説明

生分解性樹脂組成物

【課題】 成形加工により得られる成形品などが、従来の生分解性ポリエステル樹脂を用いたものよりも物性面において優れ、廃棄後は微生物などにより分解される生分解性樹脂組成物を提供すること。
【解決手段】 末端にカルボキシル基および/または水酸基を有する生分解性ポリエステル樹脂(A)と、上記生分解性ポリエステル樹脂(A)をカルボジイミド化合物で鎖長延長してなる生分解性ポリエステル樹脂(B)とからなることを特徴とする生分解性樹脂組成物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、生分解性ポリエステル樹脂をカルボジイミド化合物で鎖長延長して得られる、従来の生分解性ポリエステル樹脂より高分子量の生分解性ポリエステル樹脂を含む物性の改良された生分解性樹脂組成物に関する。
【背景技術】
【0002】
自然界に存在する高分子物質は微生物によって分解され、自然に戻っていく。近年、プラスチックなどの使用済み資源は、回収し、リユース、リサイクルして省資源化するとともに、環境保護上、廃棄されても微生物分解により自然に戻るようにすることが指向されている。その観点から微生物によって分解する合成高分子化合物が開発され、生分解性樹脂として実用化されてきている(非特許文献1)。しかしながら、生分解性ポリエステル樹脂は、高分子材料としては従来の非生分解性のポリエステル樹脂に比べて分子量が小さく、成形用樹脂としては物性が不十分であるなどの問題点があった。
【非特許文献1】特集/環境にやさしい新材料、工業材料、第38巻(第1号)、第18〜60頁(1990年1月1日 日刊工業新聞社発行)
【発明の開示】
【発明が解決しようとする課題】
【0003】
本発明は、成形加工により得られる成形品などが、従来の生分解性ポリエステル樹脂を用いたものよりも物性面において優れ、廃棄後は微生物などにより分解される生分解性樹脂組成物を提供することを目的とする。
【課題を解決するための手段】
【0004】
本発明者らは、上記問題点を解決すべく鋭意研究を重ねた結果、生分解性ポリエステル樹脂をカルボジイミド化合物と反応させることにより、鎖長延長された生分解性ポリエステル樹脂が得られ、これを含む生分解性樹脂組成物は、成形品の物性に優れ、廃棄後には微生物などにより分解されることを見出し、本発明を完成するに至った。
【0005】
本発明の構成は下記の通りである。
1.末端にカルボキシル基および/または水酸基を有する生分解性ポリエステル樹脂(A)と、上記生分解性ポリエステル樹脂(A)をカルボジイミド化合物で鎖長延長してなる生分解性ポリエステル樹脂(B)とからなることを特徴とする生分解性樹脂組成物。
2.カルボジイミド化合物が、分子中に下記の一般式(1)で表される単位を有する前記1に記載の生分解性樹脂組成物。

(上記式中のnは1以上の整数を、Rは脂肪族、脂環族または芳香族イソシアネート化合物からNCOを除いた残基を示す。)
【0006】
3.さらに生分解性フィラーを含む前記1に記載の生分解性樹脂組成物。
4.生分解性フィラーが、セルロース繊維粉、パルプ、糖、多糖、植物性タンパク、ロジン、植物繊維、植物粉末、古紙、茶抽出殻、コーヒー抽出殻、穀類の殻、柑橘類の皮、さとうきび粕、藁、竹、豆類の皮および植物の葉および茎からなる群から選ばれた植物由来のフィラーである前記3に記載の生分解性樹脂組成物。
【0007】
5.末端にカルボキシル基および/または水酸基を有する生分解性ポリエステル樹脂(A)とカルボジイミド化合物とを反応させることを特徴とする高分子量生分解性樹脂組成物の製造方法。
6.生分解性フィラーとともに反応させる前記5に記載の高分子量生分解性樹脂組成物の製造方法。
7.反応を、反応釜または混練機中で溶融状態で行う前記5または6に記載の高分子量生分解性樹脂組成物の製造方法。
【0008】
8.前記1または3に記載の生分解性樹脂組成物を成形加工してなることを特徴とする生分解性成形品。
9.土壌中に存在する微生物により分解する前記8に記載の生分解性成形品。
【発明の効果】
【0009】
本発明の生分解性樹脂組成物は、従来の生分解性ポリエステル樹脂(A)およびそれよりも高分子量の生分解性ポリエステル樹脂(B)からなり、該組成物を成形加工して得られる成形品は、従来の生分解性ポリエステル樹脂(A)を用いたものより物性面において優れ、廃棄後は微生物などにより分解される。
【発明を実施するための最良の形態】
【0010】
次に発明を実施するための最良の形態を挙げて本発明をさらに詳細に説明する。本発明に使用する生分解性ポリエステル樹脂(A)は、分子鎖末端の一方または両方にカルボキシル基および/または水酸基を有する生分解性の熱可塑性ポリエステル樹脂であり、従来公知の生分解性ポリエステル樹脂が使用でき、特に限定されない。
【0011】
例えば、ポリヒドロキシカルボン酸類、ポリラクトン類、アルキレングリコールと脂肪族ジカルボン酸とのポリエステル類、アルキレングリコールと脂肪族ジカルボン酸と芳香族ジカルボン酸とのポリエステル類、アルキレングリコールと脂肪族ジカルボン酸とのポリエステル−カーボネート類などが挙げられる。
【0012】
さらに具体的には、ポリヒドロキシカルボン酸(C2〜C9)類としては、例えば、ポリ乳酸、ポリヒドロキシ酪酸、3−ヒドロキシ酪酸と3−ヒドロキシ吉草酸との共重合物など;ポリラクトン(C4〜C6)類としては、例えば、ポリブチロラクトン、ポリカプロラクトンなど;脂肪族ポリエステル類としては、例えば、アルキレングリコール(C2〜C4)と脂肪族ジカルボン酸(C2〜C9)とのポリエステルなど、例えば、ポリブチレンサクシネート、ポリブチレンサクシネート−アジペートなど;芳香環を含有するポリエステル類としては、例えば、アルキレングリコール(C2〜C4)と脂肪族ジカルボン酸(C2〜C9)と芳香族ジカルボン酸(C8〜C10)とのポリエステルなど、例えば、ポリブチレンサクシネート−テレフタレート、ポリブチレンアジペート−テレフタレート、ポリテトラメチレンアジペート−テレフタレート、ポリブチレンアジペート−テレフタレートなど;アルキレングリコール(C2〜C4)と脂肪族ジカルボン酸(C2〜C9)とのポリエステル−カーボネート類として、例えば、ポリブチレンサクシネート−カーボネートなどが挙げられる。これらの生分解性ポリエステル樹脂は、一種あるいは二種類以上を用いることが好ましい。
【0013】
本発明に使用されるカルボジイミド化合物は、イソシアネート化合物を、3−メチル−1−フェニル−2−ホスホレン−1−オキシドなどのホスホレンオキシド類などの公知のカルボジイミド化触媒の存在下に脱炭酸させて得られる化合物であり、分子中に下記の一般式(1)で示される単位を有する化合物である。

(上記式中のnは1以上の整数を、Rは脂肪族、脂環族または芳香族イソシアネート化合物からNCOを除いた残基を示す。)
【0014】
カルボジイミド化合物は、生分解性ポリエステル樹脂末端のカルボキシル基および水酸基と反応性を有しているが、カルボキシル基がより反応性が大きく好ましい。カルボジイミド化合物に2分子以上の生分解性ポリエステル樹脂が反応すると、反応により生成した生分解性樹脂の分子量は増大している。
【0015】
本発明におけるカルボジイミド化合物は従来公知の物が使用でき、特に限定されない。前記一般式(1)において、nが1のカルボジイミド化合物としては、例えば、ジフェニルカルボジイミド、ジ−o−メチル−フェニルカルボジイミド、ジ−m−メチル−フェニルカルボジイミド、ジ−p−メチル−フェニルカルボジイミド、ジナフチルカルボジイミド、ジイソプロピルフェニルカルボジイミド、ジオクタデシルカルボジイミドなどのモノイソシアネート化合物から得られるモノカルボジイミド化合物(一般式(2):R1−N=C=N−R2)(式中のR1、R2は同じでも異なっていてもよく、モノイソシアネート化合物からNCOを除いた残基である。)、および後述のジイソシアネート化合物で、2つのイソシアネート基の反応性が違うことを利用して、1方の反応性の高いイソシアネートに、例えば、メタノール、エタノール、ポリエチレングリコールモノアルキルエーテルの如きモノアルコールまたはジプロピルアミン、ジブチルアミンの如きモノアミンを反応させて得られる片末端封鎖モノイソシアネートを脱炭酸して得られるモノカルボジイミド化合物である(この場合には、上記式中のR1、R2は、モノアルコールまたはモノアミンとイソシアネート基との反応で形成される原子団である。)。
【0016】
前記一般式(1)において、nが2以上のカルボジイミド化合物としては、ジイソシアネート化合物、例えば、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、水添ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、テトラメチルキシリレンジイソシアネート、3,3’−ジメチル−4,4’−ジフェニルメタンジイソシアネート、3,3’−ジエチル−4,4’−ジフェニルメタンジイソシアネート、3,3’−ジイソプロピル−4,4’−ジフェニルメタンジイソシアネート、3,3’,5,5’−テトラメチル−4,4’−ジフェニルメタンジイソシアネート、3,3’,5,5’−テトラエチル−4,4’−ジフェニルメタンジイソシアネート、3,3’,5,5’−テトライソプロピル−4,4’−ジフェニルメタンジイソシアネートなどの従来公知のジイソシアネート化合物の1種または2種以上を、脱炭酸・縮合させて得られるポリカルボジイミド化合物が挙げられる。
【0017】
また、それらのポリカルボジイミド化合物はその末端がイソシアネートとなるが、そのままイソシアネートとして(一般式(3):OCN−R3−(N=C=N−R4n−NCO(式中のR3、R4は同じでも異なっていてもよく、ジイソシアネート化合物からNCOを除いた残基であり、nは2以上の整数である。))、またはモノアルコールやモノアミンなどをイソシアネート基と反応させて末端封鎖して(一般式(4):R5−X−R3−(N=C=N−R4)n−X−R6(式中のR3、R4、nは前記と同じであり、R5、R6は同じでも異なっていてもよく、モノアルコールまたはモノアミンから水酸基またはアミノ基を除いた残基、Xはイソシアネートと水酸基またはアミノ基とが反応して形成された結合である。))使用してもよい。
【0018】
本発明における特に好ましいカルボジイミド化合物は、ジイソプロピルフェニルカルボジイミド、またはトルエンジイソシアネート、水添ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、テトラメチルキシリレンジイソシアネートおよび3,3’−ジエチル−4,4’−ジフェニルメタンジイソシアネートからなる群から選ばれる少なくとも1種のジイソシアネート化合物の脱炭酸・縮合で得られる(ポリ)カルボジイミド化合物(nは2〜100程度)が好ましい。
【0019】
次に、カルボジイミド基の反応について説明する。例えば、ジシクロヘキシルカルボジイミド(通常「DCC」と略称されている。)は「DCCカップリング」と称されるエステル化の縮合剤として知られており、カルボキシル基と水酸基とをエステル結合させるとともに、DCCはジシクロヘキシル尿素となる。生分解性ポリエステル樹脂の末端カルボキシル基はカルボジイミド基と反応し、カルボジイミド基を尿素残基に変えてエステル結合で連結する。2分子の生分解性ポリエステル樹脂の末端カルボキシル基がカルボジイミド基に結合することによってポリエステル尿素を形成し、鎖長延長によって分子量が倍増する。また、さらに生分解性ポリエステル樹脂の末端水酸基とは、DCCカップリングにより尿素残基に連結したエステル結合は解裂して水酸基と反応しエステル結合を形成し、エステル化鎖長延長によって分子量が倍増する。
【0020】
一般式(1)におけるnの繰り返し単位については、n=1の時は、生分解性ポリエステル樹脂のカルボキシル基がカルボジイミド基と反応して、尿素化鎖長延長によって分子量が増大すること、また、カルボジイミド基と生分解性ポリエステル樹脂の水酸基とが反応することによって、生分解性ポリエステル樹脂のエステル化鎖長延長によって分子量が増大することとなる。nが2以上である場合は、前記したn=1の場合と同様の鎖長延長による分子量増大が起こるが、さらに本発明のカルボジイミド化合物1分子中に、生分解性ポリエステル樹脂分子鎖が2個以上反応することができ、分子量はさらに増大する。
【0021】
上記反応が完全に進行すれば生分解性ポリエステル樹脂(B)の分子量は、生分解性ポリエステル樹脂(A)の分子量の2倍以上になるが、鎖長延長されない生分解性ポリエステル樹脂(A)も存在する。従って、本発明の生分解性樹脂組成物は、出発物質である鎖長延長されていない生分解性ポリエステル樹脂(A)と鎖長延長された生分解性ポリエステル樹脂(B)とから構成される。上記樹脂(A)と樹脂(B)の割合は、特に限定されず、生分解性樹脂組成物としての分子量が、鎖長延長する前の生分解性ポリエステル樹脂(A)の分子量より大きければよく、生分解性樹脂組成物としての数平均分子量(GPCで測定し、標準ポリスチレン換算の)が、上記樹脂(A)の数平均分子量よりも10%以上大きいことが好ましい。
【0022】
末端にカルボキシル基および/または水酸基を有する生分解性ポリエステル樹脂とカルボジイミド化合物との反応は、例えば、反応容器中で溶液状態、分散状態または溶融状態で、あるいは混練機中、溶融状態で均一に混合および混練して行うことができる。反応の態様はこれらに限定されず、他の態様であってもよい。溶液状態あるいは分散状態で反応させる場合には、反応温度は、通常、120〜200℃である。
【0023】
反応に使用する混練機は、特に限定されないが、例えば、二本ロール、三本ロールなどのミキシングロール、加圧型ニーダー、オープン型ニーダー、バンバリーミキサー、オープン型二軸連続混練機、あるいはスクリュー式の単軸押出成形機、同方向または異方向回転二軸押出成形機、多軸押出成形機、ロータ式の混練機、単軸または多軸の連続式混練機などが挙げられる。これらの混練機は組み合わせて用いることもできる。
【0024】
前記カルボジイミド化合物の使用量は、カルボジイミド化合物のカルボジイミド基の数にもよるが、通常、鎖長延長させる生分解性ポリエステル樹脂(A)100質量部当り0.01〜5質量部程度である。
【0025】
前記本発明の生分解性樹脂組成物は、生分解性フィラーを含有することができる。本発明において使用される生分解性フィラーは、植物由来のフィラーが好ましく、従来公知の植物を材料とするフィラーが使用される。植物由来のフィラーとしては、例えば、セルロース繊維粉、パルプ、糖類、多糖類、植物性タンパク、ロジン、亜麻繊維、木綿、竹繊維、麻繊維などの植物繊維、植物粉末、古紙、茶抽出殻、コーヒー抽出殻、穀類の殻、柑橘類の皮、さとうきび粕、藁、竹、豆類の皮および植物の葉や茎などが挙げられ、これらは一種あるいは二種類以上を組み合わせて使用される。
【0026】
特に好ましいフィラーとしてはセルロース繊維粉が挙げられる。セルロース繊維粉の平均粒径は、1〜500μmの範囲が好ましい。また、繊維状植物フィラーの長さは1〜10,000μmの範囲であることが好ましい。生分解性フィラーの使用量は特に限定されないが、通常、生分解性ポリエステル樹脂組成物100質量部当り10〜400質量部程度であり、生分解性樹脂組成物の使用目的に応じて適宜決定される。
【0027】
本発明においては、生分解性樹脂組成物には上記生分解性フィラー以外に、必要に応じて各種樹脂添加剤を適宜配合することができる。添加剤は特に限定されないが、例えば、ポリエチレンワックス、酸化型ポリエチレンワックス、脂肪酸ワックス、グリコール脂肪酸エステルワックス、グリセリン脂肪酸エステルワックス、脂肪酸エステルワックス、クエン酸エステルワックス、モンタン酸エステルワックス、モンタン酸部分ケン化エステルワックス、ジペンタエリスルトールエステルワックスなどの滑剤、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、ポリエチレングリコール、ポリプロピレングリコール、1,3−ブタンジオール、イソデシルアルコール、n−デシルアルコール、ジエチレングリコール、ジグリセリン、ポリグリセリン、ジプロピレングリコール、n−オクチルアルコール、グリコール脂肪酸エステル、グリセリン脂肪酸エステル、脂肪酸エステル、クエン酸エステルなどの可塑剤などが挙げられる。添加剤は一種或いは二種類以上を配合してもよい。
【0028】
本発明においては、生分解性樹脂組成物をさらに木質に近づけるために、リグニンに構造が近似したベンゼン誘導体として、桂皮酸、p−クマール酸、コーヒー酸、フェルラ酸、シナピン酸、コニフェリールアルコール、シナピルアルコール、p−クマリルアルコール、フェニールアラニンなどを、共単量体として共重合した樹脂成分やオリゴマーを配合したり、低分子量の添加剤などとして加えることも好ましい。また、必要に応じて、従来公知の添加剤、例えば、着色剤、分散剤、酸化防止剤、紫外線吸収剤、光安定剤、難燃剤、帯電防止剤、充填剤などの添加剤の一種あるいは二種以上を配合することも好ましい。
【0029】
使用される着色剤は、従来公知の有彩色、白色、黒色の無機顔料、有機顔料および染料から選ばれる色素であり、自然に存在するものと同じ構造の色素、自然環境あるいは微生物分解、酵素分解などで生分解性樹脂と一緒に分解される色素が好ましい。顔料としては、従来公知の有彩色、黒色または白色の顔料が使用でき、酸化鉄系顔料、水酸化鉄系顔料、紺青系顔料、カーボンブラック系顔料、酸化チタン系顔料、複合酸化物系顔料などの無機顔料、およびアゾ系、ポリ縮合アゾ系、アゾメチン基を含むアゾ系、アゾメチン系、アンスラキノン系、フタロシアニン系、ペリノン・ペリレン系、インジゴ・チオインジゴ系、ジオキサジン系、キナクリドン系、イソインドリノン系、ジケトピロロピロール系、キノフタロン系などの有機顔料などが挙げられる。
【0030】
本発明のフィラー含有生分解性樹脂組成物は、生分解性樹脂組成物と生分解性フィラー、必要によりその他の添加剤とを、前記の混練機を用いて混練することで製造することができる。
【0031】
本発明においては、末端にカルボキシル基および/または水酸基を有する生分解性ポリエステル樹脂とカルボジイミド化合物とを反応させる際に、上記生分解性ポリエステル樹脂とともに生分解性フィラー、必要により、滑剤、可塑剤、添加剤などとを、反応容器中で前記のようにして、好ましくは前記の混練機中で溶融混練下に反応させて、生分解性ポリエステル樹脂の鎖長延長反応を行うと同時にフィラー含有生分解性樹脂組成物を得ることもできる。
【0032】
前記の混練機においては、混練の目的、材料の種類、配合に応じてスクリュー、ニーディングディスク、ローターなどの各種セグメントを自由に組み替えることができる。また、シリンダーの長さや形状を自由に組み替えてもよい。これらの混練機は、材料の供給量、スクリューあるいはローターの回転数、混練機械の温度により生分解性樹脂組成物と生分解性フィラーあるいはさらに添加剤との混練、および生分解性樹脂組成物中への生分解性フィラー、あるいは添加剤の分散を制御することができる。
【0033】
上記で得られる生分解性樹脂組成物は、従来公知の成形加工機、例えば、単軸押出成形機、二軸押出成形機、多軸押出成形機、射出成形機などにより種々の成形品に加工される。得られた生分解性成形品は、微生物類などにより生分解される。
【0034】
本発明の生分解性成形品の好ましい用途としては、従来の樹脂成形品が使用されていた用途と同様である。例えば、杭、パイル類;シート、フィルム類、ネット類;容器、トレイ類;発泡材料類;食品包装容器類;水産物・農産物用箱、包装用箱、輸送用箱類;電気製品・精密機器などの緩衝材;建築用・道路用の防音・断熱材など広範な用途で使用される。
【実施例】
【0035】
次に合成例、実施例および比較例を挙げて本発明をさらに具体的に説明する。尚、文中、部または%とあるのは質量基準である。
【0036】
合成例1
攪拌機、加熱装置、温度計、還流冷却器および窒素ガス導入管のついた1リッターセパラブルフラスコに、3,3’,5,5’−テトライソプロピル−4,4’−ジフェニルメタンジイソシアネートを416部および3−メチル−1−フェニル−2−ホスホレン−1−オキシド(以下MPPOと略す)を0.813部添加し、加熱溶融しながら、130℃まで昇温した。反応中脱二酸化炭素が起こっているのを確認した。次いで2時間反応させ、NCO%を測定したところ6.24%であった。これより生成物の平均分子量は1,346である(前記一般式(1)、(3)におけるnは4である)。生成物を80℃で取り出し冷却して固体を得、粉砕した。該生成物をカルボジイミド化合物−1とする。
【0037】
合成例2
合成例1と同様の反応容器に、水添ジフェニルメタンジイソシアネートを525部およびMPPOを2.625部仕込み、加熱昇温させ180℃にした。この温度で5時間反応させ、脱二酸化炭素を行なった。次いで少量サンプリングし、NCO%を測定したところ2.43%であった。これより生成物の平均分子量は3,457である(前記一般式(1)、(3)におけるnは24である)。生成物を130℃で取り出し、冷却して固体を得、粉砕した。該生成物をカルボジイミド化合物−2とする。
【0038】
比較例1(合成例3)
攪拌機、加熱装置、温度計および減圧装置を上部に連結させた還流冷却器を付けた水分計量受器、窒素ガス導入管および滴下漏斗のついた反応容器からなる縮合重合反応装置を準備した。反応容器に乳酸100部および縮合触媒としてp−トルエンスルホン酸0.5部を仕込み、窒素ガスを流入させ、加熱し、140℃で加熱反応させた。反応中に生成した水分は水分計量受器で系外に除いた。赤外吸収スペクトルでエステル化反応の進行を確認しつつ反応を進めた。ほぼ反応が進行したところで減圧、200℃で加熱し、さらに反応を進めた。反応終了後、生成した溶融樹脂を取り出し、冷却してポリ乳酸を得た。得られたポリ乳酸の極少量をテトラヒドロフランに溶解し、ゲルパーミエーションクロマトグラム(GPC)にて分子量を測定した。結果を表1に示す。以下、分子量はGPCにて測定し、標準ポリスチレン換算の数平均分子量である。
【0039】
比較例2(合成例4)
比較例1と同様にしてポリカプロラクトン・ブチレンサクシネートを得、その極少量をテトラヒドロフランに溶解してGPCにて分子量を測定した。結果を表1に示す。
【0040】
実施例1
比較例1で使用した縮合重合反応装置に、比較例1で得られたポリ乳酸99.9部とカルボジイミド化合物−1を0.1部添加し、200℃に加熱して両成分を溶融させ、撹拌下に1時間反応を進めた。反応した樹脂を単軸押出機でペレットにした。極少量のペレットをテトラヒドロフランに溶解し、GPCにて分子量を測定した。結果を表1に示す。
【0041】
実施例2
比較例1で使用した縮合重合反応装置に、比較例1で得られたポリ乳酸99.7部とカルボジイミド化合物−1を0.3部添加し、200℃に加熱して両成分を溶融させ、撹拌下に1時間反応を進めた。反応した樹脂を単軸押出機でペレットにした。極少量のペレットをテトラヒドロフランに溶解し、GPCにて分子量を測定した。結果を表1に示す。
【0042】
実施例3
比較例1で使用した縮合重合反応装置に、比較例1で得られたポリ乳酸99.5部とカルボジイミド化合物−1を0.5部添加し、200℃に加熱して両成分を溶融させ、撹拌下に1時間反応を進めた。反応した樹脂を単軸押出機でペレットにした。極少量のペレットをテトラヒドロフランに溶解し、GPCにて分子量を測定した。結果を表1に示す。
【0043】
実施例4
比較例1で使用した縮合重合反応装置に、比較例1で得られたポリ乳酸99部とカルボジイミド化合物−1を1部添加し、200℃に加熱して両成分を溶融させ、撹拌下に1時間反応を進めた。反応した樹脂を単軸押出機でペレットにした。極少量のペレットをテトラヒドロフランに溶解し、GPCにて分子量を測定した。結果を表1に示す。
【0044】
実施例5
比較例1で使用した縮合重合反応装置に、比較例1で得られたポリ乳酸99部とカルボジイミド化合物−2を1部添加し、200℃に加熱して両成分を溶融させ、撹拌下に1時間反応を進めた。反応した樹脂を単軸押出機でペレットにした。極少量のペレットをテトラヒドロフランに溶解し、GPCにて分子量を測定した。
【0045】
実施例6
比較例2で得たポリカプロラクトン・ブチレンサクシネート99部とカルボジイミド化合物−1の1部を予め混合し、単軸押出機(混練温度180℃)に添加、5分混練し、ペレットを得た。極少量のペレットをテトラヒドロフランに溶解し、GPCにて分子量を測定した。結果を表1に示す。
【0046】
実施例7
比較例2で得たポリカプロラクトン・ブチレンサクシネート99部とカルボジイミド化合物−2を1部予め混合し、単軸押出機(混練温度180℃)に添加、5分混練し、ペレットを得た。極少量のペレットをテトラヒドロフランに溶解し、GPCにて分子量を測定した。結果を表1に示す。
【0047】
比較例3
ポリブチレンサクシネート・アジペート(昭和高分子社製 ビオノーレ#3001:数平均分子量72000)60部とセルロース繊維粉40部を予め混合し、単軸押出機(混練温度180℃)に添加、5分混練し、ペレットを得た。得られたペレットを用い、射出成型機にて試験片を作成し、JIS K7113プラスチックの引っ張り試験方法に従って試験片の破断点強度を測定した。結果を表2に示す。
【0048】
実施例8
比較例3と同じポリブチレンサクシネート・アジペート59.9部、セルロース繊維粉40部およびカルボジイミド化合物−1を0.1部予め混合し、単軸押出機(混練温度180℃)に添加、5分混練し、ペレットを得た。得られたペレットを用い、射出成型機にて試験片を作成し、JIS K7113プラスチックの引っ張り試験方法に従って試験片の破断点強度を測定した。結果を表2に示す。
【0049】
実施例9
比較例3と同じポリブチレンサクシネート・アジペート59.5部、セルロース繊維粉40部およびカルボジイミド化合物−1を0.5部予め混合し、単軸押出機(混練温度180℃)に添加、5分混練し、ペレットを得た。得られたペレットを用い、射出成型機にて試験片を作成し、JIS K7113プラスチックの引っ張り試験方法に従って試験片の破断点強度を測定した。結果を表2に示す。
【0050】
実施例10
比較例3と同じポリブチレンサクシネート・アジペート59部、セルロース繊維粉40部およびカルボジイミド化合物−1を1部予め混合し、単軸押出機(混練温度180℃)に添加、5分混練し、ペレットを得た。得られたペレットを用い、射出成型機にて試験片を作成し、JIS K7113プラスチックの引っ張り試験方法に従って試験片の破断点強度を測定した。結果を表2に示す。
【0051】

【0052】
上記表1に示される通り、生分解性ポリエステル樹脂とカルボジイミド化合物を縮合重合反応装置中で溶融状態で反応させる、あるいは混合し単軸押出機にて加熱混練することにより生分解性ポリエステル樹脂の数平均分子量は増加している。また、平均分子量の大きいn=24の、カルボジイミド化合物−2は、平均分子量の小さいn=4のカルボジイミド化合物−1より生分解性ポリエステル樹脂の分子量増加に効果がある。
【0053】

【0054】
上記表2に示される通り、生分解性ポリエステル樹脂、セルロース繊維粉およびカルボジイミド化合物を押出機にて加熱混練して得られた生分解性樹脂組成物からなる成形品は、その破断点強度が増加している。以上の結果により生分解性ポリエステル樹脂にカルボジイミド化合物を添加し加熱加工することにより、生分解性ポリエステル樹脂の分子量が増大することから、得られた生分解性樹脂組成物からなる成形品の破断点強度が増大することが分かる。
【産業上の利用可能性】
【0055】
本発明の生分解性樹脂組成物は、従来の生分解性ポリエステル樹脂(A)およびそれよりも高分子量の生分解性ポリエステル樹脂(B)からなり、該組成物を成形加工して得られる成形品は、従来の生分解性ポリエステル樹脂を用いたものより物性面において優れ、廃棄後は微生物などにより分解される。

【特許請求の範囲】
【請求項1】
末端にカルボキシル基および/または水酸基を有する生分解性ポリエステル樹脂(A)と、上記生分解性ポリエステル樹脂(A)をカルボジイミド化合物で鎖長延長してなる生分解性ポリエステル樹脂(B)とからなることを特徴とする生分解性樹脂組成物。
【請求項2】
カルボジイミド化合物が、分子中に下記の一般式(1)で表される単位を有する請求項1に記載の生分解性樹脂組成物。

(上記式中のnは1以上の整数を、Rは脂肪族、脂環族または芳香族イソシアネート化合物からNCOを除いた残基を示す。)
【請求項3】
さらに生分解性フィラーを含む請求項1に記載の生分解性樹脂組成物。
【請求項4】
生分解性フィラーが、セルロース繊維粉、パルプ、糖、多糖、植物性タンパク、ロジン、植物繊維、植物粉末、古紙、茶抽出殻、コーヒー抽出殻、穀類の殻、柑橘類の皮、さとうきび粕、藁、竹、豆類の皮および植物の葉および茎からなる群から選ばれた植物由来のフィラーである請求項3に記載の生分解性樹脂組成物。
【請求項5】
末端にカルボキシル基および/または水酸基を有する生分解性ポリエステル樹脂(A)とカルボジイミド化合物とを反応させることを特徴とする高分子量生分解性樹脂組成物の製造方法。
【請求項6】
生分解性フィラーとともに反応させる請求項5に記載の高分子量生分解性樹脂組成物の製造方法。
【請求項7】
反応を、反応釜または混練機中で溶融状態で行う請求項5または6に記載の高分子量生分解性樹脂組成物の製造方法。
【請求項8】
請求項1または3に記載の生分解性樹脂組成物を成形加工してなることを特徴とする生分解性成形品。
【請求項9】
土壌中に存在する微生物により分解する請求項8に記載の生分解性成形品。

【公開番号】特開2006−63111(P2006−63111A)
【公開日】平成18年3月9日(2006.3.9)
【国際特許分類】
【出願番号】特願2004−244227(P2004−244227)
【出願日】平成16年8月24日(2004.8.24)
【出願人】(000002820)大日精化工業株式会社 (387)
【Fターム(参考)】