説明

液晶パネル製造装置及び液晶パネルの製造方法

【課題】 光反応性物質及び液晶体の熱による変形や劣化を抑制し、高性能で歩留ま
りを向上させた液晶パネルを製造可能な液晶パネル製造装置及びこれを用いた液晶パネル
の製造方法を提供する。
【解決手段】 液晶体17と光反応性物質18とを内部に封入した被処理基板10に紫外
線を照射して前記光反応性物質18を反応させ、前記被処理基板10の内部に配向部21
,22を形成させるランプ52と、前記ランプ52に対向し、波長340nm以下の波長
領域の紫外線の透過を抑制するフィルタ53と、前記フィルタ53を介して前記ランプ5
2に対向し、前記被処理基板10を載置するステージ51と、被処理基板を冷却する冷却
機構54とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液晶パネル製造装置及びこれを用いた液晶パネルの製造方法に関する。
【背景技術】
【0002】
液晶パネルは、表示品質が高く、薄型化及び低消費電力化等が可能なことから、様々な
用途に用いられてきている。特に最近は、液晶テレビ等の大型液晶装置への需要が多くな
ってきており、その性能も、高いものが望まれるようになってきている。
【0003】
高性能な液晶パネルを得るためには、液晶体を所定の方向に配向させるための配向膜の
配向制御が重要である。従来は、配向膜を布で擦る「ラビング法」等が一般的に用いられ
てきたが、ラビング法を用いると、埃が落ちて汚れが付着する、或いは、静電気等により
半導体素子が破損する等の問題がある。そこで、ラビング法に代わる技術として、光反応
性物質を基板上に形成し、紫外線を照射することにより光反応性物質を化学反応させて配
向機能を持たせる「光配向法」とよばれる技術が、注目されてきている(例えば、特許文
献1参照。)。
【0004】
しかし、光反応性物質及び液晶体は熱に弱いため、紫外線照射等により一定温度以上に
加熱すると熱変形や劣化が起こり、製造後の液晶パネルの性能及び歩留まりを大きく低下
させる。
【0005】
【特許文献1】特許第3163357号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明は、光反応性物質及び液晶体の熱による変形や劣化を抑制し、高性能で歩留まり
を向上させた液晶パネルを製造可能な液晶パネル製造装置及びこれを用いた液晶パネルの
製造方法を提供する。
【課題を解決するための手段】
【0007】
本願発明の態様によれば、光反応性物質を含有する液晶体を内部に封入した被処理基板
に紫外線を照射して光反応性物質を反応させ、被処理基板の内部に配向部を形成させるラ
ンプと、ランプに対向し、波長340nm以下の波長領域の紫外線の透過を抑制するフィ
ルタと、フィルタを介してランプに対向し、被処理基板を載置するステージと、被処理基
板を冷却する冷却機構とを備える液晶パネル製造装置が提供される。
【0008】
本願発明の他の態様によれば、液晶体と光反応性を有する高分子体とを内部に封入した
被処理基板を冷却しながら波長領域340nm以下の紫外線の透過を抑制するフィルタを
介して紫外線を照射し、被処理基板の内部の高分子体を反応させて配向部を形成する液晶
パネルの製造方法が提供される。
【発明の効果】
【0009】
本発明によれば、光反応性物質及び液晶体の熱による変形や劣化を抑制し、高性能で歩
留まりを向上させた液晶パネルを製造可能な液晶パネル製造装置及びこれを用いた液晶パ
ネルの製造方法が提供できる。
【発明を実施するための最良の形態】
【0010】
次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載においては
、同一又は類似の部分には同一又は類似の符号を付している。以下に示す実施の形態は、
この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明
の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。
【0011】
−被処理基板−
本発明の実施の形態に係る液晶パネル製造装置を用いて処理可能な被処理基板10を説
明する。図1に例示するように、被処理基板10は、ガラス製等の第1基板12と第2基
板14の間に、電圧印加により方位性を持つ液晶体17と、光反応性を有する光反応性物
質(高分子体)18とが少なくとも封入されている。液晶体17としては、
液晶体17としては、例えば、エステル系、ビフェニル系、フェニルシクロヘキサン(
PCH)系、シクロヘキサン系、フェニルピリジミン系、ジオキサン系の母材が用いられ
る。母材は用途に応じてブレンドされるのが好ましい。駆動電圧を小さくすることが可能
な液晶材料としては、P−エステル系、Pービフェニル系の材料等が好適である。高温に
耐え、安定して作動可能な液晶材料としては、三環系、四環系の母材が好適である。応答
性を向上させ、動画等の表示に好適な液晶材料としては、PCH系又はビフェニル系の材
料が好適である。
【0012】
高分子体18としては、例えば、図2に示すようなアゾ化合物(アゾベンゼン)を持つ
高分子材料が用いられる。アゾ化合物を持つ高分子材料は、紫外線、特に波長領域300
〜400nmの紫外線を照射することにより重合し、架橋構造体を形成する。図1に示す
ように、第1基板12と第2基板14の間は、シール部19により貼り合わせられている

【0013】
第1基板12の表面には、薄膜トランジスタ(TFT)等の半導体素子11が複数個配
列されている。複数個の半導体素子11の配列の上には、第1透明電極15が形成されて
いる。一方、第2基板14の表面には、カラーフィルタ13が配置されている。カラーフ
ィルタ13の表面には、第2透明電極16が形成されている。
【0014】
図1の被処理基板10に紫外線を照射した後の処理中間体(液晶パネル)20の例を図
3に示す。後述する液晶パネル製造装置を用いて、例えば、図1の被処理基板10に電圧
を印加した状態で紫外線を照射すると、第1透明電極15、第2透明電極16の表面に凸
状の配向部21,22がそれぞれ形成される。
【0015】
この配向部21,22は、図1の高分子体18が光照射により重合した架橋構造体であ
り、図4に示すように、第1基板12の一定方向に対してそれぞれ並行に並んで配置され
ている。図5に示すように、第1透明電極15の上面からみた配向部21の立ち上がりの
角度θは、例えば、被処理基板10に印加する電圧等を制御すること等により変更可能で
ある。
【0016】
第1透明電極15,第2透明電極16の表面に、配向部21,22がそれぞれ配置され
ることにより、図6及び図7に例示するように、配向部21,22の隙間(凹部分)に液
晶体17が入り込む。そのため、液晶パネル20の内部に配向部21,22を形成しない
場合に比べて、液晶体17の配向規制力が高くなり、応答速度、透過率、コントラスト、
偏光特性等の液晶パネルの種々の性能及び特性を向上させることができる。
【0017】
−液晶パネル製造装置−
(全体構成)
実施の形態に係る液晶パネル製造装置は、図8に示すように、複数の被処理基板10を
収納可能な搬入部2と、搬入部2に収納された被処理基板10の上下を反転させる反転部
3と、反転部3から搬送された被処理基板10の特性を検査する検査部4と、検査部4か
ら搬送された被処理基板10に対して紫外線を照射する紫外線照射部(UV照射部)5と
、UV照射部5から搬送された紫外線を照射後の被処理基板10を反転させる反転部6と
を備える。
【0018】
搬入部2の内部には、搬送ロボット25が配置されている。搬送ロボット25は、被処
理基板10を配置するための台の下に配置されたコンピュータシステム(図示省略)によ
り管理され、処理対象となる被処理基板10を反転部3に搬送する。
【0019】
検査部4は、第1検査装置4a及び第2検査装置4bを含む。第1検査装置4a及び第
2検査装置4bは、被処理基板10に電圧を印加し、液晶体の配向状態を検査することに
より、被処理基板10が所定の品質基準を満たしているか否かを検査する。図8では、2
台の検査装置(第1検査装置4a及び第2検査装置4b)を例示したが、検査装置の数は
、図8に示す液晶パネル製造装置の処理能力に応じていくつあってもよい。
【0020】
UV照射部5は、第1UV照射装置5a及び第2UV照射装置5bを含む。第1UV照
射装置5a及び第2UV照射装置5bは、被処理基板10に紫外線を照射する。UV照射
装置の数は、いくつあってもよい。
【0021】
反転部3から検査部4、UV照射部5、反転部6へ被処理基板10の搬送は、反転部3
と反転部6との間の経路に設けられた搬送ロボット62により行われる。搬送ロボット6
2は、搬送ロボット62の経路の下に設けられたコンピュータシステム(図示省略)によ
り管理されている。
【0022】
装置の外側面には、表示装置61が配置されている。表示装置61により、例えば、検
査部4及びUV照射部5に搬送された被処理基板10の載置位置のアライメント等が可能
である。また、液晶パネル製造装置の内側面には、静電気等を取り除くためのイオナイザ
ー63が取り付けられていてもよい。
【0023】
(処理手順)
図8に示す液晶パネル製造装置を用いて処理を行う場合は、図9のフローチャートに示
すように、ステップS1において、搬入部2に被処理基板10を収納し、図8の搬送ロボ
ット25により、被処理基板10を搬入部2から反転部3に搬送させる。
【0024】
図9のステップS2において、図1に示す被処理基板10を上下反転させ、半導体素子
11が形成された側の第1基板12が上方に、カラーフィルタ13が形成された側の第2
基板14が下方になるようにする。反転させることにより、UV照射部5において半導体
素子11が形成された側の第1基板12側からランプ光が照射されるため、カラーフィル
タの損傷が抑制できる。なお、第1基板12が上方にある場合は反転しなくてもよい。
【0025】
図9のステップS3において、搬送ロボット62が、被処理基板10を反転部3から、
検査部4に搬送する。検査部4において、表示装置61等により被処理基板10の位置合
わせを行い、被処理基板10内部の液晶体17を電圧印加により配向させて、被処理基板
10の良否を判定する。ステップS3の検査において「不良」と判定された被処理基板1
0は、図8の搬送ロボット62により、検査部4から装置外部へ搬送させる。ステップS
3の検査において「良」と評価された被処理基板10は、搬送ロボット62により、検査
部4からUV照射部5に搬送する。
【0026】
ステップS4において、UV照射部5において、例えば、340〜400nmの波長領
域の紫外線を340nm以下の波長領域の紫外線に比べて相対的に多く発光させたランプ
光を被処理基板10に照射する。これにより、被処理基板10の内部に封入された高分子
体を光反応(重合)させ、図3に示すように、処理中間体(液晶パネル)20の内部に配
向部21,22を形成する。液晶パネル20は、UV照射部5から反転部6に搬送し、ス
テップS5において、反転部6において必要に応じて上下反転させる。ステップS6にお
いて、液晶パネル20が、反転部6から液晶パネル製造装置の外部に搬送する。
【0027】
(反転部)
反転部3の一例を示す概略図を図10に示す。反転部3は、被処理基板10を真空吸着
するための第1吸着部31、第2吸着部32、第3吸着部33を有する。第1吸着部31
は処理室30内の下部に配置されており、第1吸着部31に接続された第1可動部34に
より上下に動くようになっている。第2吸着部32は、第1吸着部31の上方に配置され
た回転部35に固定されている。第3吸着部33は処理室30の上部に配置されており、
第3吸着部33に接続された第2可動部36によって上下に動くようになっている。
【0028】
被処理基板10を反転させる場合は、図11(a)に示すように、まず、第1吸着部3
1上に被処理基板10を載置させる。そして、図10に示した第1可動部34(図11(
a)では図示省略)により、第1吸着部31をリフトアップさせ、被処理基板10を第2
吸着部32に近づける。図11(b)に示すように、第1吸着部31と第2吸着部32と
を更に近づけて、第2吸着部32に被処理基板10を受け渡す。図11(c)に示すよう
に、回転部35を回転させ、被処理基板10を第2吸着部32の上方に配置する。その後
、図11(d)に示すように、図10に示した第2可動部36(図11(d)では図示省
略)により第3吸着部33をリフトダウンさせ、図11(e)に示すように、被処理基板
10を第3吸着部33の下方に吸着させる。
【0029】
(検査部)
検査部4の一例として、第1検査装置4aを示す概略図を図12に示す。処理室40内
には、被処理基板10を配置するための設置台41が配置されており、設置台41の上方
には、被処理基板10の状態を検査するためのCCDカメラ43が配置されている。設置
台41の下方には、バックライト照射部42が配置されている。
【0030】
第1検査装置4aを用いて被処理基板10を検査する場合には、図13(a)に示すよ
うに、搬送ロボット62により被処理基板10を設置台41に配置した後、図8の表示装
置61で確認しながら、図12に示すCCDカメラ43を用いて、被処理基板10の位置
調整(アライメント)をする。その後、図13(b)に示すように、被処理基板10に印
加コネクタ44を接続する。図13(c)に示すように、バックライト照射部42により
、被処理基板10の下方から光を照射する。図13(d)に示すように、印加コネクタ4
4に電圧印加部45を接続し、電圧印加部45から一定電圧を印加する。電圧印加により
、被処理基板10の内部の液晶が一定方向に配向する。その後、図13(e)に示すよう
に、被処理基板10内の測定領域を適宜選択し、測定領域内の液晶の配列状態をCCDカ
メラ43により確認して、被処理基板10の良・不良を判定する。
【0031】
(UV照射部)
−全体構成−
UV照射部5の一例として、第1UV照射装置5aを示す概略図を図14に示す。第1
UV照射装置5aは、被処理基板10を処理する処理室50と、処理室50内に配置され
、被処理基板10に紫外線を照射し、被処理基板10の内部に配向部21,22(図3参
照)を形成させるための複数のランプ52と、ランプ52に対向し、波長340nm以下
の波長領域の紫外線の透過を抑制するフィルタ53とを備える。図14では、複数のラン
プ52は処理室50の上方に位置しているが、ランプ52の位置は、被処理基板10の位
置に応じて適宜変更しても構わない。
【0032】
複数のランプ52の上方には、ランプ52からの照射光を均一化するための反射鏡57
がそれぞれ配置されている。図15に示すように、ランプ52とフィルタ53との間には
、複数の補助反射板58が配置されても構わない。図15の例においては、補助反射板5
8の内部に、照度を検出するためのセンサが配置されており、センサの検出結果に応じて
、補助反射板58の角度を自在に変更可能であってもよい。また、複数のランプ52の配
置間隔は、ランプの内径をDとし、Dが25mm以下の場合に、複数のランプ52の中心
間間隔(ランプピッチ)を5D〜6D程度とすることにより、被処理基板10に対して照
度強度のムラの少ない紫外線照射が可能である。なお、Dが20〜33mmの場合には、
ランプピッチを3D〜6Dとすることもできる。
【0033】
図14に例示する実施の形態に係る第1UV照射装置5aにおいては、ランプ内径Dを
27.5mmとした時のランプピッチが7D〜8Dであっても、一定の目的を達成可能で
ある。また、後述する(図25参照)冷却管100の外径D’を70mmとした場合は、
ランプピッチが4Dとした場合でも均等な紫外線照射が可能である。
【0034】
図17に示すように、ランプ52の長手方向(軸方向)からみた場合のランプ52の中
心部付近には、ランプ52の照度を計測するための第1照度計55及び第2照度計56が
配置されている。図14に示すように、第1照度計55及び第2照度計56は、複数のラ
ンプ52それぞれの上方に、それぞれ1つずつ配置可能である。第1照度計55及び第2
照度計56は、ランプ制御装置7に接続されており、第1照度計55及び第2照度計56
が検出した照度値に応じて、ランプ52の電力が制御可能になっている。なお、ランプ5
2の上方には、1種類の照度計のみが配置されていても構わない。
【0035】
第1照度計55としては、例えば、波長領域340〜370nmの間にピーク感度を有
する照度計を用いることができる。これにより、後述するランプ52の波長365nmに
おける発光ピークをより高精度に検出でき、図1の被処理基板10の高分子体18の重合
、及び被処理基板10の品質劣化抑制に適した波長領域の照射値をより高精度に検出でき
る。図18に、第1照度計55として好適な照度計の分光感度の一例(UV−35)を示
す。
【0036】
第2照度計56としては、第1照度計55とは異なる波長領域、例えば、波長領域30
5〜320nmの間にピーク感度を有する照度計を用いることができる。これにより、図
1の被処理基板10の高分子体の重合阻害及び被処理基板10の品質を低下させる可能性
のある波長、例えば、313nmにおける発光ピークをより高精度に検出できる。図19
に、第2照度計56として好適な照度計の分光感度の例(UV−31)を示す。
【0037】
図14に示す処理室50の内部には、被処理基板10を配置するためのステージ51が
設けられている。ステージ51上には、被処理基板10を冷却する冷却板54が配置され
ている。また、冷却板54を制御し、ランプ52からの光照射による被処理基板10の温
度上昇を制御するために、基板温度制御装置8が配置されている。なお、ステージ51を
、被処理基板10の長手方向に移動させるための移動制御装置9が配置されていてもよい
。更に、処理室50には、被処理基板10に電圧を印加して、被処理基板10の内部に形
成される配向部21,22(図3参照)の形成を助長又は制御するための電圧印加制御装
置64が接続されている。
【0038】
後述する詳細構造により更に明らかとなるが、図14に示す第1UV照射装置5aによ
れば、製造後の液晶パネルの性能等に影響を及ぼす波長領域の紫外線照射を抑制でき、高
性能で歩留まりを向上させた液晶パネルが製造できる。
【0039】
−ランプ−
図17に示すランプ52としては、例えば、紫外線透過性を有する石英製の気密性容器
520の内部にタングステン(W)製等の電極521,522が配置された外管径27.
5mm、肉厚1.5mm、発光長Lが1000mm、ランプ電圧値1275V、ランプ電
流値13.5A、或いは、ランプ電圧1310V、ランプ電流値13.5Aの紫外線ラン
プ等が利用可能である。気密性容器520の内部には、アルゴン(Ar)ガス等の希ガス
が封入されている。アルゴンガスの封入量は、例えば、外管径27.5mm、肉厚1.5
mm、発光長Lが1000mmのときは1.3kPa程である。
【0040】
このような紫外線ランプとしては、気密性容器520の内部に水銀(Hg)と波長領域
300〜400nmにおいて水銀のスペクトル以外に少なくとも1つ以上の発光を有する
金属封入物が封入されたランプが好適である。例えば、気密性容器520の内部に水銀と
少量の希ガスを封入させた高圧水銀ランプ、又は、気密性容器520の内部に水銀とハロ
ゲン化した金属を封入したメタルハライドランプ等の高輝度放電ランプ等が利用可能であ
る。
【0041】
特に、図1に示す被処理基板10を処理する場合に好適なランプ52としては、気密性
容器520の内部に水銀とハロゲン化タリウムとが封入されたタリウム系メタルハライド
ランプを用いることができる。例えば、水銀1.6mg/cc、ヨウ化タリウム(TlI
)0.1mg/cc、アルゴン1.33kPa程度封入したタリウム系メタルハライドラ
ンプを用いた場合は、図20に示すように、波長352nm、365nm、378nm付
近に大きな発光ピークを有する。
【0042】
タリウム(Tl)は、352nm、378nmの波長領域内に強い輝線スペクトルを持
ち、水銀の発光強度を減少させる効果を持つ。そのため、例えば、313nmの水銀発光
を抑制し、340〜400nmの波長領域の発光を相対的に多くした紫外線を発光させる
ことできる。よって、タリウムを含むランプ52を図14の液晶パネル製造装置に利用す
ることにより、図3の液晶パネル20の特性に大きく影響を及ぼす波長領域340nm以
下の紫外線の照射を低減できる。
【0043】
ハロゲン化タリウムの封入量は、ランプの内径D≦30mmの場合において、封入量M
は0.01mg/cc≦M≦0.3mg/ccから選択される量とするのが好ましい。よ
り好ましくは、ランプの内径DがD≦30mm、発光長Lが500mm≦L≦2500m
mとした場合に、水銀の封入量Hgを0.9mg/cc≦Hg≦2.0mg/cc、ハロ
ゲン化タリウムの封入量Mを、0.012mg/cc≦M≦0.1mg/ccの中から選
択される量とするのが好ましい。
【0044】
ハロゲン化タリウムの封入量MをM≦0.3mg/cm3とすることにより、ランプ5
2の軸方向に対して均一な照度が得られるため、被処理基板10に対する紫外線の均一な
照射が実現できる。また、図20を参照すれば分かるように、被処理基板10の特性に影
響を及ぼす波長313nmの照度のピーク値を、波長365nmの照度のピーク値に比べ
て5%以下に低減できるので、紫外線照射後の液晶パネルの特性をより向上させることが
できる。一方、ハロゲン化タリウムの封入量を0.3mg/cm3以上とすると、気密性
容器520内に封入されたタリウムが、ランプ52の長手方向に不均一に分散するため、
発光分離が生じ、ランプ性能が低下する。
【0045】
ランプ52としては、図21に示すようなスペクトルを持つ鉄系メタルハライドランプ
を利用することもできる。例えば、水銀1.2mg/cc、鉄0.027mg/cc、沃
化水銀0.1mg/ccの放電媒体を気密容器内に封入した鉄系メタルハライドランプは
、図21から分かるように、波長365nmに最も大きい発光ピークを有する。
【0046】
図22に示すように、鉄系メタルハライドランプと、タリウム系メタルハライドランプ
を比較した場合は、図1の被処理基板10の製造後の特性に影響を及ぼす波長340nm
以下の照度の波長を積分して比較すると、鉄系メタルハライドランプの方が、タリウム系
メタルハライドランプに比べて値が2倍以上多いことが分かる。
【0047】
したがって、ランプ52からの波長340nm以下の波長領域の発光そのものを抑制し
たい場合は、メタルハライドランプよりもタリウムランプを用いるのが好ましい。一方、
波長領域340nm以下の紫外線は、後述するフィルタ53により透過を抑制することも
できるため、照射可能な波長領域が相対的に広い紫外線を発光するランプを使用したい場
合は、タリウムランプよりもメタルハライドランプを用いるのが好ましい。
【0048】
図23に、実施の形態に係る鉄系メタルハライドランプと比較例としての水銀ランプの
分光分布の比較例を示す。水銀ランプは、365nm,313nm,303nmの波長領
域に大きな発光ピークを有する。365nm周辺照度に着目した場合、鉄系メタルハライ
ドランプは、水銀ランプに比べて45%程度低い照度を示すが、被処理基板10への照射
に好適な波長領域である340〜380nmにおいては、全体的に高い照度を持つ。
【0049】
水銀ランプは、被処理基板10の特性に変化を及ぼす340nm以下の波長領域に高い
発光ピークを有することから、被処理基板10の性能向上を考慮すると、水銀ランプより
も鉄系メタルハライドランプを用いるのが好ましい。
【0050】
図24の例に示すように、発光長Lが1800mmの鉄系メタルハイドランプを用いて
照度を測定した場合においても、電極間距離が100mm〜1800mmの範囲において
ランプ52の軸方向に対してほぼ均一な照度が得られることから、被処理基板10を大型
化する場合に好適である。また、図14に示す第1UV照射装置5aに適用する場合は、
発光長Lが2500mmの鉄系メタルハイドランプ又はタリウム系メタルハライドランプ
を用いた場合においても、図24と実質的に同様な効果が得られる。
【0051】
−ランプ水冷構造−
図14に示すランプ52の周辺部を表す模式図を図25に示す。ランプ52は、内管1
01及び外管102の二重管構造を有する冷却管100に取り囲まれている。内管101
と外管102の間には、ランプ52を冷却するための水(純水)が収容されている。また
、内管101と外管102との間には、分光特性を有し、ランプ52からの赤外線を吸収
するための熱吸収フィルタ103が、ランプ52を取り囲むように配置されている。
【0052】
熱吸収フィルタ103としては、赤外線を吸収するとともに、約300〜400nmの
波長領域の紫外線を選択的に透過可能な分光特性を有する熱吸収フィルタが好ましい。例
えば、図26に示すように、260〜400nmの波長領域に分光透過率のピークを有す
る熱吸収フィルタが利用可能である。図26に示すような分光特性を有する熱吸収フィル
タ103を配置することにより、被処理基板10の内部の高分子体18を効率よく反応さ
せる波長領域の紫外線を透過させることが可能になるとともに、被処理基板10の加熱の
原因となる可視光線・赤外線の照射が抑制されるため、被処理基板10の特性劣化が更に
抑制され、製造後の液晶パネルの歩留まり及び性能が向上する。
【0053】
−フィルタ−
図14に示すフィルタ53としては、石英製やガラス製の基体上に複数層の薄膜を蒸着
させた多層膜フィルタ又は石英製やガラス製の基体中に吸収物を添加した光学フィルタ等
が利用可能である。フィルタ53の特性としては、短波長側の中心カットオフ波長を32
0〜360nmの波長領域内に有するローパスフィルタが好ましい。なお、実施の形態に
係るフィルタ53において「中心カットオフ波長」とは、垂直入射(入射角0度)の時の
波長により定義されるカットオフ波長を指す。
【0054】
紫外線の入射角が大きくなると、カットオフ波長は短波長側に移動する。例えば、中心
カットオフ波長360nmで示される吸収物を添加したローパスフィルタを用いた場合は
、図27に示すように、紫外線の入射角を30°、45°とした場合の分光透過率50%
で定義されるカットオフ波長が、355〜360nm範囲で変化するが、その変化幅は比
較的小さい。一方、図28に示すように、中心カットオフ波長350nmの多層膜フィル
タを用いた場合は、入射角を30°、60°とすることにより、分光透過率50%が35
0nm、340nm、325nmとなり、紫外線の入射角に対するカットオフ波長の変化
幅が大きくなる。
【0055】
被処理基板10内部の高分子体18の重合を促進させて配向部21,22を形成し、製
造後の液晶パネル20の特性変化を低減するためには、波長340nm以下の紫外線照射
を抑制するフィルタ53として、中心カットオフ波長Nを320〜360nm、好ましく
は330〜350nmの波長領域に有し、且つ、紫外線の入射角を0°〜60°とした場
合のカットオフ波長の変化が−15nm<N<+15nmの範囲にある多層膜フィルタを
用いるのが好ましい。
【0056】
実施の形態に係るフィルタを用いることにより、波長領域300〜400nmにおける
光量を100%とした場合に、波長領域340nm以下の光が5%以下となるように抑制
された紫外光を被処理基板10に照射することができる。
【0057】
−ランプ制御装置−
図14に示すランプ制御装置7は、図29に示すように、ランプ電力制御部71、照度
判定部72、積算光量判定部73、均斉度判定部74を備える。ランプ制御装置7には、
被処理基板10の処理に好適な照度値の設定値等の種々のデータを記憶させるための記憶
装置75が設けられていてもよい。
【0058】
ランプ電力制御部71は、照度判定部72、積算光量判定部73、均斉度判定部74の
判定結果に基づいてランプの電力を制御する。照度判定部72は、記憶装置75に記憶さ
れた照度値の設定データ等を読み出して、第1照度計55又は第2照度計56が検出した
照度値が、所定の範囲内にあるか否かを判定することができる。
【0059】
図30に、図1に示す被処理基板10を処理する場合の、照度値、照射時間と、図3に
示す配向部21,22の配向状態(重合効果)、劣化、生産効率の関係を示す。「照度値
」とは、第1照度計55として、図18に示す分光感度を有する照度計で検出した値を表
している。また、以下において「照射時間」とは、ランプ52から図1の被処理基板10
に実際に照射する時間を表す。
【0060】
第1照度計55が検出する照度値が25mW/cm2以下の場合は、図1の高分子体1
8の重合効果は得られるが、製造後の液晶パネル20に劣化が生じ、生産効率も低くなる
。一方、照度値が40mW/cm2以上の場合は、よく重合が進み生産効率も向上するが
、100mW/cm2より高くなると高分子体へのダメージが大きくなる。よって、約7
5mW/cm2に抑制することで、重合効果も得られ、且つ製造後の液晶パネル20の劣
化も生じにくくさせることができる。
【0061】
よって、照度判定部72は、図1の被処理基板10を処理する場合は、第1照度計55
の照度値が、例えば、25mW/cm2以上であるか、好ましくは、25〜100mW/
cm2の範囲にあるか、より好ましくは、40〜75mW/cm2の範囲にあるか否か等を
判定し、判定結果に基づいて、ランプ電力制御部71によってランプ52の電圧又は電流
を制御するのが好ましい。
【0062】
一般に、ランプ52は、寿命が近づくにつれて光量が徐々に低下する傾向にある。その
ため、第1照度計55等が検出する照度値も時間の経過とともに低くなる。複数の被処理
基板10に対してそれぞれ均等な光量で紫外線を照射するためには、点灯時間が長期化す
るにつれてランプ52が劣化し、照度が低くなった場合に、電圧又は電流を上げて照度を
一定以上に維持することが望ましい。
【0063】
図14に示す液晶パネル製造装置においては、照度判定部72が、第1照度計55又は
第2照度計56の照度値を検出し、ランプ52の点灯時間に対する第1照度計55又は第
2照度計56の照度値の変化量が約10%以下となった場合に、照度値を所定の値に戻す
ように、ランプの電圧又は電流を制御するのが好ましい。なお「点灯時間」とは、ランプ
52を現実に点灯させた時間の積算値を表す。
【0064】
積算光量判定部73は、「積算光量」が一定値以上となるか否かを判定する。「積算光
量」とは、第1照度計55が検出した照度値とランプ52の照射時間との積で示される。
例えば、図1の被処理基板10を処理する場合においては、積算光量判定部73が、積算
光量が2000mJ/cm2以上となるか否かを判定することができる。積算光量を20
00mJ/cm2以上とすることにより、被処理基板10の内部の高分子体18の重合効
果が得られるとともに、図3の液晶パネルの特性劣化が生じにくくなる。一方、2000
mJ/cm2以下とすることにより、図3の液晶パネル内部の配向部21,22の形成が
十分に行われなくため、性能低下を招く。
【0065】
均斉度判定部74は、第1照度計55又は第2照度計56が検出した最大照度値と最小
照度値とから計算される「均斉度」が、所定値以上であるか否かを判定する。「均斉度」
とは、図31に示すように、被処理基板10の長手方向と照度の関係に着目した場合に、
第1照度計55(又は第2照度計56)が検出した照度値の最大照度値(MAX)と最小
照度値(MIN)を用いて、

均斉度(%)=(1−(MAX−MIN)/(MAX+MIN))×100

により表される照度の均一性の割合をいう。
【0066】
図32に示すように、図1に示す被処理基板10を処理する場合は、波長領域340〜
370nmの間にピーク感度を有する照度計を用いて計算した場合の均斉度を75%以上
とすることにより、図3の液晶パネル20の応答速度、透過率、コントラスト、偏光(光
)特性等の種々の性能が向上する。したがって、均斉度判定部74は、図1に示す被処理
基板10を処理する場合には、第1照度計55で算出した場合の均斉度が75%以上であ
るか否かを判定し、その判定結果に基づいて、ランプ電力制御部71によりランプの電圧
又は電流を制御するのが好ましい。
【0067】
−基板温度制御機構−
図14に示す冷却板54を上面からみた場合の模式図を図33に示す。冷却板54は、
例えば、アルミ等の金属製であり、内部に冷却水を流通させるための冷却水流路541を
備えている。冷却水の流通速度は、図14に示す基板温度制御装置8により制御されてい
てもよいし、一定速度であっても構わない。
【0068】
図14に図示した通り、基本的には冷却板54だけでも温度制御可能であるが、図34
に示すように、処理室50の内部に冷風ノズル542を設け、冷風を組合わせて冷却する
こともできる。図34に示す例では、冷風ノズル542が被処理基板10の長手方向に沿
って配置されており、冷風ノズル542から、例えば、5〜15℃の冷風が送られるよう
になっている。これにより、被処理基板10の基板温度が、70℃以下、好ましくは、2
0〜50℃に制御される。なお、冷風ノズル542の代わりに冷風を送るファンが設置さ
れていてもよい。
【0069】
被処理基板10の内部に封入される高分子体18及び液晶体17は、熱可塑性を有する
ことから、高温に曝すと、特性劣化を起こす場合がある。例えば、波長365nmにピー
ク感度を有する照度計で測った場合の照度値を100mW/cm2において、照射時間を
200℃とした場合は、被処理基板10の基板温度が200℃に達するため、高分子体1
8及び液晶体17の特性劣化が著しくなる。
【0070】
図34に示す第1UV照射装置5aによれば、冷風ノズル542及び冷却板54を備え
ることにより、被処理基板10の温度を一定温度以下に制御できるため、高分子体18及
び液晶体17の劣化が低減され、製造後の液晶パネルの応答速度、透過率、コントラスト
、偏光(光)特性等、種々の特性を向上させることができる。
【0071】
なお、冷風ノズル542及び冷却板54の駆動は、被処理基板10の大きさによって選
択することができる。例えば、550mm×650mmの被処理基板10を処理する場合
、冷風ノズル542のみを用いて冷却することも十分可能であるが、例えば、1500m
m×1800mmの被処理基板10等のように、比較的大型な基板を処理する場合は、冷
風ノズル542と冷却板54とを併用するようにしてもよい。
【0072】
一方、逆に冷風を吹きかけることにより、被処理基板10の表面温度にバラツキが生じ
てしまう場合は、冷却板54のみを駆動させることが望ましい。図34に示すように、処
理室50内に基板温度を測定する温度センサ543を設け、温度センサ543の検出値に
応じて、基板温度制御装置8が、冷却板54と冷風ノズル542の駆動を選択的に制御す
るようにしてもよい。
【0073】
−基板移動制御機構−
ランプ52と被処理基板10との距離や、反射板の光の反射具合により、被処理基板1
0の表面に照射される光量が、局所的に不均一になる場合がある。そのため、図35にお
いては、実線で示される位置において、まず、一定時間紫外線を照射した後、移動制御装
置9により、ステージ51を距離Wだけ被処理基板10の長手方向に移動させるようにし
てもよい。これにより、ステージ51を移動せずに処理する場合に比べて、被処理基板1
0のに照射される光をより均一化させることができる。
【0074】
距離Wは、ランプ52からの照度が一定値以上となる有効照射範囲内で変更可能である
が、ランプ52の特性を考慮すると、ランプピッチの1/2程度ずつ動かすようにするの
が好ましい。例えば、ランプ52として発光管外径27.5mm、発光長1000mmの
メタルハライドランプを5灯搭載し、550mm×650mmの図1に示す被処理基板1
0を処理する場合は、波長領域340〜370nmの間にピーク感度を有する照度計(第
1照度計55)の照度値を75mW/cm2として25秒照射し、その後、被処理基板1
0を基板の長手方向にW=125mm程度移動させて、75mW/cm2において更に2
5秒照射する。これにより、液晶パネル20に生じる反応ムラを抑制でき、性能の高い液
晶パネル20の生産が実現できる。
【0075】
(紫外線照射装置を用いた液晶パネルの製造方法)
図14に示す第1UV照射装置5aを用いて図1に示す被処理基板10を処理する場合
は、図36のステップS11に示すように、まずセットアップを行う。セットアップとし
ては、例えば、ランプ制御装置7、基板温度制御装置8、移動制御装置9、及び電圧印加
制御装置64を駆動させるための各種設定データを記憶装置(図示省略)等に入力するこ
とができる。
【0076】
また、ステージ51上に、テスト用の被処理基板10を配置し、処理室50の内部を処
理条件に設定した上で、被処理基板10の表面の照度及びその照度における第1照度計5
5及び第2照度計56の照度値との関係を導出する。これにより、第1照度計55及び第
2照度計56の照度値に基づいて、被処理基板10の表面の実際の照度値との関係が計算
する。
【0077】
セットアップが終了したら、図8に示す搬送ロボット62により、実際に処理する被処
理基板10を図14の冷却板54上に配置し、ステップS12において、被処理基板10
の冷却を開始させる。冷却方法は、被処理基板10の大きさに基づいて、5〜15℃の冷
風によって空冷してもよいし、図34に示すように、温度センサ543によって基板温度
を検出し、基板温度が例えば70℃以下に制御されるように、基板温度制御装置8により
、冷却板54又は冷風ノズル542を制御してもよい。
【0078】
引き続き、ステップS13において、被処理基板10に所定の電圧、例えば、0〜30
Vが印加される。ステップS14において、被処理基板10に電圧を印加した状態で、例
えば、第1照度計55の照度値が75mW/cm2の条件においてランプ光を25秒照射
する。その後、ステップS15において、ステージ51を被処理基板10の長手方向に移
動させて、ステップS16において、被処理基板10に電圧を印加した状態で、例えば、
第1照度計55の照度値が75mW/cm2の条件においてランプ光を25秒照射する。
【0079】
図14のランプ制御装置7は、ランプ52が、第1照度計の照度値が40mW/cm2
以上において、第1照度計55の照度値とランプの照射時間との積が2000mJ/cm
2以上となるように被処理基板10に紫外線を照射させる。また、ランプの照射時間に対
する第1照度計55の照度値の変化量が10%以下となった場合には、ランプの電力を制
御する。均斉度を算出し、均斉度が75%以上となるように、ランプの電力を制御する。
処理が済んだ被処理基板10は、ステップS17において、図14の処理室50から搬出
され、図8の搬送ロボット62により反転部6に搬送される。
【0080】
図8に示す実施の形態に係るUV照射部5(第1UV照射装置5a)によれば、製造後
の液晶パネルの性能等に影響を及ぼす波長領域340nm以下の紫外線照射を抑制できる
ため、高性能で歩留まりを向上させた液晶パネルが製造できる。
【0081】
(その他の実施の形態)
本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面は
この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代
替実施の形態、実施例及び運用技術が明らかとなろう。
【0082】
−有害波長照度判定機構−
上述の実施の形態においては、図29に示す照度判定部72が、第1照度計55の照度
値に基づいて照度を判定し、判定結果に基づきランプの電力を制御する例を説明した。し
かしながら、図29に示す照度判定部72が、第2照度計56の照度値に基づいて、液晶
パネルに特性に影響を及ぼす波長(有害波長)の照度を判定するようにしてもよい。
【0083】
図37(a)に示すように、図1に示す被処理基板10を処理する場合、波長340n
m又は320nm以下の紫外線、特に、水銀の発光ピークを示す波長313nmの光が被
処理基板10の斜線部分に照射されると、図37(b)に示すように、照射後の液晶パネ
ル20に白いムラが残る。図38に、波長313nmの紫外線を検出する第2照度計56
を用いた場合の波長313nmの紫外線が及ぼすパネル劣化の影響の関係を示す。
【0084】
図38に示すように、照度値が1mW/cm2以下の場合には、図37(b)に示すよ
うなパネル劣化は生じにくいが、照度値が1mW/cm2以上の場合には、図37(b)
に示すようなパネル劣化が生じる割合が高くなる。そのため、図29に示す照度判定部7
2は、第2照度計56の照度値が1mW/cm2以上となる場合には、例えば、図示を省
略した表示装置等を介してユーザに警告する、或いは、図15に示す反射鏡57或いは補
助反射板58の角度を調節させるための機構(図示省略)を制御するようにしてもよい。
【0085】
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論で
ある。したがって、本発明の技術的範囲は、上記の説明から妥当な特許請求の範囲に係る
発明特定事項によってのみ定められるものである。
【図面の簡単な説明】
【0086】
【図1】本発明の実施の形態に係る被処理基板の一例を示す断面図である。
【図2】図1の高分子体18の具体例を示す図である。
【図3】図1の被処理基板10に紫外線を照射した後の液晶パネルの一例を示す断面図である。
【図4】図3の配向部21の配向状態を例示する斜視図である。
【図5】図3の配向部21の立ち上がり角度θを表す概略図である。
【図6】図3の液晶パネルの液晶体の状態(電圧印加しない場合)を示す断面図である。
【図7】図3の液晶パネルの液晶体の状態(電圧印加時)を示す断面図である。
【図8】本発明の実施の形態に係る液晶パネル製造装置の全体構成の一例を示す平面図である。
【図9】図8の液晶パネル製造装置の動作を示すフローチャートである。
【図10】図8の反転部の詳細を示す概略図である。
【図11】図10の反転部の具体的動作の例を示す概略図である。
【図12】図8の検査部の詳細を示す概略図である。
【図13】図12の検査部の具体的動作の例を示す概略図である。
【図14】図8のUV照射部の詳細を示す概略図である。
【図15】図14のランプの周辺構成の一例を示す概略図である。
【図16】図14のランプの周辺構成の一例を示す概略図である。
【図17】図14のランプを長手方向(軸方向)からみた場合の概略図である。
【図18】図17の第1照射計に好適な照射計の分光感度を示すグラフである。
【図19】図17の第2照射計に好適な照射計の分光感度を示すグラフである。
【図20】タリウム系メタルハライドランプの分光分布を示すグラフである。
【図21】鉄系メタルハライドランプの分光分布を示すグラフである。
【図22】鉄系メタルハライドランプとタリウム系メタルハライドランプの分光分布の比較を示すグラフである。
【図23】鉄系メタルハライドランプと水銀ランプの分光分布の比較を示すグラフである。
【図24】鉄系メタルハライドランプの軸方向に対する照度分布を示すグラフである。
【図25】図14に示すランプの周辺部を表す断面図である。
【図26】図25に示す熱線吸収フィルタの分光透過率分布を示すグラフである。
【図27】図14に示すフィルタの入射角度と透過率との関係を表すグラフ(その1)である。
【図28】図14に示すフィルタの入射角度と透過率との関係を表すグラフ(その2)である。
【図29】図14に示すランプ制御装置の具体例を示すブロック図である。
【図30】図1に示す被処理基板を処理する場合の照度値、照射時間、重合効果、劣化、生産効率の関係を示す。
【図31】本発明の実施の形態に係る均斉度の算出方法を説明するグラフである。
【図32】均斉度とパネル性能との関係を表す表である。
【図33】本発明の実施の形態に係る冷却板の平面図である。
【図34】本発明の実施の形態に係る基板温度制御機構を説明する模式図である。
【図35】本発明の実施の形態に係る基板移動制御機構を説明する模式図である。
【図36】本発明の実施の形態に係る液晶パネル製造方法の一例を説明するフローチャートである。
【図37】有害波長領域(313nm)が被処理基板の特性に及ぼす影響を示し、図37(a)は照射時の被処理基板、図37(b)は、照射後の液晶パネルを示す平面図である。
【図38】照度値とパネル劣化との関係を示す表である。
【符号の説明】
【0087】
2…搬入部
3…反転部
4…検査部
4a…第1検査装置
4b…第2検査装置
5…UV照射部
5a…第1UV照射装置
5b…第2UV照射装置
6…反転部
7…ランプ制御装置
8…基板温度制御装置
9…移動制御装置
10…被処理基板
11…半導体素子
12…基板
13…カラーフィルタ
14…基板
15,16…透明電極
17…液晶体
18…高分子体
19…シール部
20…液晶パネル
21,22…配向部
25…搬送ロボット
30…処理室
31…第1吸着部
32…第2吸着部
33…第3吸着部
34…可動部
35…回転部
36…可動部
40…処理室
41…設置台
42…バックライト照射部
43…CCDカメラ
44…印加コネクタ
45…電圧印加部
50…処理室
51…ステージ
52…ランプ
53…フィルタ
54…冷却板
55…第1照度計
56…第2照度計
57…反射鏡
58…補助反射板
61…表示装置
62…搬送ロボット
63…イオナイザー
71…ランプ電力制御部
72…照度判定部
73…積算光量判定部
74…均斉度判定部
75…記憶装置
100…冷却管
101…内管
102…外管
103…熱吸収フィルタ
520…気密性容器
521,522…電極
541…冷却水流路
542…冷風ノズル
543…温度センサ

【特許請求の範囲】
【請求項1】
光反応性物質を含有する液晶体を内部に封入した被処理基板に紫外線を照射して前記光
反応性物質を反応させ、前記被処理基板の内部に配向部を形成させるランプと、
前記ランプに対向し、波長340nm以下の波長領域の紫外線の透過を抑制するフィル
タと、
前記フィルタを介して前記ランプに対向し、前記被処理基板を載置するステージと、
前記被処理基板を冷却する冷却機構
とを備えることを特徴とする液晶パネル製造装置。
【請求項2】
前記冷却機構が、前記被処理基板を70℃以下に冷却することを特徴とする請求項1に
記載の液晶パネル製造装置。
【請求項3】
前記冷却機構が、前記ステージ上に配置され、冷却媒体を流通させるための流路を有す
る冷却板を含むことを特徴とする請求項1又は2に記載の液晶パネル製造装置。
【請求項4】
前記冷却機構が、前記被処理基板に冷風を吹きかける冷風ノズルを含むことを特徴とす
る請求項1〜3のいずれか1項に記載の液晶パネル製造装置。
【請求項5】
前記冷風ノズルが、前記被処理基板に対して5〜15℃の冷風を吹き付けることを特徴
とする請求項4に記載の液晶パネル製造装置。
【請求項6】
前記被処理基板の温度に応じて、前記冷却機構の動作を制御する基板温度制御装置を更
に備えることを特徴とする請求項1〜5のいずれかに1項記載の液晶パネル製造装置。
【請求項7】
前記ランプの周囲を取り巻く冷却管と、
前記冷却管の内部に配置された分光特性を有する熱吸収フィルタ
とを更に有することを特徴とする請求項1〜6のいずれか1項に記載の液晶パネル製造
装置。
【請求項8】
液晶体と光反応性を有する高分子体とを内部に封入した被処理基板を冷却しながら波長
領域340nm以下の紫外線の透過を抑制するフィルタを介して紫外線を照射し、前記被
処理基板の内部の前記高分子体を反応させて配向部を形成することを特徴とする液晶パネ
ルの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate


【公開番号】特開2008−116672(P2008−116672A)
【公開日】平成20年5月22日(2008.5.22)
【国際特許分類】
【出願番号】特願2006−299504(P2006−299504)
【出願日】平成18年11月2日(2006.11.2)
【出願人】(501358079)友達光電股▲ふん▼有限公司 (220)
【出願人】(000111672)ハリソン東芝ライティング株式会社 (995)
【Fターム(参考)】