説明

燃料電池用セパレータ及びこれを用いた燃料電池

【課題】燃料電池のシステム効率を低下させることなく、長期にわたってギ酸等の副生成物の排出量を抑制する。
【解決手段】アノード触媒層と、カソード触媒層と、これらの間に挟まれた電解質膜とを含む燃料電池の構造体を挟み込むセパレータ1に関して、セパレータ基材113と、このセパレータ基材113の表面に形成された反応ガスが流通する流路部3とを有し、アノード触媒層に対向する面の側及びカソード触媒層に対向する面の側の少なくとも一方に、触媒を含み燃料電池反応に伴って生じる副生成物を分解する反応副生成物分解層11を設ける。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池用セパレータ及びこれを用いた燃料電池に関する。
【背景技術】
【0002】
近年、化石燃料の大量消費による地球温暖化・環境汚染が深刻な問題となっている。
【0003】
この問題に対する対応策として、化石燃料の代わりに水素やメタノール等を燃料とし、酸素やこれを含む空気等を酸化剤とした燃料電池が注目を集めている。燃料電池には、固体高分子型燃料電池、固体酸化物型燃料電池等がある。
【0004】
燃料電池は、発電による排出物の環境に対する負荷が少なく、クリーンで高効率な発電システムである。特に、高エネルギー密度の電源を必要とするモバイル機器の電源として燃料電池の適用可能性が検討され始めている。
【0005】
最近の電子技術の進歩に伴って、情報量が増加し続けているため、膨大な情報を、より高速に、より高機能に処理する必要がある。このため、出力密度及び高エネルギー密度が高い電源、すなわち、連続駆動時間の長い電源を必要とする。また、充電を必要としない小型発電機、即ち、容易に燃料補給ができるマイクロ発電機の必要性も高まっている。
【0006】
こうした背景から、燃料電池の重要性が検討されている。
【0007】
燃料電池は、少なくとも固体又は液体の電解質と、所望の電気化学反応を誘起する二個の電極であるアノード及びカソードとを含む構成を有し、その燃料が持つ化学エネルギーを直接電気エネルギーに高効率で変換する発電機である。
【0008】
燃料電池のうち、電解質膜として固体高分子電解質膜を用い、水素を燃料とするものは、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)と呼ばれ、メタノールを燃料とするものは、直接メタノール形燃料電池(DMFC:Direct Methanol Fuel Cell)と呼ばれる。中でも、液体燃料を使用するDMFCは、燃料の体積エネルギー密度が高いため、小型の可搬型又は携帯型の電源として有効なものとして注目されている。
【0009】
DMFCにおいては、アノードに供給されたメタノールが酸化され、二酸化炭素となって排出される。また、アノードから固体高分子電解質を透過してカソードに移動したメタノールは、カソードに供給された酸素によって酸化され、二酸化炭素となって排出される。これらのメタノール酸化過程では、中間生成物であるギ酸(蟻酸)、ホルムアルデヒド等が副生成物として少なからず生じ、燃料電池から排出される。このギ酸は、人体にとって有害であるため、その量を可能な限り低減する必要がある。
【0010】
例えば、特許文献1には、燃料電池から排出される有害物質であるギ酸等を除去することを目的として、排出ガス配管にアミノグアニジン塩および/またはヒドラジド化合物を含むアルデヒド系ガス吸収剤と有機酸性ガス消臭剤とを含有する副生ガス吸収剤を用いたフィルターが開示されている。
【0011】
また、特許文献2には、ギ酸、ホルムアルデヒド等を酸化する触媒を含む有害物質除去フィルターが開示されている。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】特開2008−210796号公報
【特許文献2】特開2005−183014号公報
【発明の概要】
【発明が解決しようとする課題】
【0013】
特許文献1に記載された吸収剤を用いた場合、吸収剤の吸収量に限界があるため、長期にわたるギ酸等の除去効果という点で改善の余地がある。
【0014】
また、特許文献2に記載された有害物質除去フィルターは、配管内の筺体内に充填した触媒部を含むものであり、このフィルターが排ガスの流通抵抗となるため、ブロアの能力を向上させる必要があり、補機動力による損失が大きくなる。このため、燃料電池システムの効率が下がってしまうという課題が残っている。
【0015】
そこで、本発明は、燃料電池のシステム効率を向上し、長期にわたってギ酸等の副生成物の排出量を抑制することを目的とする。
【課題を解決するための手段】
【0016】
本発明においては、アノード触媒層と、カソード触媒層と、これらに挟まれた電解質膜とを含む燃料電池の構造体を挟み込むセパレータに関して、前記アノード触媒層に対向する面の側及び前記カソード触媒層に対向する面の側の少なくとも一方に、燃料電池反応に伴って生じる副生成物を触媒によって分解する反応副生成物分解層を設ける。
【発明の効果】
【0017】
本発明によれば、燃料電池のシステム効率を高め、長期にわたってギ酸等の副生成物の排出量を抑制することができる。
【図面の簡単な説明】
【0018】
【図1】セパレータの構造の例を示す分解斜視図である。
【図2】燃料電池を示す分解斜視図である。
【図3】図1のセパレータの例を示すA−A’断面図である。
【図4】図1のセパレータの他の例を示すA−A’断面図である。
【図5】図1のセパレータの他の例を示すA−A’断面図である。
【図6】実施例及び比較例の評価に用いた燃料電池を示す概略断面図である。
【図7】セパレータの構造の他の例を示す分解斜視図である。
【図8】図7のセパレータのB−B’断面図である。
【発明を実施するための形態】
【0019】
本発明は、アノード(アノード触媒層)、電解質膜、カソード(カソード触媒層)、ガス拡散層及びセパレータを含み、アノードで燃料が酸化され、カソードで酸素が還元される燃料電池に関し、この燃料電池を複数個積層した積層形燃料電池に関する。また、本発明は、このような燃料電池を含む発電装置及び小型の携帯用電源並びにこのような電源を用いた電気機器又は電子機器に関する。
【0020】
以下、本発明に係る一実施形態である燃料電池用セパレータ及びこれを用いた燃料電池について説明する。
【0021】
前記燃料電池用セパレータは、アノード触媒層と、カソード触媒層と、これらの間に挟まれた電解質膜とを含む燃料電池の構造体を挟み込むセパレータであって、セパレータ基材と、このセパレータ基材の表面に形成された反応ガスが流通する流路部とを有し、アノード触媒層に対向する面の側及びカソード触媒層に対向する面の側の少なくとも一方に、触媒を含み燃料電池反応に伴って生じる副生成物を分解する反応副生成物分解層を設けたことを特徴とする。
【0022】
前記燃料電池用セパレータにおいて、流路部は、セパレータ基材の凹凸構造の凹部を壁面の一部とする空間、又は多孔質層の基材で形成された空孔であることが望ましい。
【0023】
前記燃料電池用セパレータにおいて、反応副生成物分解層は、流路部の壁面に設けることが望ましい。
【0024】
前記燃料電池用セパレータにおいて、セパレータ基材又は多孔質層の基材の一部は、アノード触媒層又はカソード触媒層に接触することが望ましい。
【0025】
前記燃料電池用セパレータにおいて、セパレータ基材又は多孔質層の基材は、導体であることが望ましい。ここで、導体とは、体積抵抗率が10−2Ω・m以下である物質(材料)をいう。
【0026】
前記燃料電池用セパレータにおいて、反応副生成物分解層は、白金、ルテニウム、イリジウム、ロジウム、オスミウム、パラジウム、タングステン、モリブデン、鉄、コバルト、ニッケル及びマンガンからなる群から選択される一種類以上の金属元素を含むことが望ましい。
【0027】
前記燃料電池用セパレータにおいて、反応副生成物分解層は、さらに、カーボン、導電性セラミックス及び金属粉末からなる群から選択される一種類以上の導電材と、結着材とを含むことが望ましい。
【0028】
前記燃料電池用セパレータにおいて、金属元素は、導電材に担持されていることが望ましい。
【0029】
前記燃料電池用セパレータにおいて、導電材の比表面積は10m/g以上であることが望ましい。
【0030】
前記燃料電池は、有機物である燃料と酸素との反応を利用するものであって、前記燃料電池用セパレータを用いることが望ましい。
【0031】
前記燃料電池において、燃料は、メタノールを含むことが望ましい。
【0032】
前記燃料電池において、金属元素は、パラジウムであることが望ましい。
【0033】
前記燃料電池は、積層形燃料電池であって、アノード触媒層と、カソード触媒層と、これらの間に挟まれた電解質膜と、前記燃料電池用セパレータとを含む単位セルを複数積層した構造を有することが望ましい。
【0034】
以下、図を用いて詳細に説明する。
【0035】
図1は、セパレータの構造の例を示す分解斜視図である。本図においては、理解を助けるため、セパレータ1をその表面及び裏面から挟み込むガスケット5も併記した。
【0036】
後述の図3において示すように、セパレータ1は、セパレータ基材113と、セパレータ基材113を覆う反応副生成物分解層11とで構成されている。
【0037】
本図に示すセパレータ1は、セパレータ基材である平板状のステンレス鋼(SUS鋼)の中央部を押出しプレス成型することにより、その表面及び裏面に凸部111を有する凹凸構造を形成し、複数の流路部3を構成したものである。すなわち、流路部3は、凹凸構造の溝部であり、言い換えると、凹凸構造の凹部を壁面とする空間である。また、セパレータ1の周縁部には、平坦部2及びマニホールド4を設けてある。押出しプレス成型しているため、流路部3の断面形状は台形状になっている。押出しプレス成型を施した後、セパレータ基材の表面に反応副生成物分解層を形成する。
【0038】
平坦部2は、ガスケット5を密着する部位である。流路部3は、セパレータ1の表面及び裏面に反応ガス(燃料ガス及び酸化剤ガスの総称である。)や冷却水を流通させるための溝であり、セパレータ基材の凹凸構造の凹部(溝状の凹部)を壁面の一部とする空間である。マニホールド4は、反応ガスおよび冷却水の出入り口となるものである。セパレータ1の表面及び裏面の平坦部2に2枚のガスケット5を密着することにより、ガスケット付きセパレータを形成する。ガスケット5もマニホールド4を有し、ガスケット付きセパレータにおいては、マニホールド4が表面から裏面まで貫通する構造になっている。
【0039】
図2は、燃料電池(以下、単に「電池」とも呼ぶ。)の構成を示す分解斜視図である。
【0040】
本図においては、2枚のガス拡散層6で膜電極接合体7(Membrane Electrode Assembly:MEA)を挟み込んだ単位セル105を2枚のガスケット付きセパレータ101A、101Bの間に挟み込む形で複数の単位セル105を積層し、セル積層体107を形成している。このセル積層体107を集電板8、絶縁板9及び端板10で構成された端部構造体109で挟み込むことにより、積層形燃料電池を形成している。
【0041】
ガスケット付きセパレータ101A、101Bは、異なる構成を有する。ガスケット付きセパレータ101Aは、その両面の流路部に反応ガスを流通するものであり、ガスケット付きセパレータ101Bは、その片面に反応ガスを流通し、もう一方の面に冷却水を流通するものである。単位セル105を挟み込んだガスケット付きセパレータ101A又は101Bの内側の流路部は、反応ガスを流通するようなっている。
【0042】
図1に示すセパレータ1の凸部111の頂点は、発電部であるMEAへのガス供給及び集電を行う部材であるガス拡散層6に接している。したがって、セパレータ1の凸部111の頂点は、導電性を有している必要がある。それ以外の面は、電気の導通に無関係であるため、導電性を必要とせず、絶縁性であっても構わないし、導電性であってもよい。
【0043】
図3は、図1のセパレータの例を示すA−A’断面図である。
【0044】
燃料電池においてメタノールを燃料とした場合には、アノードに反応副生成物(単に「副生成物」とも呼ぶ。)としてギ酸、アルデヒド等が生成される。
【0045】
本図において、セパレータ1は、セパレータ基材113と、セパレータ基材113を覆う反応副生成物分解層11とで構成されている。反応副生成物分解層11は、反応副生成物を分解する機能を有する。本図においては、セパレータ基材113の表面及び裏面のすべてが反応副生成物分解層11で覆われている。すなわち、セパレータ1の凸部111の頂点も反応副生成物分解層11で覆われている。隣り合う凸部111の間には、凹部である流路部3が形成されている。
【0046】
セパレータ基材113としては、鉄、アルミニウム、銅、チタン、マグネシウム、ジルコニウム、タンタル、ニオブ、タングステン、ニッケル、クロム、ハフニウム、亜鉛、ビスマス、アンチモンおよびこれらの合金、SUS鋼のほか、チタン合金、銅合金、腐食防止のための表面処理を施したアルミニウム合金等の合金、緻密黒鉛;炭素、導電性金属又は導電性セラミックス粉末と樹脂とのコンポジット材料などを使用することができる。このうち、緻密黒鉛を用いる場合は、切削加工等によって凹凸構造を形成することが望ましい。
【0047】
反応副生成物分解層11は、触媒金属と、カーボン、導電性セラミックス、金属粉末などの導電材のうち少なくとも一種類と、この導電材を固定するための結着材と、溶媒とを混練し、その後、塗布することにより形成したものである。このため、反応副生成物分解層11は導電性を有する。触媒金属は、微粒子の粉末状のものを使用することができるが、導電性を有する担体に微粒子として担持されている方が好ましい。これは、担体に担持することにより、触媒金属を担体より小さい微粒子として使用することができ、比表面積を大きくすることができるためである。また、担体に担持することにより、触媒金属が凝集して粗大化し比表面積が減少する劣化現象を抑制することができる。
【0048】
導電性を有する担体としては、腐食しにくい点から、カーボン担体を用いることが好ましい。ここで、カーボン担体としては、触媒金属を高分散させるために比表面積が10m/g以上のものを用いることが望ましい。カーボン担体の例としては、カーボンブラック、カーボンナノチューブ、カーボンファイバー、活性炭等を用いることができる。ここで、比表面積は、JIS Z 8830に準拠した窒素吸着法により測定する。
【0049】
結着材としては、フッ素系樹脂、シリコン系樹脂、フェノール系樹脂、エポキシ系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、フラン系樹脂、ゴム系樹脂及びこれらの混合物を用いることができる。
【0050】
このような構成とすることにより、セパレータ1の表面で反応副生成物を分解することができ、長期にわたり反応副生成物排出量の少ない積層形燃料電池を提供することができる。
【0051】
図4は、図1のセパレータの他の例を示すA−A’断面図である。
【0052】
燃料電池においてメタノールを燃料とした場合には、アノードに反応副生成物としてギ酸が多く生成される。
【0053】
本図に示す例は、特にギ酸を分解する触媒を用いたものである。
【0054】
本図において、セパレータ1は、セパレータ基材113の表面及び裏面(両面)をすべて覆うギ酸分解層12を有する。ギ酸分解層12は、図3の反応副生成物分解層11の触媒の具体例の一つである。ギ酸分解層12は、触媒金属と、カーボン、導電性セラミックス、金属粉末などの導電材のうち少なくとも一種類と、この導電材を固定するための結着材と、固体高分子電解質と、溶媒とを混練し、その後、塗布することにより形成したものである。このため、ギ酸分解層12は、導電性及びプロトン伝導性を有する。ここで、触媒金属としては、パラジウムが特に好適である。
【0055】
ギ酸分解層12に用いる触媒金属には、メタノール酸化反応を促進する白金、ルテニウム、イリジウム、ロジウム、オスミウム、タングステン、モリブデン、鉄、コバルト、ニッケル、マンガン等が含まれないことが好ましく、特に白金及びルテニウムを構成要素とする複合触媒が含まれないことが好ましい。メタノール酸化反応を促進する触媒がギ酸分解層12に含まれると、ここでメタノールの酸化反応も起こってしまい、中間生成物として再びギ酸が生じるため、ギ酸排出の抑制効率が低下してしまう。
【0056】
ギ酸の酸化に用いる触媒であるパラジウムは、メタノール酸化反応の触媒としてはほとんど機能しないため、パラジウムを用いたとしてもギ酸が増加することはほとんどない。また、パラジウムは、担体に微粒子として担持されていることが好ましい。これは、担体に担持することにより、触媒金属を担体より小さい微粒子として使用することができ、比表面積を大きくすることができるためである。
【0057】
固体高分子電解質膜には、ポリパーフルオロスチレンスルホン酸、パーフルオロカーボン系スルホン酸などに代表されるスルホン酸化したフッ素系ポリマー、ポリスチレンスルホン酸類、スルホン酸化ポリエーテルスルホン類、スルホン酸化ポリエーテルエーテルケトン類などの炭化水素系ポリマーをスルホン化した材料、或いは、炭化水素系ポリマーをアルキルスルホン酸化した材料を用いることができる。
【0058】
このような構成とすることにより、セパレータ1の表面で反応副生成物であるギ酸を分解することができ、長期にわたりギ酸排出量の少ない積層形燃料電池を提供することができる。
【0059】
図5は、図1のセパレータの他の例を示すA−A’断面図である。
【0060】
メタノールを燃料とした場合には、メタノールが電解質膜を透過してカソードに到達してカソードで反応副生成物としてギ酸が生成する。カソードには空気が供給されるため、空気中の酸素でギ酸を酸化することが可能となる。したがって、カソードは、アノードと異なり、ギ酸を電気化学的に酸化する必要はない。
【0061】
したがって、本図に示すように、カソードにおいては、セパレータ1における導電性が必要な凸部111の頂上部以外の部位、すなわち、反応物質が流通する流路部3だけにギ酸分解層13を形成するだけで十分である。言い換えると、ギ酸分解層13は、流路部3の壁面のみに設けてある。この場合、セパレータ基材113が露出している凸部111は、アノード触媒層又はカソード触媒層に接触するようになっている。
【0062】
ギ酸分解層13は、触媒金属または触媒金属を担持したカーボン、セラミックス、金属粉末などの担体と、この担体を固定するための樹脂結着材とを混練し、その後、塗布することにより形成したものである。ギ酸分解層13には、ギ酸の酸化反応を促進する白金、ルテニウム、イリジウム、ロジウム、オスミウム、パラジウム、タングステン、モリブデン、鉄、コバルト、ニッケル、マンガン等の触媒が好ましい。これらのうち、パラジウムが特に好ましい。また、これらのギ酸酸化触媒は、担体に微粒子として担持されている方が好ましい。これは、担体に担持することにより、触媒金属を担体より小さい微粒子として使用することができ、比表面積を大きくすることができるためである。
【0063】
このような構成とすることにより、セパレータ1の表面で反応副生成物であるギ酸を分解することができ、長期にわたりギ酸排出量の少ない積層形燃料電池を提供することができる。
【0064】
図1〜5においては、流路部3の断面形状が台形状の場合について記載したが、流路部3の断面形状は、これに限定されるものではなく、長方形状であってもよく、半円形状であってもよい。また、多孔体の空孔のように複雑な断面形状であってもよい。
【0065】
以下、実施例であるメタノール型燃料電池について説明する。
【実施例1】
【0066】
セパレータの材料としては、緻密黒鉛を用いた。この緻密黒鉛に切削加工を施すことにより、幅1mm、深さ1mmのガス流路(流路部)、及びガス拡散層と接する1mmのリブを設けたセパレータを作製した。単位セルの発電面積は25cmとした。流路部の断面形状は、長方形状である。
【0067】
アノード側のギ酸分解層に用いるスラリーは、パラジウムを担持したカーボンブラックと、固体高分子電解質であるNafion(登録商標)と、プロパノールと、水とを混合して作製し、スターラーで24時間攪拌した。このスラリーをパラジウムの質量が0.4mg/cmとなるようにセパレータの表面にスプレー塗布した後、120℃の恒温槽中で1時間保持し、セパレータの表面にギ酸分解層を形成し、アノード側セパレータとした。
【0068】
カソード側のセパレータ(カソード側セパレータ)としては、切削加工をしただけでギ酸分解層を設けていないものを用いた。
【0069】
これらのアノード側セパレータ及びカソード側セパレータを用いて燃料電池セルを作製した。
【0070】
なお、本実施例におけるギ酸分解層の厚さは、およそ40μmであった。
【実施例2】
【0071】
セパレータの材料としては、緻密黒鉛を用いた。この緻密黒鉛に切削加工を施すことにより、幅1mm、深さ1mmのガス流路(流路部)、及びガス拡散層と接する1mmのリブを設けたセパレータを作製した。単位セルの発電面積は25cmとした。
【0072】
カソード側のギ酸分解層に用いるスラリーは、パラジウムを担持したカーボンブラックと、結着材であるフッ化ビニリデンと、溶媒であるN−メチル−2−ピロリドンとを混合して作製した。このスラリーを白金の質量が0.4mg/cmとなるようにセパレータのリブ(凸部)をマスクして、流路部の壁面だけにスプレー塗布した後、140℃の恒温槽中で3時間保持し、セパレータの表面にギ酸分解層を形成し、カソード側セパレータとした。
【0073】
アノード側セパレータは、切削加工をしただけでギ酸分解層を設けていないものを用いた。
【0074】
これらのアノード側セパレータ及びカソード側セパレータを用いて燃料電池セルを作製した。
【0075】
なお、本実施例におけるギ酸分解層の厚さは、およそ30μmであった。
【実施例3】
【0076】
実施例1のアノード側セパレータ及び実施例2のカソード側セパレータを用いて燃料電池セルを作製した。
【0077】
(比較例1)
セパレータの材料としては、緻密黒鉛を用いた。この緻密黒鉛に切削加工を施すことにより、幅1mm、深さ1mmのガス流路(流路部)、及びガス拡散層と接する1mmのリブを設けたセパレータを作製した。単位セルの発電面積は25cmとした。セパレータの表面には、ギ酸分解層を設けないで燃料電池セルを作製した。
【0078】
(評価)
図6は、実施例及び比較例の評価に用いた燃料電池を示す概略断面図である。
【0079】
燃料電池600は、2枚のガス拡散層6で膜電極接合体7(MEA)を挟み込んだ単位セル105を、ガスケット5を備えたアノード側セパレータ14及びカソード側セパレータ15で挟み込んだ構成である。アノード側セパレータ14には、メタノール水溶液供給口17及び廃液出口18が設けてあり、燃料であるメタノールの供給及び反応生成物を含む廃液の排出が可能となっている。また、カソード側セパレータ15には、空気供給口19及び排ガス出口20が設けてあり、酸化剤である空気の供給及び反応生成物を含む排ガスの排出が可能となっている。燃料電池600は、外部回路16に接続され、放電することができるようになっている。
【0080】
ここで、固体高分子電解質膜とアノード触媒層とカソード触媒層とを含む膜電極接合体7(MEA)は、次のように作製した。
【0081】
カーボンブラックに担持された白金ルテニウムと、固体高分子電解質であるNafion(登録商標)と、プロパノールと、水とを混合し、アノード用スラリーを作製し、スターラーで24時間攪拌した。また、カーボンブラックに担持された白金と、Nafion(登録商標)と、プロパノールと、水とを混合し、カソード用スラリーを作製し、スターラーで24時間攪拌した。
【0082】
次に、スルホン化ポリエーテルスルホンで形成された固体高分子電解質膜の片面にアノード用スラリーをスプレー塗布した後、固体高分子電解質膜のもう一方の面にカソード用スラリーをスプレー塗布した。その後、120℃でホットプレスを施した。
【0083】
上記のようにして作製したMEAを用い、アノード側の拡散層(アノード拡散層)にカーボンペーパーを用い、カソード側の拡散層(カソード拡散層)にカーボンクロスを用い、その両側に実施例及び比較例に示すアノード側セパレータ14及びカソード側セパレータ15をそれぞれ配置し、所定の圧力で締め付けて燃料電池セルを組み立てた。
【0084】
実施例及び比較例の評価においては、3重量%のメタノールを含むメタノール水溶液を供給し、カソードには相対湿度60%の空気を供給した。また、セル温度は60℃とし、負荷電流密度は0.15A/cmとした。この際のギ酸排出量を、廃液出口18から排出された廃液及び排ガス出口20から排出された排ガスを氷水で捕集し、その中に含まれるギ酸をイオンクロマトグラフィにて測定した。
【0085】
表1は、ギ酸排出量の測定結果を示したものである。
【0086】
【表1】

【0087】
実施例3のアノード及びカソードにギ酸分解層を設置したセパレータにおいては、比較例1のギ酸分解層を設けていないセパレータに比べて、ギ酸排出量が約1/50と少なかった。また、実施例1と実施例2とでは、ギ酸排出量に約6倍の差があった。これは、カソードに比べてアノードで生成するギ酸の量が多いため、アノードにギ酸分解層を設置した場合にギ酸の総排出量を効果的に低減することができることを示している。
【0088】
図7は、セパレータの構造の他の例を示す分解斜視図である。
【0089】
本図において、反応ガスの流路部は、セパレータ1の中央部に設けてあり、導電性を有する多孔体で形成してある。すなわち、流路部は、多孔質層21の内部に形成された空孔である。この空孔は、外部と連通している。言い換えると、流路部は、多孔質層21の基材で形成された空孔である
図8は、図7のセパレータのB−B’断面図である。
【0090】
本図において、セパレータ1は、平板状のセパレータ基材113と多孔質層21とを含む構成である。反応副生成物分解層は、多孔質層21の内部の空孔を形成する壁面を覆う形で設けてある。このため、反応副生成物分解層の表面積を大きくすることができ、副生成物の分解を効果的に行うことができる。これにより、副生成物の排出量を低減することができる。
【符号の説明】
【0091】
1:セパレータ、2:平坦部、3:流路部、4:マニホールド、5:ガスケット、6:ガス拡散層、7:MEA、8:集電板、9:絶縁板、10:端板、11:反応副生成物分解層、12、13:ギ酸分解層、14:アノード側セパレータ、15:カソード側セパレータ、16:外部回路、17:メタノール水溶液供給口、18:廃液出口、19:空気供給口、20:排ガス出口、21:多孔質層、101A、101B:ガスケット付きセパレータ。

【特許請求の範囲】
【請求項1】
アノード触媒層と、カソード触媒層と、これらの間に挟まれた電解質膜とを含む燃料電池の構造体を挟み込むセパレータであって、セパレータ基材と、このセパレータ基材の表面に形成された反応ガスが流通する流路部とを有し、前記アノード触媒層に対向する面の側及び前記カソード触媒層に対向する面の側の少なくとも一方に、触媒を含み燃料電池反応に伴って生じる副生成物を分解する反応副生成物分解層を設けたことを特徴とする燃料電池用セパレータ。
【請求項2】
前記流路部は、前記セパレータ基材の凹凸構造の凹部を壁面の一部とする空間、又は多孔質層の基材で形成された空孔であることを特徴とする請求項1記載の燃料電池用セパレータ。
【請求項3】
前記反応副生成物分解層は、前記流路部の壁面に設けたことを特徴とする請求項1又は2に記載の燃料電池用セパレータ。
【請求項4】
前記セパレータ基材又は前記多孔質層の基材の一部は、前記アノード触媒層又は前記カソード触媒層に接触することを特徴とする請求項2又は3に記載の燃料電池用セパレータ。
【請求項5】
前記セパレータ基材又は前記多孔質層の基材は、導体であることを特徴とする請求項2〜4のいずれか一項に記載の燃料電池用セパレータ。
【請求項6】
前記反応副生成物分解層は、白金、ルテニウム、イリジウム、ロジウム、オスミウム、パラジウム、タングステン、モリブデン、鉄、コバルト、ニッケル及びマンガンからなる群から選択される一種類以上の金属元素を含むことを特徴とする請求項1〜5のいずれか一項に記載の燃料電池用セパレータ。
【請求項7】
前記反応副生成物分解層は、さらに、カーボン、導電性セラミックス及び金属粉末からなる群から選択される一種類以上の導電材と、結着材とを含むことを特徴とする請求項6記載の燃料電池用セパレータ。
【請求項8】
前記金属元素は、前記導電材に担持されていることを特徴とする請求項6又は7に記載の燃料電池用セパレータ。
【請求項9】
前記導電材の比表面積は10m/g以上であることを特徴とする請求項7又は8記載の燃料電池用セパレータ。
【請求項10】
有機物である燃料と酸素との反応を利用する燃料電池であって、請求項1〜9のいずれか一項に記載の燃料電池用セパレータを用いたことを特徴とする燃料電池。
【請求項11】
前記燃料は、メタノールを含むことを特徴とする請求項10記載の燃料電池。
【請求項12】
前記金属元素は、パラジウムであることを特徴とする請求項10又は11に記載の燃料電池。
【請求項13】
アノード触媒層と、カソード触媒層と、これらの間に挟まれた電解質膜と、請求項1〜9のいずれか一項に記載の燃料電池用セパレータとを含む単位セルを複数積層した構造を有することを特徴とする積層形燃料電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−226889(P2012−226889A)
【公開日】平成24年11月15日(2012.11.15)
【国際特許分類】
【出願番号】特願2011−91763(P2011−91763)
【出願日】平成23年4月18日(2011.4.18)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】