い。このことは、メニスカスは定常状態の位置に近いところでわずかに振動していることを意味する。つまり、メニスカスは、定常状態の位置で安定しているといえる。
【0084】
従って、インクの粘度に関しては、8ミリパスカル秒以上であって20ミリ以下の範囲であれば、ノズル14の開口面積Snzlをインク供給路21の開口面積Ssupの1/9以下に定めることで、インク滴の吐出を安定化できるといえる。
【0085】
前述したように、インク滴の吐出の安定化という観点では、ノズル14の開口面積Snzlをインク供給路21の開口面積Ssupの少なくとも1/10以下、好ましくは1/9以下に定めればよいといえる。ここで、ノズル14の開口面積Snzlを、インク供給路21の開口面積Ssupに対して小さくするほど、ノズル14の内部でインクが流れ難くなる。このため、圧力室19内で加圧されたインクは、インク供給路21の側へ多く流れることなる。さらに、ノズル14の開口面積Snzlを過度に小さくしてしまうと、圧力室19でインクを加圧してもノズル14からはインク滴が吐出されなくなってしまう。
【0086】
このようなインク滴の吐出不良を防止するためには、ノズル14の開口面積Snzlをインク供給路21の開口面積Ssupの1/20以上に定めればよい。このように定めることで、圧力室19でインクを加圧した際にノズル14側でもインクの流れを生じさせることができ、インク滴を確実に吐出させることができる。
【0087】
なお、ノズル14の開口面積Snzlがインク供給路21の開口面積Ssupの1/20以上であっても、ノズル14の直径φ14は、その最小値よりも小さくすることはできない。すなわち、ノズル14の直径φ14は10μmよりも小さくできない。これは、構造的に必要な量のインクを吐出できなくなってしまうからである。
【0088】
前述の説明から、インク供給路21の開口面積Ssupは、ノズル14の開口面積Snzlの9倍以上であって20倍以下の範囲に定めればよいといえる。加えて、圧力室19の面積Scav(太さ)との関係では、インク供給路21の開口面積Ssupは、圧力室19の面積Scav(圧力室19を区画する面であってインク供給路21と連通する面の面積に相当する。)の1/3よりも大きく定めることがより好ましいといえる。ここで、インク供給路21は、リザーバー20から圧力室19へインクを供給するという機能に加え、インク滴の吐出後におけるインクの圧力振動を減衰させるという機能をも有する。この機能に着目した場合、インク供給路21の開口面積Ssupは、圧力室19の面積Scavよりも小さいことが求められる。これは、開口面積を小さくすることで、流路抵抗が大きくなることによる。
【0089】
ここで、流路抵抗とは、媒質の内部損失である。本実施形態では、インク流路を流れるインクが受ける力であって、インクの流れる方向とは逆向きの力である。この流路抵抗は、次式(2),(3)で表すことができる。すなわち、圧力室19やインク供給路21のように、略直方体状の流路における流路抵抗R直は、次式(2)で表すことができる。また、ノズル14のように、円形状断面の流路における流路抵抗R円は、次式(3)にて近似して表すことができる。
流路抵抗R直=(12×粘度μ×長さL)/(幅W×高さH3)・・・(2)
流路抵抗R円=(8×粘度μ×長さL)/(π×半径r4) ・・・(3)
これらの式(2),(3)において、粘度μはインクの粘度、Lは流路の長さ、Wは流路の幅、Hは流路の高さ、rは円形状断面を有する流路の半径をそれぞれ表している。
【0090】
そして、インク供給路21の流路抵抗を圧力室19の流路抵抗よりも大きくすることにより、圧力室19におけるインクの圧力振動をインク供給路21で効果的に減衰させることができる。その結果、インク滴の吐出後において、メニスカスを早期に安定させることができる。すなわち、インク滴の高い周波数での吐出に適する。
【0091】
ノズル14もインク供給路21もインク(媒質)が流れる管と考えることができる。このため、管の外部から圧力を加えた場合において、管の直径が大きいほど管内のインクは移動し易く、管内のインクの質量が大きいほど管内のインクは移動し難いといえる。このような特性を有することから、管内におけるインクの移動し易さについては、音響回路におけるイナータンスで表されている。ここで、インクの密度をρ、流路のインク流れ方向と直交する面の断面積をS、流路の長さをLとしたとき、イナータンスMは次式(4)で近似して表すことができる。図2(b)に示すように、ここでの流路の長さLや断面積Sは、モデル化したインク流路における各部の長さや断面積を示している。長さLは、インクの流れ方向の長さである。また、断面積Sに関しては、インクの流れ方向とほぼ直交する面の面積である。
イナータンスM=(密度ρ×長さL)/断面積S ・・・ (4)
この式(4)から、イナータンスは、単位断面積あたりのインクの質量と考えることができる。そして、イナータンスが大きいほど、インクは圧力室19内のインク圧力に応じて移動し難くなり、イナータンスが小さいほど、インクは圧力室19内の圧力に応じて移動しやすくなることが判る。高粘度インクを吐出させる場合、ノズル14のイナータンスをインク供給路21のイナータンスよりも小さくすることが好ましい。これは、圧力室19内のインクに与えられた圧力振動に基づき、メニスカスの移動を効率よく行えるからである。
【0092】
前述した実施形態は、主として、液体吐出装置としてのプリンターを有する印刷システムについて記載されているが、その中には、液体吐出方法、液体吐出システム、吐出パルスの設定方法等の開示が含まれている。また、この実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはいうまでもない。特に、以下に述べる実施形態であっても、本発明に含まれるものである。
【0093】
前述した実施形態の記録ヘッド8では、アクチュエーター10として、吐出パルスPS1で与えられる電位が高いほど、静電気力を利用して圧力室19の容積を大きくするための動作をする静電式アクチュエータータイプのものを用いていたが、アクチュエーター10としては、他のタイプのものを用いてもよい。図14に示した他の記録ヘッド8´は、アクチュエーター10として、所謂撓み振動型の圧電素子(ピエゾ素子)37を採用している。そして、この圧電素子37として、吐出パルスPS′(図15を参照)で与えられる電位が高いほど、圧力室40の容積を小さくするための動作をするタイプのものを用いている。
【0094】
簡単に説明すると、他の記録ヘッド8´は、リザーバー38と、インク供給口39と、圧力室40と、ノズル41とを有する。そして、リザーバー38から圧力室40を通ってノズル41に至る一連のインク流路をノズル41に対応して複数有している。他の記録ヘッド8´でも圧力室40は、その容積が圧電素子37の動作によって変化される。すなわち、圧力室40の一部は振動板42によって区画され、圧力室40とは反対側となる振動板42の表面には圧電素子37が設けられている。
【0095】
圧電素子37はそれぞれの圧力室40に対応して複数設けられている。各圧電素子37は、例えば圧電体を上電極と下電極とで挟んだ構成であり(何れも図示せず。)、これらの電極間に電位差を与えることにより変形する。この例では、上電極の電位を上昇させると圧電体が充電され、これに伴って圧電素子37は圧力室40側に凸となるように撓む。これにより圧力室40が収縮される。なお、他の記録ヘッド8´では、振動板42における圧力室40を区画している部分が変形部に相当する。
【0096】
他の記録ヘッド8´用の吐出パルスPS′は、例えば図15に示す波形のものである。簡単に説明すると、この吐出パルスPS′は、前述した吐出パルスPS(PS1,PS2)を電位方向(高低方向)に反転させた波形をしている。従って、この吐出パルスPS′は、第1波形部P11と、第2波形部P12と、第3波形部P13とを有する。
【0097】
第1波形部P11は、始端電位が基準電位VB、終端電位が基準電位VBであり、タイミングt0aからタイミングt1bに亘って生成される。第2波形部P12は、基準電位VBで一定であり、タイミングt1bからタイミングt2bに亘って生成される。第3波形部P13は、始端電位が基準電位VB、終端電位が最高電位VHであり、タイミングt2bからタイミングt3bに亘って生成される。他の記録ヘッド8´用の吐出パルスPS2が有する各部分P11〜P13の機能は、前述した吐出パルスPSが有する各部分P1〜P3の機能と同じである。
【0098】
このような構成の他の記録ヘッド8´でも、インクの粘度が8ミリパスカル秒以上であれば、ノズル41の吐出側の開口面積をインク供給口39の圧力室40側の開口面積の1/9以下に定めることで、インク滴の吐出を安定化できる。
【0099】
前述した各吐出パルスPS(PS1,PS2),PS′はあくまで一例である。吐出パルスの波形(電位の変化パターン)は、インクの吐出量やインクの粘度に応じて適宜定められる。
また、単位周期T内の駆動信号中に含まれる吐出パルスの数は例示したものには限られない。即ち、単位周期T内の駆動信号中に3つ以上の吐出パルスが含まれる構成を採用することもできる。この場合、時間軸上で隣合う吐出パルス同士の間隔を上記の方法で設定すればよい。
【0100】
このプリンター1では、インクを吐出させるための動作(吐出動作)をする素子として、アクチュエーター10,圧電素子37を用いている。ここで、吐出動作をする素子は、前述したアクチュエーター10,圧電素子37に限定されるものではない。例えば、所謂縦振動型の圧電素子であってもよいし、発熱素子であってもよいし、磁歪素子であってもよい。そして、この素子として、前述の実施形態のようにアクチュエーター10,圧電素子37を用いた場合には、圧力室19,40の容積を吐出パルスPSの電位に基づいて精度良く制御できる。
【0101】
前述の実施形態において、ノズル14は、円形の開口形状を有し、ノズル基板16の厚さ方向を貫通する孔によって構成されていた。言い換えれば、円柱状の空間を区画する貫通孔によって構成されていた。また、インク供給路21は、矩形の開口形状を有し、圧力室19とリザーバー20とを連通する孔によって構成されていた。言い換えれば、角柱状の空間を区画する連通孔によって構成されていた。
【0102】
ここで、ノズル14やインク供給路21は種々の形状を採り得る。例えば、ノズル14に関し、図16(a)に示すように、略漏斗状の貫通孔によって構成してもよい。例示したノズル14は、テーパー部分14aとストレート部分14bとを有する。テーパー部分14aは、円錐台状の空間を区画する部分であり、圧力室19から離れる程に開口面積が小さくなっている。すなわち、先細り形状に設けられている。ストレート部分14bは、テーパー部分14aにおける小径側の端部に連続して設けられている。このストレート部分14bは、円柱状の空間を区画する部分であり、ノズル方向と直交する面で、断面積がほぼ一定の部分である。
【0103】
このノズル14では、例えば図16(b)に示すように、テーパー部分14aを、直径が段階的に小さくなっている複数の円盤状空間を区画する部分と定義することで、解析をすることができる。また、図16(a)に示すように、漏斗状のノズル14と等価な、ノズル方向と直交する面の断面積が一定のノズル14を定義することでも、解析をすることができる。
【0104】
また、インク供給路21に関し、例えば図16(c)に示すように、縦方向に長い長円状(半径の等しい二つの半円を共通外接線でつないだ形状)の開口を有する流路で構成してもよい。この場合、インク供給路21の開口面積Ssupは、斜線で示す長円状部分の面積が該当する。そして、この長円状開口を有するインク供給路21についても、これと等価な矩形状開口を有する流路を定義して、解析してもよい。この場合、インク供給路21の高さH21は、実際のインク供給路21の最大高さよりも多少低くなる。なお、インク供給路21の開口が楕円状であっても同様である。
【0105】
さらに、圧力室19についても同様である。例えば図16(c)に示すように、圧力室19における長手方向と直交する面が、横長の六角形状をしていた場合には、これと等価な矩形状断面を有する流路を定義して、解析してもよい。すなわち、高さがH19であり、幅が圧力室19の最大幅よりも多少小さいW19である矩形状断面の流路を定義して、解析してもよい。
【0106】
そして、本発明は、複数の駆動信号を用いて吐出制御が可能な液体吐出装置であれば、プリンターに限らず、プロッター、ファクシミリ装置、コピー機等、各種のインクジェット式記録装置や、記録装置以外の液体吐出装置、例えば、ディスプレー製造装置、電極製造装置、チップ製造装置等にも適用することができる。そして、ディスプレー製造装置では、色材吐出ヘッドからR(Red)・G(Green)・B(Blue)の各色材の溶液を吐出する。また、電極製造装置では、電極材吐出ヘッドから液状の電極材料を吐出する。チップ製造装置では、生体有機物吐出ヘッドから生体有機物の溶液を吐出する。
【符号の説明】
【0107】
1…プリンター,4…駆動信号生成回路,10…アクチュエーター,14…ノズル,19…圧力室,20…リザーバー,21…インク供給路,23…薄肉部,25…個別電極,PS1…吐出パルス,PS2…吐出パルス,P1…第1波形部,P2…第2波形部,P3…第3波形部

【特許請求の範囲】
【請求項1】
液体供給源からの液体が供給部を通じて供給される圧力室と、当該圧力室に連通し、液体が吐出されるノズルと、前記液体を前記ノズルから吐出させるために前記圧力室内の液体に圧力変化を与える動作を行う圧力発生部と、を有する液体吐出ヘッド、及び、前記ノズルから液体を吐出させるべく前記圧力発生部を動作させる吐出パルスを単位周期内に複数発生するパルス発生部を備えた液体吐出装置における液体吐出方法であって、
前記液体の粘度は、8ミリパスカル秒以上であって、
前記液体が吐出される側の前記ノズルの開口面積は、前記供給部の前記圧力室側の開口面積の1/9以下であり、
前記吐出パルスは、基準電位から動作電位まで一定勾配で電位が変化して前記圧力室内を減圧すべく前記圧力発生部を動作させる第1波形部と、前記動作電位を一定時間維持する第2波形部と、動作電位から基準電位まで一定勾配で電位が変化して前記圧力室内を加圧すべく前記圧力発生部を動作させる第3波形部と、を有し、
前記単位周期内において先に発生される吐出パルスの次に発生される吐出パルスが前記圧力発生部に印加されるときの、前記先の吐出パルスを用いて液体を吐出した後の残留振動の位相が一定に揃うように、先の吐出パルスと次の吐出パルスとの間隔を前記圧力室内の液体に生じる固有振動周期Tcに基づき設定することを特徴とする液体吐出方法。
【請求項2】
前記液体が吐出される側の前記ノズルの開口面積が、前記供給部の前記開口の面積の1/20以上であることを特徴とする請求項1に記載の液体吐出方法。
【請求項3】
前記ノズルの長さが、40μm以上であって100μm以下の範囲内であることを特徴とする請求項1又は2に記載の液体吐出方法。
【請求項4】
前記供給部の前記開口が矩形状であり、
当該開口が有する一方の辺の長さが、30μm以上であって500μm以下の範囲内であり、
当該開口が有する他方の辺の長さが、20μm以上であって300μm以下の範囲内であることを特徴とする請求項1から請求項3の何れか1項に記載の液体吐出方法。
【請求項5】
前記供給部の前記開口の外縁が、前記圧力室を区画する面であって前記供給部と連通する面の外縁よりも小さいことを特徴とする請求項1から請求項4の何れか1項に記載の液体吐出方法。
【請求項6】
前記ノズルのイナータンスが、前記供給部のイナータンスよりも小さいことを特徴とする請求項1から請求項5の何れか1項に記載の液体吐出方法。
【請求項7】
前記圧力発生部は、前記圧力室の一部を区画し、変形によって前記液体に圧力変化を与える変形部を有することを特徴とする請求項1から請求項6の何れか1項に記載の液体吐出方法。
【請求項8】
前記圧力発生部は、印加された吐出パルスにおける電位の変化パターンに応じた度合いで、前記変形部を変形させることを特徴とする請求項7に記載の液体吐出方法。
【請求項9】
液体供給源からの液体が供給部を通じて供給される圧力室と、当該圧力室に連通し、液体が吐出されるノズルと、前記液体を前記ノズルから吐出させるために前記圧力室内の液体に圧力変化を与える動作を行う圧力発生部と、を有する液体吐出ヘッド、及び、前記ノズルから液体を吐出させるべく前記圧力発生部を動作させる吐出パルスを単位周期内に複数発生するパルス発生部を備えた液体吐出装置であって、
前記液体が吐出される側の前記ノズルの開口面積が、前記供給部の前記圧力室側の開口面積の1/9以下であり、
前記吐出パルスは、基準電位から動作電位まで一定勾配で電位が変化して前記圧力室内を減圧すべく前記圧力発生部を動作させる第1波形部と、前記動作電位を一定時間維持する第2波形部と、動作電位から基準電位まで一定勾配で電位が変化して前記圧力室内を加圧すべく前記圧力発生部を動作させる第3波形部と、を有し、
前記単位周期内において先に発生される吐出パルスの次に発生される吐出パルスが前記圧力発生部に印加されるときの、前記先の吐出パルスを用いて液体を吐出した後の残留振動の位相が一定に揃うように、先の吐出パルスと次の吐出パルスとの間隔が前記圧力室内の液体に生じる固有振動周期Tcに基づき設定されたことを特徴とする液体吐出装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2011−67999(P2011−67999A)
【公開日】平成23年4月7日(2011.4.7)
【国際特許分類】
【出願番号】特願2009−220116(P2009−220116)
【出願日】平成21年9月25日(2009.9.25)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】