説明

白金族金属担持触媒、過酸化水素の分解処理水の製造方法、溶存酸素の除去処理水の製造方法及び電子部品の洗浄方法

【解決課題】SVが2000h−1を超えるような大きなSVで通水しても、更に、触媒の充填層高を薄くしても過酸化水素の分解除去又は溶存酸素の除去を可能にする、高性能触媒を提供すること。
【解決手段】有機多孔質アニオン交換体に、平均粒子径1〜100nmの白金族金属のナノ粒子が、担持されている白金族金属担持触媒であり、該有機多孔質アニオン交換体は、互いにつながっているマクロポアとマクロポアの壁内に平均直径が乾燥状態で1〜1000μmの共通の開口(メソポア)を有する連続気泡構造を有し、全細孔容積が1〜50ml/gであり、アニオン交換基が均一に分布しており、アニオン交換容量が0.5〜5.0mg当量/g乾燥多孔質体であること、該白金族金属の担持量が、乾燥状態で0.004〜20重量%であること、を特徴とする白金族金属担持触媒。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発電所用水や半導体製造などの精密加工洗浄用水に使用される、超純水中の過酸化水素や溶存酸素の様な酸化性物質を除去するための白金族金属担持触媒に関するものである。
【背景技術】
【0002】
発電所で用いられる用水中の溶存酸素は、配管や熱交換器等の部材の腐食を引き起こすことが知られており、特に、原子力発電所の一次系及び二次系においては、溶存酸素を極力低減する必要がある。
【0003】
また、半導体製造産業においては、不純物を高度に除去した超純水を用いてシリコンウエハの洗浄等が行われている。超純水は、一般に原水(河川水、地下水、工業用水等)中に含まれる懸濁物質や有機物の一部を前処理工程で除去した後、その処理水を一次純水系システム及び二次純水系システム(サブシステム)で順次処理することによって製造され、ウエハ洗浄を行うユースポイントに供給される。このような超純水は、不純物の定量も困難であるほどの純度を有するが、全く不純物を有していないわけではない。
【0004】
例えば、超純水中に含まれる溶存酸素は、シリコンウエハの表面に自然酸化膜を形成する。自然酸化膜がウエハ表面に形成されると、低温でのエピタキシャルSi薄膜の成長を妨げたり、ゲート酸化膜の膜圧及び膜質の精密制御の妨げとなったり、コンタクトホールのコンタクト抵抗の増加原因となったりする。そのため、ウエハ表面の自然酸化膜の形成は、極力抑制する必要がある。
【0005】
そこで、超純水製造装置においては、特に一次純水系システムにおいて、脱気装置を用いて溶存酸素を低減している。この脱気装置により、二次純水系システム入り口における被処理水(一次純水)中の溶存酸素濃度は、通常、100μg/L以下にまで低減されている。更に、10μg/L以下に管理されている場合もある。
【0006】
前述した超純水の製造では、一般に、二次純水系システムに設置した紫外線酸化装置によって有機物の分解を行っている。紫外線酸化処理の過程では過酸化水素が副生するため、紫外線酸化装置の処理水中には、過酸化水素が残存しているのが一般的である。この過酸化水素は、二次純水系システムのポリッシャ工程で部分的に分解されて酸素を生成し、処理水中の溶存酸素濃度を上昇させてしまう。
【0007】
そこで、紫外線酸化装置の処理水中に含まれる過酸化水素を、合成炭素系粒状吸着剤を用いて吸着除去する方法が提案されている(特開平9−29233号公報)。この方法によれば、紫外線酸化装置の処理水中に残存する過酸化水素自体を除去することから、ウエハ表面の自然酸化皮膜の形成を抑制することが可能である。しかし、この方法では、所定の過酸化水素除去率を達成するためには、多量の合成炭素系粒状吸着剤を充填した大型の吸着塔が必要であった。
【0008】
また、紫外線酸化装置の処理水中に含まれる過酸化水素を、白金族金属ナノコロイド粒子を担体に担持させた触媒によって分解する方法が提案されている(特開2007−185587号公報)。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開平9−29233号公報(特許請求の範囲)
【特許文献2】特開2007−185587号公報(特許請求の範囲)
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、特開2007−185587号公報に記載の触媒は、通水空間速度(SV)が100〜2000h−1と比較的低い領域でしか使用できず、SVが2000h−1を越えると、過酸化水素の分解除去が不十分になるといった欠点を有していた。
【0011】
従って、本発明の目的は、SVが2000h−1を超えるような大きなSVで通水しても過酸化水素の分解除去又は溶存酸素の除去が可能であり、更に、触媒の充填層高を薄くしても過酸化水素の分解除去又は溶存酸素の除去を可能にする、高性能触媒を提供することにある。
【課題を解決するための手段】
【0012】
かかる実情において、本発明者らは鋭意検討を行った結果、特開2002−306976号公報記載の方法で得られたモノリス状有機多孔質体にアニオン交換基を導入したモノリス状有機多孔質アニオン交換体(以下、「モノリスアニオン交換体」とも言う。)に、平均粒子径1〜100nmの白金族金属のナノ粒子を担持した白金族金属担持触媒は、SVが2000h−1を超えるような大きなSVで通水しても過酸化水素の分解除去又は溶存酸素の除去が可能であり、更に、触媒の充填層高を薄くしても過酸化水素の分解除去又は溶存酸素の除去が可能であることを見出し、本発明を完成するに至った。
【0013】
すなわち、本発明(1)は、有機多孔質アニオン交換体に、平均粒子径1〜100nmの白金族金属のナノ粒子が、担持されている白金族金属担持触媒であり、
該有機多孔質アニオン交換体は、互いにつながっているマクロポアとマクロポアの壁内に平均直径が乾燥状態で1〜1000μmの共通の開口(メソポア)を有する連続気泡構造を有し、全細孔容積が1〜50ml/gであり、アニオン交換基が均一に分布しており、アニオン交換容量が0.5〜5.0mg当量/g乾燥多孔質体であること、
該白金族金属の担持量が、乾燥状態で0.004〜20重量%であること、
を特徴とする白金族金属担持触媒を提供するものである。
【0014】
また、本発明(2)は、本発明(1)の白金族金属担持触媒に、過酸化水素を含有する被処理水を接触させて、該過酸化水素を含有する被処理水中の過酸化水素を分解除去することを特徴とする過酸化水素の分解処理水の製造方法を提供するものである。
【0015】
また、本発明(3)は、本発明(2)の過酸化水素の分解処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄することを特徴とする電子部品の洗浄方法を提供するものである。
【0016】
また、本発明(4)は、本発明(1)の白金族金属担持触媒の存在下で、水素と酸素を含有する被処理水中の溶存酸素とを反応させて水を生成させることにより、該酸素を含有する被処理水から溶存酸素を除去することを特徴とする溶存酸素の除去処理水の製造方法を提供するものである。
【0017】
また、本発明(5)は、本発明(4)の溶存酸素の除去処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄することを特徴とする電子部品の洗浄方法を提供するものである。
【発明の効果】
【0018】
本発明の白金族金属担持触媒によれば、SVが2000h−1を超えるような大きなSVで通水しても過酸化水素の分解除去又は溶存酸素の除去が可能であり、更に、触媒の充填層高を薄くしても過酸化水素の分解除去又は溶存酸素の除去が可能である。
【図面の簡単な説明】
【0019】
【図1】参考例1のモノリスのSEM画像である。
【図2】実施例1のパラジウムナノ粒子担持触媒におけるパラジウムナノ粒子の分散状態を示したTEM画像である。
【図3】本発明の電子部品の洗浄方法(I)の第一の形態例の模式的なフロー図である。
【図4】本発明の電子部品の洗浄方法(I)の第二の形態例の模式的なフロー図である。
【発明を実施するための形態】
【0020】
本発明の白金族金属担持触媒では、白金族金属ナノ粒子の担体は、モノリス状有機多孔質アニオン交換体である。本明細書中、「モノリス状有機多孔質体」を単に「モノリス」と、「モノリス状有機多孔質アニオン交換体」を単に「モノリスアニオン交換体」とも言う。
【0021】
<モノリスアニオン交換体の説明>
本発明の白金族金属担持触媒において、白金族金属の担体となるモノリスアニオン交換体は、モノリスにアニオン交換基を導入することで得られるものである。本発明に係るモノリスアニオン交換体は、気泡状のマクロポア同士が重なり合い、この重なる部分が乾燥状態で平均直径1〜1000μm、好ましくは10〜200μm、特に好ましくは20〜100μmの共通の開口(メソポア)となる連続マクロポア構造体であり、その大部分がオープンポア構造のものである。オープンポア構造は、水を流せば該マクロポアと該メソポアで形成される気泡内が流路となる。マクロポアとマクロポアの重なりは、1個のマクロポアで1〜12個、多くのものは3〜10個である。モノリスアニオン交換体のメソポアの平均直径は、モノリスにアニオン交換基を導入する際、モノリス全体が膨潤するため、モノリスのメソポアの平均直径よりも大となる。メソポアの乾燥状態での平均直径が1μm未満であると、通水時の圧力損失が著しく大きくなってしまうため好ましくなく、メソポアの乾燥状態での平均直径が1000μmを越えると、被処理水とモノリスアニオン交換体との接触が不十分となり、過酸化水素分解特性又は溶存酸素除去特性が低下してしまうため好ましくない。モノリスアニオン交換体の構造が上記のような連続気泡構造となることにより、マクロポア群やメソポア群を均一に形成できると共に、特開平8−252579号公報等に記載されるような粒子凝集型多孔質体に比べて、細孔容積や比表面積を格段に大きくすることができる。なお、本発明では、乾燥状態のモノリスの開口の平均直径及び乾燥状態のモノリスアニオン交換体の開口の平均直径は、水銀圧入法により測定される値である。また、水湿潤状態のモノリスアニオン交換体の開口の平均直径は、乾燥状態のモノリスアニオン交換体の開口の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態のモノリスアニオン交換体の直径がx1(mm)であり、その水湿潤状態のモノリスアニオン交換体を乾燥させ、得られる乾燥状態のモノリスアニオン交換体の直径がy1(mm)であり、この乾燥状態のモノリスアニオン交換体を水銀圧入法により測定したときの開口の平均直径がz1(μm)であったとすると、水湿潤状態のモノリスアニオン交換体の開口の平均直径(μm)は、次式「水湿潤状態のモノリスアニオン交換体の開口の平均直径(μm)=z1×(x1/y1)」で算出される。また、アニオン交換基導入前の乾燥状態のモノリスの開口の平均直径、及びその乾燥状態のモノリスにアニオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの開口の平均直径に、膨潤率を乗じて、水湿潤状態のモノリスアニオン交換体の開口の平均直径を算出することもできる。
【0022】
本発明に係るモノリスアニオン交換体の全細孔容積は、1〜50ml/g、好適には2〜30ml/gである。全細孔容積が1ml/g未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過水量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が50ml/gを超えると、機械的強度が低下して、特に高流速で通水した際にモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水とモノリスアニオン交換体およびそれに担持された白金族金属ナノ粒子との接触効率が低下するため、触媒効果も低下してしまうため好ましくない。全細孔容積は、従来の粒子状多孔質イオン交換樹脂では、せいぜい0.1〜0.9ml/gであるから、それを越える従来には無い1〜50ml/gの高細孔容積、高比表面積のものが使用できる。なお、本発明では、モノリス(モノリス、モノリスアニオン交換体)の全細孔容積は、水銀圧入法により測定される値である。また、モノリス(モノリス、モノリスアニオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。
【0023】
なお、本発明に係るモノリスアニオン交換体に水を透過させた際の圧力損失は、これを1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.005〜0.5MPa/m・LVが好ましく、0.005〜0.05MPa/m・LVであることが特に好ましい。
【0024】
本発明に係るモノリスアニオン交換体の乾燥状態での重量当りのアニオン交換容量は、0.5〜5.0mg当量/gである。乾燥状態での重量当りのアニオン交換容量が0.5mg当量/g未満であると、白金族金属のナノ粒子担持量が低下してしまい、過酸化水素分解特性又は溶存酸素除去特性が低下してしまうため好ましくない。一方、乾燥状態での重量当りのアニオン交換容量が5.0mg当量/gを超えると、イオン形の変化によるモノリスアニオン交換体の膨潤及び収縮の体積変化が著しく大きくなり、場合によっては、モノリスアニオン交換体にクラックや破砕が生じるため好ましくない。なお、本発明に係るモノリスアニオン交換体の水湿潤状態における体積当りのアニオン交換容量は特に限定されないが、通常、0.05〜0.5mg当量/mlである。なお、イオン交換基が表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。
【0025】
本発明に係るモノリスアニオン交換体において、連続マクロポア構造体の骨格を構成する材料は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜10モル%、好適には0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、10モル%を越えると、アニオン交換基の導入が困難になる場合があるため好ましくない。該ポリマー材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等の芳香族ビニルポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー等の架橋重合体が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続マクロポア構造形成の容易さ、アニオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい材料として挙げられる。
【0026】
本発明に係るモノリスアニオン交換体のアニオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基や、第三スルホニウム基、ホスホニウム基等が挙げられる。
【0027】
本発明に係るモノリスアニオン交換体において、導入されたアニオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。ここで言う「アニオン交換基が均一に分布している」とは、アニオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。アニオン交換基の分布状況は、対アニオンを塩化物イオン、臭化物イオンなどにイオン交換した後、EPMAを用いることで、比較的簡単に確認することができる。また、アニオン交換基が、モノリスの表面のみならず、多孔質体の骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。
【0028】
(モノリスアニオン交換体の製造方法)
本発明に係るモノリスアニオン交換体の製造方法としては、特に制限されず、アニオン交換基を含む成分を一段階でモノリスアニオン交換体にする方法、アニオン交換基を含まない成分によりモノリスを形成し、その後、アニオン交換基を導入する方法などが挙げられる。これらの方法のうち、アニオン交換基を含まない成分によりモノリスを形成し、その後、アニオン交換基を導入する方法は、モノリスアニオン交換体の多孔構造の制御が容易であり、アニオン交換基の定量的導入も可能であるため好ましい。特開2002−306976号公報記載の方法に準じた、製造方法の一例を以下示す。すなわち、当該モノリスアニオン交換体は、アニオン交換基を含まない油溶性モノマー、界面活性剤、水及び必要に応じて重合開始剤とを混合し、油中水滴型エマルジョンを得、これを重合させて多孔質体を形成し、その後、アニオン交換基を導入する。
【0029】
アニオン交換基を含まない油溶性モノマーとしては、四級アンモニウム基等のアニオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーを指すものである。これらモノマーの具体例としては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、イソプレン、クロロプレン、塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン、アクリロニトリル、メタクリロニトリル、酢酸ビニル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。ただし、本発明においては、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3〜10モル%、好適には0.3〜5モル%とすることが、後の工程でアニオン交換基を定量的に導入し、かつ、実用的に十分な機械的強度を確保できる点で好ましい。
【0030】
界面活性剤は、アニオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は一種単独又は二種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。また、必ずしも必須ではないが、多孔質体の気泡形状やサイズを制御するために、メタノール、ステアリルアルコール等のアルコール;ステアリン酸等のカルボン酸;オクタン、ドデカン、トルエン等の炭化水素;テトラヒドロフラン、ジオキサン等の環状エーテルを系内に共存させることもできる。
【0031】
また、多孔質体形成の際、必要に応じて用いられる重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、アゾビスシクロヘキサンニトリル、アゾビスシクロヘキサンカルボニトリル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム、テトラメチルチウラムジスルフィド等が挙げられる。ただし、場合によっては、重合開始剤を添加しなくても加熱のみや光照射のみで重合が進行する系もあるため、そのような系では重合開始剤の添加は不要である。
【0032】
アニオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサー、ホモジナイザー、高圧ホモジナイザーや、被処理物を混合容器に入れ、該混合容器を傾斜させた状態で公転軸の周りに公転させながら自転させることで、被処理物を攪拌混合する、所謂遊星式攪拌装置等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。これらの混合装置のうち、遊星式攪拌装置はW/Oエマルジョン中の水滴を均一に生成させることができ、その平均径を幅広い範囲で任意に設定できるため、好ましく用いられる。
【0033】
このようにして得られた油中水滴型エマルジョンを重合させる重合条件は、モノマーの種類、開始剤系により様々な条件が選択できる。例えば、重合開始剤としてアゾビスイソブチロニトリル、過酸化ベンゾイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30〜100℃で1〜48時間、加熱重合させればよく、開始剤として過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム等を用いたときには、不活性雰囲気下の密封容器内において、0〜30℃で1〜48時間重合させればよい。重合終了後、内容物を取り出し、イソプロパノール等の溶剤でソックスレー抽出し、未反応モノマーと残留界面活性剤を除去してモノリスを得る。
【0034】
このようにして得られたモノリスにアニオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、四級アンモニウム基を導入する方法としては、モノリスがスチレン−ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させ導入する方法;モノリスをクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させ導入する方法;モノリスにラジカル開始基や連鎖移動基を導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。これらの方法のうち、四級アンモニウム基を導入する方法としては、スチレン-ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合によりモノリスを製造し、三級アミンと反応させる方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するアニオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基や、第三スルホニウム基、ホスホニウム基等が挙げられる。
【0035】
<白金族金属担持触媒>
本発明の白金族金属担持触媒は、本発明に係るモノリスアニオン交換体に、白金族金属のナノ粒子が担持されている白金族金属担持触媒である。
【0036】
本発明に係る白金族金属とは、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金である。これらの白金族金属は、一種類を単独で用いても、二種類以上の金属を組み合わせて用いても良く、更に、二種類以上の金属を合金として用いても良い。これらの中で、白金、パラジウム、白金/パラジウム合金は触媒活性が高く、好適に用いられる。
【0037】
本発明に係る白金族金属のナノ粒子の平均粒子径は、1〜100nmであり、好ましくは1〜50nm、更に好ましくは1〜20nmである。平均粒子径が1nm未満であると、ナノ粒子が担体から脱離する可能性が高くなるため好ましくなく、一方、平均粒子径が100nmを超えると、金属の単位質量当たりの表面積が少なくなり触媒効果が効率的に得られなくなるため好ましくない。なお、ナノ粒子の平均粒子径が上記範囲内の場合、表面プラズモン共鳴によりナノ粒子は強く着色するため、目視によっても確認可能である。
【0038】
乾燥状態の本発明の白金族金属担持触媒中の白金族金属ナノ粒子の担持量((白金族金属ナノ粒子/乾燥状態の本発明の白金族金属担持触媒)×100)は、0.004〜20重量%、好ましくは0.005〜15重量%である。白金族金属ナノ粒子の担持量が0.004重量%未満であると、過酸化水素分解効果又は溶存酸素の除去効果が不十分になるため好ましくない。一方、白金族金属ナノ粒子の担時量が20重量%を超えると、水中への金属溶出が認められるようになるため好ましくない。
【0039】
本発明の白金族金属担持触媒の製造方法には特に制約はなく、公知の方法により、本発明に係るモノリスアニオン交換体に、白金族金属のナノ粒子を担持させることにより、本発明の白金族金属担持触媒を得ることができる。例えば、乾燥状態の本発明に係るモノリスアニオン交換体を塩化パラジウムの塩酸水溶液に浸漬し、塩化パラジウム酸アニオンをイオン交換によりモノリスアニオン交換体に吸着させ、次いで、還元剤と接触させてパラジウム金属ナノ粒子を本発明に係るモノリスアニオン交換体に担持する方法や、本発明に係るモノリスアニオン交換体をカラムに充填し、塩化パラジウムの塩酸水溶液を通液して塩化パラジウム酸アニオンをイオン交換により本発明に係るモノリスアニオン交換体に吸着させ、次いで、還元剤を通液してパラジウム金属ナノ粒子を本発明に係るモノリスアニオン交換体に担持する方法等が挙げられる。用いられる還元剤にも特に制約はなく、メタノール、エタノール、イソプロパノール等のアルコールや、ギ酸、シュウ酸、クエン酸、アスコルビン酸等のカルボン酸、アセトン、メチルエチルケトン等のケトン、ホルムアルデヒドやアセトアルデヒド等のアルデヒド、水素化ホウ素ナトリウム、ヒドラジン等が挙げられる。
【0040】
本発明の白金族金属担持触媒において、白金族金属ナノ粒子の担体である本発明に係るモノリスアニオン交換体のイオン形は、白金族金属ナノ粒子を担持した後は、通常、塩化物形のような塩形となる。本発明では、このような塩形のものを、過酸化水素分解用又は溶存酸素除去用の触媒として用いても良い。また、本発明の白金族金属担持触媒は、これに限定されるものではなく、本発明に係るモノリスアニオン交換体のイオン形を、OH形に再生したものであっても良い。そして、これらのうち、本発明に係るモノリスアニオン交換体のイオン形がOH形であることが、高い触媒効果が得られるため好ましい。白金族金属ナノ粒子を担持した後のモノリスアニオン交換体のOH形への再生方法には特に制限はなく、水酸化ナトリウム水溶液を通液する等の公知の方法を用いればよい。
【0041】
<本発明の過酸化水素の分解処理水の製造方法>
本発明の過酸化水素の分解処理水の製造方法は、本発明の白金族金属担持触媒に、過酸化水素を含有する被処理水を接触させて、過酸化水素を含有する被処理水中の過酸化水素を分解除去する過酸化水素の分解処理水の製造方法である。
【0042】
過酸化水素を含有する被処理水は、過酸化水素を含有するものであれば、特に制限されず、例えば、半導体製造等の電子部品の製造及び電子部品の製造器具を洗浄するための超純水の製造において、その中の種々の工程により生じる水が挙げられ、具体的には、水中の有機物を分解するための紫外線酸化処理工程を行った後の水が挙げられる。また、過酸化水素を含有する被処理水としては、他には、用廃水系に過酸化水素を添加し、酸化、還元、殺菌、洗浄を行った処理液又は処理水やこれらの処理液又は処理水を用いて処理を行った後の廃液又は排水が挙げられる。例えば、半導体製造工程から排出される過酸化水素を含む洗浄排水、半導体製造工程から排出される有機物を含む洗浄排水を超純水として回収再利用するために、過酸化水素の存在下に紫外線を照射し有機物を酸化分解して得られる処理水、フェントン試薬を用いて有機物を分解して得られる処理水、逆浸透膜、限外ろ過膜等を過酸化水素で殺菌又は洗浄した後の排水、6価クロムを含有する排水を過酸化水素で還元処理して得られる処理水等が挙げられる。
【0043】
過酸化水素を含有する被処理水中の過酸化水素濃度は、特に制限されないが、通常、0.01〜100mg/Lである。超純水製造のサブシステムでは、通常、過酸化水素濃度は、10〜50μg/Lである。過酸化水素濃度が100mg/Lを超えると、母体であるモノリスアニオン交換体の劣化が進み易い。
【0044】
本発明の白金族金属担持触媒に、過酸化水素を含有する被処理水を接触させる方法としては、特に制限されず、例えば、触媒充填塔に、本発明の白金族金属担持触媒を充填し、触媒充填塔に、過酸化水素を含有する被処理液を供給することにより、本発明の白金族金属担持触媒に、過酸化水素を含有する被処理水を通液する方法等が挙げられる。
【0045】
上記方法の場合、本発明の白金族金属担持触媒に、過酸化水素を含有する被処理水を、SV=2000〜20000h−1、好ましくはSV=5000〜10000h−1で通水することができる。本発明の白金族金属担持触媒を用いると、SVが2000h−1を超えるような大きなSVで被処理水を通水しても、過酸化水素の分解除去が可能である。更に、SVが10000h−1であっても、本発明の白金族金属担持触媒を用いると、過酸化水素の分解が可能であり、本発明の白金族金属担持触媒は、粒子状アニオン交換樹脂に白金族金属ナノ粒子を担持した従来の担持触媒の処理限界を大きく上回る、卓越した性能を示す。本発明の白金族金属担持触媒への過酸化水素を含有する被処理水の通水速度は、特に制限されないが、好ましくはSV=2000〜20000h−1、特に好ましくはSV=5000〜10000h−1である。なお、本発明の白金族金属担持触媒は、過酸化水素分解能力が著しく高いため、あえて通水速度をSV=2000h−1未満の領域とする必要はないが、通水速度をSV=2000h−1未満の領域としてもよく、通水速度をSV=2000h−1未満の領域とした場合も、本発明の白金族金属担持触媒は、優れた過酸化水素分解能力を発揮する。一方、SVが20000h−1を超えると、通水差圧が大きくなり過ぎる傾向にある。
【0046】
更に、本発明の白金族金属担持触媒は、過酸化水素分解能力が著しく高いため、触媒の充填層高を薄くしても過酸化水素の分解除去が可能である。
【0047】
本発明の過酸化水素の分解処理水の製造方法を行い得られる処理水中の過酸化水素濃度は、1μg/L以下であることが好ましい。
【0048】
本発明の電子部品の洗浄方法(I)は、本発明の過酸化水素の分解処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄する電子部品の洗浄方法である。
【0049】
本発明の電子部品の洗浄方法(I)の形態例について、図3及び図4を参照して説明する。図3は、本発明の電子部品の洗浄方法(I)の第一の形態例の模式的なフロー図であり、図4は、本発明の電子部品の洗浄方法(I)の第二の形態例の模式的なフロー図である。
【0050】
図3に示すように、本発明の電子部品の洗浄方法(I)の第一の形態例は、オゾンを含有する水(以下、オゾン含有水とも記載する。)に被洗浄物を接触させて、被洗浄物を洗浄するための第1工程21と、水素を含有する水(以下、水素含有水とも記載する。)に被洗浄物を接触させて、500kHz以上の振動を与えながら被洗浄物を洗浄する第2工程22と、フッ化水素酸及び過酸化水素を含有する水に被洗浄物を接触させて、被洗浄物を洗浄するための第3工程23と、水素含有水に被洗浄物を接触させて、500kHz以上の振動を与えながら被洗浄物を洗浄する第4工程24と、を有する。
【0051】
第1工程21に供給される洗浄水は、超純水32にオゾンを溶解させて調製されたオゾン含有水である。そして、超純水は、その製造工程で、紫外線酸化処理等がされているので、過酸化水素を含有している。そこで、本発明の電子部品の洗浄方法(I)の第一の形態例では、超純水32にオゾン33を溶解させる前に、超純水32を被処理水として本発明の過酸化水素の分解処理水の製造方法を行う過酸化水素除去工程25を行い、得られた処理水にオゾン33を溶解させて、第1工程21の洗浄水として供給する。
【0052】
また、第2工程22に供給される洗浄水は、超純水32に水素を溶解させて調製された水素含有水である。そこで、本発明の電子部品の洗浄方法(I)の第一の形態例では、超純水32に水素34を溶解させる前に、超純水32を被処理水として本発明の過酸化水素の分解処理水の製造方法を行う過酸化水素除去工程26を行い、得られた処理水に水素34を溶解させて、第2工程22の洗浄水として供給する。本発明の電子部品の洗浄方法(I)の第一の形態例では、第4工程24も同様に、超純水32に水素36を溶解させる前に、超純水32を被処理水として本発明の過酸化水素の分解処理水の製造方法を行う過酸化水素除去工程28を行い、得られた処理水に水素36を溶解させて、第4工程24の洗浄水として供給する。なお、水素34又は36を溶解させる時期は、過酸化水素除去工程26又は28の前段であってもよい。
【0053】
また、本発明の電子部品の洗浄方法(I)の第一の形態例では、超純水32を被処理水として本発明の過酸化水素の分解処理水の製造方法を行う過酸化水素除去工程27を行い、得られた処理水にフッ化水素酸及び過酸化水素35を溶解させて、得られたフッ化水素酸及び過酸化水素を含有する水を、第3工程23の洗浄水として供給することもできる。
【0054】
そして、洗浄前の電子部品20aを被洗浄物として、第1工程21〜第4工程24を順に行い、洗浄後の電子部品30aを得る。
【0055】
図4に示すように、本発明の電子部品の洗浄方法(I)の第二の形態例は、硫酸及び過酸化水素を含有する液に被洗浄物を接触させて、被洗浄物を洗浄するための第1工程41と、超純水でリンスする第2工程42と、フッ化水素酸を含有する水(希フッ酸)に被洗浄物を接触させて、被洗浄物を洗浄するための第3工程43と、超純水でリンスする第4工程44と、アンモニア及び過酸化水素を含有する水に被洗浄物を接触させて、被洗浄物を洗浄するための第5工程45と、超純水でリンスする第6工程46と、加熱した超純水に被洗浄物を接触させて、被洗浄物を洗浄するための第7工程47と、超純水でリンスする第8工程48と、塩酸及び過酸化水素を含有する水に被洗浄物を接触させて、被洗浄物を洗浄するための第9工程49と、超純水でリンスする第10工程50と、フッ化水素酸を含有する水(希フッ酸)に被洗浄物を接触させて、被洗浄物を洗浄するための第11工程51と、超純水でリンスする第12工程52と、を有する。
【0056】
図4中の第3、5、9及び11工程に供給される洗浄水63、65、69及び71は、超純水に各工程で必要な薬剤を溶解させた水である。そこで、本発明の電子部品の洗浄方法(I)の第二の形態例では、図3に示す本発明の電子部品の洗浄方法(I)の第一の形態例と同様に、超純水に各工程で必要な薬剤を溶解させる前に、超純水を被処理水として本発明の過酸化水素の分解処理水の製造方法を行う過酸化水素除去工程を行い、得られた処理水に各工程で必要な薬剤を溶解させて、各工程の洗浄水(洗浄液)として供給する。
【0057】
また、図4中の第2、4、6、7、8、10及び12工程に供給される洗浄水62、64、66、67、68、70及び72は、超純水である。そこで、本発明の電子部品の洗浄方法(I)の第二の形態例では、超純水を被処理水として本発明の過酸化水素の分解処理水の製造方法を行う過酸化水素除去工程を行い、得られた処理水を、各工程の洗浄水として供給する。
【0058】
そして、洗浄前の電子部品20bを被洗浄物として、第1工程41〜第12工程52を順に行い、洗浄後の電子部品30bを得る。
【0059】
なお、上記のように、本発明において、本発明の過酸化水素の分解処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄するとは、本発明の過酸化水素の分解処理水の製造方法を行った直後の処理水で、電子部品又は電子部品の製造器具を洗浄するということだけではなく、電子部品又は電子部品の製造器具の洗浄に用いられる超純水を製造する工程のいずれか1箇所又は2箇所以上で、本発明の過酸化水素の分解処理水の製造方法を行い、超純水の製造工程の全工程を行って得られる超純水で、電子部品又は電子部品の製造器具を洗浄するということを意味する。
【0060】
<本発明の溶存酸素の除去処理水の製造方法>
本発明の溶存酸素の除去処理水の製造方法は、本発明の白金族金属担持触媒の存在下で、酸素を含有する被処理水中の溶存酸素と水素とを反応させて水を生成させることにより、酸素を含有する被処理水から溶存酸素を除去する溶存酸素の除去処理水の製造方法である。
【0061】
酸素を含有する被処理水は、酸素を含有するものであれば、特に制限されず、例えば、半導体製造等の電子部品の製造及び電子部品の製造器具等を洗浄するための超純水の製造に用いられる原水又はその製造工程中の種々の水等が挙げられ、具体的には、超純水製造サブシステムの循環水、例えば、紫外線酸化装置の出口水等が挙げられる。また、溶存酸素を含有する被処理水としては、他には、発電所で用いられる用水、各種工場で用いられるボイラー水や冷却水等が挙げられる。
【0062】
酸素を含有する被処理水中の溶存酸素濃度は、特に制限されないが、通常、0.01〜10mg/Lである。
【0063】
溶存酸素と反応させる水素の量は、特に制限されないが、酸素濃度の1倍当量〜10倍当量、好ましくは1.1倍当量〜5倍当量である。
【0064】
本発明の白金族金属担持触媒の存在下で、酸素を含有する被処理水中の溶存酸素と水素を反応させる方法としては、特に制限されず、例えば、触媒充填塔に、本発明の白金族金属担持触媒を充填し、触媒充填塔に、酸素を含有する被処理液を供給すると共に、被処理液の供給管内に、水素ガスを注入することにより、本発明の白金族金属担持触媒に、溶存水素と溶存酸素を含有する被処理水とを通液する方法等が挙げられる。
【0065】
上記の方法の場合、本発明の白金族金属担持触媒に、酸素を含有する被処理水を、SV=2000〜20000h−1、好ましくはSV=5000〜10000h−1で通水することができる。本発明の白金族金属担持触媒を用いると、SVが2000h−1を超えるような大きなSVで被処理水を通水しても、溶存酸素の除去が可能である。更に、SVが10000h−1であっても、本発明の白金族金属担持触媒を用いると、溶存酸素の除去が可能であり、本発明の白金族金属担持触媒は、粒子状アニオン交換樹脂に白金族金属ナノ粒子を担持した従来の担持触媒の処理限界を大きく上回る、卓越した性能を示す。本発明の白金族金属担持触媒への酸素を含有する被処理水の通水速度は、特に制限されないが、好ましくはSV=2000〜20000h−1、特に好ましくはSV=5000〜10000h−1である。なお、本発明の白金族金属担持触媒は、溶存酸素除去能力が著しく高いため、粒子状アニオン交換樹脂に白金族金属ナノ粒子を担持した従来の担持触媒の処理限界を大きく上回る通水速度で、被処理水を通水しても、被処理水中の溶存酸素を除去することができる。
【0066】
更に、本発明の白金族金属担持触媒は、溶存酸素除去能力が著しく高いため、触媒の充填層高を薄くしても溶存酸素の除去が可能である。
【0067】
本発明の溶存酸素の除去処理水の製造方法を行い得られる処理水中の溶存酸素濃度は、10μg/L以下であることが好ましい。
【0068】
本発明の電子部品の洗浄方法(II)は、本発明の溶存酸素の除去処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄する電子部品の洗浄方法である。
【0069】
空気中の酸素は水中に溶存酸素として溶け込む。溶存酸素は超純水中の不純物として管理され、前述のように、超純水製造装置の二次純水系システム入り口における被処理水(一次純水)中の溶存酸素濃度は、通常、100μg/L以下にまで低減されている。更に、10μg/L以下に管理されている場合もある。そして、超純水中の溶存酸素濃度は、10μg/L以下、更には1μg/L以下に管理されている場合もある。一方、超純水の製造工程では、紫外線酸化処理等により発生した過酸化水素が分解する際に酸素が生じる。そこで、本発明の電子部品の洗浄方法(II)の形態例では、本発明の溶存酸素の除去処理水の製造方法を行う溶存酸素除去工程を行い、得られた処理水を、電子部品の洗浄方法の各工程に供給される洗浄水(洗浄液)又はその調製用の超純水とする。
【0070】
本発明の電子部品の洗浄方法(II)の第一の形態例は、図3中の過酸化水素除去工程25、26、27及び28を、超純水32を被処理水として本発明の溶存酸素の除去処理水の製造方法を行う溶存酸素除去工程に代えたものである。そして、洗浄前の電子部品20aを被洗浄物として、第1工程21〜第4工程24を順に行い、洗浄後の電子部品30aを得る。
【0071】
本発明の電子部品の洗浄方法(II)の第二の形態例は、図4中の第3、5、9及び11工程に供給される洗浄水(洗浄液)63、65、69及び71を、超純水を被処理水として本発明の溶存酸素の除去処理水の製造方法を行う溶存酸素除去工程を行い、得られた処理水に各工程で必要な薬剤を溶解させることにより調製し、また、図4中の第2、4、6、7、8、10及び12工程に供給される洗浄水62、64、66、67、68、70及び72を、超純水を被処理水として本発明の溶存酸素の除去処理水の製造方法を行う溶存酸素除去工程を行うことにより得るものである。そして、洗浄前の電子部品20bを被洗浄物として、第1工程41〜第12工程52を順に行い、洗浄後の電子部品30bを得る。
【0072】
なお、上記のように、本発明において、本発明の溶存酸素の除去処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄するとは、本発明の溶存酸素の除去処理水の製造方法を行った直後の処理水で、電子部品又は電子部品の製造器具を洗浄するということだけではなく、電子部品又は電子部品の製造器具の洗浄に用いられる超純水を製造する工程のいずれか1箇所又は2箇所以上で、本発明の溶存酸素の除去処理水の製造方法を行い、超純水の製造工程の全工程を行って得られる超純水で、電子部品又は電子部品の製造器具を洗浄するということを意味する。
【0073】
(実施例)
次に、実施例を挙げて本発明を具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
【0074】
<モノリスアニオン交換体の製造(参考例)>
(モノリスの製造)
スチレン19.2g、ジビニルベンゼン1.0g、ソルビタンモノオレエート(以下SMOと略す)1.0gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、モノリスを得た。該モノリスは、架橋成分を3.3モル%含有するスチレン/ジビニルベンゼン共重合体であり、SEM観察により、連続マクロポア構造を有することを確認した。SEM画像を図1に示す。水銀圧入法により求めた該モノリスのマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は29μm、全細孔容積は8.6ml/gであった。
【0075】
(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、外径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃、5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリスにTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離した。
【0076】
得られたモノリスアニオン交換体の反応前後の膨潤率は1.5倍であり、乾燥状態における重量当りのアニオン交換容量は、4.3mg当量/gであった。水湿潤状態でのモノリスアニオン交換体の開口の平均直径を、モノリスの値と水湿潤状態のモノリスアニオン交換体の膨潤率から見積もったところ44μmであり、全細孔容積は、8.6ml/gであった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.014MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。更に、該モノリスアニオン交換体のフッ化物イオンに関するイオン交換帯長さを測定したところ、LV=20m/hにおけるイオン交換帯長さは84mmであり、市販の強塩基性アニオン交換樹脂であるアンバーライトIRA402BL(ロームアンドハース社製)の値(165mm)に比べて、半分程度であり、短い値を示した。
【0077】
次に、モノリスアニオン交換体中の四級アンモニウム基の分布状態を確認するため、アニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩化物イオンの分布状態を観察した。その結果、塩化物イオンはアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がモノリスアニオン交換体中に均一に導入されていることが確認できた。
【0078】
実施例
(白金族金属担持触媒の調製)
参考例1のモノリスアニオン交換体をCl形にイオン交換した後、水湿潤状態で円柱状に切り出し、減圧乾燥した。乾燥後のモノリスアニオン交換体の重量は、1.2gであった。この乾燥状態のモノリスアニオン交換体を、塩化パラジウム140mgを溶解した希塩酸に24時間浸漬し、塩化パラジウム酸形にイオン交換した。浸漬終了後、モノリスアニオン交換体を純水で数回洗浄し、ヒドラジン水溶液中に24時間浸漬して還元処理を行った。塩化パラジウム酸形モノリスアニオン交換体が茶色であったのに対し、還元処理終了後のモノリスアニオン交換体は黒色に着色しており、パラジウムナノ粒子の生成が示唆された。このようにして得られたパラジウムナノ粒子担持触媒を数回純水で洗浄し、乾燥した。
【0079】
乾燥状態のパラジウムナノ粒子担持触媒に担持されたパラジウム量は、5.5重量%であった。担持されたパラジウムナノ粒子の平均粒子径を測定するため、透過型電子顕微鏡(TEM)観察を行った。得られたTEM画像を図2に示す。パラジウムナノ粒子の平均粒子径は、3nmであった。乾燥状態のパラジウムナノ粒子担持触媒を切り出して内径10mmのカラムに充填し、水酸化ナトリウム水溶液を通液して担体であるモノリスアニオン交換体をOH形とし、過酸化水素分解特性の評価に用いた。パラジウムナノ粒子担持触媒の充填層高は13mmであった。このとき、水湿潤状態の樹脂体積に対するパラジウムナノ粒子担持量は、2.0g−Pd/L−R(パラジウムナノ粒子担持触媒1L当たりに担持されているパラジウム重量)であった。
【0080】
(触媒の評価)
内径10mmのカラムに充填した上記のパラジウムナノ粒子担持触媒に、過酸化水素15〜30μg/Lを含む超純水をSV=5000h−1にて27時間下向流で通水し、カラム出口で試料水を採水し過酸化水素濃度を測定した。その結果、カラム出口で採水した試料水中の過酸化水素濃度は1μg/L未満であり、過酸化水素は分解除去されていた。次に、SVを10000h−1とし、同様の処理を行った。カラム出口で採水した試料水中の過酸化水素濃度は、SVが10000h−1と非常に速く、触媒の充填層高が13mmと薄いにもかかわらず、1μg/L未満であり、過酸化水素は分解除去されていた。
【0081】
比較例1
水分保有能力がOH形基準において60〜70%であり、ゲル形である粒子状の強塩基アニオン交換樹脂(I型)に公知の方法でパラジウムナノ粒子を担架させた。Cl形の粒子状アニオン交換樹脂を塩化パラジウムの塩酸水溶液に浸漬し、水洗後に、ヒドラジン水溶液で還元処理を行った。水酸化ナトリウム水溶液を通液して粒子状のアニオン交換樹脂をOH形とし、過酸化水素分解特性の評価に用いた。このとき、パラジウムナノ粒子担持量は、水湿潤状態で970mg−Pd/L−Rであった。このパラジウムを担持したOH形の粒子状イオン交換樹脂を内径25mmのカラムに40mL(層高80mm)充填して実施例1と同じ方法で過酸化水素低減の実験を行った。
【0082】
(触媒の評価)
触媒として、実施例1で得たパラジウムナノ粒子担持触媒に代えて上記パラジウムナノ粒子担持粒状イオン交換樹脂触媒を用いたこと、及び、超純水をSV=1500h−1および2500h−1で通水したことを除いて、実施例1と同様の方法で触媒の過酸化水素分解効果を評価した。その結果、カラム出口で採水した試料水中の過酸化水素濃度はそれぞれ1μg/L未満、1.6μg/Lであった。SV=1500h−1においては過酸化水素は1μg/L未満となったが、SVを2500h−1に上げると、過酸化水素は処理水中にリークした。このように、従来技術である粒子状アニオン交換樹脂にパラジウムナノ粒子を担持した触媒では、実施例よりも遅いSV、厚い触媒充填層高といった過酸化水素を除去しやすい条件を設定しても、SV=2500h−1では過酸化水素がリークした。
【0083】
比較例2
パラジウムナノ粒子を担持させず、参考例のモノリスアニオン交換体のみを用いて、実施例と同様の方法でSV=10000h−1における過酸化水素分解効果を評価した。その結果、過酸化水素の分解は認められなかった。

【特許請求の範囲】
【請求項1】
有機多孔質アニオン交換体に、平均粒子径1〜100nmの白金族金属のナノ粒子が、担持されている白金族金属担持触媒であり、
該有機多孔質アニオン交換体は、互いにつながっているマクロポアとマクロポアの壁内に平均直径が乾燥状態で1〜1000μmの共通の開口(メソポア)を有する連続気泡構造を有し、全細孔容積が1〜50ml/gであり、アニオン交換基が均一に分布しており、アニオン交換容量が0.5〜5.0mg当量/g乾燥多孔質体であること、
該白金族金属の担持量が、乾燥状態で0.004〜20重量%であること、
を特徴とする白金族金属担持触媒。
【請求項2】
請求項1記載の白金族金属担持触媒に、過酸化水素を含有する被処理水を接触させて、該過酸化水素を含有する被処理水中の過酸化水素を分解除去することを特徴とする過酸化水素の分解処理水の製造方法。
【請求項3】
前記有機多孔質アニオン交換体が、OH形であることを特徴とする請求項2記載の過酸化水素の分解処理水の製造方法。
【請求項4】
前記白金族金属担持触媒に、前記過酸化水素を含有する被処理水を、SV=2000〜20000h−1で接触させることを特徴とする請求項2又は3いずれか1項記載の過酸化水素の分解処理水の製造方法。
【請求項5】
請求項2〜4いずれか1項記載の過酸化水素の分解処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄することを特徴とする電子部品の洗浄方法。
【請求項6】
請求項1記載の白金族金属担持触媒の存在下で、水素と酸素を含有する被処理水中の溶存酸素とを反応させて水を生成させることにより、該酸素を含有する被処理水から溶存酸素を除去することを特徴とする溶存酸素の除去処理水の製造方法。
【請求項7】
前記有機多孔質アニオン交換体が、OH形であることを特徴とする請求項6記載の溶存酸素の除去処理水の製造方法。
【請求項8】
前記白金族金属担持触媒に、前記酸素を含有する被処理水を、SV=2000〜20000h−1で接触させることを特徴とする請求項6又は7いずれか1項記載の溶存酸素の除去処理水の製造方法。
【請求項9】
請求項6〜8いずれか1項記載の溶存酸素の除去処理水の製造方法を行い得られる処理水で、電子部品又は電子部品の製造器具を洗浄することを特徴とする電子部品の洗浄方法。

【図3】
image rotate

【図4】
image rotate

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2010−214320(P2010−214320A)
【公開日】平成22年9月30日(2010.9.30)
【国際特許分類】
【出願番号】特願2009−65841(P2009−65841)
【出願日】平成21年3月18日(2009.3.18)
【出願人】(000004400)オルガノ株式会社 (606)
【Fターム(参考)】