説明

生化学分析装置

【課題】少量の検体と、試薬などの固体を混合するための空間がより狭くなる環境において、撹拌操作が液体の粘性、毛管力、静電気等からの影響を克服し、確実におこなう手段を提案する。
【解決手段】微小空間において、異なる2種以上の物質を混合する際、比較的短時間では遠心分離が生じず、かつ、必要な加速度を所定時間与えられるような回転数まで経時的に回転を増加または減少させるように角加速度を印加させる液体混合方法及び当該方法を用いた装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、生化学反応を示す部位を有する担体及び当該担体を計測する生化学分析装置に関する。
【背景技術】
【0002】
今般、糖尿病、がん、脳梗塞など生活習慣にかかわる疾病は、食生活、ストレス等、生活上の要件が深くかかわることから、血液、尿などの体液成分を多項目にわたって迅速に計測でき、診断できる環境がより身近なところで実現されることが希求されている。
この様な体液を分析して診断する装置は、特殊な操作をしなくても、体液成分さえ、供給すれば、在宅での利用や設備がない場所でも、手軽に短時間で診断可能となる事が好ましい。
更に体液の採取量を減らすことで患者の負担を軽減させることは、病院等の医療施設はもちろん在宅における診断においては重要な要素である。少量の検体により計測が可能となれば、計測の為の担体も小さくなると共に分析装置もより小型化されていくのである。
今般、インターネット等汎用タイプの公衆ネットワークを通信手段として利用し、自己採血による健康チェックを行う病院、機関、団体が増えてきた。
インターネットにより、わかりやすく血液採取搬送工程が説明された上で、自ら採血し、これを病院へ搬送して血液成分、体液成分を計測してもらい、健康のチェックをするものである。
しかしながら、実際の血液の搬送を含むシステムは、予め保冷環境を整えなければならない等、手間がかかり、極めて煩雑な作業が必要である。
在宅を含めた医療における体液分析の状況において、希求される体液分析のシステムの簡素化、診断の簡便化、迅速化は、体液採取の少量化を促す方向へ向かいつつある。
【0003】
【特許文献1】特表2001−510568号公報
【特許文献2】特開2001−165939号公報
【特許文献3】特開平09−475932号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
検体の少量化は、患者にとって、又、採取者にとって好ましいことではあり、そのことによる担体、分析装置の小型化は、在宅、野外での使用など幅広い利用が可能となるが、少量の検体と、試薬などの固体を混合するための空間がより狭くなる環境では、撹拌操作が困難なばかりか粘性、毛管力、静電気等、いままであまり問題視されていなかった作用に対する対応が必要となる。特に試薬等の固体と血漿のような液体を混合する場合は、比重の差が大きく、困難である。
又、化学反応に酸素が必要な場合等も、反応空間が狭くしかも、光学的計測をその空間で行う場合においては、酸素の供給方法が課題となる。
【課題を解決するための手段】
【0005】
上記に鑑み本発明者らは、鋭意研究の結果、微小立体空間中の2種以上の液体の混合を所定の回転態様のみによって混合できることを知見し本発明に到達したものである。
即ち、本発明は、異なる物質を混合する際、比較的短時間では遠心分離が起こらず、かつ、必要な加速度を所定時間与えられるような回転数まで経時的に増加させた後、反対方向に比較的短時間では遠心分離が起こらず、かつ、必要な加速度を所定時間与えられるような回転数まで経時的に増加させ、これを繰り返すことで、比重の差が大きいもの同士であっても容易に混合できることを実現した。
尚、本発明は、混合しようとする微小空間内の液体に一方向又は、交番的に他の方向への周期的に、断続的に加速度を与えられれば良く、その為の微小空間を有する担体に対する駆動は、回転駆動、直線駆動、ふりこ駆動等も利用可能である。
更に本発明は、回転体上で、外周縁部方向に配置した比重の異なる物質を混合し、その結果を測定する測定部、前記測定部に定量検体を供給するための定量部、前記定量部に検体を供給する流路であって円周方向に延びた定量供給流路、円周方向にのびた有限の第1回収流路と第2回収流路を設け、前記第1回収流路と、前記第2回収流路を結ぶ連結流路によってなり前記定量供給流路と接続し余剰検体を回収する回収部を設けることにより、様々な回転、移動を行う担体上で、測定対象となる溶液や余剰分の検体溶液等を他の構成に漏れ出すことなく独立させることを実現した。
更に本発明は、光学計測を行う部位であって、試薬と検体との混合を行う部位において、回転体の中心方向に空気溜を形成することで、透過光等による光学的計測に支障なく、しかも酸素を必要とする反応にも充分対応できる担体を実現した。
【0006】
又、本発明は、毛管力を有する流路であって、少なくとも入力口から、出力口が、直径と平行な直線部を有するか、又は、円周方向に延びた流路を形成することにより、いわゆるサイホンのような複雑な流路を要することなく、その流路の断面積もしくは長さに合わせて回転数を調整するだけで、液体の移動及び停止を実現した。
又、本発明では、有酸素反応槽を、中心方向に長軸を有する楕円状、ひょうたん状とすることで、担体を回転させ、中心方向部位に空気溜を形成しながら、安定した計測光路が確保できる。
楕円状、ひょうたん状でなくとも、中心方向に多少突出した部位が形成されればよい場合もある。
【発明の効果】
【0007】
本発明は、微量な検体の定量、試薬など比重の異なる物同士の混合を回転数、及び回転方向を調整するだけで多数の検査を可能とすることから、手軽な体液検査を可能とし、より広い方面での体液診断を実現する。
【発明を実施するための最良の形態】
【0008】
本発明における微小空間とは、例えば、試薬が収容され、外部より定量的な検体が供給され、混合されることで発色するタイプの円筒状の試薬反応槽であって、上下の面積が0.5〜2.5φ、高さ5mm以下くらいが例示されるが、これに限らず、混合のみを目的とする部位等でも適用可能である。
比重の異なる物質とは、例えば血液、体液、尿等の体液と、固形、粉末状、顆粒状の試薬の混合や、その他、濃度の異なる液体同士等が例示される。
比較的短時間では遠心分離が生じず、かつ、攪拌に必要な加速度を所定時間与えられる回転数とは、比較的短時間で遠心分離が起きない回転数を示し、所定時間とは、およそ1秒前後が例示される。
即ちこの回転数は、比較的短時間に遠心力による分離が生じる回転数の境界付近を示すものであって、境界となる回転数は、比重の相違の程度、粘性、回転中心からの距離などによって相違するが、少なくとも、直ちに遠心分離がおこらない程度の回転数であればよい。
「反対方向」とは、先の回転が時計回りである場合は、反時計回りのことを示す。
目標とする回転数まで達した状態から、方向が異なる回転であって、比較的短時間では遠心力による分離が生じない回転数まで、回転を増加させるものであって、その増加の仕方、目標の回転数は、混合を目的とする物質、比重の相違量、混合の時間によって適宜調整され、限るものではない。
【0009】
具体的には、例えば混合のための前記微小空間が、担体上の、回転中心より2〜3cm程度離れている場合、最初時計回りで回転数を0rpmから2000rpmまで上昇させ、回転数が2000rpmに達した後、今度は反時計回りで2000rpmまで連続的に変化上昇させ、2000rpmまで到達した後、再び逆回転に切り替え、時計回りで2000rpmまで連続的に変化上昇させ、これを数百msec〜数sec程度の間隔で、繰り返し行うといったものが示される。
この一方向の最大回転数から、反対方向の最大回転数までの時間が 0.1msec〜2secまで、好ましくは0.5sec〜1sec(機械的条件が比較的緩やかである点で、安価な装置が利用される点で好ましい)が例示される。
なお、反応・測定室の形状を工夫することで、例えば600rpm以上で回転しながら測定している時は測定室の一部(外側の壁のほう)へ液体が集合したりへばりついたりして測定を可能にし、回転を停止(あるいは回転数を落とす)すると今度は測定室の底面に液体が広がり、この液体形状の変化を繰り返すことで、効率の良い攪拌や酸素供給、および回転中の測定を可能にする。
【0010】
尚、回収流路の数は、2つ以上であれば良く、特に限定されないが、担体がより小さい場合や使用する目的によっては、2つで足りる場合もある。
本発明における、「円周方向に延びた供給流路」とは、例えば円周に対して接線方向を示すものであり、半径方向に垂直の場合に限らず垂直に対しおよそ±30°の範囲であれば良い。
【0011】
本発明における「毛管力を有する流路であって、少なくとも入力口から、出力口が、直径と平行な直線部を有する構成により、担体の回転数を調整して液体の移動及び停止を行う」とは、直径方向に平行な直線上の流路を示す。尚、少なくとも担体の回転中心付近で直径方向に平行であればよく、その前後であらゆる方向に向いた屈曲部があってもよい。
又、本発明では、毛管力を有する流路であって、少なくとも入力口から、出力口が、円周方向に延びた構成によっても、液体の移動の停止及び開始を回転数の調整によって可能とする。円周方向に延びたとは、円周と同様の曲率をもつ流路であって、円周上に延びている状態をしめすものであるが、必ずしも曲率が円周と一致しなくてもよく、多少曲率が大きい場合や、その逆の場合であっても、液体の流れを制御するスイッチとして利用可能である。

【実施例1】
【0012】
図1(a)は、本発明の一実施例を説明するための図である。
118は、第1供給用流路であり、外周方向に複数の試薬反応槽116が定量槽114,定量供給流路115を介して接続する。図1は、試薬反応槽の一つを示している。
全体構成の一例を図6に示した。この時、担体100の最外周部の直径は、60mm〜70mm程度とする。
図1は、その一部であるので、番号を共通にしている。
図1(a)で示す114は、定量槽であり、定量供給流路115の容積と併せた容積分の検体を確保するための部分である。
115は、定量供給流路であり、円周方向に延びている。定量供給流路の方向は、おおよそ接線方向を例示するが、これに限らず、接線に対しおよそ+0°〜30°の傾きがあっても良い。
116は、試薬反応槽であり、内部に乾燥または、液状の試薬SYが予め封入されているか、用時供給される。
116aが反応領域であり、図1(b)で示すように円柱状の凹部で形成され、その大きさは例えば直径1mm、高さ3mm程度で形成されている。
116bは、空気溜であり、高さが、反応領域の高さの半分くらいから反応領域と同程度の範囲で形成されている。
【0013】
図2は、検体が、定量的に試薬反応領域に供給される状態の一例を説明している。
まず、担体は、一方向に回転しており、回転力に伴い、第1供給用流路118を流れてきた検体3Aは、定量槽114に充填されていく(図2(a))。
定量供給流路115にも検体3Bが充填され、図2(b)で示すような状態が形成される。この時定量される検体3Bの体積は、反応領域116aを満たす量であるが、116aと116bを全て満たす量よりも少ない場合もある。
なお、試薬の反応機作や、その性状によって、もしくは目的に応じて、必要な試薬の一部がこの定量槽にも封入されており、供給された検体との混合、もしくは一次反応が定量槽内で行われる場合もあり得る。一例として、保存中の試薬成分どうしの反応を防止するために、物理的または化学的に分離された状態で保存される、いわゆる二試薬反応系などが想定される。
次に回転数をおよそ5000〜6000rpmまで上げる。
これにより、検体3Cは、押されるようにして試薬反応領域に充填される(図2(c))。
【0014】
この状態で、図1(b)で示す予め又は使用直前に供給された固体状又は液体状の試薬SYが入った検体液(未混合)が形成される。
次に担体の回転を図3で示す様に行う。
例えば、図3(a)で示すような回転とは、最初、時計回りに担体を回転させる。
最初の時計回りの回転が所定の角加速度で1500rpmに到達した時点で、所定の角加速度で回転数を下げていき、回転数が0になった時点で反時計回りに1500rpmまで所定の角加速度で上昇させ、1500rpmに到達した後は、所定の角加速度で回転数を下げていき0になった後、時計回りに回転をさせ、これを繰り返し行う。これにより、10〜120秒間に十分な混合が行われる。
尚、この時の周期P1は、1〜2secくらいが適当であるが、図3(b)で示す様に、周期P2を長くしても多少撹拌混合までの時間が長くなるものの十分な混合が期待できる場合もあり、反応槽の大きさに応じて適宜調整される。
尚、所定角加速度に基づく上述の回転数への移行、下限回転数への移行は、直線的に上昇、下降、指数関数的上昇下降により行われればよい。
又、角加速度による表現は、一例であって、少なくとも、下限回転数から上限回転数まで又は上限回転数から下限回転数までを、所定の時間で上述のような態様で担体の回転を到達させるものであればよい。
【0015】
更に図3(c)で示すように、交番せず、時計回り、反時計回りの何れか一方向に所定の角加速度で強弱をつけたものであっても良い場合もある。
尚、図3における回転の変化を示す波形が、鋸状の直流又は交番波で示されるが、これに限らず、矩形状、三角関数波、間欠的三角波状、間欠的矩形波状、間欠的正弦波状の直流又は交番波等の波形に応じた回転数の変化であってもよい。
又、図3は、角加速度が連続的で、一定である場合を示すが、ある一定回転まで上昇した後、一度回転を停止させて、再び逆方向へ、ある一定回転まで上昇させるものであっても良い場合もある。尚、この時、反応槽中の液体に与えられる加速度の範囲は、10〜500m/s2が好ましいが、特に限定はされない。
図1(a)で示す実施例の形状は、これに限らず、例えば図1(c)で示す様な楕円状の試薬反応槽116fのような形状であっても良い。
楕円状の試薬反応槽116fの場合、定量する検体量を116fの体積より少し少なめに充填することで、回転による混合液の遠心方向への偏りにより、図1(c)の116faで示すように空気溜ができしかも、外周方向に配置された光学ユニットによる光学測定の際の光路長が確保できる。
【0016】
又、本発明では、試薬反応槽内に残留させる空気を多くし、回転数を増減させることで、簡易な撹拌を実現させることもできる。
図2(d)及び(e)は、図1(c)のY−Y‘断面を示す。
TAは、担体であり、図6で示す担体100と同様のものであって、透明、半透明のアクリル、PET、PP、ポリエステル樹脂等よりなる。
FTは、蓋部であり、担体TAと同様の素材よりなり、両面乃至、片面の粘着テープ、粘着剤、接着剤を塗布したアクリル薄板よりなる。
図2(d)は、検体116fbが、試薬反応槽116fに全部又は一部供給された状態で、低速度で回転(600rpm以下の回転)した状態又は静止した状態となっている。
116faは、空気溜めであり、SYは、例えば固形状の試薬である。
次に回転数を600rpm以上とする。検体116fbは、遠心力により、図2(e)で示すように、試薬反応槽116fの外側の壁面に偏る。
再び回転数を下げて、600rpm以下にするか静止させると、図2(d)で示すような状態となる。
この2つの状態を交互に繰り返すことで、試薬SYと検体116fbの効率よい攪拌が可能となる。
尚、定量供給路115の毛管力の検体116fbへの影響は、空気溜め116faの空気により低いことから、定量供給路115へ、検体が移動することなく、遠心力のみで、検体の混合が行われる。
図2(d)及び(e)は、回転数を増減させることで、生じる遠心力の変化により液体の移動を生じせしめ、混合する手法であって、回転数は、他の実施例と同様、所定の回転数まで増加させた後、逆方向へ回転させるような角加速度を持つ回転を担体に与えたり、或いは、一時的に停止させたりしても良い。
この場合の回転数の増減、増加期間と減少期間の関係は、他の実施例と同様の値で行われれば良く、少なくとも液体に同様の加速度を与えれば良い。


【実施例2】
【0017】
次に図4及び図5を用いて本発明の実施例について説明する。
図4、図5で示す構成は、図6で示した担体の全体構成中の一部を示すことから、図番を共通に示した。
118は、第1供給流路であり、円盤状の担体に対し略同心円弧状の流路により形成されている。略同心円弧であるため、必ずしも同心円の曲率を有する必要はなく、担体回転時に血漿成分の良好な分配性を得られるものであればよい。
ただし、余剰検体の排出や、定量槽での定量を行う場合、第1供給流路118の外側の壁は担体の回転中心に対して、同心円となっていることが好ましい。
117aは、各定量槽114に検体が充填された後、余る検体を収容する余剰検体収容部であり、2つの略円弧状を有するものであって、外周方向に位置する第1余剰収容部117aa及び第2余剰収容部117ac及びこれらの収容部を連結する連結路117abとによって構成され、供給用流路の端部の一方又は両方に余剰収容部用流路117adを介して接続される。
余剰希釈混合液収容部117aの位置は、供給用流路の端部に限らず、中央部等にあっても良い。
連結路117abは、各余剰収容部との接続箇所で鋭角化されており、余剰液体の第1供給用流路118への逆流による漏れを防止している。
【0018】
114は、定量槽のそれぞれ一つを示し、第1供給用流路118の外周部に等間隔又は不等間隔で、配列されその容積が目的の液量を示している。
115は、定量供給流路であり、円周方向であって、略接線方向に延びている。
116aは、反応領域であり、内部に試薬が配置され、定量供給流路115とは、空気溜116bを介して接続している。
定量槽114から反応領域116aまでの構成は、例えば図1(b)で示すような構成を有している。
【0019】
図4で示す構成についての動作を、図5を参照して詳細に説明する。
第1供給用流路118に供給された検体は、担体が回転している状態で、遠心力などにより定量槽114に充填され保持されていく残りの検体は、余剰収容部用流路117adを介して第2余剰収容部117acに供給されると共に、連結路117abを介して第1余剰収容部117aaに供給される。
何れの定量槽114にも検体が充填され更に、定量供給流路115にも検体が充填された状態で、回転数を上げて反応領域116aに検体を供給する。
反応領域116a内の試薬と、検体が混ざるために図3で示すような、角加速度を交番的に増減させた回転を行わせる。
その際、回転方向が図5(a)で示すように反時計回りの場合、余剰検体4a、4bは、余剰収容部の左方向端部に集まり、回転方向を図5(b)で示すように時計回りの場合、余剰検体4a,4bは、各余剰収容部の右方向の端部に集まる。
この様に、回転による遠心力が掛かる場合でも、交番的に回転方向が変化し、即ち加速度の方向が変化する場合でも、剰余検体は剰余検体収容部117aに保持され、流路、各槽の表面のぬれ性によっては、その他の部分から漏れ出し易い検体でも第1供給用流路118へ漏れ出すことが無く、各試薬反応槽内の液体の独立性を保ったまま、安定した低回転撹拌が可能となる。
【0020】
次に本発明の実施例を含む担体全体の一例を示す。
図6は、透明、半透明のアクリル、PET、PP、ポリエステル樹脂等で形成される円盤状の担体100上に溝、凹部を形成して流路、貯留部、余剰収容部など各構成部を形成したものである。
101は、血液貯留部であり、人体等から採取した血液をピペット、その他の保持具によって保持した血液を供給する部分である。
血液貯留部101は、図6で示すように貯留槽側面に鋭角を設けないような構成とし、血液の残留を低減する形状を有している。
102は、希釈液貯留部であり、密封された希釈液入りパウチを破壊する等して外部に漏れだした希釈液を貯留する部分である。
血液貯留部101は、上面が開放されており、隣接する希釈液貯留部102は、パウチに収容されて予め配置されている状態で、希釈液貯留部102の上部には、蓋部が配置されている。
使用する際、血液貯留部101に血液をピペットなどで供給し、又は、体液を癌浸させた多孔質材を挿入し、蓋部を摺動させることで、血液貯留部101の上面を蓋部で覆い、且つ蓋部の摺動に起因して希釈貯留部102内部のパウチを移動させ、破壊させて、希釈液を希釈液貯留部102から外部へ供給可能とする構成が好ましく、例えば、特願2005−168885号の構成が好適に用いられる。図番は付していないが、血液貯留部101と希釈液貯留部102の両側面に設けられている溝は、蓋部を固定的に摺動可能とする為のガイド溝として使用され得る。
103は、血液分配部であり、2つの血球分離部方向へ、血液を供給する血液定量供給流路を具えている。
104は、余剰血液貯留部であり、血液が第1血球分離部106と第2血球分離部107とを充填した後、溢れ出た血液を貯留するための部分である。
105は、余剰部用流路であり、第1血球分離部106と第2血球分離部107とに血液が充填された後、溢れ出た血液を余剰血液貯留部104へ流すための流路である。
106は第1血球分離部、107は第2血球分離部であり、それぞれの空間の容積が、必要とする液量を示すように形成されている。
108は第1血球収容部であり、比較的細い流路を介して第2血球分離部107と接続し、109は第2血球収容部であり、比較的細い流路を介して第1血球分離部106と接続する。この様な比較的細い流路による結合は、担体の低回転時、回転方向が交番した場合等、遠心力が弱まった際、血球が逆流することを阻止する。
111は、中心方向に屈曲部を有する第1流路であり、第2血球分離部107と混合部112を接続する。
【0021】
113は、中心方向に屈曲部を有する第2流路であり、第1血球分離部106と調整槽110とを接続する為のものである。
114は、定量槽のそれぞれ一つを示し、図1と同様の構成であって、第1供給用流路118の外周部に等間隔又は不等間隔で配列され、その容積が目的の液量を示している。
115は、定量供給流路であり、図1と同様の構成であって、円周方向に延びており定量槽114と試薬反応槽116とを接続するためのものである。
116は、試薬反応槽であり、図1と同様の構成であって、担体の略接線方向に形成され、図1(b)等で示すように内部に試薬を配置してある。尚、試薬の種類によって、発色反応に酸素を必要とする場合、試薬反応槽116には、図1(b)で示すような空気溜が設けられる場合もある。
117a〜117dは、それぞれ同一形状、大きさを有する余剰希釈混合液収容部であり、図4で示すように同心円状の第1余剰収容部及び第2余剰収容部を連結部で連結して構成されている。
118は、第1供給用流路であり、同心円状に形成され、外周方向に定量槽114を具えた試薬反応槽116が複数個配置されている。
119、121及び127は、脱気口であり、流路内の液体の移動を妨げる混合部、緩衝部内の空気を外部へ放出するための開口部分である。
120は、第3流路であり、中心方向に屈曲部をもち、調整槽110と第1供給用流路118を接続するためのものである。
122は、第4流路であり、中心方向に屈曲部をもち混合部112と第2供給用流路130を接続するためのものである。
【0022】
123は、第5流路であり、希釈液貯留部102と希釈液定量部124を接続するための直線上の流路である。
124は、希釈液定量部であり、中心方向に第6流路125の一端が接続し、第6流路125の他端は、余剰希釈液収容部126が接続する。
126は、余剰希釈液収容部であり、希釈液定量部124で溢れた希釈液を収容する部分である。
128は、予備槽であり、遠心力を与えることにより128に残留した液面の同心円性を利用して、124で定量した液体の定量精度を高めるためのものであって、希釈液定量部124に対して外周方向に接続している。
129は、第7流路であり、直径方向と平行に延び、途中2つの屈曲部を経て混合部112に接続している。
131,131’は、チャッキング用孔であり、読み取り装置と接続するための部分である。
【0023】
図7は、読み取り装置の一例を示している。
132は、装置下部であり、中央に担体100を収容する凹部が形成され、中央には、担体100の2つのチャッキング用孔131,131’に挿入固定するための突起135,135’を有する回転体134が設けられている。回転体134は、図示されていないが、ステッピングモータ、変速ギヤ等と接続されている。
133は装置上部であり、装置下部132と、一辺を回動可能な状態で接続している。
136a〜136cは、原色光源であり、レーザー光、LED、赤外光源等で形成され、137a〜137cは、受光素子であり、前記光源と対向する部位にそれぞれ配置されている。
【0024】
次に図6、図7で示す実施例の担体に血液と希釈液を供給展開した際の動作説明をする。
静止した担体100の血液貯留部101に血液を供給すると共に希釈液貯留部102内へ希釈液を展開する。
この時、担体100のチャッキング用孔131,131’を図7の回転体134の突起135,135’に挿入させて装置下部132にセットする。
装置上部133を蔵置下部132に重ねるようにして閉めることで担体100上の各試薬反応槽を回転させながら計測する。
装置内に収容された担体100を回転数5000rpm程度で回転させる。
血液貯留部101内の血液は、血液分配部103の2つの流路を介して第1血球分離部106と第2血球分離部107とに供給され、希釈液貯留部102内の希釈液は、第5流路123を介して希釈液貯留部124に供給される。
【0025】
第1血球分離部106と第2血球分離部107とへ供給された血液は、遠心力により第1血球収容部108と第2血球収容部109を充填しながら、第1血球分離部106及び第2血球分離部107を充填し、余剰分は、余剰部用流路105を介して余剰血液貯留部104に収容される。当該構成は、2つ以上の定量部を有しながら少ない余剰血液貯留部で足り、簡素化された構成を提案する。
希釈液定量部124に供給された希釈液は、予備槽128を充填しながら次第に希釈液定量部を充填し、余剰分は、第6流路125を介して余剰希釈液収容部126に収容される。
血球分離部に供給された血液は、第1流路111及び第2流路113に対して毛管力によって充填されるべく移動しようとするが、遠心力によって移動が妨げられている状態となっている。
希釈液も第7流路129の毛管力により移動しようとするが、遠心力により移動が妨げられている状態となっている。
【0026】
回転を継続することにより、第1血球分離部106,第2血球分離部107内の血球を第1血球収容部108,109へ移動させて、血球分離を行う。血球分離部と血球収容部は、細い流路で接続されているため、一度血球収容部に入った血球は、保持され、低速回転によっても、逆流することがない。
分離が十分に行われ、血球分離部106及び107が血漿成分のみで充填された後、担体100の回転を下げる。遠心力が弱まり、第1流路111,第2流路113内の血液は、流路内に充填されるように移動し、第7流路129内の希釈液も同様に混合部112方向へ移動する。
再び回転数を上げると、第1流路111,第2流路113内の血漿は、混合部112及び調整槽110へ、移動し、希釈液も、混合部112へ移動する。
この時、第1流路111、第2流路113、第7流路129それぞれの入力口よりも出力口の方が回転中心から遠くに位置しているため、血球分離部106、107及び希釈液定量部124で定量された血漿及び希釈液が、混合部112と調節槽110へ移動する。
移動が完了した後、回転方向を経時的に変化させて混合させる。この場合は、容積が大きい混合槽のため、速度を経時的に変化させたり、回転方向を変えたりするだけで混合は可能である。
混合後、回転数を下げることで、混合部112に接続した第4流路122内を混合液が充填し、血漿が、第3流路120を充填する。
再び回転数を500rpm〜1000rpm程度まで上げると、混合液は第2供給用流路130に、血漿は第1供給用流路118に供給され、それぞれの溶液は、遠心力により各定量槽114内に充填される。定量供給流路115にも充填されるが、試薬反応槽116との接続面で留まった状態となる。
各定量槽114、114’に混合液及び血漿が充填された後、余剰分が、余剰希釈混合液収容部117a〜117dに収容されるために回転数を2500rpm程度まで上昇させる。
【0027】
更に各定量槽114,114’の各液を試薬反応槽116、116’に供給するため、担体の回転数を、さらに大きく(5000rpm〜6000rpm)する。
供給が完了した後、図3で示すように所定の回転数まで、経時的に交番的に変化させた回転を担体に行わせる。
この、与えられる加速度の交番的変化により、試薬反応槽内の液体と試薬は混合され、均一な発色反応が行われる。
次に原色光源136a〜136cがレーザー光を各試薬反応槽に照射し、受光素子137a〜137cで透過光を受光して、吸光度を電子的に求め、血液の成分濃度を測定する。
以上の説明によれば、血液を中心部の血液貯留部101へ供給するだけで、容易に血液成分を計測可能とする。
【産業上の利用可能性】
【0028】
本発明は、血液検査、感染検査等の生化学分析装置において、より正確な生化学情報を迅速に得ることができることから、よりスピーデイな生化学分析装置が構成できる。
【図面の簡単な説明】
【0029】
【図1】本発明の一実施例を示す図。
【図2】本発明の他の実施例を示す図。
【図3】本発明の他の実施例を示す図。
【図4】本発明の他の実施例を示す図。
【図5】本発明の他の実施例を示す図。
【図6】本発明の他の実施例を説明するための図。
【図7】本発明の他の実施例を説明するための図。
【符号の説明】
【0030】
100 担体
101 血液貯留部
102 希釈液貯留部
103 血液分配部
104 余剰血液貯留部
105 余剰部用流路
106 第1血球分離部
107 第2血球分離部
108 第1血球収容部
109 第2血球収容部
110 調整槽

【特許請求の範囲】
【請求項1】
微小空間において、異なる2種以上の物質を混合する際、比較的短時間では遠心分離が生じず、かつ、必要な加速度を所定時間与えられるような回転数まで経時的に回転を増加または減少させるように角加速度を印加させる液体混合方法。
【請求項2】
相異なる2種以上の物質を混合するための微小空間を具えた担体、前記担体に対し、比較的短時間では遠心分離が生じず、かつ必要な加速度を所定時間与えられるような回転数まで経時的に回転を増加または減少させるように前記担体に対し角加速度を印加させる駆動手段を具えた液体混合装置。
【請求項3】
微小空間において、比重の異なる物質を混合する際、比較的短時間では遠心分離が生じず、かつ、物質に対し必要な加速度を所定時間与えられるような回転数まで経時的に増加させた後、反対方向に比較的短時間では遠心分離が生じず、かつ、物質に対し必要な加速度を所定時間与えられるような回転数まで経時的に増加させ、これを繰り返すことを特徴とする請求項1に記載の液体混合方法。
【請求項4】
比重の異なる物質を混合させる混合部を有する担体、前記担体を回転させ、比較的短時間では遠心分離が生じず、かつ、物質に対し必要な加速度を所定時間与えられるような回転数まで経時的に増加させた後、反対方向に比較的短時間では遠心分離が生じず、かつ、物質に対し必要な加速度を所定時間与えられるような回転数まで経時的に増加させ、これを繰り返す回転手段を有する請求項2に記載の液体混合装置。
【請求項5】
担体中の微小空間の2種以上の物質を混合する際、比較的短時間では遠心分離が生じず、かつ、物質に対し必要な加速度を所定時間与える為に担体を駆動させる駆動手段を有する生化学分析装置。
【請求項6】
前記回転数が2000rpm以下である請求項1、2、3、4、5に記載の液体混合方法及び装置。
【請求項7】
前記一方向の最大回転数から、反対方向の最大回転数までの時間が0.5sec〜2secである請求項1、2、3、4、5に記載の液体混合方法及び装置。
【請求項8】
回転体上で、外周縁部方向に配置した比重の異なる物質を混合し、吸光度等、反応の状態や結果を測定する測定部、前記測定部に定量検体を供給するための定量部、前記定量部に検体を供給する流路であって円周方向に延びた定量供給流路、同心円状にのびた有限の第1回収流路と他の回収流路を設け、前記第1回収流路と、前記他の回収流路を結ぶ連結流路によってなり前記定量供給流路と接続し余剰検体を回収する回収部よりなる生化学分析装置用担体。
【請求項9】
前記連結流路の第1回収流路と第2回収流路の接続部が鋭角状に形成されてなる請求項8に記載の生化学分析装置用担体
【請求項10】
前記測定部と前記定量部は、円周方向に延びた流路によって接続している請求項8に記載の生化学分析装置用担体。
【請求項11】
前記測定部において、中心方向に空気貯留部が形成される請求項8に記載の生化学分析装置用担体。
【請求項12】
前記担体に対し、比較的短時間では遠心分離が生じず、かつ、必要な角加速度を所定時間与えられるような回転数まで経時的に増加させた後、反対方向に比較的短時間では遠心分離が生じず、かつ、必要な角加速度を所定時間与えられるような回転数まで経時的に増加させ、これを繰り返すための回転装置をさらに設けた請求項8に記載の生化学分析装置。
【請求項13】
毛管力を有する流路であって、少なくとも入力口から、出力口が、直径と平行な直線部を有する構成により、担体の回転数を調整して液体の移動及び停止を行う生化学分析装置用担体。
【請求項14】
毛管力を有する流路であって、少なくとも入力口から、出力口が、円周方向に延びた構成により、担体の回転数を調整して液体の移動及び停止を行う生化学分析装置用担体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2007−40833(P2007−40833A)
【公開日】平成19年2月15日(2007.2.15)
【国際特許分類】
【出願番号】特願2005−225531(P2005−225531)
【出願日】平成17年8月3日(2005.8.3)
【出願人】(000126757)株式会社アドバンス (60)
【Fターム(参考)】