説明

液体噴射装置及び液体噴射型印刷装置

【課題】駆動信号の精度を確保することが可能な液体噴射装置及び液体噴射装置を用いた液体噴射型印刷装置を提供する。
【解決手段】駆動波形信号WCOMをパルス変調し、デジタル電力増幅器28を用いて変調信号を電力増幅し、電力増幅変調信号を平滑フィルタ29で平滑化して駆動信号COMを出力するにあたり、駆動波形信号の電圧変化率dVact/dt及び駆動アクチュエータ数Nactに基づいてデジタル電力増幅器28のスイッチング素子Q1、Q2から出力される電流が1変調周期内で常に1方向である状態(モードB)を検出し、モードBが検出された場合に、電力増幅変調信号のパルス幅がデジタル電力増幅器を構成するスイッチング素子から出力される電流が1変調周期内で双方向である時と変わらないように駆動波形信号WCOMを調整するか、またはモードBが発生しないようにパルス変調の変調周期Tを調整する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、アクチュエータに駆動信号を印加して液体を噴射する液体噴射装置に関し、例えば微小な液体を液体噴射ヘッドのノズルから噴射して、微粒子(ドット)を印刷媒体上に形成することにより、所定の文字や画像等を形成するようにした液体噴射型印刷装置に好適なものである。
【背景技術】
【0002】
液体噴射型印刷装置では、電力増幅回路で電力増幅された駆動信号を圧電素子などのアクチュエータに印加してノズルから液体を噴射するが、リニア駆動されるプッシュプル接続型トランジスタなどのアナログ電力増幅器で駆動信号を電力増幅すると、電力損失が大きく、放熱のための大きなヒートシンクが必要となる。そこで、下記特許文献1では、駆動信号をデジタル電力増幅器で電力増幅することにより、電力損失を低減し、ヒートシンクを無用としている。なお、デジタル電力増幅器は、MOSFETなどのスイッチング素子をオン・オフ制御し、その出力である電力増幅変調信号を平滑フィルタで平滑化して駆動信号としており、駆動波形信号をパルス変調した変調信号を入力信号としている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2005−329710号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
液体噴射型印刷装置、特にラインヘッド液体噴射型印刷装置と呼ばれる、1パスでの高速印刷を可能とする印刷装置では、更なる高画質化の要求もあり、アクチュエータの駆動信号が高周波化し、更にその駆動信号の精度が要求されている。ここでいう高周波化とは、駆動信号の周期が短くなることを意味するが、このように高周波化した駆動信号に精度が要求されると、デジタル電力増幅器に入力する変調信号のパルス変調周期を短くする必要があり、そのようにした結果、デジタル電力増幅器のスイッチング素子から出力される電流が1変調周期内で常に1方向である状態が発生してしまい、それにより電力増幅変調信号のパルス幅が変動し、結果的に駆動信号の精度が低下してしまう。
本発明は、これらの諸問題に着目して開発されたものであり、駆動信号の精度を確保することが可能な液体噴射装置及び液体噴射装置を用いた液体噴射型印刷装置を提供することを目的とするものである。
【課題を解決するための手段】
【0005】
上記諸問題を解決するため、本発明の液体噴射装置は、駆動波形信号を発生する駆動波形信号発生回路と、前記駆動波形信号をパルス変調して変調信号とする変調回路と、プッシュプル接続されたスイッチング素子対により前記変調信号を電力増幅して電力増幅変調信号とするデジタル電力増幅器と、前記電力増幅変調信号を平滑化して駆動信号とする平滑フィルタと、前記デジタル電力増幅器を構成するスイッチング素子から出力される電流が1変調周期内で常に1方向である場合に、電力増幅変調信号のパルス幅を調整するパルス幅補正回路とを備えたことを特徴とするものである。
この液体噴射装置によれば、デジタル電力増幅器のスイッチング素子のスイッチング素子から出力される電流が1変調周期内で常に1方向である状態が発生しても駆動信号の精度を確保することができる。
【0006】
また、前記パルス幅補正回路は、電力増幅変調信号のパルス幅をデッドタイム分長く調整するか又は短く調整する機能を有することを特徴とするものである。
また、前記パルス幅補正回路は、前記駆動波形信号の電圧変化状態及びアクチュエータの負荷容量及び前記デジタル電力増幅器の電源電圧及び前記平滑フィルタのインダクタンス値及び前記変調信号のオンデューティ比に基づいてデジタル電力増幅器に流れる電流を判定し、それに応じて電力増幅変調信号のパルス幅を調整することを特徴とするものである。
【0007】
また、前記パルス幅補正回路は、前記駆動波形信号の電圧を上昇させる期間は、前記駆動波形信号に対して所定の電圧を加算し、電圧を下降させる期間は、前記駆動波形信号に対して所定の電圧を減算させることを特徴とするものである。
また、本発明の液体噴射装置は、駆動波形信号を発生する駆動波形信号発生回路と、前記駆動波形信号をパルス変調して変調信号とする変調回路と、前記変調信号を電力増幅して電力増幅変調信号とするデジタル電力増幅器と、前記電力増幅変調信号を平滑化して駆動信号とする平滑フィルタと、前記デジタル電力増幅器を構成するスイッチング素子から出力される電流が1変調周期内で常に1方向である状態が発生しないように前記パルス変調の変調周期を調整する変調周期調整部とを備えたことを特徴とするものである。
【0008】
この液体噴射装置によれば、デジタル電力増幅器のスイッチング素子から出力される電流が1変調周期内で常に1方向である状態が発生しないため、駆動信号の精度を確保することができる。
また、前記変調周期調整部は、前記駆動波形信号の電圧変化状態及びアクチュエータの負荷容量及び前記デジタル電力増幅器の電源電圧及び前記平滑フィルタのインダクタンス値及び前記変調信号のオンデューティ比に基づいて、変調周期を長くすることを特徴とする。
【図面の簡単な説明】
【0009】
【図1】本発明の液体噴射装置を用いた液体噴射型印刷装置の第1実施形態を示す概略構成正面図である。
【図2】図1の液体噴射型印刷装置に用いられる液体噴射ヘッド近傍の平面図である。
【図3】図1の液体噴射型印刷装置の制御装置のブロック図である。
【図4】各液体噴射ヘッド内のアクチュエータを駆動する駆動信号の説明図である。
【図5】スイッチングコントローラのブロック図である。
【図6】図1の液体噴射型印刷装置のアクチュエータ駆動回路のブロック図である。
【図7】デジタル電力増幅器のスイッチング素から出力される電流が1変調周期内で常に1方向である状態、双方向である状態の説明図である。
【図8】デジタル電力増幅器のスイッチング素から出力される電流が1変調周期内で常に1方向である状態、双方向である状態の出力電圧、出力電流の詳細な説明図である。
【図9】図6の制御部で行われる演算処理を示すフローチャートである。
【図10】図6の制御部で行われる演算処理を示すフローチャートである。
【図11】図9、図10の演算処理によって補正された駆動波形信号の説明図である。
【図12】本発明の液体噴射装置を用いた液体噴射型印刷装置の第2実施形態を示すアクチュエータ駆動回路のブロック図である。
【図13】三角波信号の説明図である。
【図14】図12の制御部で行われる演算処理を示すフローチャートである。
【図15】図14の演算処理によって調整されたパルス変調周期の説明図である。
【発明を実施するための形態】
【0010】
次に、本発明の液体噴射装置の第1実施形態として、液体噴射型印刷装置に適用されたものについて説明する。
図1は、第1実施形態の液体噴射型印刷装置の概略構成図であり、図1において、印刷媒体1は、図の左から右に向けて矢印方向に搬送され、その搬送途中の印刷領域で印刷される、ラインヘッド型印刷装置(液体噴射型印刷装置に相当)である。
【0011】
図1中の符号2は、印刷媒体1の搬送ライン上方に設けられた複数の液体噴射ヘッド(液体噴射装置に相当)であり、印刷媒体搬送方向に2列になるように且つ印刷媒体搬送方向と交差する方向に並べて配設されて、夫々、ヘッド固定プレート11に固定されている。各液体噴射ヘッド2の最下面には、多数のノズルが形成されており、この面がノズル面と呼ばれている。図2は複数の液体噴射ヘッドを紙面上方からみた上面図である。ノズルは、図2に示すように、噴射する液体の色毎に、印刷媒体搬送方向と交差する方向に列状に配設されており、その列をノズル列と呼んだり、その列方向をノズル列方向と呼んだりする。そして、印刷媒体搬送方向と交差する方向に配設された全ての液体噴射ヘッド2のノズル列によって、印刷媒体1の搬送方向と交差する方向の幅全長に及ぶラインヘッドが形成されている。印刷媒体1は、これらの液体噴射ヘッド2のノズル面の下方を通過するときに、ノズル面に形成されている多数のノズルから液体が噴射され、印刷が行われる。
【0012】
液体噴射ヘッド2には、例えばイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の4色のインクなどの液体が、図示しない液体タンクから液体供給チューブを介して供給される。そして、液体噴射ヘッド2に形成されているノズルから必要箇所に必要量の液体を噴射することにより、印刷媒体1上に微小なドットを形成する。これを色毎に行うことにより、搬送部4で搬送される印刷媒体1を一度通過させるだけで、1パスによる印刷を行うことができる。
【0013】
液体噴射ヘッド2のノズルから液体を噴射する方法としては、静電方式、ピエゾ方式、膜沸騰液体噴射方式などがあり、第1実施形態ではピエゾ方式を用いた。ピエゾ方式は、アクチュエータである圧電素子に駆動信号を与えると、キャビティ内の振動板が変位してキャビティ内に圧力変化を生じ、その圧力変化によって液体がノズルから噴射されるというものである。そして、駆動信号の波高値や電圧増減傾きを調整することで液体の噴射量を調整することが可能となる。なお、本発明は、ピエゾ方式以外の液体噴射方法にも、同様に適用可能である。
【0014】
液体噴射ヘッド2の下方には、印刷媒体1を搬送方向に搬送するための搬送部4が設けられている。搬送部4は、駆動ローラ8及び従動ローラ9に搬送ベルト6を巻回して構成され、駆動ローラ8には図示しない電動モータが接続されている。また、搬送ベルト6の内側には、当該搬送ベルト6の表面に印刷媒体1を吸着するための図示しない吸着装置が設けられている。この吸着装置には、例えば負圧によって印刷媒体1を搬送ベルト6に吸着する空気吸引装置や、静電気力で印刷媒体1を搬送ベルト6に吸着する静電吸着装置などが用いられる。従って、給紙ローラ5によって給紙部3から印刷媒体1を一枚だけ搬送ベルト6上に送給し、電動モータによって駆動ローラ8を回転駆動すると、搬送ベルト6が印刷媒体搬送方向に回転され、吸着装置によって搬送ベルト6に印刷媒体1が吸着されて搬送される。この印刷媒体1の搬送中に、液体噴射ヘッド2から液体を噴射して印刷を行う。印刷の終了した印刷媒体1は、搬送方向下流側の排紙部10に排紙される。なお、前記搬送ベルト6には、例えばリニアエンコーダなどで構成される印刷基準信号出力装置が取付けられている。この印刷基準信号出力装置は、搬送ベルト6とそれに吸着されて搬送される印刷媒体1とが同期して移動されることに着目し、印刷媒体1が搬送経路中の所定位置を通過した後は、搬送ベルト6の移動に伴って要求される印刷解像度相当のパルス信号を出力し、このパルス信号に応じて、後述する駆動回路から駆動信号をアクチュエータ22に出力することで印刷媒体1上の所定位置に所定の色の液体を噴射し、そのドットによって印刷媒体1上に所定の画像を描画する。
【0015】
第1実施形態の液体噴射装置を用いた液体噴射型印刷装置内には、液体噴射型印刷装置を制御するための制御装置が設けられている。この制御装置は、図3に示すように、ホストコンピュータ60から入力された印刷データを読込むための入力インタフェース61と、この入力インタフェース61から入力された印刷データに基づいて印刷処理等の演算処理を実行するマイクロコンピュータで構成される制御部62と、前記給紙ローラ5に接続されている給紙ローラモータ17を駆動制御する給紙ローラモータドライバ63と、液体噴射ヘッド2を駆動制御するヘッドドライバ65と、前記駆動ローラ8に接続されている電動モータ7を駆動制御する電動モータドライバ66と、給紙ローラモータドライバ63、ヘッドドライバ65、電動モータドライバ66と給紙ローラモータ17、液体噴射ヘッド2、電動モータ7とを接続するインタフェース67とを備えて構成される。
【0016】
制御部62は、印刷処理等の各種処理を実行するCPU(Central Processing Unit)62aと、入力インタフェース61を介して入力された印刷データ或いは当該印刷データの印刷処理等を実行する際の各種データを一時的に格納し、或いは印刷処理等のプログラムを一時的に展開するRAM(Random Access Memory)62cと、CPU62aで実行する制御プログラム等を格納する不揮発性半導体メモリで構成されるROM(Read-Only Memory)62dを備えている。この制御部62は、入力インタフェース61を介してホストコンピュータ60から印刷データ(画像データ)を入手すると、CPU62aが、この印刷データに所定の処理を実行して、何れのノズルから液体を噴射するか或いはどの程度の液体を噴射するかというノズル選択データ(駆動パルス選択データ)を算出し、この印刷データや駆動パルス選択データ及び各種センサからの入力データに基づいて、給紙ローラモータドライバ63、ヘッドドライバ65、電動モータドライバ66に駆動信号及び制御信号を出力する。これらの駆動信号及び制御信号により、給紙ローラモータ17、電動モータ7、液体噴射ヘッド2内のアクチュエータ22などが夫々作動して、印刷媒体1の給紙及び搬送及び排紙、並びに印刷媒体1への印刷処理が実行される。なお、制御部62内の各構成要素は、図示しないバスを介して電気的に接続されている。
【0017】
図4には、第1実施形態の液体噴射装置を用いた液体噴射型印刷装置の制御装置から液体噴射ヘッド2に供給され、圧電素子からなるアクチュエータ22を駆動するための駆動信号COMの一例を示す。第1実施形態では、中間電位を中心に電位が変化する信号とした。この駆動信号COMは、アクチュエータ22を駆動して液体を噴射する単位駆動信号としての駆動パルスPCOMを時系列的に接続したものであり、駆動パルスPCOMの立上がり部分がノズルに連通するキャビティ(圧力室)の容積を拡大して液体を引込む(液体の噴射面を考えればメニスカスを引き込むとも言える)段階であり、駆動パルスPCOMの立下がり部分がキャビティの容積を縮小して液体を押出す(液体の噴射面を考えればメニスカスを押出すとも言える)段階であり、液体を押出した結果、液体がノズルから噴射される。
【0018】
この電圧台形波からなる駆動パルスPCOMの電圧増減傾きや波高値を種々に変更することにより、液体の引込量や引込速度、液体の押出量や押出速度を変化させることができ、これにより液体の噴射量を変化させて異なる大きさのドットを得ることができる。従って、複数の駆動パルスPCOMを時系列的に連結する場合でも、そのうちから単独の駆動パルスPCOMを選択してアクチュエータ22に供給し、液体を噴射したり、複数の駆動パルスPCOMを選択してアクチュエータ22に供給し、液体を複数回噴射したりすることで種々の大きさのドットを得ることができる。即ち、液体が乾かないうちに複数の液体を同じ位置に着弾すると、実質的に大きな液体を噴射するのと同じことになり、ドットの大きさを大きくすることができるのである。このような技術の組合せによって多階調化を図ることが可能となる。なお、図4の左端の駆動パルスPCOM1は、液体を引込むだけで押出していない。これは、微振動と呼ばれ、液体を噴射せずに、ノズルの増粘を抑制防止したりするのに用いられる。
【0019】
液体噴射ヘッド2には、前記駆動信号COMの他、前記図3の制御装置から制御信号として、印刷データに基づいて噴射するノズルを選択すると共に圧電素子などのアクチュエータ22の駆動信号COMへの接続タイミングを決定する駆動パルス選択データSI&SP、全ノズルにノズル選択データが入力された後に、駆動パルス選択データSI&SPに基づいて駆動信号COMと液体噴射ヘッド2のアクチュエータ22とを接続させるラッチ信号LAT及びチャンネル信号CH、駆動パルス選択データSI&SPをシリアル信号として液体噴射ヘッド2に送信するためのクロック信号SCKが入力されている。なお、これ以後、アクチュエータ22を駆動する駆動信号の最小単位を駆動パルスPCOMとし、駆動パルスPCOMが時系列的に連結された信号全体を駆動信号COMと記す。即ち、ラッチ信号LATで一連の駆動信号COMが出力され始め、チャンネル信号CH毎に駆動パルスPCOMが出力されることになる。
【0020】
図5には、駆動信号COM(駆動パルスPCOM)をアクチュエータ22に供給するために液体噴射ヘッド2内に構築されたスイッチングコントローラの具体的な構成を示す。このスイッチングコントローラは、液体を噴射させるノズルに対応した圧電素子などのアクチュエータ22を指定するための駆動パルス選択データSI&SPを保存するシフトレジスタ211と、シフトレジスタ211のデータを一時的に保存するラッチ回路212と、ラッチ回路212の出力をレベル変換して選択スイッチ201に供給することにより、駆動信号COMをピエゾ素子などのアクチュエータ22に接続するレベルシフタ213を備えて構成されている。
【0021】
シフトレジスタ211には、駆動パルス選択データ信号SI&SPが順次入力されると共に、クロック信号SCKの入力パルスに応じて記憶領域が初段から順次後段にシフトする。ラッチ回路212は、ノズル数分の駆動パルス選択データSI&SPがシフトレジスタ211に格納された後、入力されるラッチ信号LATによってシフトレジスタ211の各出力信号をラッチする。ラッチ回路212に保存された信号は、レベルシフタ213によって次段の選択スイッチ201をオン・オフできる電圧レベルに変換される。これは、駆動信号COMが、ラッチ回路212の出力電圧に比べて高い電圧であり、これに合わせて選択スイッチ201の動作電圧範囲も高く設定されているためである。従って、レベルシフタ213によって選択スイッチ201が閉じられる(スイッチ・オン)圧電素子などのアクチュエータ22は駆動パルス選択データSI&SPの接続タイミングで駆動信号COM(駆動パルスPCOM)に接続される。また、シフトレジスタ211の駆動パルス選択データSI&SPがラッチ回路212に保存された後、次の印刷情報をシフトレジスタ211に入力し、液体の噴射タイミングに合わせてラッチ回路212の保存データを順次更新する。なお、図中の符号HGNDは、圧電素子などのアクチュエータ22のグランド端である。また、この選択スイッチ201により、圧電素子などのアクチュエータ22を駆動信号COM(駆動パルスPCOM)から切り離した(スイッチ・オフ)後も、当該アクチュエータ22の入力電圧は、切り離す直前の電圧に維持される。すなわち、アクチュエータ22は容量性負荷である。
【0022】
図6には、アクチュエータ22の駆動回路の概略構成を示す。このアクチュエータ駆動回路は、前記制御回路内の制御部62及びヘッドドライバ65内に構築されている。また、図中の制御部23は、前記図3の制御部62とは異なり、当該制御部62内で行われる演算処理プログラムによって構成され、後述するパルス幅補正回路27により駆動波形信号WCOMを補正する。また、パルス幅補正回路27も、制御部62内で行われる演算処理プログラムによって構成される。第1実施形態の駆動回路は、波形メモリ24に予め記憶されている駆動波形データDWCOMに基づいて、駆動信号COM(駆動パルスPCOM)の元、つまりアクチュエータ22の駆動を制御する信号の基準となる駆動波形信号WCOMを生成する駆動波形信号発生回路25と、制御部23からの指令に応じて、必要に応じて駆動波形信号WCOMを補正するパルス幅補正回路27と、駆動波形信号発生回路25で生成され又はパルス幅補正回路27で補正された駆動波形信号WCOMをパルス変調する変調回路26と、変調回路26でパルス変調された変調信号を電力増幅するデジタル電力増幅器28と、デジタル電力増幅器28で電力増幅された電力増幅変調信号を平滑化して、駆動信号COM(駆動パルスPCOM)として液体噴射ヘッド2に供給する平滑フィルタ29とを備えて構成され、この駆動信号COM(駆動パルスPCOM)が前記選択スイッチ201からアクチュエータ22に供給される。
【0023】
駆動波形信号発生回路25は、波形メモリ24に記憶されている電位データなどで構成される駆動波形データDWCOMを所定のクロック周期毎に読込み、その駆動波形データDWCOMを電圧信号に変換して次のクロック信号までホールドすると共に、その電圧信号をアナログ変換して駆動波形信号WCOMとして出力する。また、変調回路26には、周知のパルス幅変調(PWM:Pulse Width Modulation)を用いパルス変調を行う。そのため、この変調回路26は、所定のクロックタイミングで基準信号となる三角波信号を出力する三角波発振器34と、駆動波形信号発生回路25から出力された駆動波形信号WCOMと三角波発振器34から出力された三角波信号とを比較し、駆動波形信号WCOMが三角波信号より大きいときにオンデューティとなるパルスデューティの変調信号を出力する比較部35とを備えている。なお、三角波信号の周期を変調周期、三角波信号の周波数を変調周波数(一般にキャリア周波数などと呼ばれている)と定義する。
【0024】
デジタル電力増幅器28は、実質的に電力を増幅するためのハイサイド側スイッチング素子Q1及びローサイド側スイッチング素子Q2からなるハーフブリッジ出力段21と、変調回路26からの変調信号に基づいて、ハイサイド側スイッチング素子Q1、ローサイド側Q2のゲート電圧(正確にはゲート−ソース間電圧)VH、VLを調整するためのゲートドライブ回路30とを備えて構成されている。デジタル電力増幅器28では、変調信号がハイレベルであるとき、ハイサイド側スイッチング素子Q1のゲート電圧VHはハイレベルとなり、ローサイド側スイッチング素子Q2のゲート電圧VLはローレベルとなるので、ハイサイド側スイッチング素子Q1はオン状態となり、ローサイド側スイッチング素子Q2はオフ状態となり、その結果、ハーフブリッジ出力段21の出力電圧Vaは、電源電圧Vddとなる。一方、変調信号がローレベルであるとき、ハイサイド側スイッチング素子Q1のゲート電圧VHはローレベルとなり、ローサイド側スイッチング素子Q2のゲート電圧VLはハイレベルとなるので、ハイサイド側スイッチング素子Q1はオフ状態となり、ローサイド側スイッチング素子Q2はオン状態となり、その結果、ハーフブリッジ出力段21の出力電圧Vaは0となる。
【0025】
平滑フィルタ29には、1つのコンデンサCとコイルLからなる2次のフィルタを用いた。この平滑フィルタ29によって、前記変調回路26で生じた変調周波数、即ちパルス変調の周波数成分を減衰して除去し、前述したような波形特性の駆動信号COM(駆動パルスPCOM)を出力する。なお、図6は、理解を容易にするために回路化して示してあるが、駆動波形信号発生回路25及び変調回路26は、図3の制御部62内で行われるプログラミングによって構築されている。また、平滑フィルタ29は回路配線で発生する寄生インダクタンスや浮遊容量、若しくはアクチュエータなどを利用して構成可能であり、必ずしも回路化する必要はない。また、波形メモリ24は、前記ROM62d内に形成されている。
【0026】
図7aには、駆動波形信号WCOM並びにデジタル電力増幅器28の通常時の出力電圧Va及び出力電流Iを示す。通常時はデジタル電力増幅器を構成するスイッチング素子から出力される電流Iは、変調信号1周期の間に0A(ゼロアンペア)をクロスし、平滑フィルタ方向と、電源あるいはグランドの双方向に流れる(この状態をモードAと呼ぶこととする)。図7bには、図に○で囲む部分でデジタル電力増幅器を構成するスイッチング素子から出力される電流Iが、1変調周期内で常に1方向である状態(この状態をモードBと呼ぶこととする。)の出力電圧Va及び出力電流Iを示す。このうち、出力電流Iが常に正の状態(モードB充電時と呼ぶこととする)では、後述するように、容量性負荷である圧電素子からなるアクチュエータ22に常時充電が行われ、出力電流Iが常に負の状態(モードB放電時と呼ぶこととする)では、容量性負荷である圧電素子からなるアクチュエータ22から常時放電が行われる。
【0027】
ラインヘッド型印刷装置では、高速印刷に加えて、更なる高画質が要求されていることから、前述した駆動信号COM(駆動パルスPCOM)の高周波化が進み、更に駆動信号COM(駆動パルスPCOM)の波形精度も要求されている。つまり、非常に短い周期で正確な波形の駆動信号COM(駆動パルスPCOM)を発生しなければならないのであり、それを実現するためにパルス変調の変調周波数fは数MHz、変調周期Tで表すとnsecオーダーとなる。そして後述するように、パルス変調の変調周期Tが短くなるとデジタル電力増幅器28においてモードBが発生しやすくなる。
【0028】
図8には、モードA、モードB放電時、モードB充電時のゲート電圧Vgs(VH、VL)、出力電圧Va、出力電流Iの詳細を示す。前述したように、ゲート電圧Vgsは、ハイサイド側スイッチング素子Q1のゲート電圧VHがハイレベルにあるときローサイド側スイッチング素子Q2のゲート電圧VLがローレベルになり、ハイサイド側スイッチング素子Q1のゲート電圧VHがローレベルにあるときローサイド側スイッチング素子Q2のゲート電圧VLがハイレベルになるのが原則である。しかしながら、実際のゲート電圧VH、VLには電圧がローレベルからハイレベルに移行する立上がり及び電圧がハイレベルからローレベルに移行する立下がりの所要時間があり、この立上がりや立下がりの途中のゲート電圧VH、VLがともにハイレベルとなると、電源電圧Vddが直接接地してしまう、シュートスルーと呼ばれるスイッチングロスが発生してしまう。そのため、ハイサイド側スイッチング素子Q1のゲート電圧VHのハイレベルからローサイド側スイッチング素子Q2のゲート電圧VLのハイレベルへの移行期、及びローサイド側スイッチング素子Q2のゲート電圧VLのハイレベルからハイサイド側スイッチング素子Q1のゲート電圧VHのハイレベルへの移行期に、ハイサイド側スイッチング素子Q1のゲート電圧VHも、ローサイド側スイッチング素子Q2のゲート電圧VLもともにローレベルの状態となるデッドタイムtdを設定し、シュートスルーを回避する。
【0029】
図8aは、モードAのゲート電圧Vgs、出力電圧Va、出力電流Iであり、デッドタイムtd期間中にハイサイド側スイッチング素子Q1及びローサイド側スイッチング素子Q2の出力が反転する。そのため、電力増幅変調信号の出力電圧Vaはローサイド側スイッチング素子Q2のゲート電圧VLの立下がりで立上がる。また、電力増幅変調信号の出力電圧Vaはハイサイド側スイッチング素子Q1のゲート電圧VHの立下がりで立下がる。これに対し、モードB放電時には、図8bに示すように、デッドタイムtd期間中はハイサイド側スイッチング素子Q1のボディダイオードに常に電流が流れ、そのため電力増幅変調信号の出力電圧Vaはデッドタイムtd期間中常にハイレベルになる。その結果、電力増幅変調信号の出力電圧Vaはローサイド側スイッチング素子Q2のゲート電圧VLの立下がりで立上がる。また、電力増幅変調信号の出力電圧はローサイド側スイッチング素子Q2のゲート電圧VLの立上がりで立下がる。一方、モードB充電時には、図8cに示すように、デッドタイムtd期間中はローサイド側スイッチング素子Q2のボディダイオードに常に電流が流れ、そのため電力増幅変調信号の出力電圧Vaはデッドタイムtd期間中常にローレベルになる。その結果、電力増幅変調信号の出力電圧Vaはハイサイド側スイッチング素子Q1のゲート電圧VHの立上がりで立上がる。また、電力増幅変調信号の出力電圧Vaは、ハイサイド側スイッチング素子Q1のゲート電圧VHの立下がりで立下がる。これらをまとめると、モードA時の電力増幅変調信号の出力電圧Vaに対し、モードB放電時にはデッドタイムtd分だけハイレベルの時間が長く、モードB充電時にはデッドタイムtd分だけハイレベルの時間が短い。これでは、電力増幅変調信号を平滑して得られる駆動信号COM(駆動パルスPCOM)の波形精度が得られない。
【0030】
実際には、後述するようにデジタル電力増幅器28においてモードBは、駆動信号COM(駆動パルスPCOM)の電圧、つまり駆動波形信号WCOMの電圧が変化しない部分では発生しない。そこで、駆動波形信号WCOMの電圧の変化の状態や駆動されるアクチュエータの数、変調信号のオンデューティ比などからモードB発生の有無を検出し、モードB発生時には、前記デッドタイムtd分の電力増幅変調信号の出力電圧Vaの増減分を、予め駆動波形信号WCOMに減増して、デジタル電力増幅器28の出力電圧Vaのパルス幅をモードA時と変わらないようにして駆動信号COM(駆動パルスPCOM)の精度を確保しようとする。以下に、モードB発生時においても駆動信号COM(駆動パルスPCOM)の精度を確保する原理を説明する。
デジタル電力増幅器28の出力電流をIcom、パルス変調の変調周期で流れる電流をIpwmとすると、デジタル電力増幅器28においてモードBが発生する条件は下記1式で表される。
【0031】
【数1】

【0032】
圧電素子からなるアクチュエータ22は容量性負荷であるから、アクチュエータ22の1個当たりの負荷容量をCact、駆動されるアクチュエータ22の数をNact、駆動波形信号WCOMの単位時間当たりの電圧変化率(以下、単に電圧変化率とも記す)をdVact/dtとすると、デジタル電力増幅器28の出力電流Icomは下記2式で表される。なお、駆動されるアクチュエータ22の数は、前述したように駆動パルス選択データSI&SP、つまり印刷データから求めることができる。また、アクチュエータ22の1個当たりの負荷容量Cactは既知数である。
【0033】
【数2】

【0034】
平滑フィルタ29のコイルLの両端の電圧をVcoil、パルス変調の変調周期をT、変調信号のオンデューティ比をD、コイルLのインダクタンス値をLとしたとき、パルス変調の変調周期で流れる電流Ipwmは下記3式で表れ、3式中の変調信号オンデューティ比Dは下記4式で表される。
【0035】
【数3】

【0036】
前記2式で、正値にも負値にも変化するのは駆動波形信号WCOMの電圧変化率dVact/dtだけであるから、この駆動波形信号WCOMの電圧変化率dVact/dtを絶対値で表し、2式及び3式を1式に代入して下記5式を得る。
【0037】
【数4】

【0038】
つまり、5式が成立するとき、デジタル電力増幅器28においてモードBが発生する(即ち、駆動波形信号WCOMの電圧が変化しないときにはモードBは発生しない)。
次に、駆動波形信号WCOMの補正量を求める。正規の(モードA時の)駆動信号COM(駆動パルスPCOM)の電圧がVcomであるとき、電圧増幅変調信号のパルス幅Tcomは下記6式で表れる。
【0039】
【数5】

【0040】
デジタル電力増幅器28においてモードBが発生する場合、駆動信号COM(駆動パルスPCOM)の電圧がV’comに変化したとすると、モードB放電時にはデッドタイムtd分だけパルス幅が長くなり、モードB充電時にはデッドタイムtd分だけパルス幅が短くなることから下記7式が成立する(正記号が放電時、負記号が充電時)。
【0041】
【数6】

【0042】
この7式をモードB発生時の駆動信号COM(駆動パルスPCOM)の電圧V’comについて解いて下記8式が得られる。
【0043】
【数7】

【0044】
この8式の右辺第1項は正規の(モードA時の)駆動信号COM(駆動パルスPCOM)の電圧Vcomであるから、モードB発生時の駆動信号COM(駆動パルスPCOM)の電圧V’comは8式の右辺第2項分だけ、電圧Vcomに対して増減している。従って、モードB発生時には、8式の右辺第2項分だけ、駆動波形信号WCOMを減増補正すればよい。
【0045】
ここで、モードB発生時に、8式右辺第2項分だけ、駆動波形信号WCOMを減増補正することにより、正規の(モードA時の)駆動信号COM(駆動パルスPCOM)の電圧Vcomが得られることを証明する。
まず、正規の(モードA時の)駆動信号COM(駆動パルスPCOM)の電圧Vcomに8式右辺第2項を減増した値をモードB発生時の駆動信号COM(駆動パルスPCOM)の電圧V’comであるとして下記9式を想定する。
【0046】
【数8】

【0047】
前記7式の左辺をモードB発生時の電圧増幅変調信号のパルス幅T’comであるとして、当該7式に9式を代入して下記10式を得る。
【0048】
【数9】

【0049】
前記8式の右辺第1項のパルス幅Tcomをパルス幅T’comと置換し、このパルス幅T’comに前記10式を代入すると、下記11式で表れるように正規の(モードA時の)駆動信号COM(駆動パルスPCOM)の電圧Vcomが得られる。なお、このように駆動波形信号WCOMを補正した結果、正規の(モードA時の)駆動信号COM(駆動パルスPCOM)の電圧Vcomが得られるということは、デジタル電力増幅器28の出力電圧Vaのパルス幅がモードA時と変わらないということである。
【0050】
【数10】

【0051】
次に、デジタル電力増幅器28におけるモードBの発生を検出するために図6の駆動回路の制御部23で行われる演算処理について図9のフローチャートを用いて説明する。この演算処理では、まずステップS1で、印刷データ、即ち駆動信号選択データSI&SPから駆動アクチュエータ数Nactを求めると共に、駆動波形信号WCOMの電圧変化率dVact/dtを読込み、それらを用いて、前記5式が成立するか否かを判定し、5式が成立する場合にはステップS2に移行し、そうでない場合にはステップS3に移行する。
ステップS2では、デジタル電力増幅器28のモードB発生を意味するモードBフラグXを“1”にセットしてから処理を終了する。
ステップS3では、デジタル電力増幅器28においてモードBが発生しないとして前記モードBフラグXを“0”にリセットしてから処理を終了する。
【0052】
次に、デジタル電力増幅器28においてモードBが発生場合に、駆動波形信号WCOMの駆動波形信号電圧Vwcomを補正するために、図6の駆動回路のパルス幅補正回路27で行われる演算処理について図10のフローチャートを用いて説明する。この演算処理では、まずステップS11で、前記モードBフラグXが“0”のリセット状態であるか否かを判定し、モードBフラグXがリセット状態である場合にはステップS12に移行し、そうでない場合にはステップS13に移行する。
【0053】
ステップS12では、デジタル電力増幅器28のモードB発生しないものとして本来の駆動波形信号電圧Vwcomをそのまま出力してから処理を終了する。
ステップS13では、駆動波形信号WCOMの電圧変化率dVact/dtが正値であるか否かを判定し、駆動波形信号WCOMの電圧変化率dVact/dtが正値である場合にはステップS14に移行し、そうでない場合にはステップS15に移行する。
【0054】
ステップS14では、本来の駆動波形信号電圧Vwcomに前記8式の右辺第2項(図ではβに相当)を加算し、その加算値を補正された駆動波形信号電圧Vwcomとして出力してから処理を終了する。
ステップS15では、本来の駆動波形信号電圧Vwcomから前記8式の右辺第2項(図ではβに相当)を減算し、その減算値を補正された駆動波形信号電圧Vwcomとして出力してから処理を終了する。
【0055】
これらの演算処理によれば、図11に破線で示す本来の駆動波形信号電圧Vwcomに対し、デジタル電力増幅器28においてモードBが検出された場合、図11に実線で示すように、充電時には前記8式の右辺第2項、即ちVdd×td/Tを本来の駆動波形信号電圧Vwcomに加算し、放電時にはVdd×td/dtを本来の駆動波形信号電圧Vwcomから減算して補正された駆動波形信号WCOMとするので、デジタル電力増幅器28においてモードBが発生しても、駆動信号COM(駆動パルスPCOM)の波形精度が確保される。
【0056】
このように第1実施形態の液体噴射装置を用いた液体噴射型印刷装置では、駆動波形信号WCOMの電圧変化率dVact/dt及び駆動パルス選択データSi&SP、即ち印刷データから求められる駆動アクチュエータ数Nactに基づいてデジタル電力増幅器28においてモードBを検出し、モードBが検出された場合に、デジタル電力増幅器28からの電力増幅変調信号のパルス幅がモードAと変わらないように駆動波形信号WCOMを調整することにより、デジタル電力増幅器28においてモードBが発生しても駆動信号COM(駆動パルスPCOM)の精度を確保することができる。
【0057】
次に、本発明の液体噴射装置を用いた液体噴射型印刷装置の第2実施形態について説明する。第2実施形態の液体噴射型印刷装置は、第1実施形態の液体噴射型印刷装置に類似しており、その概略構成、液体噴射ヘッド近傍、制御装置、駆動信号、スイッチングコントローラは、前記第1実施形態と同様である。第2実施形態では、アクチュエータ駆動回路が少し異なる。
【0058】
第2実施形態のアクチュエータ駆動回路を図12に示す。このアクチュエータ駆動回路も、前記第1実施形態の図6のアクチュエータ駆動回路に類似しており、同等の構成には同等の符号を附す。第2実施形態のアクチュエータ駆動回路では、前記第1実施形態のパルス幅補正回路が省略され、制御部23が三角波発振器34に接続されている。三角波発振器34は、制御部23の指令に応じて三角波信号を出力する。
【0059】
本実施形態では、前述したデジタル電力増幅器28のモードBが発生するであろうことを検出し、デジタル電力増幅器28においてモードBが発生するであろう場合には、パルス変調の変調周期Tを長くすることで、デジタル電力増幅器28においてモードBの発生そのものを回避しようとする。
前記5式で表れるモードB発生条件式をパルス変調の変調周期Tについて解き、符号を逆転すると、下記12式が得られる。符号を逆転したことによって、12式はモードBが発生しない条件式となっている。この12式のパルス変調の変調周期T(或いは変調周波数f)が、デジタル電力増幅器28においてモードBの発生を回避できるパルス変調の変調周期(或いは変調周波数)となる。
【0060】
【数11】

【0061】
実際には、前記12式の左辺をαとしたとき、このαに、1より大きいマージン係数γを乗じ、その乗算値をパルス変調の変調周期Tとする。本実施形態では、図13に示すように、クロック信号SCKのクロック周期Tckで、三角波信号電圧Vsawを所定増加電圧Vstepずつ増加して三角波信号とする。ここで、パルス変調の変調周期Tを変更する場合を考える。三角波信号の波高値(到達電圧)をVddsawとすると、パルス変調の変調周期Tに対するクロック周期Tckの比と、三角波信号の波高値Vddsawに対する所定増加電圧Vstepの比は等しい(T:Tck=Vddsaw:Vstep)。ここで、クロック周期Tckは固定値とする。そこで、三角波信号の波高値Vddsawにクロック周期Tckを乗じ、その値をパルス変調の変調周期T(=α×γ)で除せば所定増加電圧Vstepが求められる。
【0062】
図14は、前記制御部23で行われる三角波信号発生のための演算処理を示すフローチャートである。この演算処理は、駆動波形信号発生指令の度に実行され、まずステップS21で、印刷データ、即ち駆動パルス選択データSI&SPから駆動アクチュエータ数Nactを求めると共に、駆動波形信号WCOM及びその電圧変化率dVact/dtを読込む。
【0063】
次にステップS22に移行して、ステップS21で読込まれた駆動波形信号WCOMが波形終了であるか否かを判定し、波形終了である場合には演算処理を終了し、そうでない場合にはステップS23に移行する。
ステップS23では、前記12式が満たされるか否かを判定し、つまりα<Tであるか否かを判定し、12式が満たされる場合にはステップS24に移行し、そうでない場合にステップS25に移行する。
ステップS24では、予め設定されたモードA用変調周期Tzvsをパルス変調の変調周期Tに設定すると共に、クロック周期Tckに三角波信号波高値Vddsawを乗じ、その値を変調周期Tで除して所定増加電圧Vstepを算出してからステップS26に移行する。
【0064】
一方、ステップS25では、前記12式の左辺αにマージン係数γを乗じた値をパルス変調の変調周期Tに設定すると共に、クロック周期Tckに三角波信号波高値Vddsawを乗じ、その値を変調周期T(=α×γ)で除して所定増加電圧Vstepを算出してからステップS26に移行する。
ステップS26では、タイマカウンタCountをリセットすると共に三角波信号電圧Vsawを0Vにクリアする。
【0065】
次にステップS27に移行して、タイマカウンタCountがパルス変調の変調周期Tと等しいか否かを判定し、タイマカウンタCountがパルス変調の変調周期Tと等しい場合にはステップS22に移行し、そうでない場合にはステップS28に移行する。
ステップS28では、タイマカウンタCountをクロック周期Tckに相当する1つ分だけインクリメントすると共に、三角波信号電圧Vsawに所定増加電位Vstepを加算した値を新たな三角波信号電圧電位VsawとしてからステップS27に移行する。
【0066】
この演算処理によれば、パルス変調の変調周期Tが12式を満足する場合には、モードA用変調周期Tzvsがパルス変調の変調周期Tに設定されるため、駆動波形信号WCOMを高精度にパルス変調することができ、一方、パルス変調の変調周期Tが12式を満足しない場合には、12式の左辺αにマージン係数γを乗じた値がパルス変調の変調周期Tに設定されるため、図15に示すように出力電流の振幅が変化し、デジタル電力増幅器28においてモードBの発生そのものが回避され、結果的に駆動信号COM(駆動パルスPCOM)の波形精度を確保することができる。
【0067】
このように第2実施形態の液体噴射装置を用いた液体噴射型印刷装置では、駆動波形信号WCOMの電圧変化率dVact/dt及び駆動パルス選択データSI&SP、即ち印刷データから求められる駆動アクチュエータ数Nact及びデジタル電力増幅器28の電源電圧Vdd及び平滑フィルタ29のインダクタンス値L及び変調信号のオンデューティ比Dに基づいてデジタル電力増幅器28のハイサイド側スイッチング素子Q1及びローサイド側スイッチング素子Q2のハードスイッチングが発生しないようにパルス変調の変調周期Tを調整することにより、デジタル電力増幅器28においてモードBそのものが発生しないため、駆動信号COM(駆動パルスPCOM)の精度を確保することができる。
【0068】
また、モードBの領域は、デジタル電力増幅器28において、最も電力を消費する領域であるため、モードBを回避することにより、消費電力が低減する可能性がある。
また、モードB領域では、スイッチング素子Q1、Q2の容量成分からスイッチ切換え時に放出される逆回復電流によってスイッチング素子Q1、Q2の波形品質劣化や、逆回復電流がインダクタンス成分で発振するリンギングの発生等の問題が発生する。モードBを回避することにより、波形品質の向上、放射電磁波の減少などの効果が得られる可能性がある。
なお、前記第1〜第2実施形態では、本発明の液体噴射装置をラインヘッド型の液体噴射型印刷装置に用いた場合についてのみ詳述したが、本発明の液体噴射装置は、マルチパス型の液体噴射型印刷装置にも同様に適用可能である。
【0069】
また、本発明の液体噴射装置は、インク以外の他の液体(液体以外にも、機能材料の粒子が分散されている液状体、ジェルなどの流状体を含む)や液体以外の流体(流体として流して噴射できる固体など)を噴射する液体噴射装置に具体化することもできる。例えば、液晶ディスプレイ、EL(エレクトロルミネッサンス)ディスプレイ、面発光ディスプレイ、カラーフィルタの製造などに用いられる電極材や色材などの材料を分散又は溶解の形態で含む液状体を噴射する液状体噴射装置、バイオチップ製造に用いられる生体有機物を噴射する液体噴射装置、精密ピペットとして用いられて試料となる液体を噴射する液体噴射装置であってもよい。更に、時計やカメラなどの精密機械にピンポイントで潤滑油を噴射する液体噴射装置、光通信素子などに用いられる微小半球レンズ(光学レンズ)などを形成するための紫外線硬化樹脂などの透明樹脂液を基板上に噴射する液体噴射装置、基板などをエッチングするために酸又はアルカリなどのエッチング液を噴射する液体噴射装置、ジェルを噴射する流状体噴射装置、トナーなどの粉体を例とする固体を噴射する流体噴射式記録装置であってもよい。さらに、水や食塩水等の液体をパルス状に噴射して生体組織を切開または切除する手術具としての液体噴射装置であってもよい。そして、これらのうち何れか一種の噴射装置に本発明を適用することができる。
【符号の説明】
【0070】
1は印刷媒体、2は液体噴射ヘッド、3は給紙部、4は搬送部、5は給紙ローラ、6は搬送ベルト、7は電動モータ、8は駆動ローラ、9は従動ローラ、10は排紙部、11はヘッド固定プレート、21はハーフブリッジ出力段、22はアクチュエータ、23は制御部、24は波形メモリ、25は駆動波形信号発生回路、26は変調回路、27はパルス幅補正回路、28はデジタル電力増幅器、29は平滑フィルタ、30はゲートドライブ回路、34は三角波発振器、35は比較部、65はヘッドドライバ

【特許請求の範囲】
【請求項1】
駆動波形信号を発生する駆動波形信号発生回路と、
前記駆動波形信号をパルス変調して変調信号とする変調回路と、
前記変調信号を電力増幅して電力増幅変調信号とするデジタル電力増幅器と、
前記電力増幅変調信号を平滑化して駆動信号とする平滑フィルタと
前記デジタル電力増幅器を構成するスイッチング素子から出力される電流が1変調周期内で常に1方向である場合に、電力増幅変調信号のパルス幅を調整するパルス幅補正回路と
を備えたことを特徴とする液体噴射装置。
【請求項2】
前記パルス幅補正回路は、電力増幅変調信号のパルス幅をデッドタイム分長く調整するか又は短く調整する機能を有することを特徴とする請求項1に記載の液体噴射装置。
【請求項3】
前記パルス幅補正回路は、
前記駆動波形信号の電圧変化状態及びアクチュエータの負荷容量及び前記デジタル電力増幅器の電源電圧及び前記平滑フィルタのインダクタンス値及び前記変調信号のオンデューティ比に基づいてデジタル電力増幅器に流れる電流を判定し、それに応じて電力増幅変調信号のパルス幅を調整することを特徴とする請求項1又は2に記載の液体噴射装置。
【請求項4】
前記パルス幅補正回路は、
前記駆動波形信号の電圧を上昇させる期間は、前記駆動波形信号に対して所定の電圧を加算し、電圧を下降させる期間は、前記駆動波形信号に対して所定の電圧を減算させることを特徴とする請求項1乃至3の何れか一項に記載の液体噴射装置。
【請求項5】
駆動波形信号を発生する駆動波形信号発生回路と、
前記駆動波形信号をパルス変調して変調信号とする変調回路と、
前記変調信号を電力増幅して電力増幅変調信号とするデジタル電力増幅器と、
前記電力増幅変調信号を平滑化して駆動信号とする平滑フィルタと、
前記デジタル電力増幅器を構成するスイッチング素子から出力される電流が1変調周期内で常に1方向である状態が発生しないように前記パルス変調の変調周期を調整する変調周期調整部とを備えたことを特徴とする液体噴射装置。
【請求項6】
前記変調周期調整部は、
前記駆動波形信号の電圧変化状態及びアクチュエータの負荷容量及び前記デジタル電力増幅器の電源電圧及び前記平滑フィルタのインダクタンス値及び前記変調信号のオンデューティ比に基づいて、変調周期を長くすることを特徴とする請求項5に記載の液体噴射装置。
【請求項7】
請求項1乃至6の何れか一項に記載の液体噴射装置を備えた液体噴射型印刷装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2011−93231(P2011−93231A)
【公開日】平成23年5月12日(2011.5.12)
【国際特許分類】
【出願番号】特願2009−250463(P2009−250463)
【出願日】平成21年10月30日(2009.10.30)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】