説明

画像処理装置及び画像処理方法

【課題】画質を損なうことなく、線幅の見た目の太さの差異を保持した細線化処理を行う
【解決手段】画像処理部100は、注目画素Cが輪郭画素であるか否かを検出するエッジ抽出部120と、注目画素Cを含む線画の線幅を検出し、検出された線幅に応じて注目画素Cに細線構造信号ThinLine[ch]を設定し、細線構造信号ThinLine[ch]と細線化強度係数FTVL、BTVLとを対応付ける対応付け情報を保持し、細線構造信号ThinLine[ch]及び対応付け情報に基づいて算出された補正値dST[ch]を用いて細線化処理を施す細線化処理部130と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像処理装置及び画像処理方法に関する。
【背景技術】
【0002】
印刷画像に対して施す画像処理の一つとして、細線化処理がある。細線化処理とは、文字画像その他の線画の輪郭を構成する画素の画素値を下げ、線画の見た目の太さを調節する処理である。
一部の画像形成装置では、細線化処理を行わない場合に文字が太くなる場合がある。例えば、電子写真方式の画像形成装置は、オフセット印刷等の画像形成装置に比してドットゲインが大きい。このため、電子写真方式の画像形成装置によって形成されたドットの線画は、オフセット印刷等の画像形成装置によって形成されたドットの線画に比して太くなる傾向がある。そこで、細線化処理を施すことにより線画の見た目の太さを調節する。
【0003】
図26(A)、(B)に細線化処理の一例を示す。図26(A)は細線化処理前の文字画像の一例を示し、図26(B)は図26(A)の文字画像に対して細線化処理を施した一例を示す。
図26(A)に示す文字画像の場合、細線化処理によって当該文字画像の輪郭を構成するエッジ画素200(図26(B)において薄いドットマスクを施された画素)の画素値が下げられる。
【0004】
上述のように、細線化処理は線画の輪郭を構成する画素の画素値を下げることで線画の見た目の太さを調節する。しかしながら、全ての線画に対して無条件に細線化処理を施すと、元々細かった線が細くなりすぎてかすれや消失を生じることがあり、細線化処理によって画質を損なうことがあった。そこで、元々細い線には細線化処理を施さない画像処理方法がある(例えば特許文献1)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2005−341249号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1に記載の画像処理方法は、線画の見た目の太さを均一化させてしまうことがあるという問題点がある。なぜならば、元々細い線には細線化処理を施さず、太い線に細線化処理を施す画像処理を行うと、細い線はそのままである一方で太い線の見た目が細くなる。このため、細い線と太い線の見た目の違いが小さくなり、区別がつかなくなるのである。例えば、明朝体の文字画像は縦線が太く横線が細い。しかし、明朝体の文字画像に対して特許文献1の細線化処理を施すと、縦線と横線の太さの差がなくなり、ゴシック体のように見えてしまうことがある。
【0007】
本発明は、画質を損なうことなく、線幅の見た目の太さの差異を保持した細線化処理を行うことを目的とする。
【課題を解決するための手段】
【0008】
請求項1に記載の発明による画像処理装置は、画像の輪郭画素を検出する輪郭検出手段と、前記輪郭画素を含む線画の線幅を検出する線幅検出手段と、前記線幅検出手段によって検出された線幅に応じて前記輪郭画素に線幅情報を付与する線幅情報付与手段と、前記線幅情報と前記輪郭画素に対して施す画素値の変更の度合いとを対応付ける対応付け情報を保持する対応付け情報保持手段と、前記線幅検出手段によって検出された線幅及び前記対応付け情報に基づいて前記輪郭画素の画素値を変更する画素値変更手段と、を備えることを特徴とする。
【0009】
請求項2に記載の発明は、請求項1に記載の画像処理装置であって、前記線幅情報は、前記線画の幅方向の画素数に応じて設定されることを特徴とする。
【0010】
請求項3に記載の発明は、請求項1又は2に記載の画像処理装置であって、前記線幅情報は、前記線画の幅方向が画像の縦横のいずれか一方に沿っているか否かに応じて設定されることを特徴とする。
【0011】
請求項4に記載の発明は、請求項1から3のいずれか一項に記載の画像処理装置であって、前記画素値変更手段は、前記線幅情報が示す前記線画の幅方向の画素数が多いほど前記輪郭画素の画素値の変更の度合いを大きくすることを特徴とする。
【0012】
請求項5に記載の発明は、請求項1から4のいずれか一項に記載の画像処理装置であって、前記画像の各画素に中間調処理を施す中間調処理手段と、前記画像の各画素に対して、輪郭画素である画素には前記画素値変更手段の処理結果を適用し、輪郭画素でない画素には前記中間調処理手段の処理結果を適用する処理選択手段と、を備えることを特徴とする。
【0013】
請求項6に記載の発明による画像処理方法は、画像の輪郭画素を検出する輪郭検出工程と、前記輪郭画素を含む線画の線幅を検出する線幅検出工程と、前記線幅検出手段によって検出された線幅に応じて前記輪郭画素に線幅情報を付与する線幅情報付与工程と、前記線幅情報と前記輪郭画素に対して施す画素値の変更の度合いとを対応付ける対応付け情報を保持する対応付け情報保持工程と、前記線幅検出手段によって検出された線幅及び前記対応付け情報に基づいて前記輪郭画素の画素値を変更する画素値変更工程と、を有することを特徴とする。
【0014】
請求項7に記載の発明は、請求項6に記載の画像処理方法であって、前記線幅情報は、前記線画の幅方向の画素数に応じて設定されることを特徴とする。
【0015】
請求項8に記載の発明は、請求項6又は7に記載の画像処理方法であって、前記線幅情報は、前記線画の幅方向が画像の縦横のいずれか一方に沿っているか否かに応じて設定されることを特徴とする。
【0016】
請求項9に記載の発明は、請求項6から8のいずれか一項に記載の画像処理方法であって、前記画素値変更工程において、前記線幅情報が示す前記線画の幅方向の画素数が多いほど前記輪郭画素の画素値の変更の度合いを大きくすることを特徴とする。
【0017】
請求項10に記載の発明は、請求項6から9のいずれか一項に記載の画像処理方法であって、前記画像の各画素に中間調処理を施す中間調処理工程と、前記画像の各画素に対して、輪郭画素である画素には前記画素値変更工程の処理結果を適用し、輪郭画素でない画素には前記中間調処理工程の処理結果を適用する処理選択工程と、を備えることを特徴とする。
【発明の効果】
【0018】
本発明によれば、画質を損なうことなく、線幅の見た目の太さの差異を保持した細線化処理を行うことができる。
【図面の簡単な説明】
【0019】
【図1】本発明による画像処理装置を含む画像形成システム1の構成の一例を示す図である。
【図2】画像処理部100の構成を示すブロック図である。
【図3】ラインバッファ110の記憶保持内容とブロックBとの対応関係の一例を示す説明図である。図3(A)は、ラインバッファ110の記憶保持内容と画像データとの対応関係の一例を示す説明図である。図3(B)は、ラインバッファ110の記憶保持内容と属性データTAGとの対応関係の一例を示す説明図である。
【図4】5×5[画素]のブロックBの注目画素Cに対する周辺画素の画素値の関係の一例を示す説明図である。
【図5】5×5[画素]のブロックBの注目画素Cに対する周辺画素のエッジ強度En[ch]の関係の一例を示す説明図である。
【図6】5×5[画素]のブロックBの注目画素Cに対する周辺画素の2値化エッジ値en [ch]の関係の一例を示す説明図である。
【図7】第一のパターンマッチング処理のイメージ図である。図7(A)は、注目画素Cを中心として並ぶ横の3画素について、白黒白のパターンがあるか否かを判定する処理のイメージ図である。図7(B)は、注目画素Cを中心として並ぶ縦の3画素について、白黒白のパターンがあるか否かを判定する処理のイメージ図である。
【図8】第二のパターンマッチング処理のイメージ図である。図8(A)は、注目画素Cを中心として左上から右下にかけて並ぶ斜め方向の3画素について、白黒白のパターンがあるか否かを判定する処理のイメージ図である。図8(B)は、注目画素Cを中心として右上から左下にかけて並ぶ斜め方向の3画素について、白黒白のパターンがあるか否かを判定する処理のイメージ図である。
【図9】第三のパターンマッチング処理のイメージ図である。図9(A)は、2値化エッジ値e12及びe15が1であるか否かを判定する処理のイメージ図である。図9(B)は、2値化エッジ値e11及びe14が1であるか否かを判定する処理のイメージ図である。図9(C)は、2値化エッジ値e8及びe23が1であるか否か否かを判定する処理のイメージ図である。図9(D)は、2値化エッジ値e3及びe18が1であるか否か否かを判定する処理のイメージ図である。
【図10】第四のパターンマッチング処理のイメージ図である。図10(A)は、2値化エッジ値e1及びe19が1であるか否か否かを判定する処理のイメージ図である。図10(B)は、2値化エッジ値e5及びe17が1であるか否かを判定する処理のイメージ図である。図10(C)は、2値化エッジ値e7及びe25が1であるか否かを判定する処理のイメージ図である。図10(D)は、2値化エッジ値e9及びe21が1であるか否かを判定する処理のイメージ図である。
【図11】5×5[画素]のブロックBの注目画素Cに対する周辺画素の非エッジ値fn [ch]の関係の一例を示す説明図である。
【図12】第五のパターンマッチング処理のイメージ図である。図12(A)は、注目画素Cの左側に白抜き線があるか否かを判定する処理のイメージ図である。図12(B)は、注目画素Cの上側に白抜き線があるか否かを判定する処理のイメージ図である。図12(C)は、注目画素Cの右側に白抜き線があるか否かを判定する処理のイメージ図である。図12(D)は、注目画素Cの下側に白抜き線があるか否かを判定する処理のイメージ図である。
【図13】第六のパターンマッチング処理のイメージ図である。図13(A)は、注目画素Cの左上側に白抜き線があるか否かを判定する処理のイメージ図である。図13(B)は、注目画素Cの右上側に白抜き線があるか否かを判定する処理のイメージ図である。図13(C)は、注目画素Cの右下側に白抜き線があるか否かを判定する処理のイメージ図である。図13(D)は、注目画素Cの左下側に白抜き線があるか否かを判定する処理のイメージ図である。
【図14】細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]と細線化強度係数FTVL、BTVLとの対応関係を示す表である。
【図15】図14に示す表の各設定値を具体化した一例を示す表である。
【図16】正エッジ情報PEDGE[ch]及び負エッジ情報REDGE[ch]の生成処理の流れの一例を示すフローチャートである。
【図17】輪郭情報E_EDGEの生成処理の流れを示すフローチャートである。
【図18】前景情報FOREGROUND[ch]及び背景情報BACKGROUND[ch]の生成処理の流れを示すフローチャートである。
【図19】細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]の生成処理のうち、ステップS31〜S44を示すフローチャートである。
【図20】細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]の生成処理のうち、ステップS45〜S54を示すフローチャートである。
【図21】ベタ判定フラグONSOLID、RVSOLIDの生成処理の流れを示すフローチャートである。
【図22】拡張タグ(ETAG)の設定処理の流れを示すフローチャートである。
【図23】補正値dST[ch]及び細線化フラグFlagST[ch]の生成処理の流れを示すフローチャートである。
【図24】出力画像データOut[ch]の生成処理の流れを示すフローチャートである。
【図25】画像形成部10の主要構成を示す説明図である。
【図26】細線化処理の一例を示す説明図である。図26(A)は細線化処理前の文字画像の一例を示す説明図である。図26(B)は図26(A)の文字画像に対して細線化処理を施した一例を示す説明図である。
【発明を実施するための形態】
【0020】
以下、図を参照して本発明の実施の形態の例を詳細に説明する。
本発明に係る画像処理装置としては、例えばプリンタ、複写機、ファクシミリ装置又はこれらの複合機等に搭載される画像処理装置が挙げられるが、これに限定されるものではない。
【0021】
図1に、本発明による画像処理装置を含む画像形成システム1の構成の一例を示す。
画像形成システム1は、PC2、コントローラ3、画像形成装置4を有する。PC2とコントローラ3は回線5により接続され、コントローラ3と画像形成装置4は回線6により接続される。
【0022】
PC2は、印刷ジョブをコントローラ3へ出力する。印刷ジョブは、PDL(Page Description Language)データを含む。
【0023】
コントローラ3は、印刷ジョブを受信すると、印刷ジョブに含まれるPDLデータを解析してDL(Display List)データを生成する。DLデータは、画像形成装置4の印刷処理によって描画されるオブジェクトの位置座標や領域データ、色データのアドレス情報等を含む中間データである。
コントローラ3は、さらに、DLデータに基づいて画像データを生成する。画像データは、DLデータに基づいて描画されるオブジェクトに対して画素を割り当てたデータである。画像データに含まれる各画素には画素値が設定される。本実施形態では、コントローラ3は8ビットの画像データを生成する。つまり、画像データの各画素には0〜255のいずれかの画素値が設定される。
画像データは、画像形成装置4で用いる色剤の種類に応じて生成される。本実施形態では、コントローラ3は、シアン(C)、マゼンタ(M)、イエロー(Y)及びブラック(K)の各色に対応する画像データを生成する。
【0024】
また、コントローラ3は、各画素の属性を示す属性データTAGを生成する。属性データTAGを生成するに際して、コントローラ3は、DLデータに基づいて各画素の画像属性を判別し、その判別結果に基づいて画素単位で属性データTAGを生成する。属性データTAGが示す属性としては、画素が写真画を構成することを示すIMAGE、画素が線画を構成することを示すGRAPHICS、画素が文字を構成することを示すTEXTがある。属性データTAGは数値によって属性の内容を示すデータであり、TAG=0の場合はIMAGEの属性を示し、TAG=1の場合はGRAPHICSの属性を示し、TAG=2又は3の場合はTEXTの属性を示す。
【0025】
コントローラ3は、生成した画像データ及び属性データTAGを画像形成装置4へ出力する。
【0026】
画像形成装置4は、画像データ及び属性データTAGに基づいて印刷媒体(例えば紙等)に対して画像を形成する。
画像形成装置4は、画像処理部100と、画像形成部10とを有する。
【0027】
画像処理部100は、画像データ及び属性データTAGに基づいて出力画像データOut[ch]を生成し、画像形成部10へ出力する。
図2に、画像処理部100の構成を示す。
画像処理部100は、ラインバッファ110、エッジ抽出部120、細線化処理部130、コントーン処理部140、スクリーン処理部150及びセレクタ160を有する。
【0028】
ラインバッファ110は、コントローラ3から入力された画像データ及び属性データTAGを記憶、保持する。ラインバッファ110は、4ライン分の画像データと、3ライン分の属性データTAGと、を保持する。ラインバッファ110は、エッジ抽出部120、細線化処理部130及びスクリーン処理部150の処理に応じて画像データ、属性データTAG又はその両方を画素単位又はブロック単位で供給する。
【0029】
エッジ抽出部120は、5×5[画素]単位のブロックBの画像データを取得し、各画素のエッジ強度En[ch]ならびに注目画素Cの正エッジ情報PEDGE[ch]、負エッジ情報REDGE[ch]、輪郭情報E_EDGE及び背景情報BACKGROUND[ch]の各種データを生成し、細線化処理部130へ出力する。
【0030】
本実施形態における注目画素Cとは、5×5[画素]単位のブロックBの中心に位置する画素をさす。注目画素Cは、画像データからの5×5[画素]単位のブロックBの切り出し位置によって変化し、画像処理部100は画像データに含まれる全ての画素を注目画素Cとして扱うよう、5×5[画素]単位のブロックBの切り出し位置を順次変更して処理する。
【0031】
細線化処理部130は、ラインバッファ110から取得した5×5[画素]単位のブロックBの画像データ、注目画素Cを中心とする3×3画素分の属性データTAG及びエッジ抽出部120によって出力された各種データに基づいて、細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]を生成する。また、細線化処理部130は、細線化処理を行う。細線化処理において、細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]に基づいて細線化の強度が決定される。そして、細線化処理部130は、細線化処理がなされた画素値を示すコントーン入力信号IS[ch]を生成し、コントーン処理部140へ出力する。また、細線化処理部130は、細線化実施フラグTotalSTを生成し、セレクタ160へ出力する。
【0032】
コントーン処理部140は、コントーン入力信号IS[ch]に対してγ補正(ガンマ補正)処理を施し、コントーン出力信号contone[ch]を生成し、セレクタ160へ出力する。
【0033】
スクリーン処理部150は、注目画素Cの画像データ及び属性データTAGを取得する。そして、スクリーン処理部150は、注目画素Cに対してγ補正処理及び中間調処理(スクリーン処理)を施したスクリーン出力信号screen[ch]を生成し、セレクタ160へ出力する。スクリーン処理部150は、画像データの各画素に中間調処理を施す中間調処理手段として機能する。
【0034】
セレクタ160は、細線化実施フラグTotalSTに基づいて、コントーン出力信号contone[ch]又はスクリーン出力信号screen[ch]のいずれか一方を出力画像データOut[ch]として画像形成部10へ出力する。
【0035】
次に、画像処理部100の各部について詳細を説明する。
図3(A)、(B)にラインバッファ110の記憶保持内容とブロックBとの対応関係の一例を示す。図3(A)は、ラインバッファ110の記憶保持内容と画像データとの対応関係の一例を示し、図3(B)は、ラインバッファ110の記憶保持内容と属性データTAGとの対応関係の一例を示す。
図3(A)においてマスクされた画素に示すように、注目画素Cを中心とする5×5[画素]のブロックBを構成する各画素のデータを得るには、注目画素Cを含むライン及び注目画素Cを含むラインを基準とした上下2ライン分のデータを要する。このうち、画像処理部100に対して入力される1ライン分についてはラインバッファ110による保持を要しない。このことから、注目画素Cを中心とする5×5[画素]のブロックBを構成する各画素の画像データを得るには、画像処理部100に対してリアルタイムで入力される1ラインより前に入力される4ライン分の画像データを保持する必要がある。このため、本実施形態では4ライン分の画像データを記憶、保持するラインバッファ110を設けている。
【0036】
一方、属性データTAGについては、注目画素Cを中心とする3×3[画素]のブロックBがあればよいが、注目画素Cを中心とする3×3[画素]のブロックBを構成する各画素のデータは、画像処理部100に対してリアルタイムで入力される1ラインに含まれない。このことから、注目画素Cを中心とする5×5[画素]のブロックBを構成する各画素の属性データTAGを得るには、画像処理部100に対してリアルタイムで入力される1ラインより前に入力される3ライン分の属性データTAGを保持する必要がある。このため、本実施形態では3ライン分の属性データTAGを記憶、保持するラインバッファ110を設けている。
【0037】
本実施形態のラインバッファ110が記憶、保持する画像データ及び属性データTAGのライン数はあくまで一例であり、画像処理に要するブロックBの単位に応じて適宜変更することができる。
【0038】
エッジ抽出部120は、5×5[画素]のブロックBに含まれる各画素の画素値に基づいて、注目画素に対するエッジ強度En[ch](n=1〜25)を生成する。エッジ強度En[ch]は、注目画素Cの画素値と周辺画素の画素値との差に基づく値である。
図4に、5×5[画素]のブロックBの注目画素Cに対する周辺画素の画素値の関係の一例を示す。図5に、5×5[画素]のブロックBの注目画素Cに対する周辺画素のエッジ強度En[ch]の関係の一例を示す。
なお、説明に用いる注目画素Cは、ブロックBの中央に位置する画素であり、周辺画素は、注目画素Cの周辺に位置し、ブロックBに含まれる画素である。
【0039】
エッジ強度En[ch]( n=1〜25)の生成にあたり、まず、エッジ抽出部120は、図4に示すように、注目画素Cの画素値及び周辺画素の画素値I01〜I25を得る。ここで、ブロックBが画像データの領域外を含む場合、周辺画素の一部が存在せず、画素値を得られない場合が有る。この場合、存在しない周辺画素の画素値は0とする。
次に、図5に示すように、エッジ抽出部120は、注目画素Cの画素値と周辺画素の画素値との差を算出してエッジ強度E01〜E25を得る。ここでエッジ強度E01〜E25は−256〜256の範囲の整数である。
なお、本実施形態では、図4、図5に示すように、画素値I01〜I25及びエッジ強度E01〜E25のうち、注目画素Cの位置に対応する画素値I13及びエッジ強度E13は用いないので、使用しない画素値、エッジ強度については取得してもしなくてもよい。
【0040】
次に、エッジ抽出部120は、エッジ強度En[ch]に基づいて、正エッジ情報PEDGE[ch]及び負エッジ情報REDGE[ch]を生成する。
エッジ抽出部120は、注目画素Cに隣接する4画素のエッジ強度のうち最大値を正エッジ情報PEDGE[ch]とする。具体的には、本実施形態の場合、E08、E12、E14、E18のうち最大値を正エッジ情報PEDGE[ch]とする。
また、エッジ抽出部120は、注目画素Cに隣接する4画素のエッジ強度のうち最小値を負エッジ情報REDGE[ch]とする。具体的には、本実施形態の場合、E08、E12、E14、E18のうち最小値を負エッジ情報REDGE[ch]とする。ただし、エッジ抽出部120は、第一の閾値EDGETH未満となった正エッジ情報PEDGE[ch]、負エッジ情報REDGE[ch]又はその両方を0とする。第一の閾値EDGETHは正エッジ情報PEDGE[ch]、負エッジ情報REDGE[ch]として認められる最低値を示しており、1〜254の値を取ることができる。本実施形態では、第一の閾値EDGETHを32としている。
【0041】
エッジ強度En[ch]、正エッジ情報PEDGE[ch]及び負エッジ情報REDGE[ch]は、各色(例えばCMYK)の画像データに対して個別に生成される。[ch]には0〜3の整数値が設定され、ch=0はシアン(C)を、ch=1はマゼンタ(M)を、ch=2はイエロー(Y)を、ch=3はブラック(K)を示す。以下、[ch]の記載を含むデータは、各色についてそれぞれ生成される。
【0042】
さらに、エッジ抽出部120は、各色のエッジ強度En[ch]、正エッジ情報PEDGE[ch]及び負エッジ情報REDGE[ch]に基づいて輪郭情報E_EDGEを生成する。輪郭情報E_EDGEは、注目画素Cが画像の輪郭を構成するか否かを示す。
【0043】
輪郭情報E_EDGEの生成にあたり、エッジ抽出部120は、まず中間データであるTOTALPEDGE、TOTALREDGEを求める。TOTALPEDGEは下記の式(1)によって求められる。TOTALREDGEは下記の式(2)によって求められる。
TOTALPEDGE ={(PEDGE[0] × Wc) + (PEDGE[1] × Wm) + (PEDGE[2] ×Wy) + (PEDGE[3] × Wk)} / 256……(1)
TOTALREDGE ={(REDGE[0] × Wc) + (REDGE[1] × Wm) + (REDGE[2] ×Wy) + (REDGE[3] × Wk)} / 256……(2)
上記式(1)、(2)における係数Wc、Wm、Wy及びWkはそれぞれ8bitの整数である。また、係数Wc、Wm、Wy、Wkは、Wc+Wm+Wy+Wk≦256を満たすように設定される。
TOTALPEDGE、TOTALREDGEは前景、背景それぞれのエッジにおける各色(例えばCMYK)のエッジの強さを比視感度に相当する係数で重み付けして足し合わせた値に基づく中間データ値である。なお、画素値の異なる複数の画素がエッジを形成する画像データにおいて、前景とは濃度が相対的に高い領域のことをさし、背景とは濃度が相対的に低い領域のことをさす。
注目画素Cが画像の輪郭を構成するか否かを示す輪郭情報E_EDGEを決定するにあたり、注目画素Cが視覚的な濃度差に基づいて輪郭を形成するか否かを判定する必要がある。そこで、中間データTOTALPEDGE、TOTALREDGEを求めるにあたり、それぞれ正エッジ情報PEDGE[ch]、負エッジ情報REDGE[ch]に対して比視感度に相当する係数による補正をかける。具体的には、シアン(C)の正エッジ情報PEDGE[0]、負エッジ情報REDGE[0]には係数Wcを用い、マゼンタ(M)の正エッジ情報PEDGE[1]、負エッジ情報REDGE[1]には係数Wmを用い、イエロー(Y)の正エッジ情報PEDGE[2]、負エッジ情報REDGE[2]には係数Wyを用い、ブラック(K)の正エッジ情報PEDGE[3]、負エッジ情報REDGE[3]には係数Wkを用い、補正をかける。
【0044】
本実施形態では、係数Wc、Wm、Wy、Wkの値は、比視感度に応じる。例えば、イエロー(Y)は、画素値の異なる二画素の画素値の差による視覚的な濃度差を他の色に比して生じさせにくい。一方、ブラック(K)は画素値の異なる二画素の画素値の差による視覚的な濃度差を他の色に比して生じさせやすい。係数Wc、Wm、Wy、Wkの値は、このような比視感度に応じて設定されており、例えばWc=80、Wm=32、Wy=16、Wk=128である。
【0045】
エッジ抽出部120は、TOTALPEDGEとTOTALREDGEとの大小比較結果に基づいて輪郭情報E_EDGEを決定する。本実施形態では、TOTALPEDGEがTOTALREDGEより大きい場合に、エッジ抽出部120は、注目画素Cが輪郭を構成する画素であると判定して輪郭情報E_EDGEをONとする。TOTALPEDGEがTOTALREDGE以下である場合、エッジ抽出部120は、輪郭情報E_EDGEをOFFとする。本実施形態では、輪郭情報E_EDGEはON/OFFを示す1bit値で表されるが、同様の情報を示すことができれば他の値をとっても良い。
【0046】
このように、エッジ抽出部120は、輪郭情報E_EDGEの生成及びその値のON/OFFによって、注目画素Cが輪郭を構成する画素(輪郭画素)であるか否かを検知する。つまり、エッジ抽出部120は、画像データに含まれる輪郭画素を検出する輪郭検出手段として機能する。
【0047】
また、エッジ抽出部120は、正エッジ情報PEDGE[ch]及び負エッジ情報REDGE[ch]に基づいて背景情報BACKGROUND[ch]を生成する。BACKGROUND[ch]は注目画素Cが前景に含まれるか背景に含まれるかを簡易的に推定するためのデータである。本実施形態では、背景情報BACKGROUND[ch]と対になる前景情報FOREGROUND[ch]も同時に生成される。前景情報FOREGROUND[ch]及び背景情報BACKGROUND[ch]は、ON/OFFを示す1bit値で表されるが、同様の情報を示すことができれば他の値をとっても良い。前景情報FOREGROUND[ch]及び背景情報BACKGROUND[ch]は、各色(例えばCMYK)に対して個別に生成される。
【0048】
前景情報FOREGROUND[ch]及び背景情報BACKGROUND[ch]を生成するにあたり、エッジ抽出部120は、PEDGE[ch]とREDGE[ch]とを比較する。PEDGE[ch]がREDGE[ch]よりも大きい場合、エッジ抽出部120は前景情報FOREGROUND[ch]をONとし、背景情報BACKGROUND[ch]をOFFとする。PEDGE[ch]がREDGE[ch]よりも小さい場合、エッジ抽出部120は前景情報FOREGROUND[ch]をOFFとし、背景情報BACKGROUND[ch]をONとする。PEDGE[ch]とREDGE[ch]とが等しい場合、エッジ抽出部120は前景情報FOREGROUND[ch]、背景情報BACKGROUND[ch]を共にOFFとする。
【0049】
細線化処理部130は、まず、エッジの2値化を行う。本実施形態では、細線化処理部130は、8bitのエッジ強度En[ch]の値と第二の閾値TLSOLIDTHとの比較結果に基づいて、周辺画素の2値化エッジ値en[ch](n=1〜25)を求める。2値化エッジ値en[ch]は、各色(例えばCMYK)に対して個別に生成される。
図6に、5×5[画素]のブロックBの注目画素Cに対する周辺画素の2値化エッジ値en [ch]の関係の一例を示す。
細線化処理部130は、8bitのエッジ強度En[ch]の値が第二の閾値TLSOLIDTHより大きい周辺画素に対して、その2値化エッジ値en [ch]として1を設定する。細線化処理部130は、8bitのエッジ強度En[ch]の値が第二の閾値TLSOLIDTH以下の周辺画素に対して、その2値化エッジ値en [ch]として0を設定する。
【0050】
次に、細線化処理部130は、細線構造信号ThinLine[ch]の生成を行う。
細線構造信号ThinLine[ch]の生成にあたり、細線化処理部130は、細線構造信号ThinLine[ch]を初期値0で設定する。その後、細線化処理部130は、注目画素Cを中心として並ぶ縦又は横の3画素について、白黒白のパターンがあるか否かを判定する。注目画素Cを中心として並ぶ縦又は横の3画素について、白黒白のパターンがある場合、細線化処理部130は、細線構造信号ThinLine[ch]の値を1とする。本実施形態の細線化処理部130は、注目画素Cを中心として並ぶ縦又は横の3画素について、白黒白のパターンがあるか否かを判定するにあたり、第一のパターンマッチング処理を行う。
【0051】
図7(A)、(B)に、第一のパターンマッチング処理のイメージ図を示す。図7(A)は、注目画素Cを中心として並ぶ横の3画素について、白黒白のパターンがあるか否かを判定する処理のイメージ図を示し、図7(B)は、注目画素Cを中心として並ぶ縦の3画素について、白黒白のパターンがあるか否かを判定する処理のイメージ図を示す。
第一のパターンマッチング処理として、細線化処理部130は、2値化エッジ値e12及びe14又はe8及びe18のいずれか一の組が共に1であるか否かを判定する。2値化エッジ値又はe8及びe18のいずれか一の組が共に1である場合、細線化処理部130は、細線構造信号ThinLine[ch]の値を1とする。
【0052】
細線構造信号ThinLine[ch]=1は、縦又は横方向に沿った1画素幅の線があることを示す。
第一のパターンマッチング処理後、細線構造信号ThinLine[ch]の値が0である場合、注目画素Cを中心として並ぶ縦及び横の3画素について、白黒白のパターンがないことを示す。その場合、細線化処理部130は、注目画素Cを中心として並ぶ斜め方向の3画素について、白黒白のパターンがあるか否かを判定する。注目画素Cを中心として並ぶ斜め方向の3画素について、白黒白のパターンがある場合、細線化処理部130は、細線構造信号ThinLine[ch]の値を2とする。本実施形態の細線化処理部130は、注目画素Cを中心として並ぶ斜め方向の3画素について、白黒白のパターンがあるか否かを判定するにあたり、第二のパターンマッチング処理を行う。
【0053】
図8(A)、(B)に、第二のパターンマッチング処理のイメージ図を示す。図8(A)は、注目画素Cを中心として左上から右下にかけて並ぶ斜め方向の3画素について、白黒白のパターンがあるか否かを判定する処理のイメージ図を示し、図8(B)は、注目画素Cを中心として右上から左下にかけて並ぶ斜め方向の3画素について、白黒白のパターンがあるか否かを判定する処理のイメージ図を示す。
第二のパターンマッチング処理として、白黒白のパターンがあるか否かを判定する場合、細線化処理部130は、2値化エッジ値e7及びe19又はe9及びe17のいずれか一方の組が共に1であるか否かを判定する。2値化エッジ値e7及びe19又はe9及びe17のいずれか一方の組が共に1である場合、細線化処理部130は、細線構造信号ThinLine[ch]の値を2とする。
【0054】
細線構造信号ThinLine[ch]=2は、斜め方向の1画素幅の線があることを示す。
第二のパターンマッチング処理後、細線構造信号ThinLine[ch]の値が0である場合、注目画素Cを中心として並ぶ縦、横及び斜めの3画素について、白黒白のパターンがないことを示す。その場合、細線化処理部130は、注目画素Cを含んだ縦又は横の2画素幅の線があるか否かを判定する。注目画素Cを含んだ縦又は横の2画素幅の線がある場合、細線化処理部130は、細線構造信号ThinLine[ch]の値を3とする。本実施形態の細線化処理部130は、注目画素Cを含んだ縦又は横の2画素幅の線があるか否かを判定するにあたり、第三のパターンマッチング処理を行う。
【0055】
図9(A)〜(D)に、第三のパターンマッチング処理のイメージ図を示す。図9(A)は、2値化エッジ値e12及びe15が1であるか否かを判定する処理のイメージ図を示し、図9(B)は、2値化エッジ値e11及びe14が1であるか否かを判定する処理のイメージ図を示し、図9(C)は、2値化エッジ値e8及びe23が1であるか否か否かを判定する処理のイメージ図を示し、図9(D)は、2値化エッジ値e3及びe18が1であるか否か否かを判定する処理のイメージ図を示す。
第三のパターンマッチング処理として、細線化処理部130は、2値化エッジ値e12及びe15、e11及びe14、e8及びe23又はe3及びe18のいずれか一の組が共に1であるか否かを判定する。2値化エッジ値e12及びe15、e11及びe14、e8及びe23又はe3及びe18のいずれか一の組が共に1である場合、細線化処理部130は、細線構造信号ThinLine[ch]の値を3とする。
【0056】
細線構造信号ThinLine[ch]=3は、注目画素Cを含んだ縦又は横の2画素幅の線があることを示す。
第三のパターンマッチング処理後、細線構造信号ThinLine[ch]の値が0である場合、注目画素Cを中心として並ぶ縦、横及び斜めの3画素について白黒白のパターンがないことならびに注目画素Cを含んだ縦及び横の2画素幅の線がないことを示す。その場合、細線化処理部130は、注目画素Cを含んだ斜め方向の2画素幅の線があるか否かを判定する。注目画素Cを含んだ斜め方向の2画素幅の線がある場合、細線化処理部130は、細線構造信号ThinLine[ch]の値を4とする。本実施形態の細線化処理部130は、注目画素Cを含んだ斜め方向の2画素幅の線があるか否かを判定するにあたり、第四のパターンマッチング処理を行う。
【0057】
図10(A)〜(D)に、第四のパターンマッチング処理のイメージ図を示す。図10(A)は、2値化エッジ値e1及びe19が1であるか否か否かを判定する処理のイメージ図を示し、図10(B)は、2値化エッジ値e5及びe17が1であるか否かを判定する処理のイメージ図を示し、図10(C)は、2値化エッジ値e7及びe25が1であるか否かを判定する処理のイメージ図を示し、図10(D)は、2値化エッジ値e9及びe21が1であるか否かを判定する処理のイメージ図を示す。
第四のパターンマッチング処理として、細線化処理部130は、2値化エッジ値e1及びe19、e5及びe17、e7及びe25又はe9及びe21のいずれか一の組が共に1であるか否かを判定する。2値化エッジ値e1及びe19、e5及びe17、e7及びe25又はe9及びe21のいずれか一の組が共に1である場合、細線化処理部130は、細線構造信号ThinLine[ch]の値を4とする。
【0058】
細線構造信号ThinLine[ch]=4は、注目画素Cを含んだ斜め方向の2画素幅の線があることを示す。
注目画素Cを含んだ縦又は横の2画素幅の線があるか否かを判定した後、細線構造信号ThinLine[ch]の値が0である場合、注目画素Cを中心として並ぶ縦、横及び斜めの3画素について白黒白のパターンがないことならびに注目画素Cを含んだ縦、横及び斜め方向の2画素幅の線がないことを示す。その場合、細線化処理部130は、細線構造信号ThinLine[ch]の値を0のままとする。細線構造信号ThinLine[ch]=0は、3画素以上の幅を有する画素の固まりがあることを示す。
細線化処理部130は、細線構造信号ThinLine[ch]の値が0以外になったとき又は第四のパターンマッチング処理の終了後、細線構造信号ThinLine[ch]の値を決定する処理を終了する。
【0059】
細線構造信号ThinLine[ch]の値の決定処理に示すように、細線化処理部130は、注目画素Cを含む線画の線幅を検出する線幅検出手段として機能する。そして、細線構造信号ThinLine[ch]は、線幅情報として機能する。
また、細線化処理部130は、細線構造信号ThinLine[ch]の値を、注目画素Cを含む線画の幅方向の画素数に応じて設定する。
さらに、細線化処理部130は、細線構造信号ThinLine[ch]の値を、線画の幅方向が画像の縦横のいずれか一方に沿っているか否かに応じて設定する。本実施形態では、細線構造信号ThinLine[ch]は、その値が1又は3の場合、線画の幅方向が画像の縦横のいずれか一方に沿っていることを示す。一方、細線構造信号ThinLine[ch]は、その値が2又は4の場合、線画の幅方向が画像の縦横のいずれか一方に沿っておらず、斜め方向であることを示す。
【0060】
次に、細線化処理部130は、白抜き文字情報WThinLine[ch]を生成する。
白抜き文字情報WThinLine[ch]を生成するにあたり、細線化処理部130は、非エッジ値fn[ch] (n=1〜25)を求める。非エッジ値fn[ch]は、注目画素Cの画素値と周辺画素の画素値との差が所定の範囲内に収まっているか否かを示す。本実施形態では、各周辺画素のエッジ強度En[ch]が第三の閾値FlatTHを下回る場合、細線化処理部130は、注目画素Cの画素値と周辺画素の画素値との差が所定の範囲内に収まっていると判定し、その周辺画素の非エッジ値fn[ch]の値を1とする。一方、本実施形態では、各周辺画素のエッジ強度En[ch]が第三の閾値FlatTH以上の場合、その周辺画素の非エッジ値fn[ch]の値を0とする。
【0061】
図11に、5×5[画素]のブロックBの注目画素Cに対する周辺画素の非エッジ値fn [ch]の関係の一例を示す。
本実施形態では、図11に示すように、非エッジ値f01〜f25のうち、f01、f03、f05、f11、f15、f21、f23、f25以外は用いないので、使用しない非エッジ値については算出してもしなくてもよい。
【0062】
非エッジ値fn[ch]を得た後、細線化処理部130は、2値化エッジ値en[fh]及び非エッジ値fn[ch]に基づいて、白抜き線が存在するか否かを判定する処理を行う。
具体的には、細線化処理部130は、まず、白抜き文字情報WThinLine[ch]を初期値0で設定する。その後、縦又は横の1画素幅の白抜き線があるか否かを判定する。縦又は横の1画素幅の白抜き線がある場合、細線化処理部130は、白抜き文字情報WThinLine[ch]の値を1とする。本実施形態の細線化処理部130は、縦又は横の1画素幅の白抜き線があるか否かを判定するにあたり、第五のパターンマッチング処理を行う。
【0063】
図12(A)〜(D)に、第五のパターンマッチング処理のイメージ図を示す。図12(A)は、注目画素Cの左側に白抜き線があるか否かを判定する処理のイメージ図を示し、図12(B)は、注目画素Cの上側に白抜き線があるか否かを判定する処理のイメージ図を示し、図12(C)は、注目画素Cの右側に白抜き線があるか否かを判定する処理のイメージ図を示し、図12(D)は、注目画素Cの下側に白抜き線があるか否かを判定する処理のイメージ図を示す。
第五のパターンマッチング処理として、細線化処理部130は、非エッジ値f11及び2値化エッジ値e12、非エッジ値f3及び2値化エッジ値e8、非エッジ値f15及び2値化エッジ値e14、非エッジ値f23及び2値化エッジ値e18のいずれか一の組が共に1であるか否かを判定する。非エッジ値f11及び2値化エッジ値e12、非エッジ値f3及び2値化エッジ値e8、非エッジ値f15及び2値化エッジ値e14、非エッジ値f23及び2値化エッジ値e18のいずれか一の組が共に1である場合、細線化処理部130は、白抜き文字情報WThinLine[ch]の値を1とする。
【0064】
白抜き文字情報WThinLine[ch]=1は、縦又は横の1画素幅の白抜き線があることを示す。
第五のパターンマッチング処理後、白抜き文字情報WThinLine[ch]の値が0である場合、縦又は横の1画素幅の白抜き線がないことを示す。その場合、細線化処理部130は、斜め方向の1画素幅の白抜き線があるか否かを判定する。斜め方向の1画素幅の白抜き線場合、細線化処理部130は、白抜き文字情報WThinLine[ch]の値を2とする。本実施形態の細線化処理部130は、斜め方向の1画素幅の白抜き線があるか否かを判定するにあたり、第六のパターンマッチング処理を行う。
【0065】
図13(A)〜(D)に、第六のパターンマッチング処理のイメージ図を示す。図13(A)は、注目画素Cの左上側に白抜き線があるか否かを判定する処理のイメージ図を示し、図13(B)は、注目画素Cの右上側に白抜き線があるか否かを判定する処理のイメージ図を示し、図13(C)は、注目画素Cの右下側に白抜き線があるか否かを判定する処理のイメージ図を示し、図13(D)は、注目画素Cの左下側に白抜き線があるか否かを判定する処理のイメージ図を示す。
第六のパターンマッチング処理として、細線化処理部130は、非エッジ値f1及び2値化エッジ値e7、非エッジ値f5及び2値化エッジ値e9、非エッジ値f25及び2値化エッジ値e19、非エッジ値f21及び2値化エッジ値e17のいずれか一の組が共に1であるか否かを判定する。非エッジ値f1及び2値化エッジ値e7、非エッジ値f5及び2値化エッジ値e9、非エッジ値f25及び2値化エッジ値e19、非エッジ値f21及び2値化エッジ値e17のいずれか一の組が共に1である場合、細線化処理部130は、白抜き文字情報WThinLine[ch]の値を2とする。
【0066】
白抜き文字情報WThinLine[ch]=2は、斜め方向の1画素幅の白抜き線があることを示す。
第六のパターンマッチング処理後、白抜き文字情報WThinLine[ch]の値が0である場合、注目画素Cの周囲に白抜き線がないことを示す。その場合、細線化処理部130は、白抜き文字情報WThinLine[ch]の値を0のままとする。白抜き文字情報WThinLine[ch]=0は、注目画素Cに隣接する白抜き文字がないことを示す。
【0067】
細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]は、各色(例えばCMYK)に対して個別に生成される。
【0068】
次に、細線化処理部130は、細線化処理を行う。
細線化処理において、細線化処理部130は、まず、注目画素C及び注目画素Cに隣接する周辺画素がベタか否かを判定する。細線化処理部130は、第三の閾値SOBに基づいて、ベタか否かを判定し、その結果をベタ判定フラグ(ONSOLID、RVSOLID)として生成する。ベタ判定フラグONSOLID、RVSOLIDは共にON/OFFを示すデータである。ベタ判定フラグONSOLIDがONの場合、前景のベタであることを示す。ベタ判定フラグRVSOLIDがONの場合、背景のベタがONであることを示す。
本実施形態では、細線化処理部130は、正エッジ情報PEDGE[ch]、負エッジ情報REDGE[ch]をそれぞれ第三の閾値SOBと比較する。
細線化処理部130は、各色(例えばCMYK)の正エッジ情報PEDGE[ch]をそれぞれ第三の閾値SOBと比較し、1つ以上の正エッジ情報PEDGE[ch]が第三の閾値SOBよりも大きい場合に細線化処理部130はベタ判定フラグONSOLIDをONとする。いずれの正エッジ情報PEDGE[ch]も第三の閾値SOB以下である場合、細線化処理部130は、ベタ判定フラグONSOLIDをOFFとする。
また、細線化処理部130は、各色(例えばCMYK)の負エッジ情報REDGE[ch]をそれぞれ第三の閾値SOBと比較し、1つ以上の負エッジ情報REDGE[ch]が第三の閾値SOBよりも大きい場合に細線化処理部130はベタ判定フラグRVSOLIDをONとする。いずれの負エッジ情報REDGE[ch]も第三の閾値SOB以下である場合、細線化処理部130は、ベタ判定フラグRVSOLIDをOFFとする。
【0069】
ベタ判定フラグONSOLID、RVSOLIDの生成の後、細線化処理部130は、細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]に基づいて細線化強度係数FTVL、BTVLの値を決定する。細線化強度係数FTVL、BTVLは、細線化の強度を示す係数である。
【0070】
図14に、細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]と細線化強度係数FTVL、BTVLとの対応関係を示す。
図14に示すように、細線構造信号ThinLine[ch]、白抜き文字情報WThinLine[ch]の値に応じて、細線化強度係数FTVL、BTVLに個別の設定があらかじめなされている。
図14に示すSTVL及びBGSTVLは、注目画素Cが細線構造(例えば1画素幅又は2画素幅の線)及び白抜き文字を構成しない場合に用いられる設定値を示す。TLVL(TLVL1〜4)及びBGTLVL (BGTLVL1〜4)は、注目画素Cが細線構造を構成し、白抜き文字を構成しない場合に用いられる設定値を示す。WEVL (WEVL1,2)及びBGWEVL (BGWEVL1,2)は、注目画素Cが細線構造を構成せず、白抜き文字を構成する場合に用いられる設定値を示す。SWVL (SWVL1〜8)及びBGSWVL (BGSWVL1〜8)は、注目画素Cが細線構造及び白抜き文字を構成する場合に用いられる設定値を示す。
【0071】
各設定値には、それぞれ具体的な細線化の強度を示す値が設定される。本実施形態では、細線化の強度を最小(0)〜最大(100)で示す。大きな値が設定されるほど、細線化処理で施される細線化の度合い(強度)は強くなる。各設定値は、細線構造信号ThinLine[ch]が示す、注目画素Cを含む線画の幅方向の画素数が多いほど注目画素Cの細線化の強度、即ち細線化処理による注目画素Cの画素値の変更の度合いを大きくするよう設定される。
【0072】
図15に、図14に示す表の各設定値を具体化した一例を示す。
各設定値間を相対比較した場合の傾向として、WEVL及びBGWEVLは、大きな値が設定される。これは、白抜き文字がつぶれないよう、白抜き文字の輪郭を構成する画素の細線化を強めに行うことが望ましいためである。また、STVL及びBGSTVLも、大きな値が設定される。これは、細線構造でも白抜き文字でもない部分の輪郭には、強い細線化処理を施しても文字のかすれや消失を生じる可能性が低いためである。一方、TLVL及びBGTLVLは、弱めに設定される。これは、これは、細線構造に対して強い細線化処理を行うと、文字のかすれや消失を生じる可能性が大きくなるため、細線化処理の強度を弱くしたいためである。SWVL 及びBGSWVLは、中庸な値が設定される。これは、注目画素Cが細線構造を構成するため細線化処理の強度を弱くしたい一方で、注目画素Cが白抜き文字も同時に構成するため、細線化処理の強度が弱すぎると白抜き文字がつぶれる可能性が生じることから、強度を一方的に大きく、又は小さく設定することが困難なためである。
【0073】
本実施形態では、細線化処理部130は、細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]に応じ、図15に示す細線化強度係数FTVL、BTVLの設定値を取得する。図15に示す各設定値は一例であり、他の値を設定してもよい。
【0074】
細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]と細線化強度係数FTVL、BTVLとの対応関係を示すデータ(対応付け情報)は、細線化処理部130が保持している。このように、細線化処理部130は、線幅情報と輪郭画素に対して施す画素値の変更の度合いとを対応付ける対応付け情報を保持する対応付け情報保持手段として機能する。
【0075】
また、細線化処理部130は、細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]に基づいて、ToTalThinLineを設定し、その値を決定する。
ToTalThinLineの値の決定にあたり、後述する式(3)、(4)のように、細線化処理部130は、各色の細線構造信号ThinLine[ch]の論理和(TotalTL)及び各色の白抜き文字情報WThinLine[ch]の論理和(TotalWTL)を得る。
TotalTL=(ThinLine[0]|ThinLine[1] |ThinLine[2]|ThinLine[3])……(3)
TotalWTL=(WThinLine[0]|WThinLine[1]|WThinLine[2]|WThinLine[3])……(4)
そして、細線化処理部130は、後述する式(5)のように、TotalTLとTotalWTLの論理和をTotalThinLineとして得る。つまり、TotalThinLineの値は、各色の細線構造信号ThinLine[ch]及び各色の白抜き文字情報WThinLine[ch]の論理和に応じる。
TotalThinLine=(TotalTL|TotalWTL)……(5)
【0076】
また、細線化処理部130は、属性データTAGのチェック処理及び拡張タグ(ETAG)の設定を行う。具体的には、細線化処理部130は、注目画素C及び注目画素Cに対して上下左右又は斜めのいずれかで隣接する8画素の属性データTAGを取得する。そして、取得された属性データTAGのいずれかがTEXT又はGRAPHICSを示す場合、細線化処理部130は注目画素Cに対して拡張タグ(ETAG)を設定し、ETAGの値をTEXT/GRAPHICSとする。一方、取得された属性データTAGのいずれもTEXT又はGRAPHICSを示さない、即ち9画素全ての属性データTAGがIMAGEを示す場合、細線化処理部130は注目画素Cに対して拡張タグ(ETAG)を設定し、ETAGの値をIMAGEとする。
【0077】
また、細線化処理部130は、正エッジ情報PEDGE[ch]、負エッジ情報REDGE[ch]及び細線化強度係数FTVL、BTVLに基づいて前景強度dST_power_FG[ch]、背景強度dST_power_BG[ch]の算出を行う。本実施形態の細線化処理部130は、式(6)、(7)を用いて前景強度dST_power_FG[ch]、背景強度dST_power_BG[ch]の算出を行う。
dST_power_FG[ch]=−(FTVL×(PEDGE[ch]−REDGE[ch]))/256……(6)
dST_power_BG[ch]=(BTVL×(PEDGE[ch]−REDGE[ch]))/256……(7)
前景強度dST_power_FG[ch]、背景強度dST_power_BG[ch]の算出は、各色(例えばCMYK)に対して個別に行われる。
【0078】
次に、細線化処理部130は、補正値dST[ch]を設定し、その値を決定する。
細線化処理部130は、補正値dST[ch]の値を決定するにあたり、輪郭情報E_EDGE、ETAG、ベタ判定フラグONSOLID及び背景情報BACKGROUND[ch]の値をチェックする。注目画素Cについて、輪郭情報E_EDGEがONであり、ETAGの値がIMAGEでなく、ベタ判定フラグONSOLIDがONであって、かつ、背景情報BACKGROUND[ch]がOFFの場合、細線化処理部130は前景強度dST_power_FG[ch]の値を補正値dST[ch]の値とする。また、注目画素Cについて、輪郭情報E_EDGEであり、ETAGの値がIMAGEでなく、ベタ判定フラグONSOLIDがONであって、かつ、背景情報BACKGROUND[ch]がONの場合、細線化処理部130は背景強度dST_power_BG[ch]の値を補正値dST[ch]の値とする。それ以外の場合、即ち、輪郭情報E_EDGEがOFFであるか、ETAGの値がIMAGEであるか、あるいはベタ判定フラグONSOLIDがOFFである場合、細線化処理部130は補正値dST[ch]の値を0とする。
【0079】
また、細線化処理部130は、細線化フラグFlagST[ch]を設定し、その値を決定する。細線化フラグFlagST[ch]は細線化を行うか否かをON/OFFで示すデータである。
細線化処理部130は、細線化フラグFlagST[ch]の値を決定するにあたり、輪郭情報E_EDGE、ETAG及びベタ判定フラグONSOLIDの値をチェックする。注目画素Cについて、輪郭情報E_EDGEがONであり、ETAGの値がIMAGEでなく、かつ、ベタ判定フラグONSOLIDがONの場合、細線化処理部130は細線化フラグFlagST[ch]をONとする。それ以外の場合、即ち、輪郭情報E_EDGEがOFFであるか、ETAGの値がIMAGEであるか、あるいはベタ判定フラグONSOLIDがOFFである場合、細線化処理部130は細線化フラグFlagST[ch]をOFFとする。
【0080】
輪郭情報E_EDGEがONであるということは、注目画素Cが輪郭(エッジ)を構成する画素であることを示す。ETAGの値がIMAGEでないとういうことは、属性データTAGがTEXT又はGRAPHICSであり、注目画素Cが文字又は線画を構成する画素であることを示す。そして、ベタ判定フラグONSOLIDがONであるということは、注目画素Cが前景のベタ画素であることを示す。
本実施形態において、細線化処理部130は、注目画素Cが輪郭(エッジ)を構成する画素であり、文字又は線画を構成する画素であり、注目画素Cが前景のベタ画素である場合に細線化処理を行う。そこで、輪郭情報E_EDGE、ETAG及びベタ判定フラグONSOLIDの値をチェックし、細線化フラグFlagST[ch]のON/OFFを決定する。
また、細線化処理部130は、注目画素Cが前景に含まれるか背景に含まれるかによって、細線化処理による注目画素値の画素値を変更する。注目画素Cが前景に含まれる場合、周囲に対して注目画素Cの画素値が大きい、即ち色が濃いということである。この場合、細線化処理部130は補正値dST[ch]の値を注目画素Cの画素値を低減させる値とする。式(6)に示すように、前景強度dST_power_FG[ch]の値は負の値である。後述する式(9)で示すように、細線化処理部130は、注目画素Cの画素値に補正値dST[ch]の値を加算することで画素値を低減させる。一方、注目画素Cが背景に含まれる場合、周囲に対して注目画素Cの画素値が小さい、即ち色が薄いということである。この場合、細線化処理部130は補正値dST[ch]の値を注目画素Cの画素値を増大させる値とする。式(7)に示すように、背景強度dST_power_BG[ch]の値は正の値である。後述する式(9)で示すように、細線化処理部130は、注目画素Cの画素値に補正値dST[ch]の値を加算することで画素値を増大させる。細線化処理部130は、背景情報BACKGROUND[ch]の値に基づいて、注目画素Cが前景に含まれるか背景に含まれるかを判定する。
【0081】
補正値dST[ch]及び細線化フラグFlagST[ch]は、各色(例えばCMYK)に対して個別に設定、決定される。
補正値dST[ch]及び細線化フラグFlagST[ch]の値の決定処理におけるチェック処理のうち共通部分、即ち輪郭情報E_EDGE、ETAG及びベタ判定フラグONSOLIDの値は個別に行う必要は無く、1回のチェック処理で補正値dST[ch]及び細線化フラグFlagST[ch]の値の決定を行うことができる。無論、チェック処理を個別に行っても良い。
【0082】
次に、細線化処理部130は、細線化実施フラグTotalSTを生成する。
後述する式(8)のように、細線化処理部130は、各色の細線化フラグFlagST[ch]の論理和を細線化実施フラグTotalSTとする。
TotalST=(FlagST[0] | FlagST[1] | FlagST[2] | FlagST[3])……(8)
細線化実施フラグTotalSTは、画像データに含まれる各色(例えばCMYK)のうち、一つ以上の色について、注目画素Cの細線化処理が行われるか否かを示す。いずれか一つ以上の色について注目画素Cの細線化処理が行われる場合、細線化実施フラグTotalSTはONとなる。ここで、いずれか一つ以上の色について注目画素Cの細線化処理が行われる、即ち各色の細線化フラグFlagST[ch]のうち少なくとも一つがONであるということは、各色の輪郭情報E_EDGEのうち少なくとも一つがONであることを示し、注目画素Cが輪郭を構成していることを示す。つまり、細線化実施フラグTotalSTがONであるということは、注目画素Cが輪郭を構成していることを示す。
【0083】
また、細線化処理部130は、コントーン入力信号IS[ch]を生成する。細線化処理部130は、以下の式(9)を用いてコントーン入力信号IS[ch]を生成する。
IS[ch]=C[ch]+dST[ch]……(9)
式(9)のC[ch]は、各色(例えばCMYK)の注目画素Cの画素値を示す。つまり、コントーン入力信号IS[ch]は、注目画素Cの画素値C[ch]に補正値dST[ch]を加えた、細線化処理後の画素値を値として持つ。
コントーン入力信号IS[ch]は、各色(例えばCMYK)に対して個別に生成される。
【0084】
このように、細線化処理部130は、注目画素Cを含む線画の線幅と、細線構造信号ThinLine[ch]と細線化強度係数FTVL、BTVLとの対応関係を示すデータと、に基づいて輪郭画素の画素値を変更する画素値変更手段として機能する。
【0085】
コントーン処理部140は、コントーン入力信号IS[ch]に対してγ補正(ガンマ補正)処理を施した出力値をコントーン出力信号contone[ch]としてセレクタ160へ出力する。一方、スクリーン処理部150は、注目画素Cの画像データ及び属性データTAGを取得し、注目画素Cに対してγ補正処理及びスクリーン処理を施したスクリーン出力信号screen[ch]を生成し、セレクタ160へ出力する。スクリーン処理部150は、注目画素に対してスクリーン処理を施す一方で、コントーン処理部140は、細線化処理を施した注目画素Cに対してスクリーン処理を施さない。
なお、スクリーン処理及びγ補正処理については既知の処理であるので、その詳細を省略する。
【0086】
セレクタ160は、細線化実施フラグTotalSTに基づいて、コントーン出力信号contone[ch]又はスクリーン出力信号screen[ch]のいずれか一方を出力画像データOut[ch]として画像形成部10へ出力する。
仮に、注目画素Cが細線化処理を施されるべき画素であるにも関わらず細線化処理を経ないスクリーン出力信号screen[ch]を注目画素Cに適用すると、印刷画像の輪郭にジャギーを生じさせ、画質を劣化させることとなる。そこで、セレクタ160は、細線化実施フラグTotalSTに基づいて、注目画素Cが細線化処理を行う対象となる画素であるか否かを判定し、注目画素Cが細線化処理を行う対象となる画素である場合には、セレクタ160はコントーン出力信号contone[ch]を注目画素Cの画素値とした出力画像データOut[ch]を出力する。一方、注目画素Cが細線化処理を行う対象となる画素でない場合には、セレクタ160はスクリーン出力信号screen[ch] を注目画素Cの画素値とした出力画像データOut[ch]を出力する。
【0087】
ここで、前述のように、細線化実施フラグTotalSTがONであるということは、注目画素Cは輪郭を構成する画素であるということを示す。つまり、セレクタ160は、細線化実施フラグTotalSTに基づく判定により、画像の各画素に対して、輪郭画素である画素には細線化処理部130の処理結果であるコントーン出力信号contone[ch]を適用し、輪郭画素でない画素にはスクリーン処理部159の処理結果であるスクリーン出力信号screen[ch]を適用する処理選択手段として機能する。
【0088】
次に、画像処理部100の各部の処理内容を図16及至図24のフローチャートを用いて説明する。
図16に、正エッジ情報PEDGE[ch]及び負エッジ情報REDGE[ch]の生成処理の流れの一例をフローチャートで示す。
まず、エッジ抽出部120は、エッジ強度En[ch]を算出する(ステップS1)。
次に、エッジ抽出部120は、注目画素Cの上下左右のエッジ強度(エッジ強度E08、E12、E14、E18)のうち最大値を正エッジ情報PEDGE[ch]とする(ステップS2)。そして、エッジ抽出部120は、正エッジ情報PEDGE[ch]が第一の閾値EDGETH未満であるか否かを判定する(ステップS3)。正エッジ情報PEDGE[ch]が第一の閾値EDGETH未満である場合(ステップS3:YES)、エッジ抽出部120は、正エッジ情報PEDGE[ch]を0とする(ステップS4)。
また、エッジ抽出部120は、注目画素Cの上下左右のエッジ強度(エッジ強度E08、E12、E14、E18)のうち最小値を負エッジ情報REDGE[ch]とする(ステップS5)。そして、エッジ抽出部120は、負エッジ情報REDGE[ch]が第一の閾値EDGETH未満であるか否かを判定する(ステップS6)。負エッジ情報REDGE[ch]が第一の閾値EDGETH未満である場合(ステップS6:YES)、エッジ抽出部120は、負エッジ情報REDGE[ch]を0とする(ステップS7)。
正エッジ情報PEDGE[ch]の生成と負エッジ情報REDGE[ch]の生成順序は順不同である。
【0089】
図17に、輪郭情報E_EDGEの生成処理の流れをフローチャートで示す。
輪郭情報E_EDGEの生成処理に先立ち、正エッジ情報PEDGE[ch]及び負エッジ情報REDGE[ch]の生成処理が行われている。
エッジ抽出部120は、中間データTOTALPEDGE、TOTALREDGEを求める(ステップS11)。次に、エッジ抽出部120は、TOTALPEDGEがTOTALREDGEより大きいか否かを判定する(ステップS12)。TOTALPEDGEがTOTALREDGEより大きい場合(ステップS12:YES)、エッジ抽出部120は、輪郭情報E_EDGEをONとする(ステップS13)。一方、TOTALPEDGEがTOTALREDGE以下の場合(ステップS12:NO)、エッジ抽出部120は、輪郭情報E_EDGEをOFFとする(ステップS14)。
【0090】
図18に、前景情報FOREGROUND[ch]及び背景情報BACKGROUND[ch]の生成処理の流れをフローチャートで示す。
前景情報FOREGROUND[ch]及び背景情報BACKGROUND[ch]の生成処理に先立ち、正エッジ情報PEDGE[ch]及び負エッジ情報REDGE[ch]の生成処理が行われている。
エッジ抽出部120は、正エッジ情報PEDGE[ch]が負エッジ情報REDGE[ch]より大きいか否かを判定する(ステップS21)。正エッジ情報PEDGE[ch]が負エッジ情報REDGE[ch]より大きい場合(ステップS21:YES)、エッジ抽出部120は、前景情報FOREGROUND[ch]をONとし、背景情報BACKGROUND[ch]をOFFとして(ステップS22)、処理を終了する。正エッジ情報PEDGE[ch]が負エッジ情報REDGE[ch]以下の場合(ステップS21:NO)、エッジ抽出部120は、正エッジ情報PEDGE[ch]が負エッジ情報REDGE[ch]より小さいか否かを判定する(ステップS23)。正エッジ情報PEDGE[ch]が負エッジ情報REDGE[ch]より小さい場合(ステップS23:YES)、エッジ抽出部120は、前景情報FOREGROUND[ch]をOFFとし、背景情報BACKGROUND[ch]をONとして(ステップS24)、処理を終了する。ステップS23において、正エッジ情報PEDGE[ch]が負エッジ情報REDGE[ch]より小さくない場合(ステップS23:NO)、エッジ抽出部120は、前景情報FOREGROUND[ch]、背景情報BACKGROUND[ch]を共にOFFとして(ステップS25)、処理を終了する。
【0091】
図19、図20に、細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]の生成処理の流れをフローチャートで示す。
図19は、細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]の生成処理のうち、ステップS31〜S44を示す。
図20は、細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]の生成処理のうち、ステップS45〜S54を示す。
まず、細線化処理部130は、2値化エッジ値en [ch]及び非エッジ値fn[ch]を算出する(ステップS31)。また、細線化処理部130は、細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]を共に初期値0で設定する(ステップS32)。
【0092】
次に、細線化処理部130は、細線構造信号ThinLine[ch]の値が0であるか否か判定する(ステップS33)。細線構造信号ThinLine[ch]の値が0である場合(ステップS33:YES)、細線化処理部130は、第一のパターンマッチング処理を行い(ステップS34)、マッチした場合(ステップS35:YES)、細線構造信号ThinLine[ch]を1とする(ステップS36)。
ステップS35においてマッチしなかった場合(ステップS35:NO)、細線化処理部130は、細線構造信号ThinLine[ch]の値が0であるか否か判定する(ステップS37)。細線構造信号ThinLine[ch]の値が0である場合(ステップS37:YES)、細線化処理部130は、第二のパターンマッチング処理を行い(ステップS38)、マッチした場合(ステップS39:YES)、細線構造信号ThinLine[ch]を2とする(ステップS40)。
ステップS39においてマッチしなかった場合(ステップS39:NO)、細線化処理部130は、細線構造信号ThinLine[ch]の値が0であるか否か判定する(ステップS41)。細線構造信号ThinLine[ch]の値が0である場合(ステップS41:YES)、細線化処理部130は、第三のパターンマッチング処理を行い(ステップS42)、マッチした場合(ステップS43:YES)、細線構造信号ThinLine[ch]を3とする(ステップS44)。
ステップS43においてマッチしなかった場合(ステップS43:NO)、細線化処理部130は、細線構造信号ThinLine[ch]の値が0であるか否か判定する(ステップS45)。細線構造信号ThinLine[ch]の値が0である場合(ステップS45:YES)、細線化処理部130は、第三のパターンマッチング処理を行い(ステップS46)、マッチした場合(ステップS47:YES)、細線構造信号ThinLine[ch]を4とする(ステップS48)。
【0093】
ステップS36、S40、S44又はS48の処理後、ステップS47においてマッチしなかった場合(ステップS47:NO)あるいはステップS33、S37、S41、S45において細線構造信号ThinLine[ch]の値が0でなかった場合、細線化処理部130は、第五のパターンマッチング処理を行い(ステップS49)、マッチした場合(ステップS50:YES)、白抜き文字情報WThinLine[ch]を1とする(ステップS51)。
ステップS50においてマッチしなかった場合(ステップS50:NO)、細線化処理部130は、第六のパターンマッチング処理を行い(ステップS52)、マッチした場合(ステップS53:YES)、白抜き文字情報WThinLine[ch]を2とする(ステップS54)。
ステップS51又はS54の処理後あるいはステップS53においてマッチしなかった場合(ステップS53:NO)、細線化処理部130は処理を終了する。
【0094】
ステップS31の処理のうち、非エッジ値fn[ch]の算出はステップS49の処理前に行われていればよく、必ずしも2値化エッジ値en [ch]と同時に算出する必要はない。同様に、ステップS32の処理のうち、白抜き文字情報WThinLine[ch]を初期値0で設定する処理についても、非エッジ値fn[ch]の算出はステップS49の処理前に行われていればよく、必ずしも細線構造信号ThinLine[ch]と同時に設定する必要はない。
また、細線構造信号ThinLine[ch]の値を決定する処理と、白抜き文字情報WThinLine[ch]の値を決定する処理の順序は順不同である。
また、ステップS33、S37、S41、S45の処理は省略することができる。
【0095】
図21に、ベタ判定フラグONSOLID、RVSOLIDの生成処理の流れをフローチャートで示す。
細線化処理部130は、各色(例えばCMYK)の正エッジ情報PEDGE[ch]のいずれか一つ以上について、第三の閾値SOBより大きいか否かを判定する。(ステップS61)各色の正エッジ情報PEDGE[ch]のいずれか一つ以上が第三の閾値SOBより大きい場合(ステップS61:YES)、細線化処理部130はベタ判定フラグONSOLIDをONとする(ステップS62)。各色の正エッジ情報PEDGE[ch]のいずれも第三の閾値SOB以下である場合(ステップS61:NO)、細線化処理部130はベタ判定フラグONSOLIDをOFFとする(ステップS63)。
また、細線化処理部130は、各色(例えばCMYK)の負エッジ情報REDGE[ch]のいずれか一つ以上について、第三の閾値SOBより大きいか否かを判定する。(ステップS64)各色の負エッジ情報REDGE[ch]のいずれか一つ以上が第三の閾値SOBより大きい場合(ステップS64:YES)、細線化処理部130はベタ判定フラグRVSOLIDをONとする(ステップS65)。各色の負エッジ情報REDGE[ch]のいずれも第三の閾値SOB以下である場合(ステップS64:NO)、細線化処理部130はベタ判定フラグRVSOLIDをOFFとする(ステップS66)。
【0096】
ベタ判定フラグONSOLIDの生成処理とベタ判定フラグRVSOLIDの生成処理の順序は順不同である。
【0097】
図22に、拡張タグ(ETAG)の設定処理の流れをフローチャートで示す。
細線化処理部130は。注目画素C及び注目画素Cに対して上下左右又は斜めのいずれかで隣接する8画素、計9画素の属性データTAGが全てIMAGEを示す値であるか否か判定する(ステップS71)。当該9画素の属性データTAGが全てIMAGEを示す値である場合(ステップS71:YES)、細線化処理部130は、ETAGの値をIMAGEとする(ステップS72)。一方、当該9画素の属性データTAGのいずれか1画素以上がIMAGEを示す値でない場合(ステップS71:NO)、細線化処理部130は、ETAGの値をTEXT/GRAPHICSとする(ステップS73)。
【0098】
図23に、補正値dST[ch]及び細線化フラグFlagST[ch]の生成処理の流れをフローチャートで示す。
まず、細線化処理部130は、前景強度dST_power_FG[ch]、背景強度dST_power_BG[ch]を算出する(ステップS81)。
次に、細線化処理部130は、注目画素Cについて、輪郭情報E_EDGEがONであり、ETAGの値がIMAGEでなく、かつ、ベタ判定フラグONSOLIDがONであるか否かを判定する(ステップS82)。注目画素Cについて、輪郭情報E_EDGEがONであり、ETAGの値がIMAGEでなく、かつ、ベタ判定フラグONSOLIDがONである場合(ステップS82:YES)、細線化処理部130は、背景情報BACKGROUND[ch]がONであるか否かを判定する(ステップS83)。背景情報BACKGROUND[ch]がONである場合(ステップS83:YES)、細線化処理部130は、背景強度dST_power_BG[ch]の値を補正値dST[ch]の値とし、細線化フラグFlagST[ch]をONとする(ステップS84)。背景情報BACKGROUND[ch]がOFFである場合(ステップS83:NO)、細線化処理部130は、前景強度dST_power_FG[ch]の値を補正値dST[ch]の値とし、細線化フラグFlagST[ch]をONとする(ステップS85)。ステップS82において、注目画素Cについて、輪郭情報E_EDGEがOFFであるか、ETAGの値がIMAGEであるか、又は、ベタ判定フラグONSOLIDがOFFである場合(ステップS82:NO)、細線化処理部130は、補正値dST[ch]の値を0とし、細線化フラグFlagST[ch]をOFFとする(ステップS86)。
【0099】
図24に、出力画像データOut[ch]の生成処理の流れをフローチャートで示す。
セレクタ160は、細線化実施フラグTotalSTがONであるか否かを判定する(ステップS91)。細線化実施フラグTotalSTがONである場合(ステップS91:YES)、セレクタ160は、コントーン出力信号contone[ch]を出力画像データOut[ch]として出力する(ステップS92)。細線化実施フラグTotalSTがOFFである場合(ステップS91:YES)、セレクタ160は、スクリーン出力信号screen[ch]を出力画像データOut[ch]として出力する(ステップS93)。
【0100】
画像形成部10は、画像処理部100からの出力画像データOut[ch]に基づいて画像を形成する。
図25に、画像形成部10の主要構成を示す。
画像形成部10は、用紙Aを備蓄可能な給紙トレイ11、12と、給紙トレイ11、12から一枚ずつ用紙Aを引き出す給紙部15、15と、用紙Aを後述する転写部30へ搬送する搬送部20と、用紙Aに画像を転写する転写部30と、用紙Aに転写された画像を定着させる定着部45と、用紙Aを排紙受け部80の上方へ排出する排紙部50と、手差しで給紙を行うための手差し給紙部70と、を有する。
【0101】
給紙トレイ11は、画像形成部10の側方から引出し可能に設けられる。給紙トレイ11を引き出した状態で、その上方から用紙Aを載置して給紙トレイ11を画像形成部10にセットすることで給紙部15による用紙Aの給紙動作が可能となる。給紙トレイ11は、用紙Aを載置する底面に上げ底部(図示略)を有し、給紙トレイ11のセット時には用紙Aが載置された上げ底部が上昇動作する。これによって、給紙トレイ11内に備蓄された複数の用紙Aのうち、最も上に位置する用紙Aの上面が給紙部15の可動ローラ16に当接する。給紙トレイ12についても給紙トレイ11と同様である。
本実施形態の給紙トレイ11、12は、A4サイズの普通紙を備蓄する。
【0102】
給紙部15は、その回転軸が上下動可能に設けられた可動ローラ16と、回転軸が固定された固定ローラ17とを有する。可動ローラ16、固定ローラ17はそれぞれモータ等の駆動部(図示略)によって回転駆動する。
可動ローラ16は、前述のように給紙トレイ11、12内に備蓄された複数の用紙Aのうち、最も上に位置する用紙Aの上面と当接する。用紙Aと当接した状態の可動ローラ16が回転駆動されることで、用紙Aは1枚ずつ固定ローラ17側へと引き出される。固定ローラ17は、可動ローラ16によって引き出された用紙Aを挟んで対向する位置に設けられたローラ18と協働して用紙Aを挟みこみ、回転駆動されることで用紙Aを搬送する。
【0103】
給紙部15によって引き出されて搬送された用紙Aは、搬送部20の搬送ローラ21,21によって転写部30へと搬送される。搬送ローラ21,21は、用紙Aの搬送経路を挟んで対向する位置に設けられた一対のローラであり、モータ等の駆動部(図示略)によって回転駆動されることで用紙Aを搬送する。
【0104】
転写部30は、中間転写体としての中間転写ベルト31と、テンションローラ33と協働で中間転写ベルト31を張架すると共に中間転写ベルト31を駆動する2次転写駆動ローラ32と、各色(シアン、マゼンダ、イエロー、ブラック)のトナーを担持する感光ドラム34C,34M,34Y,34Kと、中間転写ベルト31を挟んで各感光ドラムと対向する位置にそれぞれ設けられて各感光ドラムのトナーを中間転写ベルト31に転写するプラテンローラ35と、用紙Aにトナーを転写する転写ローラ36と、中間転写ベルト31をクリーニングするクリーニング部41を有する。
【0105】
感光ドラム34C,34M,34Y,34Kの近傍にはそれぞれ各感光ドラムに帯電処理を施す帯電部37C,37M,37Y,37K、各感光ドラムに露光処理を施す露光部38C,38M,38Y,38K、各色のトナーカートリッジ39C,39M,39Y,39K及び各感光ドラムをクリーニングするクリーニング部40、40、40、40が設けられている。2次転写駆動ローラ32及び各感光ドラムはそれぞれモータ等の駆動部(図示略)によって回転駆動される。
【0106】
以下、転写部30による用紙Aへのトナー画像の転写について、感光ドラム34Kを例に説明する。まず、感光ドラム34Kの近傍の帯電部37Kによって感光ドラム34Kが帯電され、露光部38Kによる感光ドラムの露光により感光ドラム34Kの被露光部分が除電される処理、所謂現像処理が行われる。当該現像処理によってトナーカートリッジ39Kのトナーが感光ドラム34Kに担持される。当該現像処理は、形成する画像に基づいて行われる。他の感光ドラム34C,34M,34Yについても同様に現像処理が行われる。
【0107】
中間転写ベルト31は2次転写駆動ローラ32の駆動によって稼動し、各感光ドラムに担持されたトナーはそれぞれのプラテンローラ35により中間転写ベルト31に転写される(一次転写)。一次転写により、中間転写ベルト31はトナーを担持する。このとき、各色のトナーが重なるように転写され、ひとつの画像を形成する。中間転写ベルト31に担持されたトナーは、中間転写ベルト31と転写ローラ36とによって用紙Aが挟まれる位置で用紙Aに転写される(2次転写)。かようにして用紙Aへのトナー画像の転写が行われる。用紙Aへのトナー画像の転写と共に、中間転写ベルト31の稼動と転写ローラ36の協働により用紙Aは定着部45へと搬送される。一次転写後の各感光ドラムは各感光ドラム近傍のクリーニング部40に、2次転写後の中間転写ベルト31はクリーニング部41によって転写されなかった残存トナーをクリーニングされる。
【0108】
定着部45は、用紙Aを加熱して用紙Aに転写されたトナーを定着させる定着ローラ46と、用紙Aの搬送経路を挟んで定着ローラ46と対向する位置に設けられて用紙Aを定着ローラ46に圧接させる圧接ローラ47と、を有する。
転写部30によってトナーを転写された用紙Aは定着部45へと搬送され、定着ローラ46と圧接ローラ47との間へ導かれる。定着ローラ46はその内部に熱源(例えばコイルやハロゲンランプ等)を有しており、当該熱源により用紙Aを加熱して定着処理を行う。このとき、圧接ローラ47が用紙Aを定着ローラ46に圧接する。定着ローラ46、圧接ローラ47は用紙Aに対する定着処理と共にその回転運動により用紙Aを上方へと搬送する。
【0109】
排紙部50は、モータ等の駆動部(図示略)により回転駆動される排紙ローラ51と、ローラ52とを有する。排紙ローラ51は回転駆動されることにより、画像形成の終了した用紙Aを排紙受け部80の上方に排出する。
【0110】
手差し給紙部70は、用紙Aを載置する外部給紙トレイ71と、外部給紙トレイ71に載置された用紙Aを搬送する給紙ローラ72と、を有する。用紙Aは、外部給紙トレイ71上に載置され、モータ等の駆動部(図示略)によって駆動される給紙ローラ72により引き込まれ、搬送部20へと搬送される。
【0111】
以上、本実施形態によれば、エッジ抽出部120によって輪郭画素の検出が行われる。そして、細線化処理部130によって検出された輪郭画素を含む線画の線幅と、輪郭画素を含む線画の線幅に応じて設定された細線化強度係数FTVL、BTVLとに基づいて細線化処理が行われる。これによって、線画の線幅に応じた強度の細線化処理を行うことができる。このため、太い線幅を有する線画に対しては強い細線化処理を施し、細い線幅を有する線画に対しては弱い細線化処理を施すことができる。よって、本実施形態の画像処理部100は、細線化処理によって画像データに含まれる線画の見た目の太さを均一化させてしまうことなく、線幅の見た目の太さの差異を保持した細線化処理を行うことができる。また、細い線幅を有する線画に対しては弱い細線化処理を施すことができるので、細線化処理によって線が細くなりすぎてかすれや消失を生じることがあった従来の細線化処理の問題点も解消することができる。つまり、画質を損なうことのない良好な細線化処理を施すことができる。
【0112】
さらに、細線構造信号ThinLine[ch]は、注目画素Cを含む線画の幅方向の画素数に応じて個別に値を設定することができるので、細線構造信号ThinLine[ch]の値によって線画の幅方向の画素数を分類することができる。これによって、線画の幅方向の画素数に応じて細線化処理の強度を個別に設定することができ、より柔軟できめ細かな細線化処理を行うことができる。
【0113】
さらに、細線構造信号ThinLine[ch]は、注目画素Cを含む線画の幅方向が画像データにおける画素の並びの縦横のいずれか一方に沿っているか否かに応じて設定することができる。
線画の線幅は、線画の幅方向が画像データにおける画素の並びの縦横のいずれか一方に沿っている場合、線画の幅方向が画像データにおける画素の並びの縦横のいずれか一方に沿っていない場合(例えば斜め方向の場合等)に比して線幅が細くなる。例えば、正方形の画素の場合、斜め方向である対角線の幅は、縦横の辺の幅に対して約1.41倍(√2倍)となる。このように、線画の幅方向が画像データにおける画素の並びの縦横のいずれか一方に沿っているか否かによって線画の線幅が変わる。本実施形態では、細線構造信号ThinLine[ch]の値によって線画の幅方向が画像データにおける画素の並びの縦横のいずれか一方に沿っているか否かを分類することができるので、線画の幅方向が画像データにおける画素の並びの縦横のいずれか一方に沿っているか否かによって変ずる線画の線幅に応じて細線化処理の強度を個別に設定することができる。つまり、本実施形態の画像処理部100は、いっそう柔軟できめ細かな細線化処理を行うことができる。
【0114】
さらに、対応付け情報は、細線構造信号ThinLine[ch]が示す線画の幅方向の画素数が多いほど輪郭画素の画素値の変更の度合いを大きくするよう設定される。このため、細線化処理部130は、太い線幅を有する線画に対しては強い細線化処理を施し、細い線幅を有する線画に対しては弱い細線化処理を施す。これによって、細線化処理によって画像データに含まれる線画の見た目の太さを均一化させてしまうことなく、線幅の見た目の太さの差異を保持した細線化処理を行うことができる。また、細い線幅を有する線画に対しては弱い細線化処理を施すことができるので、細線化処理によって線が細くなりすぎてかすれや消失を生じることがあった従来の細線化処理の問題点も解消することができる。つまり、画質を損なうことのない良好な細線化処理を施すことができる。
【0115】
さらに、セレクタ160は、輪郭画素である注目画素Cの画素値としてコントーン出力信号contone[ch]を適用し、輪郭画素でない注目画素Cの画素値としてスクリーン出力信号screen[ch]を適用する。これによって、輪郭画素に細線化処理を施し、輪郭画素ではない画素に細線化処理を施さないことができる。つまり、細線化処理を施す対象を好適に選定することができ、不要な細線化処理による画質劣化を生じさせずに良好な細線化処理を施すことができる。
【0116】
さらに、本実施形態の細線化処理部130は、各画素が白抜き文字の輪郭を構成するか否かについて判定する。そして、細線化処理部130は、白抜き文字を構成するか否かの情報を白抜き文字情報WThinLine[ch]の値によって各画素に対して設定する。さらに、細線化処理部130は、細線構造信号ThinLine[ch]及び白抜き文字情報WThinLine[ch]の値と細線化処理の強度を示す各設定値とを対応付ける対応付け情報を保持する。そして、細線化処理の強度は、当該対応付け情報によって決定される。つまり、線画の線幅に加えて、白抜き文字を構成するか否かに基づいて細線化処理の強度が決定される。これによって、白抜き文字をつぶさない良好な細線化処理を施すことができる。
【0117】
なお、本発明の実施の形態は、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0118】
例えば、前述の実施形態では、画像形成装置に設けられた画像処理部100について記載されているが、他の形態をとってもよい。例えば、本発明の画像処理装置をコントローラに設けてもよいし、独立した装置として設けてもよい。
【0119】
また、前述の実施形態では、画像処理装置の各部の機能をハードウェア処理によって実現しているが、ソフトウェア処理によって同様の処理を行ってもよい。
【0120】
また、画像形成装置が用いる色の種類及び色数(CMYK)は一例であり、他の色、色数を用いてもよい。例えば、CMY、RGB、その他の画像形成装置で用いることのできる色が挙げられる。
【0121】
その他、前述の実施形態で画像処理部100が生成、設定する各種のパラメータ、予め設定された閾値やパターンマッチングのパターン、対応付け情報等の開示例はあくまで一例であり、本発明の特徴を逸脱しない範囲内で適宜設定することができる。
【符号の説明】
【0122】
110 ラインバッファ
120 エッジ抽出部
130 細線化処理部
140 コントーン処理部
150 スクリーン処理部
159 スクリーン処理部
160 セレクタ

【特許請求の範囲】
【請求項1】
画像の輪郭画素を検出する輪郭検出手段と、
前記輪郭画素を含む線画の線幅を検出する線幅検出手段と、
前記線幅検出手段によって検出された線幅に応じて前記輪郭画素に線幅情報を付与する線幅情報付与手段と、
前記線幅情報と前記輪郭画素に対して施す画素値の変更の度合いとを対応付ける対応付け情報を保持する対応付け情報保持手段と、
前記線幅検出手段によって検出された線幅及び前記対応付け情報に基づいて前記輪郭画素の画素値を変更する画素値変更手段と、
を備えることを特徴とする画像処理装置。
【請求項2】
前記線幅情報は、前記線画の幅方向の画素数に応じて設定されることを特徴とする請求項1に記載の画像処理装置。
【請求項3】
前記線幅情報は、前記線画の幅方向が画像の縦横のいずれか一方に沿っているか否かに応じて設定されることを特徴とする請求項1又は2に記載の画像処理装置。
【請求項4】
前記画素値変更手段は、前記線幅情報が示す前記線画の幅方向の画素数が多いほど前記輪郭画素の画素値の変更の度合いを大きくすることを特徴とする請求項1から3のいずれか一項に記載の画像処理装置。
【請求項5】
前記画像の各画素に中間調処理を施す中間調処理手段と、
前記画像の各画素に対して、輪郭画素である画素には前記画素値変更手段の処理結果を適用し、輪郭画素でない画素には前記中間調処理手段の処理結果を適用する処理選択手段と、を備えることを特徴とする請求項1から4のいずれか一項に記載の画像処理装置。
【請求項6】
画像の輪郭画素を検出する輪郭検出工程と、
前記輪郭画素を含む線画の線幅を検出する線幅検出工程と、
前記線幅検出手段によって検出された線幅に応じて前記輪郭画素に線幅情報を付与する線幅情報付与工程と、
前記線幅情報と前記輪郭画素に対して施す画素値の変更の度合いとを対応付ける対応付け情報を保持する対応付け情報保持工程と、
前記線幅検出手段によって検出された線幅及び前記対応付け情報に基づいて前記輪郭画素の画素値を変更する画素値変更工程と、
を有することを特徴とする画像処理方法。
【請求項7】
前記線幅情報は、前記線画の幅方向の画素数に応じて設定されることを特徴とする請求項6に記載の画像処理方法。
【請求項8】
前記線幅情報は、前記線画の幅方向が画像の縦横のいずれか一方に沿っているか否かに応じて設定されることを特徴とする請求項6又は7に記載の画像処理方法。
【請求項9】
前記画素値変更工程において、前記線幅情報が示す前記線画の幅方向の画素数が多いほど前記輪郭画素の画素値の変更の度合いを大きくすることを特徴とする請求項6から8のいずれか一項に記載の画像処理方法。
【請求項10】
前記画像の各画素に中間調処理を施す中間調処理工程と、
前記画像の各画素に対して、輪郭画素である画素には前記画素値変更工程の処理結果を適用し、輪郭画素でない画素には前記中間調処理工程の処理結果を適用する処理選択工程と、を備えることを特徴とする請求項6から9のいずれか一項に記載の画像処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate


【公開番号】特開2011−205436(P2011−205436A)
【公開日】平成23年10月13日(2011.10.13)
【国際特許分類】
【出願番号】特願2010−71202(P2010−71202)
【出願日】平成22年3月26日(2010.3.26)
【出願人】(303000372)コニカミノルタビジネステクノロジーズ株式会社 (12,802)
【Fターム(参考)】