説明

燃料電池システム

【課題】燃料電池システムにおいて効率低下を抑えつつ空気遮断弁に十分な駆動力を供給する。
【解決手段】空気圧縮機17によって圧縮された空気を燃料電池13への供給圧力よりも高い圧力で蓄圧するバッファタンク44と、大気に連通する大気圧室51,61と、バッファタンク44から供給される圧縮空気によって加圧される加圧室52,62と、弁体に閉弁方向の力を付勢する閉弁用ばね53,63とを備え、燃料電池13の運転中にはバッファタンク44から供給される圧縮空気によって各空気遮断弁50,60を開弁状態に保持し、燃料電池13の停止中には閉弁用ばね53,63によって各空気遮断弁50,60を閉弁状態に保持する。バッファタンク44の圧力が圧力保持圧力よりも低下した場合に圧縮空気供給管27の圧力を上昇させた後にバッファタンク入口開閉弁41を開として圧力を保持圧力まで上昇させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池システムの構成に関し、特に遮断弁の駆動システムに関する。
【背景技術】
【0002】
燃料電池は燃料と酸化剤の電気化学反応によって発電をするもので、イオン交換膜からなる電解質の両側に燃料側極と酸化剤側極とが対向して配置された膜電極アセンブリ(MEA)と、燃料側極に燃料を供給する燃料供給流路が形成された燃料用セパレータと、酸化剤側極に酸化剤を供給する酸化剤供給流路が形成された酸化剤用セパレータと、を備えている。燃料と酸化剤には色々なガスが用いられるが、例えば、燃料には水素、酸化剤としては酸素を含む空気が用いられ、電気化学反応によって発電がされると共に酸化剤極側に水が生成される形式のものが多く用いられている。
【0003】
このような燃料電池において、運転が停止した際には、酸化剤極側の酸化剤供給流路中に酸化剤ガスである空気が残留しており、燃料側極の燃料供給流路中には燃料ガスである水素が残留した状態となっている。一方、停止中の燃料電池内では、燃料ガスである水素がイオン交換膜を通って酸化剤極側に移動し、逆に酸化剤ガスである空気中の酸素がイオン交換膜を通って燃料極側に移動するクロスリークが発生する。このクロスリークが発生すると、発電反応とは違う化学反応によって水素と酸素が結合して水が生成される。そして、酸化剤極側の空気中の酸素が燃料極側に移動してしまうと、酸化剤極には水素と反応しない窒素分が残り、燃料極側には未反応の水素が残る。また、反応によって水素ガスと酸素ガスとが反応して水が生成されることから、停止中の燃料電池内部の圧力は低下してくる(例えば、特許文献1参照)。
【0004】
このクロスリークによる水素と酸素の反応は、空気中の酸素が消費されてしまうと停止するものであるが、燃料電池の停止中に酸化剤供給流路に新たな空気が流れこむと、上記のクロスリークによる反応が継続して発生してしまう。すると、燃料電池内の酸化剤側極と燃料側極の電位の上昇によって燃料側極と酸化剤側極に含まれている触媒が劣化して触媒性能が低下し、燃料電池の性能低下につながってしまうという問題があった(例えば、特許文献2参照)。
【0005】
このような燃料電池の性能低下を防止する方法として、特許文献2には、燃料電池の酸化剤ガスの入口及び出口の管路中に燃料電池の停止時の際には閉となるノーマルクローズの電磁弁を設ける方法が記載されている。
【0006】
また、特許文献3には、燃料電池の遮断弁を空気圧で駆動するシステムと、このシステムにおいてアキュムレータを介して駆動用の空気を供給する方法が記載されている。
【0007】
【特許文献1】特開2004−6166号公報
【特許文献2】特開2006−221836号公報
【特許文献3】特開2000−3717号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
特許文献2の従来技術は、燃料電池の停止中は電磁弁に通電していなくとも電磁弁を閉の状態に保って空気が燃料電池内に進入することを防止することができるが、燃料電池の運転中には電磁弁を開状態に保持するために、電磁弁の駆動電流を常に供給していることが必要であり、燃料電池システムとしての総合効率が低下してしまう。特に、開閉用に大きな駆動力が必要とされる場合には、運転中に電磁弁を開状態に保持する電力量が多くなり、更に燃料電池の効率が低下する。
【0009】
また、特許文献3の従来技術は、空気圧圧縮機から燃料電池あるいは改質器に供給される空気の圧力と燃料電池から排出される改質ガス圧力又は空気圧力との差圧によって遮断弁を駆動していることから、駆動力が不足する場合がある。特に、空気側は燃料電池内の空気流路の圧力損失によって発生する差圧を遮断弁の駆動源としていることから、燃料電池の空気側の圧力損失を低下させて全体効率を上げようとすると遮断弁の駆動力が不足することとなることとなる。更に負荷によって燃料電池に流れる空気流量が少なくなると差圧が低下するため更に駆動力が小さくなってしまう。また、特許文献3の従来技術では、アキュムレータを介して駆動用空気を供給する構成としているが、遮断弁からの駆動用空気のリークがあるため、アキュムレータの圧力は燃料電池の入口圧力と略同一圧力であり、上記と同様に遮断弁の駆動力が不足する場合がある。
【0010】
本発明は、燃料電池の効率低下を抑えつつ遮断弁に十分な駆動力を供給することを目的とする。
【課題を解決するための手段】
【0011】
本発明の燃料電池システムは、燃料ガスと酸化剤ガスとの電気化学反応により発電する燃料電池と、燃料電池に供給する酸化剤ガスを圧縮する圧縮機と、燃料電池の酸化剤ガスの入口及び出口に設けられる酸化剤ガス遮断弁と、を含む燃料電池システムであって、圧縮機によって圧縮された酸化剤ガスを燃料電池への供給圧力よりも高い圧力で蓄圧するバッファタンクと、各酸化剤ガス遮断弁に取り付けられ、大気に連通する大気圧室と、バッファタンクから供給される酸化剤ガスによって加圧される加圧室とを含み、各室間の圧力差によって各酸化剤ガス遮断弁の開閉を行う弁開閉駆動機構と、を有することを特徴とする。
【0012】
本発明燃料電池システムにおいて、弁開閉駆動機構は、大気に連通する大気圧室と、大気圧室と仕切られて、バッファタンクから供給される酸化剤ガスによって加圧される加圧室と、弁体に閉弁方向の力を付勢する閉弁用ばねとを備え、大気圧室と加圧室との間の圧力差と閉弁用ばねの付勢力とによって各酸化剤ガス遮断弁の開閉駆動を行い、燃料電池の運転中にはバッファタンクから供給される酸化剤ガスによって各酸化剤ガス遮断弁を開弁状態に保持し、燃料電池の停止中には閉弁用ばねによって各酸化剤ガス遮断弁を閉弁状態に保持すること、としても好適である。
【0013】
本発明燃料電池システムにおいて、バッファタンクの圧力を検出する圧力センサと、バッファタンク入口に設けられ、バッファタンクへの酸化剤ガス供給路を開閉する開閉弁と、バッファタンクに蓄圧する酸化剤ガスの圧力を調整する圧力調節弁と、開閉弁の開閉及び圧力調節弁の開度を制御する制御部と、を備え、制御部は、圧力センサによって検出したバッファタンクの圧力が燃料電池への供給圧力よりも高い所定の保持圧力よりも低下した場合に、酸化剤ガス供給路の圧力をバッファタンク保持圧力以上となるよう圧力調整弁の開度を小さくした後に開閉弁を開としてバッファタンクの圧力を保持圧力まで上昇させるバッファタンク加圧手段を備えること、としても好適であるし、制御部は、バッファタンク加圧手段によってバッファタンクの圧力を保持圧力まで上昇させた後、開閉弁を閉としてバッファタンクの圧力保持を行うバッファタンク圧力保持手段を備えること、としても好適であるし、制御部は、圧縮機の起動停止制御を行い、バッファタンク加圧手段によってバッファタンクの加圧を行っている場合には、圧縮機を連続運転して酸化剤ガスの間欠供給を禁止する間欠運転禁止手段を備えること、としても好適である。
【0014】
本発明燃料電池システムにおいて、圧力調節弁は、バッファタンクへの酸化剤ガス供給路の分岐点よりも下流にある酸化剤ガス流路に配置される調節弁であること、としても好適であるし、圧力調節弁は、燃料電池の酸化剤ガス出口に設けられた酸化剤ガス圧力調節弁であること、としても好適であるし、圧力調節弁は、燃料電池をバイパスして酸化剤ガスを流すバイパス流路に設けられる開度調整可能なバイパス弁であること、としても好適である。
【0015】
また、本発明燃料電池システムにおいて、バッファタンクの断面積は、バッファタンクの酸化剤ガスを供給するガス供給配管の断面積よりも大きいこと、としても好適である。
【発明の効果】
【0016】
本発明は、燃料電池の効率低下を抑えつつ遮断弁に十分な駆動力を供給することができるという効果を奏する。
【発明を実施するための最良の形態】
【0017】
以下、本発明の好適な実施形態について図面を参照しながら説明する。図1に示すように本実施形態の燃料電池システム11は、燃料ガスである水素と酸化剤ガスである空気とが供給されて電気化学反応によって発電する燃料電池13と、燃料電池13に供給する空気を圧縮する空気圧縮機17と、燃料電池13に供給する空気を加湿する加湿モジュール15とを備えている。空気圧縮機17と加湿モジュール15とは圧縮空気供給管27によって接続され、加湿モジュール15と燃料電池13とは、加湿モジュールにおいて加湿された空気を燃料電池13の空気入口に導く空気入口管29と燃料電池13の空気出口から排出された空気を加湿モジュールに導く空気出口管31とによって接続され、加湿モジュール15には空気を外部に排出する空気排出管33が接続されている。また、圧縮空気供給管27と空気排出管33とを接続するバイパス管35が設けられている。空気圧縮機17はモータ19によって駆動され、空気圧縮機17によって温度が上昇した空気はインタークーラー21によって冷却されてから加湿モジュール15に供給される。
【0018】
空気入口管29には空気入口遮断弁50が設けられ、空気出口管31には空気出口遮断弁60が設けられている。また、空気出口管31の燃料電池13の空気出口と空気出口遮断弁60との間には空気圧力調節弁25が設けられ、空気圧力調節弁25の上流側の空気出口管31には燃料電池13の出口空気圧力を測定する圧力センサ37が設けられている。また、バイパス管35にはバイパス流量調節弁23が設けられている。
【0019】
圧縮空気供給管27の空気圧縮機17とバイパス管35との分岐点との間にはバッファタンク空気供給管39の一端が接続され、バッファタンク空気供給管39の他端はバッファタンク44に接続されている。バッファタンク空気供給管39にはバッファタンクへの空気の供給路であるバッファタンク空気供給管39を開閉するバッファタンク入口開閉弁41が設けられている。また、バッファタンク44にはバッファタンク44の圧力を測定する圧力センサ45が取り付けられている。バッファタンク44の断面積はバッファタンク空気供給管39の断面積よりも大きい。
【0020】
バッファタンク44と燃料電池13の空気入口にある空気入口遮断弁50とは空気入口遮断弁駆動空気管46によって接続され、バッファタンク44と燃料電池13の空気出口にある空気出口遮断弁60とは空気出口遮断弁駆動空気管47によって接続されている。空気入口遮断弁駆動空気管46と空気出口遮断弁駆動空気管47とにはそれぞれ空気入口遮断弁駆動空気弁42と空気出口遮断弁駆動空気弁43とが設けられている。
【0021】
バッファタンク44の圧力センサ45と、燃料電池13の空気出口の圧力センサ37とは制御部70に接続され、検出信号が制御部70に入力されるように構成されている。また、空気圧縮機17のモータ19と、バイパス流量調節弁23と、空気圧力調節弁25と、バッファタンク入口開閉弁41と、空気入口遮断弁駆動空気弁42と、空気出口遮断弁駆動空気弁43とは制御部70に接続され、制御部70の指令によって動作するよう構成されている。
【0022】
空気入口遮断弁50は、弁本体50bと駆動部50aとを備えている。弁本体50bはケーシングの中に弁座58と弁体56とを備え、弁体56には弁棒57が取り付けられている。駆動部50aはケーシングに取り付けられたダイヤフラム54とダイヤフラム54に接続された駆動板55とによって2つの圧力室に仕切られている。図1の上部の圧力室は大気に連通する大気連通孔59を備える大気圧室51であり、図1の下部の圧力室はバッファタンク44からの空気入口遮断弁駆動空気管46が接続され、バッファタンク44から供給される圧縮空気によって加圧される加圧室52となっている。駆動板55の加圧室52側は、弁棒57を介して弁体56に接続され、駆動板55の大気圧室51室側は大気圧室51の壁面に取り付けられ、駆動板55を弁座58側に向かって押し付ける閉弁用ばね53が設けられている。空気出口遮断弁60も空気入口遮断弁50と同様の構造を有し、弁本体60bと駆動部60aとを備え、弁本体60bは弁座68と弁体66とを備え、駆動部60aは大気に連通する大気連通孔69を備える大気圧室61とバッファタンク44からの空気出口遮断弁駆動空気管47が接続される加圧室62と、弁棒67を介して弁体66に接続されている駆動板65とダイヤフラム64と閉弁用ばね63とが設けられている。
【0023】
空気入口遮断弁50と空気出口遮断弁60とは、燃料電池13の運転中にはバッファタンク44から供給される圧縮空気によって各加圧室52,62が加圧され、圧力によって各駆動板55,65が大気圧室51,61側に押し上げられ、各空気遮断弁50,60は開状態に保たれ、燃料電池13の停止中には、各閉弁用ばね53,63によって各駆動板55,65は押し下げられて、各弁体56,66は各弁座58,68に押し付けられて各空気遮断弁50,60は閉状態に保持される。
【0024】
以下、本実施形態の燃料電池システム11の動作について図2を参照しながら説明する。図2は燃料電池システム11の各機器の動作と圧力の変化を示したもので、図2の各グラフは上から順に、空気圧縮機17の回転数、バッファタンク入口開閉弁41の開度、空気入口遮断弁駆動空気弁42の開度、空気出口遮断弁駆動空気弁43の開度、バイパス流量調節弁23の開度、バッファタンク44の圧力、燃料電池13の出口空気圧力、空気圧力調節弁25の開度、燃料電池13の空気入口遮断弁50の開度、空気出口遮断弁60の開度を示している。また、図2の各グラフの横軸は時間を示している。時間軸は共通である。
【0025】
図2に示す時間t0に燃料電池システム11の起動指令が出されると制御部70は、空気圧縮機17のモータ19を起動して空気圧縮機17の回転数を上昇させていく。また、同時に制御部70は、バッファタンク入口開閉弁41、空気入口遮断弁駆動空気弁42、空気出口遮断弁駆動空気弁43、バイパス流量調節弁23を全開とする。すると、まず、空気圧縮機17から圧縮空気供給管27に流れた圧縮空気は、バイパス管35を通って空気排出管33に入り、空気排出管33から大気に排出される。
【0026】
そして、空気圧縮機17の回転数が上昇するにつれて、空気圧縮機17から吐出される空気流量が大きくなり、圧力も上昇してくる。空気圧縮機17から吐出される空気圧力が上昇すると、圧縮空気供給管27の圧力が上昇し、それにつれてバッファタンク空気供給管39の圧力も上昇する。バッファタンク入口開閉弁41は開状態となっているため、バッファタンク空気供給管39の圧力が上昇すると圧縮空気は、バッファタンク入口開閉弁41を通ってバッファタンク44に流れ込み、圧力を初期圧力P1aまで上昇させて、バッファタンク44に蓄圧される。
【0027】
空気圧縮機17の回転数が定格回転数r1まで上昇し、バッファタンク44の圧力がP1aまで上昇すると、空気入口遮断弁駆動空気弁42、空気出口遮断弁駆動空気弁43が開状態となっているので、バッファタンク44に蓄圧された圧縮空気は各駆動空気弁42,43を通って、空気入口遮断弁50、空気出口遮断弁60の各加圧室52,62に供給され、各加圧室52、62の圧力を上昇させる。一方、空気入口遮断弁50、空気出口遮断弁60の各大気圧室51,61は各大気連通孔59,69によって大気に連通し、大気圧に保持されていることから、各駆動板55,65には各加圧室52,62と各大気圧室51,61との圧力差によって開弁方向に向かって押し上げられる。この圧力差による押し上げ力が各閉弁用ばね53,63によって各駆動板55,65を閉弁方向に向かって押し下げる力よりも大きくなると、図2に示す時間t1に各空気遮断弁50,60は開弁される。この状態では、空気出口圧力調節弁25の開度がゼロとなっているため、空気は加湿モジュール15と燃料電池13とには流れず、圧縮空気供給管27からバイパス管35を通って空気排出管33から大気に排出されている。
【0028】
各空気遮断弁50,60は開弁された後の、図2に示す時間t2から制御部70は、バイパス流量調節弁23を徐々に閉めていく。これによって圧縮空気供給管27の圧力は再びしだいに上昇し、バッファタンク44の圧力も再び上昇していく。すでに各空気入口遮断弁50,60が開となっていることから、燃料電池13の空気流路の圧力も上昇し、出口空気圧力も初期圧力P2aから次第に上昇してくる。ただし、この状態では、燃料電池13の空気出口にある空気圧力調節弁25の開度はゼロであるため、燃料電池13の空気流路は加圧されるが空気は流れていない。
【0029】
そして、制御部70は、燃料電池13の空気出口圧力がバッファタンク44への空気充填圧力P2bとなるまで、更にバイパス流量調節弁23を絞っていく。これによって、燃料電池13の空気出口圧力より空気の流れの上流側にある圧縮空気供給管27の圧力をバッファタンク44の保持圧力P1bと同等又は高く保持する。すると、バッファタンク44に圧縮空気が次第に蓄圧されてバッファタンク44の圧力は保持圧力P1bに上昇する。この際、空気圧縮機17の回転数は定格回転数r1に保持されている。
【0030】
図2に示す時間t3になると、制御部70は、バッファタンク入口開閉弁41を閉としてバッファタンク44を保持圧力P1bの状態で圧縮空気供給管27から切り離し、保持圧力P1bに保持する。このようにして、バッファタンク44の圧力が保持圧力P1bに上昇して保持圧力P1bに保持されると、バッファタンク44への初期加圧が終了する。
【0031】
そして、その後、バイパス流量調節弁23を閉とし、空気圧力調節弁25を開として、燃料電池13に空気を流入させると共に空気圧力の制御をバイパス流量調節弁23から空気圧力調節弁25に受け渡す。制御部70は、空気圧力調節弁25によって燃料電池13の空気出口圧力を所定の運転圧力になるように調整し、燃料電池13の発電状態に応じて空気圧縮機17の回転数を制御して空気流量を制御する。燃料電池13の運転状態においては、空気出口圧力は空気充填圧力P2bよりも低い圧力であり、空気圧縮機17の回転数も定格回転数r1よりも低い回転数であり、圧縮空気供給管27の圧力も空気充填圧力P2bより低い圧力となっている。一方、バッファタンク44はバッファタンク入口開閉弁41を閉として圧縮空気供給管27から切り離されているため、保持圧力P1bの状態を保っている。この圧力は空気入口遮断弁50、空気出口遮断弁60の各加圧室52,62の圧力と各大気圧室51,61との間の差圧による開弁方向の押し上げ力を各閉弁ばね53,63の閉弁方向への押し下げ力よりも大きく保ち、各空気遮断弁50,60を開弁状態に保持する。
【0032】
燃料電池13が運転を続けている間、バッファタンク44に蓄圧された空気は、空気入口遮断弁駆動空気弁42、空気出口遮断弁駆動空気弁43の微小な隙間から少しずつリークして、その圧力が次第に低下してくる。そして、図2に示す時間t4にはバッファタンク44の圧力は加圧開始圧力P1cまで低下する。制御部70は、バッファタンク44の圧力センサ45によって検出した圧力が加圧開始圧力P1cまで低下するとバッファタンク44の再加圧を開始する。
【0033】
制御部70は、空気圧縮機17の回転数を定格回転数r1まで上昇させると共に、空気圧力調節弁25の開度を小さくして出口空気圧力を上昇させる。これに伴って、圧縮空気供給管27の圧力も上昇していく。出口空気圧力がバッファタンク44の保持圧力P1bよりも高い空気充填圧力P2bに達すると、空気出口の圧力センサ37よりも空気流れの上流にある圧縮空気供給管27の圧力は、空気充填圧力P2bよりも高い圧力となっている。そして、制御部70は、図2に示す時間t5に、バッファタンク入口開閉弁41を開とし、バッファタンク44に圧縮空気を充填してバッファタンク44の圧力の上昇を開始させる。するとバッファタンクの圧力は、加圧開始圧力P1cよりも低く各空気遮断弁50,60が開となる圧力よりも高い圧力P1dから保持圧力P1bまで上昇していく。バッファタンク44の圧力が保持圧力P1bまで上昇後、図2に示す時間t6まで所定時間保持する。図2に示す時間t6に制御部70は、バッファタンク入口開閉弁41を閉としてバッファタンク44を保持圧力P1bの状態で圧縮空気供給管27から切り離し、保持圧力P1bに保持する。このようにして、バッファタンク44の圧力を保持圧力P1bに上昇させ、保持圧力P1bに圧力が保持されるとバッファタンク44への再加圧が終了する。
【0034】
そして、その後、制御部70は、空気圧力調節弁25の開度を大きくして燃料電池13の空気出口圧力を所定の運転圧力になるように調節すると共に、空気圧縮機17の回転数を定格回転数r1から、燃料電池13の発電状態に応じて必要空気流量を供給するような回転数にして空気流量を制御する。この運転状態においては、圧縮空気供給管27の圧力も空気充填圧力P2bより低い圧力となっているが、バッファタンク44はバッファタンク入口開閉弁41を閉として圧縮空気供給管27から切り離されているため、保持圧力P1bの状態を保っている。この再加圧によって空気入口遮断弁50、空気出口遮断弁60の各加圧室52,62の圧力も上昇し、各大気圧室51,61との間の差圧による開弁方向の押し上げ力を各閉弁ばね53,63の閉弁方向への押し下げ力よりも大きく保ち、各空気遮断弁50,60を開弁状態に保持し続けることができる。
【0035】
燃料電池13は電気出力が小さい場合には、空気圧縮機17を停止させ、空気を供給しない状態で発電する間欠運転を行う場合がある。電気出力が少ない場合には、水素と反応させる酸素を新たに供給しなくとも燃料電池13の空気流路内に残留している空気によって発電を継続することができる場合があるためである。しかし、上記のバッファタンク44の再加圧中に間欠運転によって空気圧縮機17が停止してしまうと、バッファタンク44の再加圧ができず、各空気遮断弁50,60の開状態を保持することが困難となる場合がある。このため、制御部70は、バッファタンク44の加圧中には空気圧縮機17の間欠運転指令があった場合でも空気圧縮機17の間欠運転を禁止し、バッファタンク44の加圧に必要な定格回転数r1の運転を継続する運転を行う。
【0036】
図2に示す時間t7に燃料電池システム11の停止指令が出されると、制御部70は空気圧縮機17の回転数を停止に向かって低下させ、空気圧力調節弁25を絞って燃料電池13の中を流れる空気流量を減少させていく。これによって、燃料電池13の出口空気圧力と圧縮空気供給管27の圧力も低下してくる。そして、制御部70は、バッファタンク入口開閉弁41を開とする。すると、バッファタンク44は圧力の低下した圧縮空気供給管27に連通され、バッファタンク44の圧力が低下してくる。すると、空気入口遮断弁駆動空気管46、空気出口遮断弁駆動空気管47によってバッファタンク44に接続されている各空気遮断弁50,6の各加圧室52,62の圧力も低下し、各大気圧室51,61との間の差圧による開弁方向の押し上げ力が各閉弁ばね53,63の閉弁方向への押し下げ力よりも小さくなり、図2に示す時間t8に各空気遮断弁50,60は閉弁される。
【0037】
各空気遮断弁50,60が閉弁されると図2に示す時間t9に制御部70は、バッファタンク入口開閉弁41、空気入口遮断弁駆動空気弁42、空気出口遮断弁駆動空気弁43を閉として燃料電池13を停止させる。燃料電池13の停止中には、空気圧縮機17が停止し、バッファタンク44の蓄圧空気も開放されているので各空気遮断弁50,60の加圧室52,62の圧力は加圧されず、各空気遮断弁50,60は各閉弁ばね53,63によって閉状態に保持される。
【0038】
本実施形態では、燃料電池13の空気出口にある空気圧力調節弁25の開度を小さくすること、或いは、バイパス流量調節弁23の開度を小さくすることによって、バッファタンク44に蓄圧する空気圧力を上昇させる事としたが、蓄圧する空気圧力を上昇させる方法は上記の方法に限らず、圧縮空気供給管27のバッファタンク空気供給管39の分岐点よりも空気流れの下流に配置されている他の調節弁によって行うこととしてもよい。
【0039】
本実施形態では、燃料電池13の運転中は、バッファタンク44に蓄圧した圧縮空気によって各空気遮断弁50,60を開弁状態に保持することができること及びバッファタンク44圧力が低下した場合に加圧動作を行うこととしていることから、運転中に各遮断弁を開状態に保持するために必要な電力が少なく、燃料電池13の効率を向上させることができる。また、本実施形態では、各空気遮断弁50,60の開閉駆動用の空気圧力を燃料電池13の通常運転圧力よりも高い圧力に保持したバッファタンク44から供給するので、各空気遮断弁50,60の駆動力を大きくすることができ、凍結などによって大きな開弁力が必要な場合にも対応することができるという効果を奏する。また、本実施形態では、燃料電池13の停止の際には閉弁用ばね53,63によって各空気遮断弁50,60を閉止するようにしていることから、異常停止のような場合でも確実に各空気遮断弁50,60を閉とすることができ、燃料電池13の性能劣化を抑制することができるという効果を奏する。更に、本実施形態は、各空気遮断弁50,60の開閉駆動を行うために必要な制御弁が、空気入口遮断弁駆動空気弁42、空気出口遮断弁駆動空気弁43の2弁となり、簡便なシステム構成によって各空気遮断弁50,60を開閉できるシステムとすることができるという効果を奏する。このように、本実施形態は、燃料電池13の効率低下を抑えつつ各空気遮断弁50,60に十分な駆動力を供給することができるという効果を奏する。
【図面の簡単な説明】
【0040】
【図1】本発明に係る燃料電池システムの実施形態において燃料電池システムの系統構成を示す図である。
【図2】本発明に係る燃料電池システムの実施形態において、各機器の動作及び圧力の変動を示したタイムチャートである。
【符号の説明】
【0041】
11 燃料電池システム、13 燃料電池、15 加湿モジュール、17 空気圧縮機、19 モータ、21 インタークーラー、23 バイパス流量調節弁、25 空気圧力調節弁、25 空気出口圧力調節弁、27 圧縮空気供給管、29 空気入口管、31 空気出口管、33 空気排出管、35 バイパス管、37,45 圧力センサ、39 バッファタンク空気供給管、41 バッファタンク入口開閉弁、42 空気入口遮断弁駆動空気弁、43 空気出口遮断弁駆動空気弁、44 バッファタンク、46 空気入口遮断弁駆動空気管、47 空気出口遮断弁駆動空気管、50 空気入口遮断弁、50a 駆動部、50b 弁本体、51,61 大気圧室、52,62 加圧室、54,64 ダイヤフラム、55,65 各駆動板、56,66 弁体、57,67 弁棒、58,68 弁座、59,69 大気連通孔、60 空気出口遮断弁、60a 駆動部、60b 弁本体、70 制御部、P1a 初期圧力、P1b 保持圧力、P1c 加圧開始圧力、P1d 圧力、P2a 初期圧力、P2b 空気充填圧力、r1 定格回転数、t0〜t9 時間。

【特許請求の範囲】
【請求項1】
燃料ガスと酸化剤ガスとの電気化学反応により発電する燃料電池と、燃料電池に供給する酸化剤ガスを圧縮する圧縮機と、燃料電池の酸化剤ガスの入口及び出口に設けられる酸化剤ガス遮断弁と、を含む燃料電池システムであって、
圧縮機によって圧縮された酸化剤ガスを燃料電池への供給圧力よりも高い圧力で蓄圧するバッファタンクと、
各酸化剤ガス遮断弁に取り付けられ、大気に連通する大気圧室と、バッファタンクから供給される酸化剤ガスによって加圧される加圧室とを含み、各室間の圧力差によって各酸化剤ガス遮断弁の開閉を行う弁開閉駆動機構と、
を有することを特徴とする燃料電池システム。
【請求項2】
請求項1に記載の燃料電池システムであって、
弁開閉駆動機構は、大気に連通する大気圧室と、大気圧室と仕切られてバッファタンクから供給される酸化剤ガスによって加圧される加圧室と、弁体に閉弁方向の力を付勢する閉弁用ばねとを備え、
大気圧室と加圧室との間の圧力差と閉弁用ばねの付勢力とによって各酸化剤ガス遮断弁の開閉駆動を行い、燃料電池の運転中にはバッファタンクから供給される酸化剤ガスによって各酸化剤ガス遮断弁を開弁状態に保持し、燃料電池の停止中には閉弁用ばねによって各酸化剤ガス遮断弁を閉弁状態に保持すること、
を特徴とする燃料電池システム。
【請求項3】
請求項1又は2に記載の燃料電池システムであって、
バッファタンクの圧力を検出する圧力センサと、
バッファタンク入口に設けられ、バッファタンクへの酸化剤ガス供給路を開閉する開閉弁と、
バッファタンクに蓄圧する酸化剤ガスの圧力を調整する圧力調節弁と、
開閉弁の開閉及び圧力調節弁の開度を制御する制御部と、を備え、
制御部は、圧力センサによって検出したバッファタンクの圧力が燃料電池への供給圧力よりも高い所定の保持圧力よりも低下した場合に、酸化剤ガス供給路の圧力をバッファタンク保持圧力以上となるよう圧力調整弁の開度を小さくした後に開閉弁を開としてバッファタンクの圧力を保持圧力まで上昇させるバッファタンク加圧手段を備えること、
を特徴とする燃料電池システム。
【請求項4】
請求項3に記載の燃料電池システムであって、
制御部は、バッファタンク加圧手段によってバッファタンクの圧力を保持圧力まで上昇させた後、開閉弁を閉としてバッファタンクの圧力保持を行うバッファタンク圧力保持手段を備えること、
を特徴とする燃料電池システム。
【請求項5】
請求項3又は4に記載の燃料電池システムであって、
制御部は、圧縮機の起動停止制御を行い、
バッファタンク加圧手段によってバッファタンクの加圧を行っている場合には、圧縮機を連続運転して酸化剤ガスの間欠供給を禁止する間欠運転禁止手段を備えること、
を特徴とする燃料電池システム。
【請求項6】
請求項3から5のいずれか1項に記載の燃料電池システムであって、
圧力調節弁は、バッファタンクへの酸化剤ガス供給路の分岐点よりも下流にある酸化剤ガス流路に配置される調節弁であること、
を特徴とする燃料電池システム。
【請求項7】
請求項3から6のいずれか1項に記載の燃料電池システムであって、
圧力調節弁は、燃料電池の酸化剤ガス出口に設けられた酸化剤ガス圧力調節弁であること、
を特徴とする燃料電池システム。
【請求項8】
請求項3から6のいずれか1項に記載の燃料電池システムであって、
圧力調節弁は、燃料電池をバイパスして酸化剤ガスを流すバイパス流路に設けられる開度調整可能なバイパス弁であること、
を特徴とする燃料電池システム。
【請求項9】
請求項1から8のいずれか1項に記載の燃料電池システムであって、
バッファタンクの断面積は、バッファタンクの酸化剤ガスを供給するガス供給配管の断面積よりも大きいこと、
を特徴とする燃料電池システム。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2008−218072(P2008−218072A)
【公開日】平成20年9月18日(2008.9.18)
【国際特許分類】
【出願番号】特願2007−51083(P2007−51083)
【出願日】平成19年3月1日(2007.3.1)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】