説明

発電素子

【課題】携帯型電子機器用の電源に好適で、更なる小型化、軽量化が可能で、安全性も高く、柔軟性を要する部位にも使用可能であり、さらに、充電機能も備え、充電効率も高い発電素子を提供する。
【解決手段】この発明の発電素子は、誘電性エラストマー層1と、一対の導電性エラストマー層(電極層)2とからなる。誘電性エラストマー層1を、イオン液体を含有するゴムで構成する。導電性エラストマー層2を、導電性フィラーを含有するゴムで構成する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、電池あるいは電源として使用できる発電素子であって、一対の電極層と、その間に配置された中間層と、からなり、中間層が誘電性エラストマー層からなる発電素子に関する。
【背景技術】
【0002】
携帯電話やモバイルコンピュータ等の携帯電子機器は、近年、急速に需要が高まり、今後更に成長が期待される分野の一つになっている。また、これら携帯電話やモバイルコンピュータに代表される携帯情報端末等は、今後さらに成長が期待される分野の1つとなっている。このような携帯情報端末の電力供給源としては、リチウムイオン電池が主流となっており、現在も端末の小型・軽量化に伴い、リチウムイオン電池に関する研究開発が盛んに行われている。
【0003】
例えば、以下の特許文献1には、電解質層の両面に触媒層を有する電極が接続された構造を有する、高分子を用いたリチウムイオン二次電池が開示されている。また、以下の特許文献2には、圧電素子を用い、アンテナ部材や開閉時の運動から発電を行うようにしたモバイル機器用充電機構が開示されている。
一方、電気エネルギーと機械エネルギーを相互に変換するためのトランスデューサー(変換器)は、例えば、モバイル機器、エンジン、人工筋肉などの電源(ジェネレータ)や、ポンプ、スピーカーなどのアクチュエータなどとして多種多様の分野への応用が検討されている。また、トランスデューサーを構成する誘電性ゴム組成物はアンテナやコンデンサなどに応用が検討されている。
【0004】
このようなトランスデューサー(変換器)は、ポリマー(誘電性ゴム)を中間層としてその両端を一対の電極層で挟んだ構造の誘電性エラストマー積層体から構成されている。例えば以下の特許文献3には、トランスデューサーとして機能するシリコンやアクリルゴムなどをベースとした誘電性エラストマーの両面に、電極となる素材を配設した構造の誘電性エラストマー積層体が開示されている。
【0005】
また、この誘電性エラストマーの材料として、以下の特許文献4には、ベースとなるエラストマーに、高誘電率を示すセラミックス材料を分散させたものが開示されている。また、以下の特許文献5には、ベースエラストマーに双極子モーメントを上昇させる活性成分を添加することで、高い誘電損率(誘電率×誘電正接)を示すエラストマーが開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2006−294457号公報
【特許文献2】特開2002−190627号公報
【特許文献3】特表2003−505865号公報
【特許文献4】特開2007−063337号公報
【特許文献5】特開2002−285013号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
従来のリチウム電池には、以下のような問題がある。
(1) 常用領域と危険領域との差が非常に接近しており、安全性確保のため保護機構が必要であるため、軽量化や小型化には限界がある。(2) 構成材料が金属や硬質プラスチックが主体であるため、外力や曲げ応力、振動が加わると破損しやすく、貯蔵されている電解液が漏れたり、電池内部で短絡が起こって温度が急上昇して電解液中の有機溶剤が揮発して発火することがある。(3) 構成材料が金属や硬質プラスチックであるため、柔軟性を要する部位には使用できない。
【0008】
一方、特許文献2に開示されているモバイル機器用充電機構には、以下のような不都合がある。
(1) 携帯電話に関して、アンテナ部材や携帯電話の開閉時の運動からでは頻繁にエネルギーを得ることができない。(2) 圧電素子を用いているため、発電にはある程度の衝撃力を必要とする。
【0009】
また、特許文献3〜5に開示されている誘電性エラストマーには、以下のような問題がある。
(1) 高誘電率を達成するために、双極子モーメント量を増加させる活性成分を多量に添加しているため、エラストマーが本来有する可撓性を損なってしまい、トランスデューサーとしての性能が充分に発揮されないことが想定される。(2) 誘電性セラミックスを多量に添加しているため、可撓性を損なうだけでなく、伸縮を繰り返し行った際に、亀裂や破断などが生じることがある。(3) 素材の誘電率を向上させるために、添加剤を含有させても良いとの記載はあるが、トランスデューサーとしてどの程度の比誘電率、弾性率が好適であるかなどの具体的な数値は示されていない。(4) 発電は機械的エネルギーに依存している。
【0010】
そこで、この発明の課題は、携帯型電子機器用の電源に好適で、更なる小型化、軽量化が可能で、安全性も高く、柔軟性を要する部位にも使用可能であり、さらに、充電機能も備え、充電効率も高い発電素子を提供することである。
【課題を解決するための手段】
【0011】
上記課題を解決するために、この発明の発電素子は、一対の電極層と、その間に配置された中間層と、からなる発電素子であって、前記中間層が、イオン液体を含有するエラストマーからなる誘電性エラストマー層であることを特徴とする。この発電素子は、イオン液体を含有するエラストマーからなる誘電性エラストマー層を中間層として有することにより、優れた発電性能(充電性能および放電性能)が得られる。なお、イオン液体は、イオン性液体、イオン流体、イオン性流体、常温溶融塩とも称される。
【0012】
この発明の発電素子は、放電後、外部から変形力を加えたり、電力を供給したりすることなく、起電力が回復できる。言い換えれば、この発明の発電素子は自然充電作用を有する電池である。そのメカニズムは解明されていないが、イオン液体が関わる電極反応により電位が生じていると考えられる。例えば、イオン液体が関与して大気中の酸素もしくは水分と酸化還元反応することにより電位が発生するか、イオン液体が関与して電気二重層を形成し、そこからの拡散により電位が発生するか、イオン液体が関与して発電素子近傍の空間に存在する静電気を吸収することで電位が発生すると考えられる。
【0013】
この発明の発電素子の前記電極層が、導電性フィラーを含有するエラストマーからなる導電性エラストマー層であると、素子全体として優れた柔軟性が得られる。
この発明の発電素子の前記導電性エラストマー層がイオン液体を含有する(すなわち、電極層に導電性フィラーとしてイオン液体を含有する)と、より安定した発電性能(充電性能および放電性能)が得られる。
【0014】
この発明の発電素子の誘電性エラストマー層および/または導電性エラストマー層を構成するエラストマーがゴムであると、ゴム(熱硬化性エラストマー)以外のエラストマー(熱可塑性エラストマー)で構成した場合と比較して、より優れた柔軟性が得られる。
前記ゴムとして酸素原子を含む分子構造を有するものを使用すると、この発明の発電素子の発電性能(充電性能および放電性能)がより向上する。この作用は、酸素原子が結合した分子の極性に起因すると推測される。
【0015】
前記ゴムとして、アクリルゴムもしくはシリコンゴムを使用することが好ましい。これらのゴムは、酸素原子を含む分子構造を有するものであるとともに、耐久性および柔軟性にも優れている。よって、誘電性エラストマー層および導電性エラストマー層を構成するゴムとして、アクリルゴムもしくはシリコンゴムを使用した前記発電素子は、優れた発電性能(充電性能および放電性能)と耐久性と柔軟性を有するものとなる。
【0016】
この発明の発電素子は、前記誘電性エラストマー層を構成するエラストマーをなすゴムと前記導電性エラストマー層を構成するエラストマーをなすゴムが同じであることが好ましい。これにより、中間層と電極層の密着性が良好になるため、この発明の発電素子は、柔軟性を保ちながら、屈曲の繰り返し等に対する耐久性も高くなる。
この発明の発電素子の前記誘電性エラストマー層の厚さは10μm〜2mmであることが好ましい。前記誘電性エラストマー層の厚さが10μm未満であると、屈曲時等の機械的強度が不足する可能性がある。前記誘電性エラストマー層の厚さが2mmを超えると、発電素子の発電容量・充電容量は大きくなるが、内部抵抗等が増加するため、発電容量・充電容量の向上の程度とのバランス、すなわちエネルギー効率が悪くなる。
【0017】
この発明の発電素子の前記導電性エラストマー層(電極層)の厚さは5μm〜1mmであることが好ましい。前記導電性エラストマー層の厚さが5μmより薄くなると、変形時に穴や亀裂が発生しやすく、成膜も困難になる。前記導電性エラストマー層の厚さが1mmを超えると、変形に追随するのが困難になるとともに、内部抵抗が増大して導電性が低下することになり、発電性能や発電効率(特に放電効率)が低下する恐れがある。なお、この発明の発電素子の電極層が金属板または金属薄膜である場合は、その厚さを0.05μm〜1mmとすることができる。
【0018】
この発明の発電素子を構成する誘電性エラストマー層および導電性エラストマー層に含有させるイオン液体としては、ピリジニウム系イオン液体もしくはイミダゾリウム系イオン液体を用いることが好ましい。これにより、充電性能および放電性能に特に優れた発電素子が得られる。特に、前記誘電性エラストマー層および導電性エラストマー層が、酸素原子を含む分子構造を有するゴム(特にアクリルゴムもしくはシリコンゴム)からなり、イオン液体としてピリジニウム系イオン液体もしくはイミダゾリウム系イオン液体を含有するものであると、ゴムとイオン液体との相性が良好であるため、この発明の発電素子の充放電効率が特に良好になる。
【0019】
この発明の発電素子を構成する誘電性エラストマー層および導電性エラストマー層の両方がイオン液体を含有していると、この発明の発電素子は、高い起電力が得られ、物理的な伸びが向上し、繰り返しの折り曲げ等に対する耐久性が向上し、低温時の柔軟性が確保され、高温時の耐熱性が向上する等の効果を奏する。
この発明の発電素子は、前記電極層の前記誘電性エラストマー層とは反対側が絶縁体で被覆されていることが好ましい。これにより、この発明の発電素子の充放電作用がより優れたものとなる。絶縁体は、電場を印加すると電気分極が誘起される誘電体であり、静電誘導によって帯電体となるものを使用することが好ましい。このような絶縁体で、前記電極層の前記誘電性エラストマー層とは反対側が被覆されていると、前記誘電性エラストマー層の内部での分極が促進されるため、優れた充放電作用が得られると推測される。この絶縁体としては、誘電性、絶縁性、耐久性に優れたPTFE(ポリテトラフルオロエチレン)等のフッ素樹脂やフッ素ゴムを使用することが好ましい。
【発明の効果】
【0020】
この発明の発電素子は、中間層がイオン液体を含有する誘電性エラストマー層からなることで、優れた発電性能を有するとともに、変形能が高いため、柔軟性が要求される部位でも好適に使用できる。また、いわゆる電解液を使用しないことから、電解液漏れや溶剤の揮発による発火の恐れがなく、安全機構も最低限のもので十分であり、小型化や軽量化が可能である。
【0021】
また、この発明の発電素子は、中間層を誘電性エラストマー層で構成するだけでなく電極層も導電性エラストマー層で構成することで、ひずみなどの応力が繰り返し付与されても、ひび割れや亀裂、破断などが未然に防止され、安定した充放電性能を発揮することができる。
【図面の簡単な説明】
【0022】
【図1】この発明の第1実施形態に相当する発電素子を示す断面図である。
【図2】この発明の第2実施形態に相当する発電素子を示す断面図である。
【図3】この発明の第3実施形態に相当する発電素子を示す断面図である。
【図4】この発明の第4実施形態に相当する発電素子を示す断面図である。
【図5】この発明の発電素子が積層された発電素子積層体を示す断面図である。
【図6】この発明の発電素子が積層された発電素子積層体を示す断面図である。
【図7】この発明の発電素子が積層された発電素子積層体を示す断面図である。
【図8】この発明の発電素子が積層された発電素子積層体を示す断面図である。
【図9】この発明の発電素子を発電源として用いた発電装置を示す平面図である。
【図10】図9に示す発電装置の側面図である。
【図11】円柱状の芯材上にこの発明の発電素子を設けた発電装置の斜視図(a)と、その平面図(b)である。
【図12】筒状の芯材上に、この発明の発電素子を設けた発電装置の斜視図(a)と、その平面図(b)である。
【図13】円柱状の芯材上に、この発明の発電素子をその軸方向に複数設けた発電装置の斜視図(a)と、その平面図(b)である。
【図14】円柱状の芯材上に、この発明の発電素子をその周方向に複数設けた発電装置の斜視図(a)と、その平面図(b)である。
【図15】この発明の発電素子を内蔵する、携帯情報端末の操作キーの構造を示した拡大断面図である。
【図16】この発明の発電素子を内蔵する、携帯情報端末の操作キーの構造を示した拡大断面図である。
【図17】図15の操作キーの動きを説明する断面図である。
【図18】図15の操作キーの動きを説明する断面図である。
【図19】導電性エラストマー部材の一部にイオン液体を含浸させた発電素子を示す図である。
【図20】導電性エラストマー部材の全部にイオン液体を含浸させた発電素子を示す図である。
【図21】図19および図20の発電素子の基本となる導電性エラストマー部材を示す図である。
【図22】この発明の発電素子が積層された発電素子積層体を示す断面図である。
【図23】この発明の発電素子が積層された発電素子積層体を示す断面図である。
【図24】この発明の発電素子の性能を測定する回路を示す図である。
【図25】実施例1−1の発電素子の電圧波形の時間変化を測定したグラフである。
【図26】実施例5−1および5−2の発電素子の電位差(電圧V)の経時変化を示したグラフである。
【図27】実施例6−1の発電素子の電圧波形を示したグラフである。
【図28】実施例7−1の発電素子の電圧波形を示したグラフである。
【発明を実施するための形態】
【0023】
以下、この発明の実施形態について説明する。
[第1実施形態]
この実施形態の発電素子は、図1に示すように、誘電性エラストマー層1と、一対の導電性エラストマー層(電極層)2とからなる。誘電性エラストマー層1は、イオン液体を含有するゴム(エラストマー)からなる。導電性エラストマー層2は、導電性フィラーを含有するゴム(エラストマー)からなる。
<ゴムについて>
誘電性エラストマー層1および導電性エラストマー層2を構成するゴムとしては、下記の表1に示すものを使用することが好ましい。
【0024】
【表1】

【0025】
これらのゴムは、比誘電率が3以上であり、成形体としての硬さがデュロメータAスケール30〜50で、最大伸びが500%超であるため、単体でも比誘電率が高く、イオン液体や導電性フィラーとの相溶性や相性がよく、成形後の安定性、伸びに優れ、誘電性能、発電性能、柔軟性、成形性、価格及び入手のし易さ等の点で優れている。
【0026】
また、誘電性エラストマー層1および導電性エラストマー層2を構成するゴムは、架橋剤が添加されて架橋されたものであることが好ましい。架橋剤の種類及び添加量は、用いるゴムの種類に応じて適宜選択される。
【0027】
<イオン液体について>
この発明の発電素子は、中間層を構成する誘電性エラストマー層がイオン液体を含有することを必須要件としている。また、この発明の発電素子が導電性エラストマー層からなる電極層を備える場合、導電性フェラーとしてイオン液体を含有することが好ましい。
この発明の発電素子に使用できるイオン液体としては、下記の化1〜化4に示す、ピリジニウム系イオン液体、イミダゾリウム系イオン液体、脂環式アミン系イオン液体、および脂肪族アミン系イオン液体と、脂肪族ホスホニウム系イオン液体とが挙げられる。これらはそれぞれ単独で使用してもよく、2種以上を混合して使用してもよい。
【0028】
【化1】

【0029】
【化2】

【0030】
【化3】

【0031】
【化4】

【0032】
式中のR、R’、R''、R''' は、水素もしくは炭化水素含有基、あるいはアルキル基であり、同一でも、それぞれ異なっていてもよい。また、X- は、(CF3 SO2 2 - ;TFSI、B(C2 4 2 - 、BF4 - 、Br- 、Cl- 、I- 、PF6 - 、CF3 SO3 - 、CF3 COO- 、CH3 SO4 - 、C6 4 CH3 SO3 - 、SCN- 、〔P(C2 5 3 3 - ;FAP、〔B(CN)4 - ;TCB、(NC)2 - 、FeCl4 - 、CH3 SO3 - 、HSO4 - 、CH3 CH2 OSO3 - 、CH3 (OCH2 CH2 2 OSO3 - 、(C2 5 SO2 2 - 、AlCl4 - 、Tf2 - 、C(CN)3 - 等である。
【0033】
好適には、ピリジニウム系イオン液体、イミダゾリウム系イオン液体を使用することができる。ピリジニウム系イオン液体とイミダゾリウム系イオン液体を混合して使用することも好ましい。これらの中でも、ピリジニウム系イオン液体もしくはイミダゾリウム系イオン液体であって、アニオンが(NC)2 - または(CF3 SO2 2 - であるものが特に好ましい。具体的には、下記の化5、化6に示すような、1−エチル−3−メチルイミダゾリウムをカチオンとし、(NC)2 - または(CF3 SO2 2 - をアニオンとするイオン液体が挙げられる。
【0034】
【化5】

【0035】
【化6】

【0036】
また、使用するイオン液体の粘度は、25℃において1〜1500cP(0.1〜150Pa・s)であることが好ましい。
また、誘電性エラストマー層および導電性エラストマー層のイオン液体の含有量は、目的とする発電性能や、ベースゴム及びイオン液体の種類により適宜設定されるが、ベースゴム100質量部とイオン液体1〜70質量部の割合で混合されたものが好ましく、より好ましくは1〜50質量部、さらに好ましくは5〜20質量部である。イオン液体の含有量が5質量部未満では十分な発電性能が得られず、70質量部を超えるとベースゴムとの相溶性の上限を超えてしまい、誘電エラストマー層および導電性エラストマー層の可撓性が大きく損なわれてしまう場合がある。
【0037】
<誘電性フィラーについて>
この発明の発電素子を構成する誘電性エラストマー層は、柔軟性等の性能を損なわない範囲で、イオン液体以外の誘電性フィラーを含有していてもよい。
誘電性フィラーとしては、高誘電セラミックス粉末と、チオカルボニル基を有する有機化合物が挙げられる。
高誘電セラミックス粉末としては、チタン酸バリウム(BaTiO3 )、チタン酸ジルコン酸鉛(PZT)、ランタンドープチタン酸ジルコン酸鉛(PLZT)、チタン酸ストロンチウム(SrTiO3 )、チタン酸鉛(PbTiO3 )、チタン酸ビスマス、チタン酸ビスマスバリウムなどが好適である。これらのうち、チタン酸ジルコン酸鉛(PZT)は200℃以上のキュリー点と高い比誘電率を併せ持つため最も好適である。なお、一定の比誘電率とキュリー点を有するものであれば、これら以外の化合物であっても良い。
【0038】
高誘電セラミックス粉末からなる誘電性フィラーは、ベースゴム100重量部に対して1〜100重量部の割合で添加することができる。1重量部未満では誘電性向上効果は少なく、100重量部を超えると、柔軟性等が損なわれる恐れがある。好ましくは、ベースゴム100重量部に対して5〜60重量部、より好ましくは、ベースゴム100重量部に対して5〜40重量部とする。
【0039】
チオカルボニル基を有する有機化合物としては、下記の化7〜10に示す、チオウレア誘導体、チオアミド誘導体、チオケトン誘導体、ジチオカルバミン酸エステル誘導体などが好適である。これらの有機化合物は、加工温度、使用温度、目標とする比誘電率、および用いるベースゴムとの相溶性を考慮して適宜選択されることになるが、なかでもチオウレア誘導体は、空気や水に対して非常に安定であり、ベースゴムとの相溶性に優れると共に低い融点を示すことから最も好適な有機化合物である。
【0040】
【化7】

【0041】
【化8】

【0042】
【化9】

【0043】
【化10】

【0044】
式中、R1〜R3は、水素もしくは炭化水素含有基を示し、それぞれ同一でも異なっていてもよい。
チオカルボニル基を有する有機化合物を導電性フィラーとして使用する場合、その含有率は、目的とする誘電率、ベースゴムの種類などによって適宜選択されるが、ベースゴム組成物全量に対して、おおよそ5〜40重量%であり、より好ましくは10〜30重量%である。含有率が5重量%未満では、ベースゴム中に存在する絶対量が少なすぎるため、比誘電率がさほど向上しない。また、40重量%を超えて添加した場合、ベースゴムとの相溶性の限界を超えてしまい、可撓性が大きく損なわれる恐れがある。
【0045】
<誘電性エラストマー層の厚さと硬さについて>
誘電エラストマー層の厚さは、用途に応じて、あるいは、用いるベースゴムの種類等により適宜設定されるが、耐久性や変形能を維持できる10μm〜2mmが好ましく、より好ましくは100〜500μmであり、最も好ましくは150〜300μmである。10μmよりも薄くなると変形時に穴や亀裂等が発生するおそれがあり、2mmを超えると電極層10、10の間隔が大きくなるため内部抵抗等の増加による発電性能の低下や変形能の低下が起こりやすくなる。
【0046】
誘電エラストマー層1の硬さは、ディロメータAスケールで20〜60であることが好ましく、より好ましくは30〜50である。この硬さが20未満であると、変形能は大きくなるものの、機械的強度が不足するようになり、実用性が低下する。また、この硬さが60を超えると、変形能が不足して実用性が低くなる。
【0047】
<導電性フィラー>
この発明の発電素子を構成する電極層としては、白金、金、銀、銅、等の比較的導電率の高い金属製もしくは金属薄膜製のもの、あるいはカーボン単体粉末もしくはカーボン粉末と金属粉末を混合して固形化した、いわゆるカーボン電極であってもよいが、変形能の点から導電性エラストマー層が好ましい。
【0048】
導電性エラストマー層は、エラストマーに導電性フィラーを含有させることで得られる層である。エラストマーとしては前述のゴムを使用することが好ましく、導電性フィラーとしては、体積固有抵抗が10Ω・cm以下であるものが好ましく、1×10-1Ω・cmのものがより好ましい。体積固有抵抗が10Ω・cmを超えると電極層として十分な導電性が得られない。
【0049】
無機系の導電性フィラーは、カーボン系の導電性フィラーと金属系の導電性フィラーに分類される。カーボン系の導電性フィラーとしては、導電性カーボンブラック、黒鉛、カーボンナノファイバー、カーボンナノチューブ、フラーレン等が挙げられる。金属系の導電性フィラーとしては、白金、金、銀、銅等の微粒子や微小繊維等が挙げられる。これらをそれぞれ単独で、または2種以上を混合して用いることができる。好ましくは、カーボンナノファイバー、カーボンナノチューブを使用する。
【0050】
有機系の導電性フィラーとしては、化11〜15に示す、ポリチオフィン、ポリアセチレン、ポリアニリン、ポリピロール、ポリパラフェニレン、ポリパラフェニレンビニレン、あるいはこれらの誘導体にアニオンまたはカチオンなどの適当なドーパントを添加した導電性高分子材料などが使用できる。
【0051】
【化11】

【0052】
【化12】

【0053】
【化13】

【0054】
【化14】

【0055】
【化15】

【0056】
これらの導電性フィラーは、ベースゴム100質量部に対して5〜70質量部の割合で混合することが好ましく、より好ましくは10〜50質量部とする。最も好ましくは20〜40重量部である。導電性フィラーの含有量が5質量部未満では電極層として十分な導電性が得られない。
【0057】
導電性フィラーの含有量が70質量部を超えると、粒子状あるいは粉末系の導電性フィラーの場合は導電性エラストマーの可撓性を低下させ、液体系の導電性フィラーの場合は導電性エラストマーの形状が保持できないほど軟化したり、相溶性の限界を超えるために混合できなかったりすることがある。
【0058】
<その他の添加剤について>
誘電性エラストマー層および導電性エラストマーには、各種のカップリング剤や表面処理剤を含有させてもよい。カップリング剤としては、アルミ系、シラン系、チタン系等のカップリング剤が好ましい。また、誘電性エラストマー層に粒子状、粉末状の誘電性フィラーを含有させる場合には、いわゆるエレクトレット処理(帯電処理)を施したものを使用することが好ましい。
【0059】
<導電性エラストマー層の厚さと硬さ>
導電性エラストマー層の厚さは5μm〜1mmとする。好ましくは10〜300μmであり、より好ましくは10〜200μmであり、最も好ましくは10〜80μmである。導電性エラストマー層が5μmより薄くなると、変形時に穴や亀裂が発生しやすく、また成膜も困難になる。これに対して、導電性エラストマー層が1mmを超えると、変形に追随するのが困難になるとともに、内部抵抗が増大して電極として十分な導電性が得られない。
【0060】
また、導電性エラストマー層の厚さおよび硬さを誘電性エラストマー層と同等にして、導電性エラストマー層の屈曲等に対する挙動を誘電性エラストマー層と同様にすることが好ましい。特に、繰り返しの屈曲等が付与される場合は、デュロメーターAスケールで、20〜60の範囲の硬さとし、より好ましくは30〜50の範囲の硬さとする。
誘電性エラストマー層を形成するベースエラストマーの組成と電極層10を形成するベースエラストマーの組成を同様のもの、あるいは同一のものとすることが好ましい。例えば、一方の電極層10をイオン液体以外の導電性フィラーを含有する電極層10とし、他方の電極層10を導電性フィラーとしてのイオン液体を含有する電極層10とすることもできる。
また、誘電性エラストマー層の両側に異なる硬さの導電性エラストマー層を配置してもよい。
【0061】
<発電素子の製造方法の例>
誘電性エラストマー層の材料として、ベースゴム、イオン液体、架橋剤、イオン液体以外の誘電性フィラー等を用意し、これらを混合して液状の混合物を得る。これをロールコータ等で所定厚さの半硬化状態の膜に形成することで、誘電性エラストマー層を得る。
【0062】
導電性エラストマー層の材料として、ベースゴム、導電性フィラー、架橋剤、イオン液体等を用意し、これらを混合して液状の混合物を得る。これをロールコータ等で所定厚さの半硬化状態の膜に形成することで、導電性エラストマー層を得る。
このようにして得られた2枚の半硬化状態の導電性エラストマー層で半硬化状態の誘電エラストマー層を挟んで積層体とし、この積層体を加圧加熱成形する。この加圧加熱成形時に、架橋および層間の接合が行われる。ここで、誘電性エラストマー層と導電性エラストマー層のベースゴムが同じ種類か相溶性のある組み合わせであれば、比較的低い温度および圧力でこれらの層を接合することができる。
【0063】
また、誘電エラストマー層を硬化させて、その両面に電極層(硬化させた導電性エラストマー層など)を接着剤などで貼り付けてもよい。また、誘電エラストマー層を先に硬化させて、その両面に半硬化状態の導電性エラストマー層を配置した後に、加圧加熱成形してもよい。
【0064】
[第2実施形態]
この実施形態の発電素子は、図2に示すように、誘電性エラストマー層1と、一対の導電性エラストマー層(電極層)2と、絶縁体層(絶縁体からなる被覆層)3と、からなる。誘電性エラストマー層1は、イオン液体を含有するゴム(エラストマー)からなる。導電性エラストマー層2は、導電性フィラーを含有するゴム(エラストマー)からなる。
誘電性エラストマー層1と導電性エラストマー層(電極層)2に関しては、第1実施形態で詳述されている。
絶縁体層3を構成する材料としては、誘電率および帯電率がより高く、絶縁抵抗がより大きいものが好ましく、下記のものが例示できる。
【0065】
<絶縁体層3を構成する材料の例>
フェノール樹脂(PF)、ユリア樹脂(UF)、メラミン樹脂(MF)、不飽和ポリエステル樹脂(UP)、エポキシ樹脂(EP)、ジリアルフタレート樹脂(PDAP)、ポリウレタン(PU)等に代表される熱硬化性樹脂。
【0066】
ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(CTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・ 六フッ化プロピレン共重合体(FEP)、エチレン・ 四フッ化エチレン共重合体(ETFE)、エチレン・ クロロトリフルオロエチレン共重合体(ECTFE)等に代表されるフッ素樹脂。
【0067】
ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、ポリ酢酸ビニル(PCAc)、ポリカーボネート(PC)、アクリル樹脂(PMMA)、ABS樹脂、AS樹脂、ポリアミド(PA)、ポリアセタール(POM)、ポリエチレンテレフタレート(PET)、ポリメチルペンテン(TPX)、ポリフェニレサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、ポリエーテルイミド(PEI)、ポリアリレート(PAR)、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリアミドイミド(PAI)、シリコン樹脂等に代表される熱可塑性樹脂。
【0068】
合成ゴム、天然ゴム等の各種ゴム組成物、炭化カルシウム、カーバイド、エボナイト、ガラス、紙・レーヨン・セロファン等のセルロースを成分とする物質。
綿・麻・リンネル・絹・ウール・カシミヤ等の天然繊維等。
これら材料のうち、フッ素系樹脂、ポリアミド系樹脂、ゴム組成物を使用することが好ましく、特に、ポリテトラフルオロエチレン(PTFE)もしくはポリアミド(PE)が好適である。
【0069】
これらの材料をフィルムやシートに成形したものを、導電性エラストマー層(電極層)2に接合する。樹脂の場合は、所定の溶媒で溶液としたり溶融させて、導電性エラストマー層(電極層)2に塗布し乾燥してもよい。
絶縁体層3で導電性エラストマー層(電極層)2を被覆することにより、発電素子本体Aからの電流漏洩を抑える効果が得られる。また、絶縁体層3は発電素子本体Aの外包材としての機能も有する。イオン液体を含有する誘電エラストマー層1およびイオン液体を含有する導電性エラストマー層2から、イオン液体の滲み出しを抑える作用も有する。さらに、絶縁層3に帯電する電荷の一部は、発電素子の自然充電作用の一部を担っていると考えられる。
【0070】
絶縁体層3は、導電性エラストマー層(電極層)2のより広い面積を被覆することが好ましく、通常は、導電性エラストマー層(電極層)2とリード線などとの接続部を除いて被覆することが望ましい。
さらに、絶縁体層3の材料として樹脂を用いる場合には、絶縁性を損なわない程度に誘電性フィラーを含有させることが好ましい。これにより、絶縁体層3の誘電性および帯電性が向上する。絶縁体層3の誘電性および帯電性が向上することにより、帯電した電気がより多く発電素子に取り込まれるため自然充電作用が向上する。
【0071】
具体的には、絶縁体層3が帯電することにより、接触している導電性エラストマー層(電極層)2内部の導電性フィラーの分極や配向が自然に促進される。また、絶縁体層3の電荷が、導電性エラストマー層(電極層)2を通して誘電性エラストマー層1に移動し、誘電性エラストマー層1の内部の誘電性フィラーの分極や配向も自然に促進される。これにより、発電素子の充電効率が向上すると考えられる。
【0072】
[第3実施形態]
この実施形態の発電素子は、図3に示すように、誘電性エラストマー層1と、一対の導電性エラストマー層(電極層)2と、絶縁体層(絶縁体からなる被覆層)3と、リード4と、からなる。誘電性エラストマー層1は、イオン液体を含有するゴム(エラストマー)からなる。導電性エラストマー層2は、導電性フィラーを含有するゴム(エラストマー)からなる。
【0073】
誘電性エラストマー層1と導電性エラストマー層(電極層)2に関しては、第1実施形態で詳述されている。
この実施形態では、誘電性エラストマー層1と導電性エラストマー層(電極層)2とからなる発電素子本体Aの三方が絶縁体層3で被覆され、被覆されていない部分に、電力を放充電するためのリード4が固定されている。この実施形態の発電素子は、発電素子本体Aの導電性エラストマー層(電極層)2にリード4を接着した後に、絶縁体層3を形成することで作製されている。
【0074】
この実施形態では、絶縁体層3を構成する材料として、体積固有抵抗が107 Ω・cm以上のものを用いている。体積固有抵抗が107 Ω・cmに満たない場合は、絶縁性が不十分であり、電気エネルギーが外部に漏洩しやすくなる。好ましくは109 Ω・cm以上のものを用いる。
絶縁体層3による発電素子本体Aの被覆面積は、少なくともどちらか一方の導電性エラストマー層(電極層)2の全表面積の80%以上とすることが好ましい。80%以上であると、湿度などの外部雰囲気もしくは外部材料との接触により、電気エネルギーが外部に漏洩する可能性がより少なくなる。好ましくは、両方とも80%以上、より好ましくは90%以上とする。
【0075】
絶縁体層3の比誘電率は1以上50以下、より好ましくは1以上30以下とする。最も好ましくは1以上10以下とする。比誘電率が50を超えると、自身の誘電分極により発生した電荷が、電極内の電荷と相互作用を及ぼし、発電素子としての発電もしくは充電効率を低下させる場合がある。
絶縁体層3は、公知の接着剤などを用いて発電素子本体Aに接着することができる。絶縁体層3が、導電性エラストマー層(電極層)2と同じベースゴムを有する絶縁性エラストマー層である場合には、加圧加熱による架橋接着等も可能である。
この実施形態の発電素子は、発電素子に入出力される電気エネルギーが外部に漏洩するのを防止できるため、発電効率の低下をより確実に防止することができる。
【0076】
[第4実施形態]
この実施形態の発電素子は、図4に示すように、イオン液体を含有するゴム(エラストマー)からなる誘電性エラストマー層10と、その両面の表層に導電フィラーを含浸させて形成された、一対の導電性エラストマー層(電極層)20aと、リード4と、で構成されている。
【0077】
この実施形態の発電素子は、導電性エラストマー層20aと誘電性エラストマー層10との間に明確な界面が形成されていない状態となっている。そのため、導電性エラストマー層20aが誘電性エラストマー層10から極めて剥離し難い。したがって、この実施形態の発電素子は、長期使用時の耐久性に特に優れている。
この導電性エラストマー層20aは、例えば、体積固有抵抗が103 Ω・cm以下の有機系導電性フィラーを、誘電性エラストマー層10の表層に含浸させることにより形成される。誘電性エラストマー層10がイオン液体を含有するため、導電性エラストマー層20aにもイオン液体が存在する。
【0078】
この有機系導電性フィラーとしては、ポリチオフィン、ポリアセチレン、ポリアニリン、ポリピロール、ポリパラフェニレン、ポリパラフェニレンビニレン、もしくはこれらの誘導体にアニオンまたはカチオンなどの適当なドーパントを添加した導電性高分子材料が挙げられる。
有機系導電性フィラーは、金属材料や炭素材料などの導電性フィラーと比較してエラストマー、特にゴム組成物と高い親和性を有するため、伸縮性や硬さなどのエラストマー本来の性質を阻害することが少ない。このため、いわゆる圧電素子であるエラストマートランスデューサーとして使用される場合には、耐久性に優れたエラストマートランスデューサーを得ることができる。
【0079】
有機系導電性フィラーの含浸方法としては、亜臨界状態または超臨界状態での二酸化炭素雰囲気中に、誘電性エラストマー層10と導電性フィラーを導入し、導電性フィラーを誘電性エラストマー層10の表層に含浸させる方法が挙げられる。
ここで、「亜臨界状態の二酸化炭素」とは、圧力が二酸化炭素の臨界圧力(7.38MPa)以上であり、かつ温度が臨界温度(31.1℃)未満である液体状態の二酸化炭素、あるいは圧力が二酸化炭素の臨界圧未満であり、かつ温度が臨界温度以上である液体状態の二酸化炭素、または温度および圧力が共に臨界点未満であるが、これに近い状態を言う。また、「超臨界状態の二酸化炭素」とは、圧力が二酸化炭素の臨界圧力以上であり、かつ、温度が臨界温度以上である状態の二酸化炭素を言う。
【0080】
亜臨界状態または超臨界状態での二酸化炭素雰囲気中への誘電性エラストマー層10および導電性フィラーの導入方法としては、誘電性エラストマーと導電性フィラーを別々に、もしくは導電性フィラーを誘電性エラストマーに付着させて導入しても良い。また、導電性フィラーは、単体としてもしくは水系溶媒もしくは有機溶媒に分散させた状態で導入しても良い。
【0081】
このような有機溶媒としては、メタノール、エタノール、プロパノールなどのアルコール系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、ジブチルエーテル、テトラヒドロフランなどのエーテル系溶媒、ベンゼン、トルエンなどの芳香族系溶媒などを用いることができる。
亜臨界状態または超臨界状態での処理条件は、誘電性エラストマー層10が溶解などの変性により比誘電率や弾性状態の性能劣化が起きない範囲において適宜定めることができる。
【0082】
誘電性エラストマー層10は、エネルギー変換効率を高めるためにエレクトレット処理(帯電処理)などを行っても良い。その場合、導電性フィラーを含浸させて導電性エラストマー層(電極層)20aを形成するタイミングは、エレクトレット処理などの前後のいずれでも良い。
【0083】
[第5実施形態]
この発明の発電素子は、効率を高めるために積層して用いることができる。この場合、例えば、第4実施形態の発電素子を積層することが好ましい。第4実施形態の発電素子は、誘電性エラストマー層10の表面に導電性フィラーを含浸させて導電性エラストマー層20aを形成しているため、導電性エラストマー層(電極層)が別に形成された発電素子を積層する場合と比較して、全体の厚さを薄く抑えることができる。
【0084】
この実施形態では、図5〜図8に示すように、発電素子が積層された発電素子積層体について説明する。
図5の発電素子積層体300は、二個の発電素子200を、その正極となる電極層20A同士が当接するように重ね合わせると共に、負極となる電極層20B同士を導電線90で電気的に接続し、さらに負極となる電極層20Bと、正極となる電極層20Aにそれぞれ電気取出し用の端子80を接続したものである。電極層20Bに絶縁体層3が固定されている。
【0085】
誘電性エラストマー層10および電極層20A,20Bは、第4実施形態の誘電性エラストマー層10および導電性エラストマー層20aと同じ材料、構成である。絶縁体層3は、第2実施形態の絶縁体層3と同様に、帯電性(絶縁性)と共に、広い使用温度範囲、耐薬品性、電気絶縁性、低摩擦性、非粘着性、耐候性、難燃性などを満足する材料からなる。具体的には、例えばPTFE(ポリテトラフルオロエチレン)などのフッ素樹脂、フェノール樹脂等の熱硬化性樹脂、ポリエチレン等の炭化水素系樹脂、ポリアミド等の熱可塑性樹脂等を用いることが望ましい。
【0086】
図5の発電素子積層体300によれば、発電素子200単体に比べて2倍の発電性能を発揮することができる。発電素子200をその正極同士が当接するように重ね合わせて構成したため、その大きさも最小限に抑えることができる。これによって、携帯電話などのような小型・軽量が要求される電子機器などにも容易に適用することができる。
図6および図7に示すように、この発電素子200をより多く積層すれば、その発電素子200の数に比例した発電性能(出力電力、出力電圧)を発揮することができる。また、積層された発電素子の全面あるいは一部を絶縁体層3で被覆して圧縮・伸張させることにより、さらに優れた発電性能を発揮させることも可能である。
【0087】
図6の発電素子積層体300は、発電素子200を5つ重ね合わせたものであり、図7の発電素子積層体300は、さらに発電素子200をN個重ね合わせたものである。そして、図示するように隣接する発電素子200の負極同士および正極同士をそれぞれ導電線90で並列に接続すると共に、最上位に位置する発電素子200の各電極層20A、20Bにそれぞれ電気取出し用の端子80を接続したものである。また、図8に示す構造とすることもできる。
【0088】
[第6実施形態]
図9〜図13は、この発明の発電素子100を発電源として用いた発電装置400を例示したものである。
先ず、図9の発電装置400は、第1実施形態の発電素子100を絶縁性の平板状の芯材60上に一体的に接着したものである。この発電装置400は、平板状をした小型・軽量なものであるため、携帯電話などのように、スペース的な制約の多い電子機器の電源として活用することができる。この場合、芯材60の少なくとも発電素子100に接する表面を、第2実施形態で挙げた絶縁体層3を構成する材料で形成すると、帯電した電荷の一部が発電性能の向上に寄与する効果が得られる。
【0089】
次に、図10および図11の発電装置400は、シート状をした芯材60上に第1実施形態の発電素子100を複数配列すると共に、これら各発電素子100を導電線70によって電気的に直列に接続したものである。そして、このような構成であれば、その発電素子100の数に応じた電圧が加算された大量の電気を取り出せるだけでなく、このシート状をした芯材60自体が適度な可撓性を発揮できる。そのため、例えば電子機器のケーシング内面などに貼り付けるように設置できるため、その設置形状や場所などの制約が少なく、より使い勝手の良い電源として用いることができる。
【0090】
なお、このように複数の発電素子100同士を直列に接続する場合、例えば、下部電極がマイナス極、上部電極がプラス極であれば、図示するように導電線70は隣接する上部電極と下部電極同士を直接接続するようになる。また、このように発電素子100を複数配列した場合には、各発電素子100を電気的に並列に接続することも可能である。
また、図11の発電装置400は、円柱状をした芯材60の表面に第1実施形態の発電素子100を一体的に接着したものである。そして、このような構造であれば、発電素子100の大きさ(面積)を犠牲にすることなく、狭い空間などに効率的に設置することができる。この場合も、芯材60を、第2実施形態で挙げた絶縁体層3を構成する材料で形成すると、帯電した電荷の一部が発電性能の向上に寄与する効果が得られる。
【0091】
芯材の形状は円筒状に限定されるものではない。また、発電素子100と、芯材60との接合方法は、接着に限られず、加圧加熱架橋による接合、樹脂ねじや樹脂リベットによる機械的接合等各種の接合方法が採用できる。
さらに、この変形例として図12に示すように円筒状をした芯材60を用いれば、その表面(外面)のみならず、その内側にも発電素子100を一体的に接着もしくは取り付けることができる。これにより、全体の大きさを変えることなく、さらに優れた発電能力を発揮することが可能となる。
【0092】
また、図13および図14に示すように、円柱状をした芯材60に対してその周方向または軸方向に複数の発電素子100を一体的に接着すると共に、図10と同様に、これら各発電素子100同士を、図示しない導電線によって電気的に直列または並列に接続すれば、より優れた発電能力を発揮することができる。
図9〜14に例示した形態において、芯材60としては、広い使用温度範囲、耐薬品性、電気絶縁性、低摩擦性、非粘着性、耐候性、難燃性、さらには機械的強度を満足する材料を用いることが望ましく、第2実施形態で挙げた絶縁体層3を構成する材料の中でも、PTFE(ポリテトラフルオロエチレン)などのフッ素樹脂を用いることが好ましい。
【0093】
[第7実施形態]
この発明の発電素子は、例えば、図15や図16に示すような携帯情報端末の操作キー500内に内蔵されて、その携帯情報端末の電源などとして用いられる。
先ず、図15の操作キー500は、人の指などが直接触れる携帯情報端末の操作キー本体50と、その下方に位置するスイッチ51との間に、可動支持部材52を介して誘電性エラストマー層1を位置させると共に、誘電性エラストマー層1の一端に、電極でもある電力取出用のリード4を接続したものである。
【0094】
図15の操作キー500は、図17(a)に示すように、操作キー本体50をクリックしてその操作キー本体50に荷重Fが加わると、操作キー本体50が押し下げられて誘電性エラストマー層1が下方に撓んだ後、同図(b)に示すように、スイッチ51の反発力によって操作キー本体50が戻されて誘電性エラストマー層1が元の状態に戻ることになる。誘電性エラストマー層1は、このような一連の動きにも追従可能であり、リード4を介して電力を供給等できる。すなわち、小型機器内のスペースを電池として有効に使用できる。また、誘電性エラストマー層1に柔軟性があるため、上記の通り、稼動部のスペースを電池とすることもできる。
【0095】
また、図18(a)、(b)に示すように、操作キー本体50の全体またはその下端および可動支持部材52を銅などの導電性物質で構成し、これらに電力取出用のリード4を接続するような構成であっても同様な作用・効果を発揮することができる。
一方、図16の操作キー500は、ドーム上に突出した可撓性のエンボスシート60の内部に上部電極61と下部電極62を設置すると共に、そのエンボスシート60の上面を誘電性エラストマー層1で覆うと共に、その上面を絶縁シート63で覆い、誘電性エラストマー層1の一端に、電極でもある電力取出用のリード4を接続したものである。
【0096】
このような構成をした操作キー500の場合は、そのエンボスシート60のドームの部分が押し下がられて下方に変形することにより、誘電性エラストマー層1が下方に撓んだ後、上部電極61と下部電極62が接触してスイッチが入り、その後、そのエンボスシート60の反発力によって誘電性エラストマー層1が元の状態に戻ることになる。このように、小型機器のスペースを効率良く電池として使用することが可能となる。また、誘電性エラストマー層1に柔軟性があるため、上記の通り、稼動部のスペースを電池とすることもできる。
【0097】
なお、この実施形態では、いわゆる誘電性エラストマー型ジェネレータとなる誘電エラストマー層1の表層に、変形に追従可能である柔軟な電極61,62を有するものとしても良いが、この電極61,62としては、金属、カーボン、のほか、前述した導電性エラストマー層が好適に使用でき、また導電性グリース等を併用することも好ましい。
また、可動支持部材52の材料は特に限定されないが、金属製やプラスチック製等が挙げられる。外力からの応力を誘電性エラストマー層に伝えるため、可撓性であることが好ましい。
【0098】
[第8実施形態]
図19の発電素子600は、図21に示す、短冊状をした導電性エラストマー部材20の一部に、イオン液体を含浸させたものである。
図20の発電素子600は、図21に示す、短冊状をした導電性エラストマー部材20の全部に、イオン液体を含浸させたものである。
【0099】
導電性エラストマー部材20は、第1実施形態の導電性エラストマー層(電極層)2に使用されるものと同様な材料(ベースゴム+導電性フィラー)で構成されている。
導電性フィラーの比率は、導電性フィラーの種類によって適宜設定される。特に導電性フィラーで好ましい炭素材料、なかでもCNFに関しては5質量部以上であることが好ましい。5質量部未満であると、導電性エラストマー部材20の導電性が低下し、発電機能を発現させることが困難となる。このような不具合がより生じ難くするためには、少なくとも5質量部以上、より好ましくは10質量部以上必要である。導電性フィラーとしては、CNFが特に好ましい。
【0100】
この導電性エラストマー部材20に含浸させるイオン液体としては、ピリジニウム系イオン液体、イミダソリウム系イオン液体、脂環式アミン系イオン液体、脂肪族アミン系イオン液体、脂肪族ホスホニウム系イオン液体などを用いることができる。これらの中でも、ピリジニウム系イオン液体もしくはイミダゾリウム系イオン液体であって、アニオンが(NC)2 - または(CF3 SO2 2 - であるものが特に好ましく、具体的には、1−エチル−3−メチルイミダゾリウムをカチオンとし、(NC)2 - または(CF3 SO2 2 - をアニオンとするイオン液体が挙げられる。
【0101】
また、このイオン液体の含有量は、少なくとも短冊状の導電性エラストマー部材20の一部においては、ベースゴムに対して5質量部以上、より好ましくは10質量%以上であることが好ましい。短冊状をした1枚の導電性エラストマー部材20にイオン液体を含浸させることにより、電気を取り出すことができる。また、イオン液体を含浸した導電性エラストマー部材20と含浸しない導電性エラストマー部材20を積層させて用いることもできる。
【0102】
この導電性エラストマー部材20は、イオン液体の高濃度側と低濃度側に電位差が生じて電気が発生するため、低濃度側と高濃度側に電極(または電極に相当するリード線)を取り付けることで、電源として使用することができる。この実施形態の発電素子600は、導電性エラストマー部材20の両端に電極40を取り付けた例を示している。
【0103】
[第9実施形態]
この実施形態では、この発明の発電素子が絶縁体層を介して積層された発電素子積層体について説明する。
図22に示す発電素子積層体300を構成する発電素子100は、1対の導電性エラストマー層2と、その間に配置された誘電性エラストマー層1とからなる。この発電素子100は、第1実施形態と同様に、誘電性エラストマー層1はイオン液体を含有するゴムからなり、導電性エラストマー層2は、導電性フィラーを含有するゴムからなる。
【0104】
この発電素子100が3層積層され、各発電素子100の間に、マイナスに帯電し易い材料からなる絶縁体層31とプラスに帯電し易い材料からなる絶縁体層32が配置されている。また、最も上側に配置された発電素子100の上面には、マイナスに帯電し易い材料からなる絶縁体層31が配置され、最も下側に配置された発電素子100の下面には、プラスに帯電し易い材料からなる絶縁体層32が配置されている。
【0105】
絶縁体層31,32を構成する材料としては、第2実施形態で挙げた絶縁体層3を構成する材料から、異なる帯電性能を有するもの、好ましくは、帯電列において離れた位置にある物質を組み合わせて使用する。これにより、イオン液体が関与する電極反応を安定した反応とすることができる。
絶縁体層31と絶縁体層32との組合せとしては、絶縁性能や機械的強度等を併せて考慮すると、ポリテトラフルオロエチレン(PTFE)とポリアミド(PA)、ポリエチレンとポリアミド(PA)、ポリ塩化ビニル(PVC)とポリアミド(PA)の組み合わせが好ましい。
【0106】
また、シリコン樹脂等の珪素含有樹脂も帯電列がプラス側であり、帯電列がマイナス側のポリテトラフルオロエチレン(PTFE)、ポリアミド(PA)、ポリ塩化ビニル(PVC)と組み合わせて好ましく使用することができる。
図23に示す発電素子積層体300を構成する発電素子100は、1対の導電性エラストマー層2と、その間に配置された誘電性エラストマー層1とからなる。この発電素子100は、第1実施形態と同様に、誘電性エラストマー層1はイオン液体を含有するゴムからなり、導電性エラストマー層2は、導電性フィラーを含有するゴムからなる。
【0107】
この発電素子100が3層積層され、最も上側に配置された発電素子100の上面に、正極用の絶縁体層33が配置され、その下の発電素子100との間に負極用の絶縁体層34が配置され、その下の発電素子100との間に正極用の絶縁体層33が配置され、最も下側に配置された発電素子100の下面に負極用の絶縁体層34が配置されている。
正極用の絶縁体層33および負極用の絶縁体層34を構成する材料としては、前述の絶縁体層31,32と同様に、第2実施形態で挙げた絶縁体層3を構成する材料から、異なる帯電性能を有するもの、好ましくは、帯電列において離れた位置にある物質を組み合わせて使用する。これにより、イオン液体が関与する電極反応を安定した反応とすることができる。
【0108】
図23の発電素子積層体300では、正極用の絶縁体層33に接する2つの導電性エラストマー層(電極層)2が正極として作用し、負極用の絶縁体層34に接する2つの導電性エラストマー層(電極層)2が負極として作用する。そして、隣接する発電素子100の負極同士および正極同士がそれぞれ導電線90で直列に接続されている。また、最の上側に配置された発電素子100の正極と最も下側に配置された発電素子100の負極に、それぞれ電気取出し用の端子80が接続されている。接続方法は直列接続および並列接続を適宜選択できる。
【0109】
このような構造とすることにより、絶縁体層33,34間に形成される電場の力が増大するため、各発電素子100の導電性エラストマー層(電極層)2に蓄積される電荷量の増大を図ることができる。
【実施例】
【0110】
[実施例1−1、1−2、参考例1−1、1−2、比較例1−1]
(実施例1−1、1−2と参考例1−1、1−2)
図1に示す構造の発電素子を以下の方法で作製した。
表2に示すように、実施例1−1、1−2については、反応性アクリルゴム(ACMと表記)(株式会社トウペ製「トアアクロンSA−310」)100質量部に、アクリルゴム用架橋剤(トーヨーポリマー株式会社製「ポリネート70」)を8質量部、ピリジニウム系イオン液体(広栄化学工業株式会会社製「IL−P14」)を40質量部加えて混合し、得られた混合液をKコントロールコータ(松雄製作所製)を用いて厚さ250μmの薄膜とし、半硬化状のゴム薄膜を得た。このゴム薄膜を架橋処理後、硬さをデュロメータで測定したところ、デュロメータAスケールで30であった。これを誘電性エラストマー層1として用いた。
【0111】
また、参考例1−1、1−2については、ピリジニウム系イオン液体を混合しなかった以外は同様にしてゴム薄膜を得た。ゴム薄膜を架橋処理後、硬さをデュロメータで測定したところ、デュロメータAスケールで33であった。これを誘電性エラストマー層1として用いた。
また、反応性アクリルゴム(ACMと表記)(株式会社トウペ製「トアアクロンSA−310」)100質量部に、アクリルゴム用架橋剤(トーヨーポリマー株式会社製「ポリネート70」)を8質量部、カーボンナノファイバー(CNFと表記)(昭和電工株式会社製「VGCF」)及び/またはピリジニウム系イオン液体(ILと表記)(広栄化学工業株式会会社製「IL−P14」)を表記の量加えて混合し、得られた混合液をKコントロールコータ(松雄製作所製)を用いて厚さ50μmの薄膜とし、架橋処理を行い、ゴム薄膜を得た。これを上部電極層用および下部電極層用の導電性エラストマー層2として用いた。尚、上部電極層用ゴム薄膜及び下部電極層用ゴム薄膜の各硬さは、表記の通りである。
【0112】
このようにして得られた誘電性エラストマー層1と導電性エラストマー層2を用い、一対の導電性エラストマー層2の間に誘電性エラストマー層1を配置し、加圧加熱成形して図1に示す構造の発電素子を得た。
(比較例1−1)
表2に示すように、反応性アクリルゴム(ACMと表記)(株式会社トウペ製「トアアクロンSA−310」)100質量部に、アクリルゴム用架橋剤(トーヨーポリマー株式会社製「ポリネート70」)を8質量部加えて混合し、得られた混合液をKコントロールコータ(松雄製作所製)を用いて厚さ250μmの薄膜とし、半硬化状のゴム薄膜を得た。発電ゴム薄膜の硬さをデュロメータで測定したところ、デュロメータAスケールで33であった。これを誘電性エラストマー層1として用いた。
【0113】
また、反応性アクリルゴム(ACMと表記)(株式会社トウペ製「トアアクロンSA−310」)100質量部に、アクリルゴム用架橋剤(トーヨーポリマー株式会社製「ポリネート70」)を8質量部、カーボンナノファイバー(CNFと表記)(昭和電工株式会社製「VGCF」)を35質量部加えて混合し、得られた混合液をKコントロールコータ(松雄製作所製)を用いて厚さ50μmの薄膜とし、上部電極層用及び下部電極層用のゴム薄膜を得た。これを上部電極層用および下部電極層用の導電性エラストマー層2として用いた。上部電極層用ゴム薄膜及び下部電極層用ゴム薄膜の各硬さは40であった。
【0114】
このようにして得られた誘電性エラストマー層1と導電性エラストマー層2を用い、一対の導電性エラストマー層2の間に誘電性エラストマー層1を配置し、加圧加熱成形して図1に示す構造体を得た。
(発電素子としての発電試験)
上記で作製した各発電素子(実施例、参考例)と構造体(比較例)を、図24に示す測定回路を使用して起電力及び発生電流を測定した。結果を表2に併記する。
【0115】
【表2】

【0116】
実施例1−1、1−2と参考例1−1、1−2との違いは、誘電性エラストマー層1にイオン液体を含有しているかしていないかであるが、イオン液体を含有しいている実施例1−1、1−2の方がより高い起電力を得られることが分かる。実施例1−1と実施例1−2との違いは、導電性エラストマー層2にイオン液体を含有しているかしていないかであるが、イオン液体を含有しいている実施例1−2の方がより高い起電力を得られることが分かる。また、誘電性エラストマー層1と導電性エラストマー層2のいずれにもイオン液体を含有していない比較例1−1は起電力が得られなかった。
【0117】
また、図25に実施例1−1の発電素子の電圧波形の時間変化を測定したチャートを示すが、安定した発電が行われていることが分かる。
[実施例2−1〜2−4、比較例2−1]
(実施例2−1〜2−4)
図1に示す構造の発電素子を以下の方法で作製した。
【0118】
表3に示すように、反応性アクリルゴム(ACMと表記)(株式会社トウペ製「トアアクロンSA−310」)100質量部と、アクリルゴム用架橋剤(トーヨーポリマー株式会社製「ポリネート70」)を8質量部とを含むベースゴムに、下記イミダゾリウム系イオン液体を5質量部加えて混合し、得られた混合液をKコントロールコータ(松雄製作所製)を用いて厚さ250μmの薄膜とし、半硬化状のゴム薄膜を得た。架橋処理後のゴム薄膜の硬さをデュロメータで測定したところ、何れもデュロメータAスケールで33であった。これを誘電性エラストマー層1として用いた。
【0119】
<使用したイミダゾリウム系イオン液体>
実施例2−1では、広栄化学工業株式会社製の「1−エチル−3−メチルイミダゾリウムテトラフルオロボレート(EMI−BF4 - )」を用いた。
実施例2−2では、東京化成工業株式会社製1−エチル−3−メチルイミダゾリウムジシアナミド(EMI−(CN)2 - )を用いた。
実施例2−3では、東京化成工業株式会社製の「1−エチル−3−メチルイミダゾリウムビス(トリフルオロメタンスルフォニル)イミド(EMI−IFSI- )」を用いた。
実施例2−4では、東京化成工業株式会社製の「1−エチル−3−メチルイミダゾリウムメタンスルフォネート(EMI−CH3 SO3 - )」を用いた。
【0120】
また、反応性アクリルゴム(ACMと表記)(株式会社トウペ製「トアアクロンSA−310」)100質量部に、アクリルゴム用架橋剤(トーヨーポリマー株式会社製「ポリネート70」)を8質量部、カーボンナノファイバー(CNFと表記)(昭和電工株式会社製「VGCF」)を35質量部加えて混合し、得られた混合液をKコントロールコータ(松雄製作所製)を用いて厚さ50μmの薄膜とし、架橋処理を行ってゴム薄膜を得た。架橋処理後の電極用ゴム薄膜の硬さをデュロメータで測定したところ、デュロメータAスケールで40であった。また、体積固有抵抗を測定したところ、6.0×10-1Ω・cmであった。これを上部電極層用および下部電極層用の導電性エラストマー層2として用いた。
【0121】
このようにして得られた誘電性エラストマー層1と導電性エラストマー層2を用い、一対の導電性エラストマー層2の間に誘電性エラストマー層1を配置し、加圧加熱成形して図1に示す構造の発電素子を得た。
(比較例2−1)
ベースゴムにイオン液体を含有させなかった以外は実施例2−1〜2−4と同様にして、図1に示す構造体を作製した。
【0122】
(発電素子としての発電機能評価)
上記で作製した各発電素子(実施例)および構造体(比較例)を、図24に示す測定回路を使用して、発電材料としての機能を評価した。発生電圧、発電時間は電圧波形測定装置で観察することで行なった。結果を表3に併記する。
【0123】
【表3】

【0124】
表3に示すように、実施例2−1〜2−4の発電素子は、誘電性エラストマー層1がイミダゾリウム系イオン液体を含有するため発電が生じたが、比較例2−1の構造体は誘電性エラストマー層1がイオン液体を含有しないため発電が生じなかった。実施例2−2と実施例2−3の発電素子では、誘電性エラストマー層1が(NC)2 - 及び(CF3 SO2 2 - をアニオンとするイミダゾリウム系イオン液体を含有するため、5質量部という少ない添加量で、特に優れた発電能力が得られた。
【0125】
[実施例3−1〜3−3、比較例3−1]
図2に示す構造の発電素子を以下の方法で作製した。
表4に示すように、反応性アクリルゴム(ACMと表記)(株式会社トウペ製「トアアクロンSA−310」)100質量部に、アクリルゴム用架橋剤(トーヨーポリマー株式会社製「ポリネート70」)を8質量部、ピリジニウム系イオン液体(広栄化学工業株式会会社製「IL−P14」)を10質量部加えて混合し、得られた混合液をKコントロールコータ(松雄製作所製)を用いて厚さ250μmの薄膜とし、半硬化状のゴム薄膜を得た。架橋処理後に、このゴム薄膜の硬さをデュロメータで測定したところ、デュロメータAスケールで33であった。これを誘電性エラストマー層1として用いた。
【0126】
また、反応性アクリルゴム(ACMと表記)(株式会社トウペ製「トアアクロンSA−310」)100質量部に、アクリルゴム用架橋剤(トーヨーポリマー株式会社製「ポリネート70」)を8質量部、カーボンナノファイバー(CNFと表記)(昭和電工株式会社製「VGCF」)を35質量部加えて混合し、得られた混合液をKコントロールコータ(松雄製作所製)を用いて厚さ50μmの薄膜とし、架橋処理を行ってゴム薄膜を得た。このゴム薄膜の硬さをデュロメータで測定したところ、デュロメータAスケールで40であった。また、体積固有抵抗を測定したところ、6.0×10-1Ω・cmであった。これを上部電極層用および下部電極層用の導電性エラストマー層2として用いた。
【0127】
このようにして得られた誘電性エラストマー層1と導電性エラストマー層2を用い、一対の導電性エラストマー層2の間に誘電性エラストマー層1を配置し、加圧加熱成形して図2の発電素子から絶縁体層3を除いた構造の発電素子本体Aを得た。
この発電素子本体Aを、図24に示す測定回路を使用して、発電電圧と発電時間を電圧波形測定装置で測定した。
【0128】
次に、発電素子本体Aの下側の導電性エラストマー層2に絶縁体層3を接合して、図2に示す発電素子を作製した。絶縁体層3は各実施例で異なる材質のものを使用した。実施例3−1では、PTFEフィルム(日東電工株式会社製「ニトフロンNo.900UL」、実施例3−2ではMCナイロン板(日本ポリペンコ株式会社製「MCナイロン」)、実施例3−3では上質紙を使用した。
【0129】
絶縁体層3を接合して一週間放置した後に、この発電素子を、図24に示す測定回路を使用して、発電電圧と発電時間を電圧波形測定装置で測定した。そして、発電素子本体Aの状態での発生電圧と、絶縁体層3を接合して放置した後の図2の構造の発電素子としての発生電圧との比を求めた。比較例3−1については、発電素子本体Aのまま放置した後に発生電圧を測定した。結果を表4に併記する。
【0130】
【表4】

【0131】
表4から、図2に示すように、発電素子本体Aに絶縁体層3を接合することにより、発電機能の低下が抑えられる、もしくは向上することが分かる。
また、このことから、絶縁体層3を設けていない一般的なエラストマー発電素子(ここでは発電素子本体A)を、保管時に絶縁体(誘電材料)からなるフィルムやシートで包むことにより、発電性能を維持できることも分かる。
【0132】
[実施例4−1、比較例4−1]
図1に示す構造の発電素子を以下の方法で作製した。
表5に示すように、ベースゴムとして架橋剤を8質量%含む反応性液状アクリルゴムを95質量%を用いると共に、高誘電性フィラーとしてピリジニウム系イオン液体5質量%を用いた他は、実施例1−1と同様な方法によって、膜厚250μm、比誘電率10、引張最大伸250%のゴム薄膜を作製した。これを誘電性エラストマー層1として用いた。
また、ベースゴムとして架橋剤を8質量%含む反応性液状アクリルゴムを70質量%を用いると共に、導電性フィラーとしてCNF30質量%を用いた他は、実施例1−1と同様な方法によって、長さ100mm×幅50mm×厚さ50μm、体積抵抗1×10Ω・cm、引張最大伸び50%の物性を有するゴム薄膜を作製した。これを導電性エラストマー層(電極層)2として使用した。
【0133】
これらを実施例1−1と同様な方法によって接合して、図1に示す構造の発電素子を得た。
(比較例4−1)
以下の表5に示すように、ベースゴムとして架橋剤を8質量%含む反応性液状アクリルゴムを100質量部を用いると共に、高誘電性フィラーとしてPZT50質量部を用いた他は、実施例1−1と同様な方法によって膜厚250μm、比誘電率6、引張最大伸200%のゴム薄膜を作製した。これを誘電性エラストマー層1として用いた。
【0134】
この誘電性エラストマー層1と実施例4−1と同じ導電性エラストマー層2を実施例1−1と同様な方法によって接合して、図1に示す構造の発電素子を得た。
その後、このようにして得られた実施例4−1および比較例4−1の発電素子の上下面に、それぞれ薄片状の銅電極を介して微小電流計を接続した。次に、この発電素子の一端を固定し、他端を50%力学的に伸長させた後、力を除去し、この状態で電流値を測定した。この測定値から比較例4−1を「1」とした相対値を「比発電量」として算出した。この結果も表5に示す。
【0135】
【表5】

【0136】
この結果、表5の下欄に示すように、実施例4−1の発電素子は、伸長等の機械的作用があっても、比較例4−1の発電素子と比べて優れた発電量を発揮することができた。
[実施例5−1〜5−2、比較例5−1]
(実施例5−1、5−2)
図1に示す構造の発電素子を以下の方法で作製した。
以下の表6に示すように、ベースゴムとして架橋剤を8質量部、反応性液状アクリルゴムを100質量部、高誘電性フィラーとしてピリジニウム系イオン液体(広栄化学工業株式会社製(IL−P14))10質量部を用いた他は、実施例1−1と同様な方法によって膜厚250μm、硬さ、デュロメータA33のゴム薄膜を作製した。これを誘電性エラストマー層1として用いた。
【0137】
また、ベースゴムとして架橋剤を8.0質量部、反応性液状アクリルゴムを100質量部、導電性フィラーとしてカーボンナノファイバー(CNF)35質量部を用いた他は、実施例1と同様な方法によって、体積固有抵抗6×10−1Ω・cm、硬さ、デュロメータA40の物性を有するゴム薄膜を作製した。これを導電性エラストマー層(電極層)2として使用した。
【0138】
これらを実施例1−1と同様な方法によって接合して、図1に示す構造の発電素子を得た。
その後、実施例5−1の発電素子に対しては、両導電性エラストマー層(電極層)2間に外部電圧(150V)を30分間印加する処理を行った。実施例5−2にはこのような外部電圧の印加処理を行わなかった。
【0139】
(比較例5−1)
以下の表6に示すように、誘電性エラストマー層1を、架橋剤を8質量部含む反応性液状アクリルゴムで構成した他は、実施例5−1および5−2と同様な方法によって図1に示す構造を得た。なお、比較例5−1でも外部電圧の印加処理を行っていない。
【0140】
このようにして得られた実施例5−1、5−2の発電素子と、比較例5−1の構造体について、発電素子としての機能を図24に示す測定回路を用いて評価した。
具体的には、試験体の導電性エラストマー層2間の電位差を測る際に、以下の(1) 〜(3) からなる放電回復処理を繰り返し行った。
【0141】
<放電回復処理>
(1) 両電極(導電性エラストマー層)2を短絡させ、電位差を0Vにする。
(2) その後、両電極(導電性エラストマー層)2間の短絡を解消した状態で、大気中に所定時間保存する。
(3) 両電極(導電性エラストマー層)2間の電位差の時間変化を調査する。
【0142】
【表6】

【0143】
この結果、表6の下欄に示すように、比較例5−1の構造体では、両導電性エラストマー層2間に電位差を得ることができなかった。これに対し、実施例5−1および5−2の発電素子は、放電後大気中に保存することにより、両導電性エラストマー層2間に電位差が得られることが分かった。
【0144】
また、図26は、実施例5−1および5−2の発電素子の電位差(電圧V)の経時変化を示したグラフであるが、時間が経過することによってその電位差が徐々に大きくなることも分かる。
また、作製時に外部電圧を印加した実施例5−1の発電素子は、外部電圧を印加しなかった実施例5−2の発電素子と比較して、放電回復時の発生電圧値が大幅に上昇することも分かった。
【0145】
[実施例6−1〜6−5、比較例6−1]
(実施例6−1〜6−5)
図1に示す構造の発電素子以下の方法で作製した。
先ず、以下の表7の上段に示すように、アクリルゴム架橋剤(トーヨーポリマ株式会社製ポリネート70)を8質量部添加した反応性塊状アクリルゴム(ACM)(株式会社トウペ製トアアクロンSA−310)をベースゴムとし、このベースゴムに、有機添加剤としてノクセラーTMU(大内新興化学工業株式会社製トリメチルチオウレア)(実施例6−7〜6−3)またはノクセラーEUR(大内新興化学工業株式会社製1,3−ジエチルチオウレア)(実施例6−4)またはノクセラーTMTU(東京化成工業株式会社製テトラメチルジエチルチオウレア)(実施例6−5)を添加し、Kコントロールコーター(松尾製作所製)を用い、半硬化状態のエラストマー層を作製した。これを誘電性エラストマー層1として用いた。その膜厚、硬さ、破断伸びの各測定結果を同表に示した。
【0146】
次に、同表の下段に示すように、反応性塊状アクリルゴム(ACM)(株式会社トウペ製トアアクロンSA−310)をベースゴムとし、このベースゴムに、導電性フィラーとしてCNF(カーボンナドファイバー:昭和電工株式会社製VGCF)を30質量部添
加すると共に、イオン液体(ピリジニウム系イオン液体、広栄化学工業株式会社製
IL−P14)を10質量部添加してKコントロールコーター(松尾製作所製)を用い、半硬化状態のエラストマー層を作製した。これを導電性エラストマー層(電極層)2として用いた。その膜厚、硬さ、破断伸びの各測定結果を同表に示した。
【0147】
このようにして得られた誘電性エラストマー層1と導電性エラストマー層2を用い、一対の導電性エラストマー層2の間に誘電性エラストマー層1を配置し、加圧加熱成形を行って図1に示す構造の発電素子を得た。なお、この加圧加熱時に、誘電性エラストマー層1と導電性エラストマー層2の架橋処理が行われた。
【0148】
(比較例6−1)
有機添加剤を一切添加しない以外は実施例6−1と同じ方法で誘電性エラストマー層1を作製した。また、イオン液体を一切添加しない以外は実施例6−1と同じ方法で導電性エラストマー層2を作製した。これらを用い、一対の導電性エラストマー層2の間に誘電性エラストマー層1を配置し、加圧加熱成形を行って図1に示す構造体を得た。なお、この加圧加熱時に、誘電性エラストマー層1と導電性エラストマー層2の架橋処理が行われた。
【0149】
このようにして得られた実施例6−1〜6−5の発電素子と、比較例6−1の構造体について、発電素子としての機能を図24に示す測定回路を用いて評価した。この評価は、両導電性エラストマー層2に導電性接着剤(藤倉化成株式会社製ドータイトXA−819A)で電極を接着し、この電極に電圧波形測定装置(横川電気株式会社製)を接続して行った。その結果を、表7の最下欄(発電電圧)および図27(電圧波形)に示す。
【0150】
【表7】

【0151】
この結果、比較例6−1の構造体では全く発電が行われなかったのに対し、実施例6−1〜6−5の発電素子では、いずれも150mV以上の優れた発電能を発揮できることが分かった。また、図27は、実施例6−1の発電素子における電圧波形を示したものであり、安定した起電力を発揮できることが分かった。
【0152】
[実施例7−1〜7−2、比較例7−1]
図19および20に示す発電素子600を以下の方法で作製した。
以下の表8に示すように、反応性塊状アクリルゴム(ACM)(株式会社トウペ製トアアクロンSA−310)をベースゴムとし、このベースゴムをメチルエチルケトンで溶解し、導電性フィラーとしてカーボンナノファイバー(昭和電工株式会社製VCGFR−H)を添加、攪拌してアクリル溶液を作製した。
この溶液を用いてKコントロールコーター(松尾製作所製)により薄膜を作製し、図21に示す導電性エラストマー部材20を作製した。なお、この導電性エラストマー部材20の導電率は、5.0×10-1Ω・cmであり、カーボンナノファイバーの添加によって導電率の向上効果が確認できた。
【0153】
次に、図19および図20に示すように、このようにして得られた導電性エラストマー部材20の一端(実施例7−1)および全部(実施例7−2)にイオン液体(広栄化学工業株式会社IL−P14)を含浸させることで、発電素子600を作製した。この発電素子600を、大気中で1時間保存後、その両端に銅電極40を介して電圧波形測定装置(横川電気株式会社製)を接続してその電圧波形を測定を行った。また、図21に示すように、イオン液体を一切含浸させていない導電性エラストマー部材20(比較例7−1)についても、同様にして電圧測定を行い、その結果を同表の下欄および図28に示す。
【0154】
【表8】

【0155】
この結果、イオン液体を一切含浸させていない比較例7−1の導電性エラストマー部材20は、全く起電力が得られなかったのに対し、導電性エラストマー部材20にイオン液体を含浸させた実施例7−1および7−2の発電素子600は起電力が得られた。特に、導電性エラストマー部材20の一端にのみイオン液体を塗布した実施例7−1の発電素子600では、図28に示すように優れた起電力が得られた。このように、連続的な層においても、少なくともその一部にイオン液体を含有させることにより、起電力を向上できる。
【0156】
[実施例8−1〜8−2]
実施例8−1〜8−2の発電素子は図2に示す構造であり、表9に示す構成の誘電性エラストマー層1および導電性エラストマー層(電極層)2と、PTFE(ポリテトラフルオロエチレン)シートからなる絶縁体層3とを有する。
この発電素子を、実施例3−1と同じ方法で作製した後、外部から150Vの電圧を30分間印可する処理を行った。このようにして得られた実施例8−1、8−2の発電素子の機能を、図24に示す測定回路を用いて評価した。
具体的には、発電素子の導電性エラストマー層2間の電位差を測る際に、以下の(1) 〜(3) からなる放電回復処理を、5サイクル繰り返して行った。
【0157】
<放電回復処理>
(1) 両電極(導電性エラストマー層)2を短絡させ、電位差を0Vにする。
(2) その後、両電極(導電性エラストマー層)2間の短絡を解消した状態で、減圧雰囲気(1×10-1Pa)中(実施例8−1)または大気中(実施例8−2)に所定時間保存する。
(3) 両電極(導電性エラストマー層)2間の電位差の時間変化を調査する。
【0158】
【表9】

【0159】
この結果、表9の下欄に示すように、減圧下で保存した実施例8−1の発電素子は、大気中で保存した実施例8−2の発電素子と同じ発生電圧(400mV)が得られた。
【0160】
[実施例9−1〜9−3、比較例9−1]
図2に示す構造の発電素子と、図5、図6、図8に示す構造の発電素子積層体を以下の方法で作製した。
表10に示すように、ベースゴムとしてアクリルゴム架橋剤(トーヨーポリマー株式会社製 ポリネート70)を8質量部、反応性塊状アクリルゴム(ACM)(株式会社トウペ製 トアアクロンSA−310)100質量部からなるものを用い、このベースゴムにピリジニウム系イオン液体(広栄化学工業株式会社製 IL−P14)を10質量部添加した混合溶液を調整し、Kコントロールコーター(松尾製作所製)を用い、半硬化状態のゴム薄膜を作成した。これを誘電性エラストマー層1,10として使用した。この膜厚および硬さの測定結果は表10に示す通りである。
【0161】
次に、同じく表10に示すように、ベースゴムとして同じくアクリルゴム架橋剤(トーヨーポリマー株式会社製 ポリネート70)を8質量部、反応性塊状アクリルゴム(ACM)(株式会社トウペ製 トアアクロンSA−310)100質量部を用い、これに導電性フィラー(CNF)を35質量部分散させた混合物を調整し、Kコントロールコーター(松尾製作所製)を用い、半硬化状態の薄膜を作成した。これを導電性エラストマー層(電極層)2,20として使用した。この膜厚および硬さの測定結果は以下の表10に示す通りである。
【0162】
次に、このようにして得られた誘電性エラストマー層10と導電性エラストマー層(電極層)20とPTFE(ポリテトラフルオロエチレン)からなる絶縁層(電極設置材)3を、図5および6に示すように重ね合わせ接着して、発電素子積層体300を作製した(実施例9−1、9−2)。また、誘電性エラストマー層1を1対の電極層2で挟み、負極側にPTFE(ポリテトラフルオロエチレン)からなる絶縁層3を配置し、これらの間を接着することで、図2に示す構造の発電素子を作製した(実施例9−3)。
【0163】
また、誘電性エラストマー層10と導電性エラストマー層(電極層)20とPTFE(ポリテトラフルオロエチレン)からなる絶縁層3を、図8に示すように重ね合わせ接着して、発電素子積層体300を作製した(比較例9−1)。
実施例9−1の発電素子積層体300については、図5に示すように、導電線90で2個の発電素子200を並列に接続し、電極層20A,20Bに端子80を接続して、発生電圧および発生電流を測定した。この測定は、発電素子積層体300を作製してから1週間経過した後に行った。
【0164】
実施例9−2の発電素子積層体300については、図6に示すように、導電線90で5個の発電素子200を並列に接続し、電極層20A,20Bに端子80を接続して、発生電圧および発生電流を測定した。この測定は、発電素子積層体300を作製してから1週間経過した後に行った。
実施例9−3の発電素子については、作製後1週間経過した後に、両導電性エラストマー層(電極層)2間の発生電圧および発生電流を測定した。
【0165】
比較例9−1の発電素子積層体300については、図8に示すように、導電線90で2個の発電素子200を並列に接続し、電極層20A,20Bに端子80を接続して、発生電圧および発生電流を測定した。この測定は、発電素子積層体300を作製してから1週間経過した後に行った。
次に、実施例9−3の発電素子の発生電圧、発生電流をそれぞれ「1」とした時の、実施例9−1、9−2、比較例9−1の発電素子積層体300の発生電圧、発生電流の相対値を、「比発生電圧、比発生電流」として算出した。その結果も表10の下欄に示す。
【0166】
【表10】

【0167】
表10の結果から分かるように、図5に示す構造の実施例9−1の発電素子積層体および図6に示す構造の実施例9−2の発電素子積層体の発生電流は、実施例9−3の発電素子200の発生電流の2倍および5倍(それぞれの誘電性エラストマー層10の積層枚数と同じ倍数)の値を示していた。これに対し、図8に示す構造の比較例9−1の発電素子積層体300は、発生電圧および発生電圧共に、実施例9−3の発電素子200の約1/10と低い値であった。
【符号の説明】
【0168】
1,10 誘電性エラストマー層
2,20a 導電性エラストマー層(電極層)
20 導電性エラストマー部材
3,31〜34 絶縁体層
100 発電素子
200 発電素子
300 発電素子積層体
400 発電装置
500 操作キー
600 発電素子

【特許請求の範囲】
【請求項1】
一対の電極層と、その間に配置された中間層と、からなる発電素子であって、
前記中間層が、イオン液体を含有するエラストマーからなる誘電性エラストマー層であることを特徴とする発電素子。
【請求項2】
前記電極層が、導電性フィラーを含有するエラストマーからなる導電性エラストマー層である請求項1記載の発電素子。
【請求項3】
前記導電性エラストマー層がイオン液体を含有する請求項2記載の発電素子。
【請求項4】
前記エラストマーがゴムである請求項1〜3のいずれか1項に記載の発電素子。
【請求項5】
前記ゴムが酸素原子を含む分子構造を有する請求項4記載の発電素子。
【請求項6】
前記ゴムがアクリルゴムもしくはシリコンゴムである請求項4記載の発電素子。
【請求項7】
前記誘電性エラストマー層を構成するエラストマーをなすゴムと前記導電性エラストマー層を構成するエラストマーをなすゴムが同じである請求項4記載の発電素子。
【請求項8】
前記誘電性エラストマー層の厚さが10μm〜2mmである請求項1乃至7のいずれか1項に記載の発電素子。
【請求項9】
前記導電性エラストマー層の厚さが5μm〜1mmである請求項2乃至8のいずれか1項に記載の発電素子。
【請求項10】
前記イオン液体が、ピリジニウム系イオン液体もしくはイミダゾリウム系イオン液体である請求項1乃至9のいずれか1項に記載の発電素子。
【請求項11】
前記電極層の前記誘電性エラストマー層とは反対側が絶縁体で被覆されている請求項1乃至10のいずれか1項に記載の発電素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate


【公開番号】特開2011−49073(P2011−49073A)
【公開日】平成23年3月10日(2011.3.10)
【国際特許分類】
【出願番号】特願2009−197387(P2009−197387)
【出願日】平成21年8月27日(2009.8.27)
【出願人】(000004204)日本精工株式会社 (8,378)
【Fターム(参考)】