説明

皮膚科学的治療装置

【課題】さまざまな皮膚科学的上および美容上の症状を治療するために光学的放射を利用するための方法および装置を提供する。
【解決手段】光学的放射を利用して組織を治療する装置および方法が記載されている。ある態様では、この装置は皮膚科学的治療装置である。この装置は、たとえば、皮膚科学的病気および美容上の症状の治療に用いることができる。装置は、この装置がいつ患者の組織に接触したかを示すセンサーを備えていてもよい。装置の動作は、場合によっては、一部自動化されていてもよいし、完全に自動化されていてもよい。装置は、空冷されている光源と、好ましくは5℃に冷却されている冷却プレートをさらに備えていてもよい。装置は、出力密度を下げ、深部の組織を加熱しやすいように、大きくした窓部をさらに備えていてもよい。

【発明の詳細な説明】
【開示の内容】
【0001】
〔関連出願〕
本願は、2005年2月18日に出願され、発明の名称が「皮膚科学的治療装置」である米国特許仮出願第60/654,130号について優先権を主張するものである。米国特許仮出願第60/654,130号の内容は、参照することによりその全体がここに組み込まれる。
【0002】
〔技術分野〕
本発明は、概して、さまざまな皮膚科学的および美容上の症状を治療するためにエネルギー、例えば光学的放射を利用する方法および装置に関するものである。
【0003】
〔発明の背景〕
小部分治療(fractional treatment)は、一般に、皮膚組織の表面にある表皮の治療に向けられてきた。しかしながら、特定の応用例については、さらに組織の中へと広がる治療をする必要がある。
【0004】
深部にある組織の加熱は、EMRのさまざまな波長で行うことができ、目に見える波長および目に見えない波長の両方で行うことができる。放射熱としても知られている赤外線は、コンバージョン(conversion)と呼ばれるプロセスによって対象を直接加熱するエネルギー形態である。赤外線放射は、熱がある(つまり、熱を放射する)全ての物体によって放出される。赤外線は見えないが、熱という形態で感じることができる。電磁スペクトルの赤外線部分は、赤色光のすぐ下、つまり、「下位(infra)」において、次に最も低い光のエネルギー帯として生じる。
【0005】
〔発明の概要〕
本発明の一態様は、光源アセンブリを備えた手持ち式皮膚科学的装置であり、その光源アセンブリは、EMRを生成する光源と、組織の近傍に配置されたときに、その組織上の対象治療領域を画定する冷却面とを有する。光源アセンブリは、動作中、光源からのEMRを伝達し、冷却面に通すように構成されている。この装置はまた、放射源を冷却するための第1冷却機構と、冷却面を冷却するための第2冷却機構とを有する。
【0006】
本発明のこの態様の好ましい実施形態は、以下の付随的な機能のいくつかを備えていてもよい。皮膚科学的治療装置は、空気を送って光源を冷却するように構成された送風機と、光源と熱的につながっているヒートシンクとを備えることができる。送風機は空気をヒートシンク上に送り、作動中に、そのヒートシンク装置から熱を除去する。ヒートシンクは、複数の冷却フィンを備えている。ヒートシンクは、反射器によって光源に熱的に結合されており、送風機は、光源、反射器およびヒートシンクを冷却するように構成されている。手持ち式皮膚科学的装置はまた、第1冷却機構を制御するためのコントロールユニットを有する。このコントロールユニットは、温度センサーと電気的につながっており、かつ、送風機と電気的につながっているコントローラをさらに備えており、コントローラが、温度センサーから入力された情報に基づいて、第1冷却機構を自動的に制御できるようになっている。
【0007】
第2冷却機構は、冷却剤を循環させる循環システムであり、この循環システムは、治療されている組織を少なくとも約5℃に冷却する冷却装置(chiller)を備えている。第2冷却機構もまた、ポンプ、冷却投入部および冷却排出部を備えている。冷却投入部は、投入接続部において冷却窓部に接続されており、冷却排出部は、排出接続部において冷却窓部に接続されている。第2冷却機構は、手術中に、冷却流体を冷却窓部に冷却投入部を介して供給し、加熱された冷却剤を冷却窓部から冷却排出部を介して取り出して、冷却窓部を冷却するように構成されている。冷却機構は、冷却装置をさらに備えている。
【0008】
第2冷却機構はまた、組織の温度を監視するための温度センサーと、第2冷却機構を制御するためのコントロールユニットとを備えている。コントロールユニットは、温度センサーと電気的につながっており、かつ、ポンプと電気的につながっているコントローラをさらに備えている。コントローラは、温度センサーから入力された情報に基づいてポンプを自動的に制御するように構成されている。
【0009】
本発明の別の態様は、皮膚科学的治療装置の窓部であって、その装置の光源からのEMRを治療されている組織へと通すように構成された窓部である。窓部は、皮膚科学的治療装置から治療されている組織へとEMRを通すように構成されたガラス部(pane)を有する。窓部はまた、実質的にガラス部の全長を横切るように延びている第1の導管部と、ガラス部の周りに広がっていて、ガラス部を皮膚科学的治療装置に固定するフレーム部とを有する。窓部は、第1導管部の第1端部と流体連通している第1冷却投入部と、第1導管部の第2端部と流体連通している第1冷却排出部とを備えている。窓部は、冷却投入部を流れ、第1導管部を流れ、そして、第1導管部の第2端部から流出する流体によって、作動中に冷却されるように構成されている。
【0010】
本発明のこの態様の好ましい実施形態は、以下の付随的な機能のいくつかを備えてもよい。窓部の導管部は、溝部であり、この溝部は、ガラス部の表面に沿って延びている開口部分を有する。窓部は、光学面をさらに有し、この光学面は、溝部が手術中に囲まれ、流体が導管部を通って流れることを可能にし、かつ、流体が開口部分から流れ出すことを防ぐように、ガラス部の表面に接している。窓部はまた、ガラス部と光学面との間に光学材料を有している。この材料は、EMRの一部が、皮膚科学的治療装置から治療されている組織へと通過できるようにするものであり、また、誘電体膜であってもよい。
【0011】
本発明の別の態様は、少なくとも約0.5mmの深さに位置する組織を治療するための皮膚科学的治療装置である。この装置は、EMR光源および窓部が入っているハウジングを備えている。窓部は、光源から治療されている組織へとEMRを通すように構成されている。光源は、少なくとも500WのEMRを生成するように構成されており、また、窓部は、5W/cm2より少ない出力密度を生成するのに足りる大きさの面積を有する。
【0012】
本発明のこの態様の好ましい実施形態は、以下の付随的な機能のいくつかを備えてもよい。出力源のパルス幅は、0.5秒以上600秒以下である。EMR光源は、少なくとも1000Wを生成するように構成されている。
【0013】
本発明の別の態様は、組織に治療を施す装置であり、組織の近傍に配置されたときに、組織の対象治療領域を画定する冷却面を有するハウジングと、冷却面を通過するEMRを生成する放射源と、冷却面がいつ組織の近傍にあるかを示すセンサーとを備えている。
【0014】
本発明のこの態様の好ましい実施形態は、以下の付随的な機能のいくつかを備えることがあってもよい。センサーの起動は、冷却面が組織に接触したことを示す。センサーは、eフィールドセンサー、容量センサー、抵抗センサー、圧力センサー、または、Hフィールドセンサーであってもよい。センサーは、電界における変化を検出するように構成できる。
【0015】
センサーは、このセンサーから得られた情報に応じて信号を出力するように構成されたコントローラと電気的につながっている。コントローラは、組織が近接していないことをセンサーが検出したことに対応する第1の信号、および、第1の組織が近接していることをセンサーが検出したことに対応する第2の信号を出力する。コントローラは、第2の組織がセンサーに近接していることをセンサーが検出したことに対応する第3の信号を出力する。コントローラは、センサーからの入力に基づいて、組織の種類を識別する。コントローラは、第1の種類の組織を検出したことに応じて第1の動作を命じ、第2の種類の組織を検出したことに応じて第2の動作を命じる。第1の動作は、組織を治療することである。第2の動作は、組織を治療しないことである。
【0016】
センサーは、冷却面の付近に配置された第1ノード(first node)および第2ノード(second node)を備えていてもよい。ノードは、冷却面が組織と接触しているとき、組織と接触し、冷却面が組織と完全には接触していないときには、組織と接触しない。センサーは、皮膚と接触しているときのノード間の電流を測定する。センサーは、ノード間で電流が検出されたときに、皮膚がセンサーと接触していることを知らせる。
【0017】
センサーは、ハウジングに取り付けられてもよいし、また、センサーはマイクロスイッチであってもよい。装置はまた、センサーに動作可能に接続された出力装置を有することがあってもよい。この出力装置は、視覚的な装置、音響装置、または振動装置のうちの1つである。フィードバック機構をさらにセンサーに接続することがあってもよい。このフィードバック機構は、装置の操作者に、安全な手術を行うために、冷却面を組織に接触させ続けることが必要な時間を知らせる。フィードバック機構は、冷却面が組織と接触しなくなった場合、放射源から出力できなくする。フィードバック機構は、予め定められた冷却時間が経過するまで、放射源から出力できなくする。
【0018】
装置はまた、放射源から出力(firing)できるようにする前に、プリセット冷却時間を実行するためのコントロールユニットを有する。このコントロールユニットは、放射源のためのプリセット出力時間を実行する。装置は、手持ち式の装置であってもよく、また、コントロールユニットは、動作可能にその手持ち式装置に連結されることがあってもよい。
【0019】
放射源は、レーザのような単色光源(monochromatic source)であってもよい。あるいは、放射源は、ハロゲンランプ、放射ランプ(radiant lamp)、白熱灯、アークランプ、および、蛍光灯であってもよい。
【0020】
冷却面は、ジェルのように、変形可能または粘弾性の材料から作ることができる。冷却面は、ガラス、サファイアまたはプラスチックなどの固形材料から作ることもできる。
【0021】
装置は、ハウジングに動作可能に連結された接触フレームを有することがあってもよい。接触フレームは、延ばした位置から、この接触フレームが冷却面の近傍にくる後退した位置まで可動である。センサーは、フレームが後退位置にあると起動する。センサーは、冷却面が接触面の近傍にあると起動する。接触フレームは、EMRが通過できるように開口した内側部分を有する。プッシュロッドが接触フレームに連結されており、かつ、センサーに動作可能に連結されており、冷却面が接触フレームに接触したときに、プッシュロッドがセンサーを起動するようになっている。センサーは、冷却面および接触フレームの一方に取り付けられている。
【0022】
本発明の別の態様は、組織に治療を施すための装置であって、組織を冷却する手段を有するハウジングを備えた装置である。組織を冷却するための手段は、組織の近傍に配置されたときに、組織の対象治療領域を画定する面を備えている。ハウジングもまた、EMR生成手段を備えている。EMRは、照射中、その面を通過する。ハウジングはまた、冷却手段が組織と接触したことを検出する手段を備えている。
【0023】
本発明のこの態様の好ましい実施形態は、以下の付随的な機能のいくつかを備えることがあってもよい。検出するための手段は、冷却するための手段が接触フレームに接触したときに起動する。検出するための手段の起動は、冷却するための手段が組織に接触したことを表す。接触フレームは、動作可能にハウジングに連結されている。接触フレームは、延びた位置から、接触フレームが冷却するための手段と接触する位置まで可動である。
【0024】
本発明の別の態様は、手持ち式皮膚科学的装置を操作する方法であり、この方法は、この手持ち式装置の冷却面が組織に接触したことを検出する段階と、手持ち式装置の使用者にいつ冷却面が組織に接触したかを知らせる段階と、冷却面が組織と接触しなくなった場合に、手持ち式装置の放射源が出力するのを自動的に中断させる段階とを含む。
【0025】
本発明のこの態様の好ましい実施形態は、以下の付随的な機能のいくつかを含むことがあってもよい。この方法は、冷却面が組織と接触したことを検出する段階と、冷却面が組織と接触しなくなった場合に、使用者に知らせる段階とを含むことができる。接触を検出する動作は、手持ち式装置の接触フレームがいつ冷却面と接触したかを特定することを含む。接触フレームの冷却面との接触は、冷却面の組織との接触を示すものである。
【0026】
この方法は、センサーと接触している第1の種類の組織を第2の種類の組織から識別する段階と、組織の種類に基づいて措置をとる段階とをさらに含んでいてもよい。措置を取るという動作は、組織が治療できない組織の種類に対応する場合に組織に照射をしないこと、および、組織が治療できる組織の種類に対応する場合に組織に照射をすることを含む。使用者に知らせる動作には、視覚的表示器と、音響的表示器とのうち一方を起動することが含まれる。
【0027】
本発明の別の態様は、手持ち式皮膚科学的装置を自動的に操作する方法であり、この手持ち式装置の冷却面の組織との接触を検出する段階と、手持ち式装置の放射源を用いて組織に照射する前に、組織を冷却するためのプリセット冷却時間を実行する段階と、プリセット冷却時間の後に、放射源のプリセット照射時間を実行する段階と、冷却面が組織と接触しなくなった場合に、放射源が出力するのを中断させる段階とを含む。
【0028】
本発明のこの態様の好ましい実施形態は、以下の付随的な機能のいくつかを含むことがあってもよい。この方法は、冷却面の組織との接触を検出した後に、冷却面が組織と接触しなくなった場合に、使用者に知らせる段階をさらに含む。使用者に知らせる動作には、視覚的な表示部と、音響的な表示部とのうち一方を起動することが含まれる。接触を検出する動作には、手持ち式装置の接触フレームがいつ冷却面に接触したかを特定することが含まれ、接触フレームの冷却面との接触は、冷却面の組織との接触を表す。
【0029】
本発明の非限定的な実施形態を、添付図面を参照しながら例として説明する。
【0030】
〔詳細な説明〕
さまざまな治療上および美容上の目的で組織の選択領域の温度を上げるおよび/または下げることができることの利点は、かなり長いこと知られてきた。たとえば、加熱したパッドやプレート、または、マイクロ波放射、電流、赤外線放射、および、超音波を含むさまざまな形態の電磁放射(EMR: electromagnetic radiation)が、皮下筋肉、靭帯、骨などを加熱し、たとえば、血流を増やす、あるいは、さまざまな外傷その他の損傷の治癒を促進するために、また、さまざまな治療を行う目的で、たとえば、凍傷もしくは高熱の治療、血液循環不良の治療、物理療法、コラーゲンの刺激、セリュライト治療、アドレナリン刺激、創傷治癒、乾癬治療、体形改善、非侵襲式のしわの除去などのために、以前から用いられている。組織の加熱はまた、がんまたは他の好ましくない腫瘍、感染等を取り除くための潜在的な治療法として利用されてきた。加熱は、小さい局所的な領域に加えてもよいし、より大きな領域、たとえば、手や足に加えてもよいし、あるいは、体全体を含む、組織のより大きな領域に加えてもよい。
【0031】
前述した技術のほとんどは、深部にある組織に、患者の皮膚表面を介してエネルギーを加えることを伴うため、最大温度は、普通、患者の皮膚表面において、または、その近くにおいて生じ、深くなるにしたがって減少し、ときには、著しく減少する。放射は、表層組織において強く散乱し、かつ、多量に吸収され、このような放射の相当部分が、組織の深部領域に達し、その領域を加熱することを妨げる。散乱および吸収によるエネルギー損失を考慮すると、組織の深部領域に十分なエネルギーが達し、求める効果を得るためには、相当量の(近赤外線を含む)光学的エネルギーを加えなければならない。しかし、このような多量の光学的エネルギーは、組織の表層に損傷を与えるので、深部の組織領域において求める光熱治療を達成することが困難である。このような理由から、光学的放射は、これまで、深部にある組織に対する治療上および美容上の処置に対して、せいぜい限られた価値しかなかった。
【0032】
深部を加熱する方法は、小部分治療(fractional treatment)にも望ましく、このことは、ある程度、組織を治療するためにEMRを用いる場合に、EMRで治療した組織の大きな連続領域を生成するよりも、EMR処理島(EMR-treated islet)からなる格子を生成する方が大きな利点があるという発見によるものである。格子は、島(islets)の1次元、2次元または3次元の周期的なパターンであり、島は、局所的に最もEMRで治療された組織に対応している。島は、治療されていない組織によって互いに隔てられている。EMR治療により、EMRの特定波長またはスペクトルにさらされたEMR処理島の格子が生じ、この格子は、本明細書では「光学的島(optical islets)」の格子という。EMRのエネルギーの吸収により、EMR処理島における温度が著しく上昇した場合には、この格子のことを本明細書では、「温度島(thermal islets)」の格子という。細胞構造または細胞間構造を著しく崩壊させるのに十分な量のエネルギーが吸収された場合、この格子のことを本明細書では、「損傷島(damage islets)」の格子という。EMR処理した連続的な領域を生成するよりも、EMR処理島を生成することにより、多量の組織に損傷を与える危険を軽減しながら、より多くのEMRエネルギーを送ることができる。
【0033】
近赤外線放射を用いて組織をより効果的に治療するために、組織の表面の皮膚は、通常、約5℃の温度に冷却される。もっとも、他の温度も用いられる。このように、本発明の手法は、切除をしない手法と、小部分手法(fractional technique)の有益な特徴を組み合わせるものである。
【0034】
本発明が有用でありうる応用例としては、さまざまな疾患の治療および美容の向上があり、特に、セリュライト(cellulite)および皮下脂肪の治療、物理療法、筋肉および関節のための痛みおよび硬直の軽減ならびに脊髄の問題の治療を含む筋肉および骨格の治療、ならびに、手根管症候群(carpel tunnel syndrome)(CTS)のような蓄積外傷疾患(CTD)、腱炎および滑液包炎、線維筋痛症、リンパ水腫および癌療法、ならびに、皮膚若返り療法がある。皮膚若返り療法としては、たとえば、スキンスムージング(skin smoothing)、しわ(wrinkle)およびしわ(rhytide)の減少、ポアサイズの減少、スキンリフティング(skin lifting)、色合いおよびきめの改善、コラーゲン生成の刺激(stimulation of collagen production)、コラーゲンの収縮、皮膚色素異常(つまり、色素の不均一)の減少、毛細管拡張(つまり、脈管奇形)の減少、皮膚の張り特性の改善(たとえば、弾性、持ち上がり(lifting)、締まり(tightening)の向上)、アクネの治療、肥厚性瘢痕、体臭の軽減、疣およびカルスの除去、乾癬の治療、体毛の減退がある。
【0035】
本発明は、小部分手技(fractional procedure)および非小部分手技の両方を用いて組織の深部加熱を効果的に行う手段を提供する。小部分手技の場合、以下に説明する実施形態は、一様でない(調整された)温度分布(MTP)を生成することができ、この一様でない温度分布には、真皮および皮下組織の深部(通常、500μmを超える深さ)、または、表皮および/または真皮の表面近くが含まれる。実施形態によっては、このような分布により、損傷島のパターン(格子)(LID)が形成される。表皮の損傷を防止するために、能動的または受動的な冷却を表皮表面に加えることもできる。
【0036】
MTPの生成は、以下のメカニズムによる皮膚の構造およびきめの改善につながる(リストは、他を排除するものではない)。
【0037】
1.温度上昇にさらされた膠原線維が収縮する結果、皮膚が持ち上がり、引き締まる。
2.真皮および皮下組織における局所領域の凝結の結果、皮膚が持ち上がり、引き締まる。
3.真皮および皮下組織における局所領域の凝結の結果、皮膚のきめが改善される。
4.熱応力および/または熱衝撃に対する治癒反応により、コラーゲンの生成が促進される。
【0038】
いくつかの他の局所的症状および全身症状もこの技術で治療することができる。
1.セリュライト:真皮/皮下組織の境界における機械的応力の分布を変えることにより、セリュライトの外観を改善できる。
2.アクネ:光学的放射の波長を皮脂による光学的エネルギーの選択的吸収が促進されるように選択することにより、および/または、皮脂腺を選択的に狙うようにパターンを構成することにより、腺を選択的に破壊することができる。
3.肥厚性瘢痕:瘢痕組織に引き締めおよび収縮を誘発することにより、異常な結合組織の普通の結合組織への変換を起こすことができる。
4.臭気の減少:エクリン汗腺を選択的に狙うことにより、エクリン汗を減らすことができ、また、その成分を変えることができる。
5.皮膚表面ではないきめにする:本手法は、器官増大(organ augmentation)(たとえば、唇)に使用することができる。
【0039】
本発明の一実施形態は、手持ち式の皮膚科学的装置であって、患者の皮膚表面に光学的放射を当てると同時に、その皮膚表面を冷却する機構を取り入れた装置である。放射が、迅速に治療すべき深部の組織に届き、その加熱を開始する一方で、冷却は、冷たい波として伝播し、治療領域の上にある組織を保護し、最大加熱の深さを皮膚のより中へ移動させる。ある実施形態では、冷却波が治療領域のすぐ上の深さまで伝搬できるが、少なくとも、求める治療を行うのに十分なエネルギーが治療領域に送られるまでは、治療領域まで広がらない。装置の冷却機構は、患者の皮膚に放射をあてる前、あてている間、および/または、あてた後に、その患者の皮膚を冷却し、治療領域より上の組織をより効果的に保護し、かつ、照射を受けた組織における最大温度上昇を求める深さまたはその近くにおいて確実に生じさせることができる。これにより、求める深さより上の組織にいかなる損傷も与えずに、または、最小の損傷で、エネルギーがより高く、照射持続時間がより短いパルスを皮膚に加えることも可能になる。放射を加えるのに用いたヘッドは、冷却を行うのに用いることもできる。手持ち式の皮膚科学的装置は、患者の皮膚近くの冷却機構の近傍に取り付けられたセンサーを有することもできる。このようなセンサーは、冷却機構が患者の皮膚にいつ接触したか(または、患者の皮膚にいつ接触しなくなったか)を示すことができ、したがって、使用者に、いつ安全に放射を加え始めることができるかを示すことができる。
【0040】
図1は、本発明の一実施形態による装置100を示している。この装置の場合、適当なエネルギー源1からの光学的エネルギー30が、組織31(つまり、患者の皮膚)に達する前に、光学デバイス(たとえば、フォーカシング(focusing)デバイス)2、フィルター3、冷却機構4、および接触プレート8を通る。本発明の実施形態によっては、これら構成要素のうちのいくつか、たとえば、光学デバイス2や、単色エネルギー源が用いられているところではフィルター3などは、必ずしもなくてもよい。他の実施形態では、装置が皮膚に接触しないこともある。さらに別の実施形態では、冷却機構4がなく、接触プレートと皮膚との間は受動的にしか冷却されない。
【0041】
適当な光学的インピーダンス整合用ローション、または、他の適当な物質が、通常、プレート8および組織31の間に、光学的および熱的接触をよくするために塗布される。組織31は、図1に示されているように、放射が皮膚表面に加えられる応用例の場合に表皮および真皮となる上部領域5と、前述の例では皮下領域となる下部領域6とに分けられる。領域6は、たとえば、皮下組織であってもよい。
【0042】
エネルギー30は、恐らくは、光学デバイス2によるフォーカシング、フィルター3による波長選択、冷却機構4による冷却のうち1つまたは組み合わせとともに、組織31の選択深さにおいて最大の加熱を行う。この選択深さは、前述したように、領域5および領域6が合わさる部分もしくはその近く、または、下部領域6内であってもよいし、領域5、すなわち、皮下組織内であってもよい。
【0043】
エネルギー源1は、適当な電磁放射(EMR)源であってもよいが、好ましくは、可視光、または、近赤外線領域および赤外線領域のエネルギーを放出する光源である。本発明で用いる光源は、求める波長もしくは求める波長域、または、複数の波長域の光学的エネルギーを生成することができる、コヒーレントな光源であってもよいし、コヒーレントではない光源であってもよい。選ぶ厳密なエネルギー源1、および、厳密なエネルギーは、行う治療の種類、加熱する組織、治療が求められている組織の深さ、および、治療が求められている領域におけるそのエネルギーの吸収の関数でありうる。エネルギー源1は、近赤外放射または可視光放射のようなEMRを、幅広いスペクトルにわたって生成してもよいし、限られたスペクトルで生成してもよいし、または、発光ダイオードまたはレーザが生成するように、単一波長で生成してもよい。一定の場合には、スペクトルの幅が狭い光源が好ましいことがある。これは、エネルギー源によって生成された波長が、特定の種類の組織に向けられることがあるからであり、また、選択深さに達するように適合させることがあるからである。他の実施形態では、幅広いスペクトルの光源が好ましいことがあり、たとえば、組織にあてる波長が、応用例により、たとえば異なるフィルターを用いて変えることがあるシステムにおいて好ましいことがある。音響、RFまたは他のEMF源もまた適する応用例で利用されうる。
【0044】
たとえば、UV、紫、青、緑、黄色の光または赤外放射(たとえば、約290〜600nm、1400〜3000nm)を表面近くにある対象、たとえば、脈管および色素の病変、細かい皺、皮膚のきめおよび毛穴などの治療に用いることができる。青色、緑色、黄色、赤色、および、約450から約1300nmの範囲の近赤外線は、皮膚より約1mm下までの深さにある対象の治療に用いることができる。約800から約1400nm、約1500から約1800nmの範囲、または、約2050nmから約2350nmの範囲の近赤外線は、より深い対象(たとえば、皮膚表面の下約3mmまで)の治療に用いることができる。以下の表は、様々な美容上および医療上の症状を治療するのに適すると思われる電磁エネルギーの波長の例を示している。
【0045】
【表1】

【0046】
エネルギー源1は、多種多様なコヒーレント光源であってもよく、固体レーザ、色素レーザ、ダイオードレーザ、ファイバーレーザ、または、他のコヒーレント光源であってもよい。たとえば、エネルギー源1は、放射ランプ(radiant lamp)、ハロゲンランプ、白熱電球、アークランプ、蛍光灯、発光ダイオード、レーザ(ダイオードレーザおよびファイバーレーザを含む)、太陽、その他の適当な光学的エネルギー源であってもよい。別の例としては、エネルギー源1は、ネオジウム(Nd)レーザ、たとえば、Nd:YAGレーザなどであってもよい。さらに、複数の異なるまたは同一のエネルギー源を用いることがあってもよい。たとえば、複数のレーザ光源を使用してもよく、これらのレーザ光源は、同一の波長を有する光学的エネルギーを生成してもよいし、異なる波長を有する光学的エネルギーを生成してもよい。別の例としては、複数のランプ光源を用いてもよく、そして、これらのランプ光源は、同一の波長帯域または異なる波長帯域を与えるようにフィルターがかけられることがあってもよい。さらに、異なる種類の光源が同じ装置の中に含められることがあってもよく、たとえば、レーザとランプの両方を組み合わせてもよい。
【0047】
この例示的な実施形態では、エネルギー源1が、波長が約1064nmの放射を生成するネオジウム(Nd)レーザを備えている。このようなレーザは、たとえばこの実施形態では、ネオジウムYAGレーザロッド(Nd+3イオンでドープされたYAG母体結晶)であるレーザ媒体と、そのレーザロッドに連結され、レーザ放射を生成するための光キャビティーを形成する関連光学系(たとえば、ミラー)とを有する。他の実施形態では、クロム(Cr)、イッテルビウム(Yt)もしくはダイオードレーザなどの他のレーザ光源、または、広帯域光源、たとえばランプを治療用放射生成に利用することができる。
【0048】
レーザおよび他のコヒーレント光源を用いて、100から100,000nmの範囲内の波長をカバーすることができる。コヒーレントエネルギー光源の例は、固体レーザ、色素レーザ、ファイバーレーザ、およびその他の種類のレーザである。たとえば、ランプまたはダイオードでポンピングを行う固体レーザを用いることができる。このようなレーザで生成される波長は、400から3,500nmの範囲であることがある。この範囲は、非線形周波数変換を利用して、100から20,000nmに広げることができる。固体レーザは、最も融通がきくものであり、パルス幅の範囲がフェムト秒から連続波まである。
【0049】
コヒーレント光源の別の例は、非コヒーレントポンピングまたはコヒーレントポンピングによる色素レーザであり、このレーザは、波長調整可能な光を放出する。色素レーザは、液体または固体マトリックスのいずれかに溶かした色素を利用することができる。典型的な調整可能波長帯域は、400から1,200nm、および、約0.1から10nmのレーザ帯域に及ぶ。種類の異なる色素を混ぜると、複数の波長を放出させることができる。色素レーザの変換効率は、非コヒーレントポンピングの場合に約0.1から1%であり、コヒーレントポンピングでは約80%までになる。
【0050】
コヒーレントな光源の他の例は、ファイバーレーザである。ファイバーレーザは、コアがドープされているまたはドープされていない(ラマンレーザ)、コヒーレントまたは非コヒーレントなポンピングによる能動導波路である。希土類金属イオンをドーピングの材料として用いることができる。コアおよびクラッド材料は、石英、ガラスまたはセラミックであってもよい。コア直径は、数ミクロンから数百ミクロンであってもよい。ポンピング用の光は、コアファセット(core facet)を介して、または、クラッドを介してコアに入力できる。このようなファイバーレーザの光変換効率は、約80%までになることがあり、波長の範囲は、約1,100から3,000nmでありうる。異なる希土類イオンを組み合わせると、さらに別のラマン変換を行って、または、行わずに、異なる波長を同時に生成することができ、このことは治療の結果の利益となりうる。この範囲は、二次高調波生成(SHG)またはファイバーレーザ出力部に光学的に接続された光パラメトリック発振器(OPO)の支援で広げることができる。ファイバーレーザは、束に組み合わせることができるし、または、単一ファイバーレーザとして使用することもできる。
【0051】
ダイオードレーザは、400から100,000nmの範囲で使用することができる。多くの光皮膚科学的応用例では、高出力光源が必要であり、以下に説明するダイオードレーザバーを用いた構成は、約10から100Wで、長さ1cmのcwダイオードレーザバーを基礎とすることができる。なお、ダイオードレーザバーとともに用いる場合について説明した構成において、他の光源(たとえば、LEDやマイクロレーザ)も、光学的サブシステムおよび機械的サブシステムに適当な変更を加えて、代わりに用いることができる。
【0052】
他の種類のレーザ(たとえば、ガスレーザ、エキシマレーザ等)を使用することもできる。
【0053】
EMRのさまざまな非コヒーレント光源(たとえば、アークランプ、白熱電球、ハロゲンランプ、電球)を本発明でエネルギー源1として使用することができる。たとえば、中空陰極ランプ(HCL)および無電極放電ランプ(EDL)など、いくつかの単色ランプを利用できる。HCLおよびEDLは、化学要素からの輝線を生成することができる。たとえば、ナトリウムは、550nmにおける明るい黄色い光を放出する。
【0054】
リニアアークランプ(Linear arc lamps)は、パルス状の放電によって過熱された希ガスのプラズマを光源として使用する。一般に使用されるガスは、キセノン、クリプトン、および、いろいろな比率でのこれらの混合物である。充填圧力は、数トールから数千トール(1トール=1.33×102パスカル)であってもよい。このリニアフラッシュランプのためのランプ封体部(lamp envelope)は、溶融石英、ドープ石英もしくはガラス、または、サファイアであってもよい。発光帯域幅は、透明な封体部の場合、約180〜2,500nmであり、ランプ封体部内のドーパントイオン、ランプ封体部の誘電体コーティング、吸収フィルター、蛍光変換機能材(fluorescent converter)を適切に選ぶことにより、または、これらのアプローチを適当に組み合わせることにより、変えることができる。
【0055】
実施形態によっては、キセノンを充填したリニアフラッシュランプであって、BK7ガラスから作られた台形の集光装置を備えたものが使用されてもよい。以下のいくつかの実施形態に記載するように、光学系の遠位端は、たとえば、集光装置の出力面に取り付けられたマイクロプリズムのアレイであってもよい。このようなランプによって生成されたEMRのスペクトル範囲は、約300〜200nmでありうる。
【0056】
白熱電球は、最も一般的な光源の一つであり、フィラメントの温度が約2,500℃のときに、300〜4,000nmの発光帯域を有する。出力された発光は、対象に、反射板および/または集光装置を用いて集中させることができる。
【0057】
ハロゲン・タングステンランプは、ハロゲンサイクルを利用して、ランプの寿命を延ばし、(約3,500℃まで)フィラメント温度を上げてランプを使用できるようにしており、これによって光出力を大いに改善している。このようなランプの発光帯域は、約300から3,000nmの範囲である。
【0058】
290〜2,000nmの範囲の光を放出する発光ダイオード(LED)は、ダイオードレーザで直接得られない波長をカバーするのに用いることができる。
【0059】
光学デバイス2がフォーカシングデバイスである場合、このフォーカシングデバイスは、エネルギー源1からきたエネルギー30の少なくとも一部を組織31へ、特に、組織31の選択深さに集束させることができる任意の適当な装置であってもよい。たとえば、装置2としては、ミラー、プリズム、反射板、フレネルレンズ、コリメーティングレンズまたはフォーカシングレンズのようなレンズ、回折格子、または他の光学デバイスがありうる。装置2はまた、上述した装置を複数含む、つまり、上述した装置の配列を含むこともある。
【0060】
フィルター3は、エネルギー源1から一定の波長、または、一定の波長帯域を選択することができる、または、少なくとも部分的に選択することができる任意の適当なフィルターであってもよい。一定の実施形態では、波長の特定の組をフィルター3によって遮断してもよい。好ましい波長帯域における利用可能なエネルギーを増やすために、エネルギー源1からのエネルギーにおいて好ましくない波長を公知の方法で波長シフトさせることも可能である。したがって、フィルター3は、電磁放射の一定の波長を吸収、反射または変えるように設計された素子を含んでいてもよい。たとえば、フィルター3は、周囲の組織によって吸収される一定の種類の波長を除去するように使用されてもよい。たとえば、真皮、皮下組織および表皮の組織は、人体の他の部分のほとんどがそうであるように、主に水から構成されている。水分子を励起する波長を選択的に除去するフィルターを使用することにより、これらの波長の体による吸収が著しく軽減され、これらの分子が光を吸収することにより生成される熱量を下げることになるであろう。よって、水を主材料とするフィルターに放射を通すことで、水分子を励起しうる放射の周波数がその水フィルターに吸収され、組織31へ伝達され伝えらなくなる。このように、水を主材料とするフィルターは、治療領域より上で組織に吸収され、熱に変換される放射の量を減らすことに使用することができる。他の治療の場合、水による放射の吸収は、治療を行うのに望ましかったり、必要であったりすることがある。
【0061】
図1は、組織31の表面近傍にある冷却機構4を示している。冷却機構4は、組織31の温度を下げられる任意の適当な冷却機構であってもよい。熱エネルギー32は、組織31から接触プレート8を介して冷却機構4へ吸い込まれてもよい。冷却機構4は、たとえば、接触プレート8の上に吹き付けられる空気もしくは他の適当なガスであってもよいし、冷却水もしくは冷却油または他の流体であってもよい。これらの物質を混合したもの、たとえば油と水の混合物なども考えられる。冷却機構4は、任意の適当な構成であってもよく、たとえば、空気もしくは他のガスまたは液体にプレート8を横切らせるための平板、一連の導管、シーシングブランケット(sheathing blanket)、または、一連の流路であってもよい。たとえば、一実施形態では、冷却機構4が水冷式接触プレートであってもよい。別の実施形態では、冷却機構4が冷却液または冷凍液(refrigerant fluid)(たとえば、冷凍剤(cryogen))を搬送する一連の流路であり、この流路が組織31またはプレート8と接触していてもよい。さらに別の実施形態では、冷却機構4が、組織31の表面を横切る水または冷凍液(たとえば、R134A)の噴霧、冷却した空気の噴霧、または、空気流であってもよい。他の実施形態では、冷却を化学反応(たとえば吸熱反応)、または、ペルチェ冷却のような電子冷却によって行うことができる。さらに別の実施形態では、冷却機構4が2種類以上の冷却剤または冷却機構4を有してもよく、および/または、たとえば組織が、たとえば極低温の噴霧または他の適当な噴霧によって受動的にまたは直接的に冷却される実施形態では接触プレート8がなくてもよい。たとえば温度をモニターするために、または、組織31に必要な冷却の程度を確認ために、センサーまたは他のモニター用デバイスを冷却機構4に埋め込み、手動または電子的に制御してもよい。
【0062】
一定の場合、組織31の表面温度をその通常の温度に保つために冷却機構4を使用してもよく、この通常の温度は、加熱している組織の種類にもよるが、たとえば37℃または32℃であってもよい。他の実施形態では、冷却機構4が、組織31の表面温度をその種の組織の通常の温度より低い温度に下げるのに使用されることがある。たとえば、冷却機構4は、組織31の表面温度を、たとえば25℃から−5℃の範囲に下げることが可能であってもよい。
【0063】
本発明の実施形態によっては、図1に示されているように、エネルギー源1からのエネルギー30が冷却機構4を通過してもよい。この種の構成では、冷却機構4がエネルギー30の少なくとも一部を通すことができる材料、たとえば、空気、水または他のガスもしくは流体、ガラスまたは透明なプラスチックから作られていてもよい。他の実施形態では、冷却機構4が一連の個別の流路から形成されていて、エネルギー30がこれらの流路の間を通ってもよい。本発明の他の実施形態では、エネルギー30が冷却機構4に通されなくてもよい。
【0064】
接触プレート8は、適当な熱伝導材から作られていてもよく、また、プレートが組織31に接触するところでは、組織と光学的によく整合している材料から作られていてもよい。サファイアは、プレート8に適する材料の例である。実施形態によっては、たとえば、接触プレート8が高い熱伝導率を有し、冷却機構4によって組織の表面を冷却可能にしていてもよい。他の実施形態では、接触プレート8が冷却機構4と一体の部分であってもよいし、接触プレート8がなくてもよい。接触プレート8は、本発明の実施形態によっては、変形可能または粘弾性の材料から作られてもよく、たとえば、ビドロゲルのようなゲルから作られてもよい。他の実施形態では、接触プレート8がガラス、サファイアのような結晶、または、プラスチックなどの固形材料から作られていてもよい。本発明の実施形態によっては、図1に示されているように、エネルギー源1からのエネルギー30、または、その一部が接触プレート8を通過してもよい。これらの構成では、接触プレート8がエネルギー30の少なくとも一部分を通すことができる材料、たとえば、ガラス、サファイアまたは透明なプラスチックから作られていてもよく、あるいは、接触プレート8は、エネルギー30の少なくとも一部が通過できるように、たとえば、接触プレート8内の一連の穴部、通路、レンズ等を介して、接触プレート8を通過できるように作られていてもよい。
【0065】
本発明の実施形態によっては、エネルギー源1、光学デバイス2、および/または、フィルター3にも冷却機構が必要なことがある。この冷却機構は、図1において矢印32によって示されているように、接触プレート8を介して組織31を冷却する冷却機構4と同じものであってもよいし、同じものでなくてもよい。たとえば、図1に示されている実施形態において、冷却機構4から別個独立に示されている冷却機構7は、フィルター3および/または光学デバイス2を冷却するために使用されている。冷却機構7の構造は、装置を組み立てるのに使用した構成要素の相関的要素であってもよい。図1では、冷却機構7および冷却機構4が別々のシステムとして図示されている。しかしながら、他の実施形態では、冷却機構7および冷却機構4が同じシステムの一部であってもよいし、一方または両方がなくてもよい。冷却機構7は、空気、水、または油のような、当該技術において公知である任意の適する冷却機構であってもよい。油と水を混ぜたもののように、これらの物質の混合物も考えられる。構成要素の冷却は、対流または伝導による冷却で行われてもよい。
【0066】
エネルギー源1、光学デバイス2、フィルター3、冷却機構4、および冷却機構7の1つ以上が電子制御されてもよい。たとえば、冷却機構4または接触プレート8に埋め込まれたセンサーが、組織31に届くエネルギー量を決定してもよいし、応用例によっては、エネルギー源1にエネルギーをより多くもしくはより少なく生成することを命令してもよいし、または、冷却機構4に冷却を強めたり、弱めたりすることを命令してもよい。他のセンサーおよび同様のものが、ここに例示した構成要素のいずれに組み込まれてもよい。制御は、たとえば、電子的に予めプログラムされてもよいし、手動で操作されてもよい。
【0067】
図2は、本発明のこの実施形態による手持ち式皮膚科学的装置200の側面断面図である。図2は、手持ち式皮膚科学的装置200の一実施形態における部品のほとんどを図示している。一方で、図15は、本発明の一実施形態による、全てが揃っている手持ち式皮膚科学的装置200であって、ハウジング300に入っているものの側面図である。図3から図14までは、図2の手持ち式皮膚科学的装置200のいろいろな角度からの図であり、これらの図は、異なる組み立て段階における手持ち式皮膚科学的装置200の実施形態を図示している。つまり、図3から図14は、全ての部品がそのハウジング300の中に入っている手持ち式皮膚科学的装置200の全体を描いているのではない。
【0068】
図2から図15の実施形態では、手持ち式皮膚科学的装置200が、図1について前述した特徴の多くを有する。図2を参照すると、装置200はエネルギー源202を備えており、このエネルギー源202は、求める治療領域の深さにおいて組織内を加熱する波長の光学的エネルギーを生成することができるあらゆる適切な光学エネルギー源であってもよい。図2の実施形態では、エネルギー源202が、たとえばタングステン・ハロゲンランプである。エネルギー源202の上に囲むように配置されているのは、反射器206である。反射器206は、エネルギー源202からのエネルギーを皮膚接触プレート210の方へ(たとえば、下方へ)反射する役割を果たす。本発明の他の実施形態では、このような反射器206は使用されない。図2、図8および図9の実施形態では、反射器206がほぼ半円形断面であり(図8、図9)、また、長手方向に円筒形となっている(図2)。反射器206は、たとえば金属のように、放射を反射することが知られているあらゆる材料から作ることができる。好ましくは、反射器206の表面は金であるが、銀または銅を含むあらゆる高反射性金属を用いることができる。
【0069】
図2の実施形態におけるエネルギー源202および皮膚接触プレート210の間に配置されているのは、光学デバイス204および/またはフィルター(不図示)である。光学デバイス204は、装置200の下に配置された組織、特に、組織の選択深さに、エネルギー源202からのエネルギーの少なくとも一部を集中させるためのフォーカシングデバイスであってもよい。光学デバイス204はまた導波路であり、好ましくは石英ガラスから作られていてもよい。フィルターは、使用されている場合には、エネルギー源202から一定の波長または波長帯域を選択することができる、または、少なくとも部分的に選択することができる、あらゆる適当なフィルターであってもよい。光学デバイス204およびフィルターは、使用されている場合には、図1の実施形態について前述したのと同じ光学デバイスおよびフィルターであってもよい。
【0070】
図2から図15の実施形態において、手持ち式装置200は、患者の皮膚または組織にあてるために遠位先端部に配置された冷却機構208を含む。このような冷却機構208は、患者の皮膚に接触する接触プレート210と、接触プレート210を保持するジャケット部212とを含んでいてもよい。接触プレート210は、前述したもののような、適当な熱伝導材から作ることができる。接触プレート210は、患者の皮膚を照射するために、エネルギー源202からの放射を通過させることができる。他の実施形態では、装置200内の接触プレート210の内部に組み込まれた、または、接触プレート210の上もしくは下に配置されたマスク、スクリーンまたは遮蔽部(不図示)により、患者の皮膚に達する放射の一部を遮蔽し、これにより、患者の皮膚に選択された治療領域を形成できる。さらに別の実施形態では、集束装置(たとえば、レンズ、プリズム)のアレイを装置200内の接触プレート210の内部に組み込み、または、接触プレート210の上もしくは下に配置し、皮膚の一定の場所に放射を集束または分散させ、これにより、患者の皮膚に選択された治療領域を形成することができる。(このような方法および装置のこれ以上の説明は、2006年2月14日に発行され、Palomar Medical Technologies, Inc.に譲渡された米国特許第6,997,923号に開示されている。米国特許第6,997,923号は、参照することにより、ここに組み込まれる。)
【0071】
ある実施形態では、接触プレート210がサファイアから作られている。冷却機構208は、接触プレート210を保持するために、装置200の先端部に配置されたジャケット部212をさらに備えることができる。ある実施形態では、このジャケット部212が、接触プレート210の周りに配置された金属製構造体であることもある。ジャケット部212は、放射がそのジャケット部212を通過できるように、その中央部に開口部を有してもよい。図2から図15の実施形態では、ジャケット部212は、水、空気または油などの冷却剤が入るように構成されており、この冷却剤は、ジャケット部212内部を循環して、ジャケット部212および接触プレート210から熱を取り除くことができる。図2から図15の装置200は、ジャケット部212に冷却剤を供給するための冷却用マニホールド214をも有する。あるいは、光学デバイス204は導波路であり、導波路の一端が接触面210となるように、この導波路がジャケット部212を通っていてもよい。使用時には、接触プレート210が、患者の組織における対象治療領域を画定する。
【0072】
手持ち式装置200は、接触プレート210がいつ患者の皮膚に接触したかを示す検出機構220を備えることできる。検出機構220は、接触フレーム222、プッシュロッド224およびセンサー226を備えている。センサー226は、たとえば、マイクロスイッチであってもよい。図2から図15は、患者の皮膚に対する冷却機構の接触を検出する検出機構220を組み込んだ本発明の実施形態を図示している。検出機構220は、冷却機構の近傍、かつ、患者の皮膚の近くに取り付けられている。このような検出機構220は、いつ冷却機構が患者の皮膚に接触するか、および/または、いつ冷却機構が患者の皮膚に接触しなくなるかを示すことができる。このような検出機構220はまた、ある実施形態では、図1の装置100の中に組み込むことができる。
【0073】
接触フレーム222は、図10および図11の実施形態に示されているように、長方形断面をしていてもよい。他の実施形態において、接触フレーム222は、正方形もしくは円形の断面、または、任意の他の好ましい形状をしていてもよい。図10および図11に示されているように、接触フレーム222は、そのフレーム222の内側部分が開口するようにフレームとして成形することができる。したがって、エネルギー源202からの放射は、接触フレーム222の内側部分を通して患者の皮膚にあてることができる。この接触フレーム222は、金属、プラスチック、または、任意の適当な他の材料から作ることができる。
【0074】
センサー226は、接触面210がいつ患者の皮膚に触れたかを検出する装置である。より具体的には、センサー226は、いつ接触フレーム222が冷却機構208の接触面210に触れたかを検出するものであり、これは、接触面210が患者の皮膚と接触していることを示す。センサー226は、あらゆる機械的、光学的、電気‐光学的、または、接触面210が患者の皮膚に接触したことを示す他のセンサーであってもよい。一実施形態において、センサー226は、マイクロスイッチであってもよい。センサー226は、接触面210が接触フレーム222に接触したときに起動されるように較正されてもよい。
【0075】
図2から図15の実施形態において、プッシュロッド224は、接触フレーム222をセンサー226に動作可能に連結する。この例示的な実施形態では、2つのプッシュロッド224が接触フレーム222に連結されている。この実施形態では、両方のプッシュロッド224が接触フレーム222の一方の側に連結している。他の実施形態では、プッシュロッド224が接触フレーム222の異なる側面に配置されてもよい。他の実施形態では、1本のプッシュロッド224のみを使用することもできる。さらに別の実施形態では、3つ以上のプッシュロッド224を使用することもできる。図2から図15の実施形態では、接触フレーム222が冷却機構208の接触面210に接触したときに、プッシュロッド224がセンサー226に接触し、センサーを起動させる。
【0076】
接触機構220の接触フレーム222、プッシュロッド224、および、センサー226は、装置200に動作可能に接続されてもよい。図2から図15の例示的な実施形態では、たとえば、接触フレーム222がプッシュロッド224に連結されており、次にブッシュロッド224は、さらにハウジング300およびリンク機構(不図示)を介して装置200の下側部分に連結されている。このような1つのリンク機構または複数のリンク機構は、プッシュロッド224を、そしてそれゆえに接触フレーム222をも、装置200に固定し、その一方で、プッシュロッド224および接触フレーム222が装置200に対して上下に移動できるようにする。図3、図4および図15に矢先が二重になっている矢印によって示されているように、接触フレーム222は、接触プレート210に対して上下に移動することができる。センサー226は、ある実施形態では、装置200のハウジング300に動かないように取り付けることができる。別の実施形態において、センサー226は、接触フレーム222または接触プレート210に動かないように取り付けることにより、接触フレーム222および接触プレート210の間に配置することができる。この実施形態では、接触プレート210が接触フレーム222と接触したときにセンサー226が起動する。接触機構220は、実施形態によっては、バネ、または、接触フレーム222に冷却機構208の接触プレート210から遠ざかる方に力をかける他のデバイスをさらに備えていてもよい。
【0077】
本発明の別の実施形態では、センサー226がフィードバックを使用者に与えて、冷却プレート210が患者の皮膚と接触していること、または、このような接触がないことを示すことができる。ある実施形態では、センサー226が、手持ち式装置200に出力部を有することができる。たとえば、手持ち式装置200は、接触プレート210が患者の皮膚といつ接触しているかを示す、発光体のような視覚的な表示部を備えることができる。たとえば、発光体が付いていれば、このことは、接触プレート210が患者の皮膚と接触していることを示すことであってもよく、発光体が付いていなければ、このことは、接触プレート210が患者の皮膚と接触していないこと示すことであってもよい。手持ち式装置200は、他の実施形態では、スピーカーまたは他のオーディオデバイスを備え、接触プレート210が患者の皮膚と接触していることを使用者に伝えてもよい。オーディオデバイスは、ある実施形態では、音を出して、皮膚との接触を示すことができる。さらに、オーディオデバイスは、音を出して、冷却プレート210の皮膚との接触が終わったことを示すこともできる。他の実施形態では、オーディオデバイスが、接触プレート210が患者の皮膚と接触している間中、連続音を出してもよい。たとえば、皮膚との接触が中断したら、音が終わることがあってもよい。他の実施形態では、感触によるフィードバックを使用者に与えてもよく、たとえば、手持ち式装置200が、接触プレート210が患者の皮膚と接触しているときに振動することがあってもよい。
【0078】
別の実施形態では、検出機構220のセンサー226を(コネクタ216の)ケーブルによって(不図示の)コントロールユニットに電気的または光学的に接続することができる。たとえば図2は、一端においてセンサー226に接続されているワイヤー230、つまり、コードを描いている。このワイヤー230の他端は、コネクタ216によってコントロールユニットに接続することができる。これにより、視覚的および/または音響的および/または感触による表示部であって、前述したものと同様のものをコントロールユニットに作り、冷却機構208が患者の皮膚に接触していること(または接触していないこと)を示すことができる。
【0079】
ある実施形態では、図2から図15の手持ち式装置200が接続部216(図3、図4)を備えている。この接続部216は、制御信号によって手持ち式装置200と通信をすることができるコントロールユニットまたはベースユニット(不図示)に、装置200を導管コード(umbilical cord)またはケーブルによって接続するためのものである。コントロールユニットは、たとえば、冷却機構208のための冷却剤の供給部を備えていてもよい。たとえば、図2は、ジャケット部212を導管コードのための接続部216に接続している冷却用マニホールド214を描いている。別の実施形態では、コントロールユニットが、手持ち式装置200内のエネルギー源202のための電力調整部(power settings)等を備えることができる。さらに、コントロールユニットは、マイクロコンピューターおよび/またはコントローラを備え、以下により詳細に説明するように、本発明の特定の機能部を制御することができる。コントロールユニットを手持ち式装置200の接続部216に接続しているケーブルは、冷却剤用の供給管と、手持ち式装置200の制御および電力用のワイヤーを備えていてもよい。他の実施形態では、このような接続部216は使われないかもしれない。
【0080】
本発明の別の実施形態は、手持ち式装置200のための空冷機構および方法である。図2から図15、より具体的には図10および図11を参照すると、空冷機構の一例は、送風機240およびマニホールド242を備えている。ある実施形態では、送風機240が電動送風機であり、コントロールユニットからのケーブルによって動力を供給されていることがある。さらに、実施形態によっては、送風機のパワー(つまり、スピード)は、コントロールユニットで制御することができる。あらゆる種類の送風機240を本発明の範囲内で用いることができる。図2から図15の実施形態では、送風機240が、手持ち式装置200のハウジング300の内部に取り付けることができるよう、十分に小型である。
【0081】
図2から図15の実施形態では、マニホールド242が、手持ち装置200内の冷却を必要とするものを取り囲んでいる。たとえば、エネルギー源202および反射器206は、冷却を必要とすることがある。さらに、装置200内の非常に多くの他の部品、たとえば、光学デバイス204、電極および/または装置200内の他の反射面などが冷却を必要とするであろう。マニホールド242は、これらの領域を冷却するように構成することができる。
【0082】
図2から図15の実施形態では、マニホールド242が複数のフィン244を備えている。これらのフィン244により、マニホールド242の冷却表面積が増大し、これにより、装置200の冷却能力が増大する。マニホールド242は、金属またはあらゆる他の適する材料から作ることができる。フィン244に加えて、または、フィン244に替えて、マニホールド242は、装置200からの熱の除去を促進する、異なる種類の一つ以上のラジエーターを備えていてもよい。マニホールド242はまた、冷却する必要があるいずれかの構造体の近くから延びているフィン244またはラジエーターを備えていてもよい。フィン244は、図10および図11に示すように上方を含め、いかなる方向にも延びることができる。
【0083】
送風機240は、マニホールド242に空気を吹き通し、マニホールド242から熱を除去し、装置200を冷たい状態に維持する。サイズが十分小さく、パワーが十分に大きい送風機240を組み込むことにより、このような冷却機構は、サイズを犠牲にすることなく、経済的な方法で、手持ち式装置200から熱を効率的に取り除くことができる。
【0084】
図2から図15に描かれている発明の実施形態は、エネルギー源202および反射器206について空冷を使用しており、患者の皮膚に接触させる冷却機構208については、水冷を使用している。他の実施形態では、空冷を冷却機構208についても使用することができる。さらに、このような実施形態では、冷却機構208がマニホールド242の一部であってもよい。
【0085】
ハロゲンランプをエネルギー源202として用いた場合、1つ以上の小さくて安い送風機による空冷が、装置のハロゲンランプおよび反射器にとって十分である程、温度の変化が大きい。一般に、皮膚の表面は、はるかに低い温度に冷やすことが必要であるので、接触プレート210(または冷却機構208)を冷却剤で冷やすこと、たとえば冷やした流体またはガスなどで冷やすことがやはり好ましい。小さい送風機を用いてランプを冷やすと、コントロールユニットから手持ち式装置200に来る冷却剤の量が減る。これにより、冷却剤を運ぶのに必要な導管コードの大きさが小さくなり、冷却剤を冷やすのに必要な冷却装置の大きさおよびコストも下がる。
【0086】
手術中、使用者は、装置200を患者の皮膚にあてる。使用者は、治療しようとする患者の皮膚の丁度その領域のあたりに接触フレーム222の位置を合わせる。次に、術者は、手持ち式装置200を下へ(つまり、皮膚表面の方へ)押し、プッシュロッド224が手持ち式装置200内で上へ延びるようにし、皮膚接触プレート210を皮膚表面と接触させる。使用者が手持ち式装置200を押し下げる、または、皮膚の方へ押すと、装置200の接触プレート210が接触フレーム222および皮膚に近づく。換言すれば、使用者が手持ち式装置200を押し下げるにつれ、接触フレーム222は患者の皮膚に押し付けられ、プッシュロッド224は、接触プレート210が接触フレーム222および皮膚に向けて押されるにつれ、ハウジング300の中へと移動する。皮膚接触プレート210が皮膚表面と接触していると、プッシュロッド224がセンサー226を起動し、これにより、このように接触していることがコントロールユニットに対して、および/または、手持ち式装置の使用者に対して示される。
【0087】
最終的に、接触フレーム222が接触プレート210と接触するようになると、プッシュロッド224がセンサー226と接触して、センサー226を起動し、接触プレート210が患者の皮膚と接触していることを知らせる。接触プレート210は冷却されているので、センサー226の起動は、皮膚を冷やし始めたことを表す。前述の説明および図2から図15は、検出機構220の一実施形態を表している。他の検出機構もまたは、本発明の範囲内で使用することができる。
【0088】
検出機構220の使用は、手持ち式装置200の使用者の助けとなる。たとえば、使用者が、放射をあてる前に患者の皮膚を冷やしたい場合、検出機構220は、手持ち式装置の使用者が、いつ装置200の冷却機構208が患者の皮膚と接触したかを確認するのを助ける。これは、実際には接触していないときに、冷却プレート210が患者の皮膚と接触していると使用者が誤って信じることを防ぐ。よって、この実施形態では、検出機構220が装置200にとっての安全機能となりうる。
【0089】
使用者が、接触プレート210が皮膚と接触していることを示すフィードバックを受け取ると、使用者は、装置200を出力(fire)させ、皮膚を照射することができる。予冷却が求められている場合、皮膚と接触していること示すセンサー226からのフィードバックは、予冷却時間では異なっていてもよく、また、変化して、放射をあて始めてもよいことを術者に知らせることがあってもよい。たとえば、フィードバックは、装置200が皮膚を予冷却している間は不連続音(beeping sound)を出し、使用者が装置200を出力させて、皮膚に照射しても安全であるときは、連続音(continuous tone)を出すことがあってもよい。ある実施形態では、装置200が、予冷却時間に達するまで使用者が出力させるのを防止してもよく、また、皮膚との接触が中断した場合に、装置200は、そのサイクルを初めから終わりまでやり直してもよい。他の実施形態では、装置200の出力時間が予め設定されており、使用者が出力を開始したら、装置200が、その予め設定された時間の間、皮膚に照射するようになっている。他の実施形態では、皮膚表面との接触が中断したら、装置200が放射を中止する。他の実施形態では、装置が、放射後の冷却時間を示すために、放射後に使用者にフィードバックを与える。
【0090】
図16は本発明の一実施形態によるフローチャートであり、装置200およびコントロールユニットが術中にどのように動作して、患者の皮膚に照射する点で使用者を支援できるかを図示している。図16に示されている最初の3つのステップは、使用者によって実行されるステップであってもよい。残りのステップは、図16の実施形態では、装置200およびコントロールユニットによって自動的に実行されてもよい。他の実施形態では、ステップの一部を自動化してもよく、その他を使用者が実行することがあってもよい。最初に、ブロック1601および1602では、前述したように、使用者が手技を開始し、接触フレーム222の位置を患者の皮膚における対象領域の周りに合わせる。次に使用者は、接触プレート210が皮膚を冷却するために皮膚に接触したことをセンサー226が示すまで、(ブロック1603において)装置200を患者の皮膚に押し付ける。ブロック1604において、装置は、接触プレート210が皮膚に接触しているかどうかを決定する。センサー226が、接触プレート210が患者の皮膚に触れていることを示す場合、(ブロック1605において)そのような接触が存在することを示す表示が使用者に送られる。装置200またはコントロールユニットがそのような表示を行わなかった場合、ある実施形態では、使用者がその処理を再び始めなければならない。
【0091】
ある実施形態では、図16のブロック1606で図示されているように、コントロールユニットおよび/または手持ち式装置200をプリセット冷却時間付きで構成することができる。このプリセット冷却時間は、放射を出力する前に、冷却機構が患者の皮膚に接触している間、装置200が待機する(または待機しなければならない)時間の長さである。このようなプリセット冷却時間は、安全機構として、および/または、治療を自動化する方法として用いることができる。
【0092】
実施形態によっては、図16のブロック1607において図示されているように、コントロールユニットおよび/または手持ち式装置200をエネルギー源202のプリセット出力時間(preset firing time)付きで構成することができる。このプリセット出力時間は、患者の皮膚を照射するためにエネルギー源202が出力を行う時間の長さである。あるいは、このプリセット出力時間は、エネルギー源202の出力周期もしくはパルスの数、または、放射の出力周期の数およびパルス長の何らかの組み合わせであってもよい。このようなプリセット出力時間は、安全機構として、および/または、治療を自動化する方法として利用することができる。さらに、プリセット冷却時間およびプリセット出力時間の使用の組み合わせは、自動工程を作るのに使用することができる。異なる治療について、異なるプリセット冷却時間およびプリセット出力時間を用いることができる。
【0093】
本発明の別の実施形態では、図16にブロック1608において図示されているように、治療中に、いつ冷却プレート222が皮膚と接触しなくなったかをセンサー226が特定することができる。図16のブロック1609において示されているように、冷却機構208の接触プレート222が患者の皮膚と接触しなくなったことをセンサー226が示す場合に、コントロールユニットおよび/または手持ち式装置200に自動的に割り込みがなされることがあってもよい。このような自動割り込みは、安全機構を与え、この結果、患者の皮膚は、たとえば、過度の熱および/または放射によって損傷を受けることはない。このような実施形態では、センサー226が接触しなくなったことを示すと、割り込み信号でエネルギー源202を切ることができる。このような割り込み信号は、コントロールユニットで生成することができる。別の実施形態では、冷却機構208が患者の皮膚と接触しなくなった場合に、エネルギー源202の出力が自動的に遮断されるように、割り込み信号を手持ち式装置200によって生成することができる。さらに、図16のブロック1610において示されているように、コントロールユニットおよび/または手持ち式装置200は、接触しなくなったこと、および、出力が遮断されたことを使用者に示すことができる。使用者は、その後、その処理をやり直す(ブロック1611)またはやめることができる。代替実施形態では、このような自動的な割り込みは利用されない。その代わりに、このような実施形態では、コントロールユニットまたは手持ち式装置200が、接触プレート222が患者の皮膚に接触しなくなったことを使用者に知らせることができる。このような実施形態では、装置200の使用者は、必要ならば、冷却機構208が患者の皮膚と接触しなくなった後も、エネルギー源202を出力させ続けることができる。
【0094】
冷却および放射を出力するサイクルが完了したら、組織の照射を終了でき(ブロック1612)、そして、サイクルを終了できる(ブロック1613)。コントロールユニットおよび/または手持ち式装置200は、患者の皮膚における異なる対象領域において、別のサイクルを始めるために、装置200の位置を変えても安全であることを(視覚的、音響的、または感触による信号で)使用者に知らせることができる。
【0095】
前述したように、多くの用途において、放射をあてる前に、患者の皮膚の対象領域を冷却することが必要である。これにより、治療領域より上の組織を効果的に保護でき、より大きなフルエンス(fluences)およびより短いパルス持続時間を可能とすることができ、また、組織における最大温度上昇が、求める深さまたはその近くで生じることを保証できる。予め冷却することは、より深いところの加熱を達成するために、光または他のEMRをより長い周期であてる、セリュライトの治療のような一定の応用例にとって好ましいことである。さらに、患者の皮膚に放射をあてている間に冷却を行うことは、一定の応用例では必要または望ましいことである。さらに、あとで冷却することは、一定の応用例において好ましく、たとえば、静脈治療中に引き続いてあてられる光を消散させるのに好ましいことである。
【0096】
放射照射時間は、約1mmから50mmまでの深さに対して、それぞれ、約2秒から約2時間まで変わりうる。深さ、行われる治療、および他の要因により、出力密度は、約0.2から50W/cm2、より好ましくは約0.5から20W/cm2、最も好ましくは0.5から10W/cm2、または0.5から5W/cm2まで変わりうる。手持ち式装置200および/またはコントロールユニットには、図16に関連して前述したように、異なる応用例に対して、このような放射照射時間および出力密度を予め設定することができる。さらに、異なるプリセット冷却時間を異なる放射照射時間および/または出力密度と一緒に用いることもできる。
【0097】
図17におけるグラフは、赤外波長で作動する光源についての治療時間および加熱深度の関係を図示している。加熱深度は、使用する電磁波長、治療する組織の種類、および、電磁波長の出力密度を含むさまざまな要因に依存するが、図17は、赤外波長、および、ほぼ0.5から5.0W/cm2の範囲にある出力密度を用いて、深部にある組織を加熱するためのパラメータの一般的な指針を与えるものである。比較のために、予冷却が用いられ、治療中に皮膚が連続的に冷却された場合の表面皮膚温度(中央値および標準偏差)および治療時間の関係が図18に示されている。
【0098】
図19から図23を参照すると、ハンドピース400は、真皮、および、その真皮のすぐ下にある脂肪または他の組織の両方を治療することができる。あるいは、このハンドピースの実施形態は、比較的深いまたは浅い深さにおける組織を加熱するように設計することも可能であろう。
【0099】
より深く組織を加熱するには、小部分法を用いる場合でも、従来の方法を用いる場合でも、ハンドピース400は、組織に光を、従来の装置よりも長い時間、比較的低い出力レベルで送る。換言すれば、組織の放射照度のレベルはより低いが、出力は、より長いパルス幅で射出される。たとえば、コラーゲン刺激およびある種の鎮痛のような一部の応用例の場合、ハンドピースおよび他の実施形態は、1から10秒間、10W/cm2を射出するように設定することができる。もっとも、セリュライトを治療するには、より長いパルス幅にわたってのより低い出力密度が好ましい。このために、ハンドピース400の一実施形態は、1〜2W/cm2を同じ期間またはより長い時間にわたって、つまり、好ましくは0.5秒から600秒にわたって射出するように設計されている。もっとも、治療の深さおよび大きさによるが、より長い時間も可能である。
【0100】
以下の表は、いくつかの応用例について設計された実施形態の好ましい仕様である。ただし、多くの他の応用例も可能である。
【0101】
【表2】

【0102】
本発明の代替実施形態では、EMRを通す窓のサイズを大きくすることにより、前述した装置100および200のような装置をより低い出力密度を与えるのに利用することができる。換言すれば、装置によって生成される出力の相対的な量を下げることにより出力密度を下げるよりも、治療された組織へとエネルギーを通す窓の面積を大きくすることにより出力密度を下げることができる。求める出力密度が生成されることに加え、面積を大きくすることには、他のハンドピースと同じベースユニット、たとえば、図1から図15に関連して説明した実施形態と同じベースユニットと一緒にハンドピース400を使用できるという付随的な利点もある。
【0103】
さらに、ハンドピース400には、治療された組織の面積を常に大きくし、これにより、治療をより迅速、かつ、より効率的にするという利点もある。したがって、患者は、通院毎に必要とする時間が比較的短く、また、治療を施す人は、同じ時間内に相対的により多くの治療を行うことができる。
【0104】
互い違いの窓構成、および、以下に説明する一定の他の付加的機能を含むことを除いて、ハンドピース400は、図1から図16に関連して説明した装置100および200と機能、構造および作用が本質的に同じである。もっとも、比較すると、上述した装置は、EMRが通る比較的小さい窓部を備えている。たとえば、図14を参照すると、装置200は、12mm×28mmであり、光を(図8および図9に示された)ランプ202から治療されている組織まで通すことができる窓部223を備えている。このような長方形形状の窓は、前述した循環システムを用いて、窓の28mmの長辺の一方または両方に沿って、たとえば(一般に水である)冷却した冷却剤を勢い良く流すことにより、均一かつ徹底的に冷却することができる。このように冷却した冷却剤を加えることにより、熱が、長方形の窓部の細長い全長にわたって一様に消散される。
【0105】
一方、図19から図23をも参照すると、ハンドピース400は、この具体的な実施形態では、40mm×40mmである比較的大きな窓部402を有する。このより大きな窓部は、より小さな窓部に対して窓の面積を大きくしつつ、そのまま同じ電源を使用し、光源からほぼ同じ量の照射照度を生成することにより、出力密度を特にセリュライトを治療するのに適したレベルまで下げるのに役立つ。
【0106】
しかしながら、ハンドピース400における窓部402のサイズが大きいので、窓部の一つ以上の側面に沿って流体を流すのでは、窓部の中央から熱を消散させるのに不十分であり、窓部の中央に熱が蓄積するために、比較的熱い領域がハンドピース402の動作中にできる。このため、窓部を適切に冷やし、動作中における窓部のあらゆる高温部分をなくすために、さらに別の機能が設けられている。装置200および窓部223のように窓部の端部に沿って冷却することに加えて、窓部402は、窓部402の上面にエッチングで形成された、2つの交差する溝部404および406を備えている。さらに、窓部223が2つの長い方の側面に沿ってだけ冷却されたのに対して、窓部402は、4つの側面全てが冷却される。
【0107】
溝部404および406は、窓部の全厚みの約3分の2の長さだけ窓部402の中へと下に広がっている。窓部のこの実施形態では、窓部402の全厚みが約6mmであるのに対して、溝部404および406の深さは約4mmであり、また溝部の幅は、約0.5mmである。
【0108】
窓部の溝部404および406の構成は、ハンドピース400の作動中に窓部を通過する光を最小限の量だけ遮りつつ、窓部402の中央部分を十分に冷却する。第1に、溝部404および406の幅が薄いことから、溝部404および406は、EMRが通過する方向において、窓部のわずかな部分しか塞がない。第2に、図22に示されているように、溝部404および406の壁部に対する窓部内の光の全反射(TIR)のために、溝部404および406の壁部に入射する光408または409のほとんどどれも、その光がハンドピースから進行するものであるか、または、組織によって反射されたものであるかによらず、溝部に進入しない。このことは、使用中に、皮膚から反射された光、または、皮膚で後方へ散乱された光についても同様である。溝部404および406におけるこの有益な光学的特性は、窓部402を形成する材料の屈折率と、水の屈折率との相対的な差異にある程度起因するものである。
【0109】
好ましくは、溝部404および406は、作動中は水で満たされる。水の屈折率(約1.33である)は、サファイア製窓部402の屈折率(約1.74である)よりも低い。したがって、当業者にはわかるであろうが、光は、TIRのために、窓部402および水の間の境界によって反射される傾向を有することになる。境界に対して非常に急な角度で入射する光のみが水へと通過する。しかしながら、窓部402に対する光源の向きを考えると、光のほとんど全てが、光が境界において反射され、窓部402内を組織へと通過し続ける角度で境界にあたることになる。したがって、ほんのわずかな光のみが溝部404および406に入る。
【0110】
ハンドピース400を完全に組み立てたとき、窓部402の上面は、導波路403の下面にあたり、溝部406および408を冷却液が通ることができるトンネルまたは毛細管に本質的に変える。導波路およびサファイア製窓部402の間の接合部は、好ましくは、誘電体膜を備えており、この誘電体膜は、導波路403から窓部402への光の伝達をよくし、かつ、接合部を密閉する役割をも果たす。
【0111】
作動中は、好ましくは冷却した水である冷却剤が、循環システム入力チューブ410から溝部循環入力部414および416へ流入する。水は、好ましくは約5℃に冷却されており、溝部404および406を通って窓部402の4つの側面の全てに沿って流れ、窓部402を冷却する。水は、溝部404および406の交差部を通過し、溝部循環出力部418および420から流出し続ける。この時点で、窓部402から水への熱の伝達によって今や相対的により熱くなっている水は、出口チューブを通って、(不図示の)ベースユニットに配置されている冷却機に戻る。ここで水は、再び冷却され、循環システムを介して送り返される。
【0112】
もっとも、当業者には明らかであろうが、ハンドピース400のパラメータは、ハンドピース400を他の応用例に対して最適化するために変えることができる。たとえば、組織を治療しやすくする、窓の冷却を促進する、および/または他の理由のために、多くの寸法をおよび形状が可能である。さらに、40mm×40mmの窓部または他の大きなサイズの窓部は、比較的高い出力密度を必要とする治療でハンドピースを使用できるように、比較的高い出力レベルで光を生成するハンドピースで使用することもできる。セリュライトほど深い組織の加熱を必要とせず、かつ、高い出力密度の恩恵を受ける脱毛のような治療は、ハンドピース400の窓部402と同様の比較的大きな窓部を使用して行うことができる。このようなハンドピースを使用すれば、脱毛治療を、背中や足のような、組織のより大きな面積についてより迅速に行うことが可能になる。さらに、窓部の冷却を促進するために、または、さらに大きな窓部を収容するために、溝部の構成を変えることもできるし、また、さらに別の溝を加えることもできる。また、中空の切り込み、トンネルまたは毛細管を窓部に作り、窓部を導波路の底面のような他の物体に押しあてて、冷却剤を入れるために、溝部の上を横切る境界を設ける必要なく、水が毛細管を通って流れることができるようにすることも可能である。さらに、溝、切り込み、トンネルまたは毛細管の形状は様々な形状に切ることができ、たとえば、「V字」形状に切ることができ、この場合、照射されたEMRの一般的な方向にほぼ垂直である、溝部404および406の平坦部分を通過する光を減らす、または、なくすために、「V字」の底部は上向きに延びている。ここでも、このような構造における屈折率の違いにより、「V字」部分の壁部に入射する光の大部分を反射させることが可能であろう。切り込みは、円形、長方形、三角形または他の断面を有することができる。切り込みは、導波路上に一様に分散され、これにより、温度勾配をなくす、または、少なくとも、側面のみが冷却される場合の温度勾配より小さくすることがあってもよい。切り込みは、平行であってもよいし交差していてもよい。冷却は、切り込みの表面からフレオンのような液体を蒸発させることにより行ってもよい。
【0113】
同様に、開示したように、窓部402は一体構造のプレートであるが、くっつけ合わせてある複数の部品からなっていてもよく、たとえば、接着して合わせてある複数の部品からなっていてもよい。しかしながら、このような実施形態では、接着材または結合剤は熱を吸収し、このため、窓の熱的な性能を低下させる。比較のため、図25を参照すると、従来技術とは別の、窓の冷却方法が示されている。窓部502は、2つのプレートの間、たとえば、サファイアの窓部502と石英の導波路506との間に横向きの空間504を設け、これにより、窓部を冷却するために空間504に水を通したときに、光その他のEMRを通す連続した光学的構造体を形成する。しかしながら、このような実施形態では、水路および導波路の間の界面、ならびに、水路および窓部の間の界面において、光の一部が光源の方へ反射され、窓部を通過するエネルギーの一部を水が吸収する。
【0114】
図19および図20を参照すると、ハンドピース400は、2つの冷却回路であって、各々、特にその目的に合わせてあるものを備えている。第1冷却回路は、治療されている組織を冷却するために、ハンドピースの接触面を冷却し、第2冷却回路は、光源を冷却する。ハンドピース400は、近赤外EMRを使用して組織を照射するように構成されており、治療する組織の表面から熱を除去し、これにより皮膚を冷却する循環システムと、赤外ランプを冷却する送風機システムとを備えている。循環システムは、通常は約5℃に冷却した水である冷却流体が、ベースユニット(不図示)から入口管410を介してハンドピース400に流入し、冷却窓部402の周りを流れ、そして、出口管412を介してハンドピース400から流出することを可能にする。冷却窓部402は、適するさまざまな材料から作ることができるが、本発明の実施形態ではサファイアであることが好ましい。
【0115】
提案した装置では、皮膚の冷却が、サファイア製窓部402の冷却された先端部を接触させることにより実行される。窓部402を冷却するには、いくつかの機構が可能である。たとえば、窓部は、サファイアのような、熱伝導特性がよい材料からなるべきであり、冷却流体は、窓部の1つ以上の端部に沿って流れることができ、および/または、窓部は、窓部を貫通する複数の中空の切り込み、または、毛細管を有し、好ましくは冷却した水である冷却液または冷却ガスが、前述したように、その切り込みを循環することができる。
【0116】
ハンドピース400は、光源422が生成した熱を除去するための第2の冷却回路をも備えている。光源422は、高温で作動するように設計されたハロゲンランプである。ハロゲンランプの電球は、作動中は約500℃になり、光源422を作動限界内に維持し、過熱を防止するために除去しなければならない熱エネルギーは比較的少ない。さらに、ハロゲンランプは、温度が上がるにつれて、より効率的に作動するので、ハロゲンランプ400の周囲からあまりに多くの熱を除去すると、ランプの効率およびハンドピース400の性能が下がることがある。したがって、光源422は、冷却装置のような冷却機構を別途必要としない第2の循環システムで冷却することができる。代わりに、より単純で、安価な空冷システムを使用することができる。
【0117】
従来技術による同様のハンドピースでは、冷却回路を1つだけ使用して、組織接触面および光源の両方を冷却している。冷却回路を1つだけ使用するということは、前述したように非常に高い温度で作動する光源を冷却することと、損傷を防ぐためにはるかに低い温度に維持する皮膚の冷却との間で、妥協を行わなければならないことを意味する。たとえば、ある従来技術による装置は、冷却回路を1つだけ使用して、光源および皮膚接触面の両方を20℃に冷却することで妥協している。ランプを20℃に冷却すると、冷却装置に大きな負担がかかり、また、ランプは、より効率のよい高い温度で動作することができない。皮膚接触面、そして、それ故に皮膚を20℃までしか冷却しないと、損傷を与えることなく皮膚にあてることができる光の量が制限される。
【0118】
前述したように第1および第2の冷却回路を使用すると、このような妥協をする必要がなくなる。ランプは、たとえば500℃という、はるかに高く、より効率的な温度で動作でき、1つ以上の送風機のように、簡単、小型で安価な冷却回路だけで冷却することができ、その一方で、皮膚接触面は、たとえば5℃以下というはるかに低い温度に冷却することができ、より多くの光を皮膚に、損傷を与えることなく当てることが可能になる。この結果、ベースユニットに配置されている冷却装置からの水の冷却能力が、ランプを冷却するのに不必要に利用されることがない。これには、冷却装置への負担を軽減し、また、冷却装置をより小型で安価にできる、または、同じ大きさの冷却装置で皮膚接触面をより低い温度に冷却できるという付随的な利点がある。
【0119】
好ましくは、ハロゲンランプを利用する装置の場合、ランプは、非常によく反射する材料でコーティングされている、または、取り囲まれており、ランプの効率を上げている。このような構造は、発明の名称が「組織治療装置において使用するためのランプ("LAMP FOR USE IN A TISSUE TREATMENT DEVICE")」であり、2006年2月17日に出願され、パロマ・メディカルテクノロジーズ社(Palomar Medical Technologies, Inc.)に譲渡された米国特許出願に開示されている。
【0120】
本実施形態では、送風機ユニット424が光源を冷却し、この光源は、ランプ422、反射器423およびヒートシンク426を備えている。送風機ユニット424は、空気をハンドピース400の中へ、ヒートシンク426を横切るように送り込む。ヒートシンク426は、ランプの反射器428の上部に取り付けられていて、熱が反射器からヒートシンクに伝わることを可能にしている。反射器428は、金、または、他の高反射率材料、たとえば銀もしくは銅などでコーティングされていることが好ましい。ヒートシンク426は、フィン430を備えている。フィン430は、空気がフィン430の周囲を流れる時に熱を空気に放散させ、空気は、その後、ハンドピース400から出ていく。空気は、それぞれ通気口432および434を介してハンドピース400に入り、出ていく。通気口432および434は、ハンドピース400の両端に配置されており、ハンドピース400のハウジング436の一体部分として形成されている。
【0121】
実施形態によっては、マスクを使用して、EMR光源によって生成されたEMRの一部を組織に到達しないように遮蔽することができる。マスクには、EMRを空間的に変調して、治療の島を作るように機能するいくつかの穴、ラインまたはスリットがあってもよい。図23は、治療の島が、小さな穴であるミラー入り開口部452を使用することで概して形成されている実施形態を図示している。
【0122】
図20および図23を参照すると、ハンドピース400は、ハンドピース400の前面部440に配置されているサファイア製窓部402を介して、治療されている組織まで光を伝達する。窓部402は、小部分治療用に構成されており、このために、マスク450を備えており、このマスク450は、比較的小さい円形開口部452の配列を有し、その一方で、窓部402を覆っているマスクの残りの部分は不透明で、作動中に、他の波長のEMRを通さない。マスクは、多少のEMRは通すこともあるが、それより相当多くのEMRが開口部452を通過する。(後述するように、他の実施形態は、小部分的でない応用例用に構成できる。)ある実施形態では、マスク450がフィルム状の炭素粒子からなり、皮膚の表面と接触するように配置される。マスク450は、サファイア製窓部402に取り付けられ、そして、マスク450は、装置の使用時には、ここではランプ422である光学的エネルギー源と、対象組織との間に配置される。マスク450は、代わりに、1つ以上の誘電体層を備え、この誘電体層には、ランプ422からのEMRを対象領域へ通すための複数の開口部452があるということでもよい。よって、ハンドピース400は、患者の皮膚に治療の島を形成できる。同様のマスクを有する皮膚科学的装置の他の実施形態は、発明の名称が「組織にEMR処理島からなる格子を生成する方法および生成物、ならびにその使用(Methods and Products for Producing Lattices of EMR-Treated Islets in Tissues, and Uses Therefore)」であり、2005年4月1日に出願された米国特許出願第60/561,052号に開示されている。米国特許出願第60/561,052号は、参照することによりここに組み込まれる。
【0123】
光は、ミラー部にある開口部452を通過して患者の皮膚にあたり、治療の島を作る。ミラー部によって反射された光は、反射器からなるシステムによって光学系内に留まり、また、穴部によって向きを変えられ、効率を向上させることがあってもよい。効果的なマスクの1つは、よく反射し、光をマスキングするための吸収が最小限に抑えられている接触冷却用マスク(つまり、治療中に皮膚に接触する)である。
【0124】
この態様では、誘電体層が、ランプ422が放出するスペクトル帯域の全体にわたって高い反射率を有することができる。マスク450における開口部は、いろいろな形状をしていてもよいし、同一の形状をしていてもよい。たとえば、開口部は、直線、円形、スリット、長方形、楕円形、または、不規則な形状であってもよい。態様によっては、使用中にマスクを冷却または加熱する冷却要素または加熱要素を装置が備えていてもよい。光学的エネルギーは、幅広い波長帯域に及ぶことがあり、この場合、赤外光が使用される。光学的エネルギーは、さまざまなパルス幅で加えることができ、好ましくは100ミリ秒から1秒のパルス幅で加えることができる。
【0125】
同様に、図26を参照すると、ハンドピースの前面部は、他の構成にすることも可能である。たとえば、導波路472に取り付けられた窓部470は、空間的に一様でなくてもよい。この場合、皮膚の損傷も一様でなくなる。非一様領域の大きさは、50μm未満であってもよい。非一様な損傷は、肌の若返りにとって、または、血管病変もしくは色素病変、入れ墨などにとって有効なことがあり、これは、非一様な損傷が、皮膚の極端に大きな損傷、つまり、水疱形成、紫斑等のピークを軽減するからである。同時に、損傷を受けた島の間の組織が損傷を受けておらず、そのために細胞増殖をすることができるので、損傷を受けた島は迅速に治癒する。
【0126】
皮膚表面に一様でない損傷を設けるために、導波路の窓部470は、図26に示されているように、変調された外形474を有することがあってもよい。空間マスク(spatial mask)476を窓部470の前面にコーティングしてもよく(反射マスク)、たとえば、図27に示されているように、正方形開口部478を有する平坦マスクをコーティングしてもよい。導波路内のパターン化された屈折率変化(位相マスク)を採用してもよい。他の光学手法をこの目的を達成するために利用することがあってもよい。示した手法の少なくともいくつかは、光を再分配して、選択治療部分を提供する。
【0127】
再び図20および図23を参照すると、ハンドピース400の面440は、窓部402の外周部付近に配置された近接センサー442をさらに備えている。このセンサーは、図23に示されているように並べることもできるし、あるいは、数多くの他の実施形態も可能であり、他の実施形態としては、センサーを窓部の各側面に配置する、窓部の隣り合う側面に配置する、窓部の角部に配置する、または、これらの構成または他の構成のさまざまな組み合わせがある。作動中、センサー442は、ハンドピース400を「始動」させることができる前に、つまり、ランプ422により、そして、ハンドピース400から光を放射できる前に、ハンドピース400の前面部が皮膚または他の組織に確実に近接している、または、接触しているようにする。近接センサー442は、数多くの適するセンサーのいずれであってもよく、このようなセンサーとしては、装置200に関連して説明したセンサーであって、ハンドピース400に出力させることができる前に、ハンドピース400が本当に組織と接触していて、組織に押し付けられていることを保証するセンサーと機能が同様である圧力センサーがある。
【0128】
しかしながら、本発明の実施形態では、電界センサー(eフィールドセンサー(e-field sensor)としても公知である)が好ましい。eフィールドセンサー442は、たとえば組織の一部が電界に入ったときの、弱い電界における変化を検出する。よって、このセンサーは、いつ組織がセンサーに近接しているかを検出するのに使用できる。センサーは、ハンドピース400の前面部に配置され、かつ、サファイア製窓部402の周りに配置されるので、センサーは、いつ組織がサファイア製窓部402に近接しているか、または、接触しているかを検出でき、いつ組織が、ハンドピース400を始動させるのに適した位置にあるかを確認するのに用いることができる。
【0129】
図24Aおよび図24Bを参照すると、eフィールドセンサーは、窓部402に近接している組織の種類を特定するためのセンサーとして使用することもできる。組織の基礎をなす組成は、体の場所によって変わる。たとえば、普通の皮膚組織480は、眼の近くの組織484よりも比較的厚い皮層482を有し、眼の近くの組織484は比較的薄い皮層486を有する。同様に、通常の皮膚組織480は、真皮482の下に比較的厚い脂肪の層488を有し、一方、眼の周りにおける同様の深さの組織490は、主に水である。組織の異なる組成は、eフィールドセンサーの電界492に異なる影響を及ぼす。eフィールドセンサー442は、これらの影響の違いを検出して、たとえば、普通の皮膚組織と、眼の上または近くにある組織との間を識別することができ、あるいは、他の種類の組織を識別することができる。したがって、近接センサー442は、安全機能のような、さらに別の機能を与えるのに使用することができる。たとえば、近接センサー442が、ハンドピース400の前面部が眼の上または近くの皮膚に近接していることを検出したら、コントローラが、ハンドピース400の動作を停止させ、または、より弱い照射で動作させ、眼を保護することができる。同様に、コントローラは、ハンドピース400に、さまざまな組織の種類にさまざまな強度および波長の光を出力させて、行っている治療を最適化することができる。
【0130】
あるいは、他のセンサーを使用して、接触の検出ならびに他の特徴を提供することもできる。たとえば、2つの電気的な接触子をハンドピース400の皮膚と接触する部分に配置することができる。この2つの電気的な接触子の間で測定される抵抗(または容量)が皮膚に典型的な範囲内にあれば、レーザが照射可能にされる。皮膚/サファイアの接触を検出するのに磁気センサーを使用することも可能なことがある。同様に、装置が生物の皮膚の上で動作しているのか、何らかの他の表面の上で動作しているのかを確認できるように、容量センサーを画像処理と合わせて使用することもできる。適当なサンプリング条件の元で、装置が配置されている皮膚の種類を推論することが可能である。これは、リアルタイムで処理された画像を蓄積されたパターンまたは計算されたパラメータ一式と比較することで行うことができる。さらに、容量センサーと、画像のパターン認識、ナビゲーションアルゴリズム(navigation algorithm)、および、特殊なローションとの組み合わせを用いて、体毛の存在を確認し、その体毛の密度および大きさに付いての統計的な情報を出すことができる。
【0131】
ハンドピースは、ハンドピースを眼と皮膚に対して安全なものとするセンサーを備えることが好ましい。前述した応用例の多くは、高い光学的エネルギー(80〜500Wまで)を必要とし、光学系(たとえば、サファイア素子)が皮膚と良好に接触しているときにのみレーザを出力可能にするために、通常、信頼性の高い接触センサーが用いられている。たとえば、接触を確認するための装置の実施形態としては、EMRが通過する窓部(たとえば、サファイア素子)から数ミリメートル離れたところに取り付けられた小さな照明光源(たとえば、ダイオードレーザまたはLED)がある。レーザまたはダイオードは、窓部402の近くで装置の内部に配置されることが好ましい。照明光源は、皮膚表面に向けられ、この照明光源は、高出力光源とは異なる波長を放射してもよい。治療波長の光を除去するフィルターを有する検出器が、ハンドピース内に配置され、皮膚において反射された、または、散乱された、照明光源からの光を検出する。よって、サファイアが皮膚表面と良好に接触していれば、皮膚での散乱および吸収で、照明用レーザからの光は減衰する。皮膚に上手く接触していない場合、または、全く接触していない場合、照明用レーザからの光は、光学系を通って検出器まで伝搬する。よって、適当な閾値を設定することにより、検出器が予め設定したレベル未満である場合にのみ出力するようにレーザを構成することができる。なお、このような検出器は、ベースユニットに配置し、光ファイバーを使って、ハンドピースからの光をその検出器につなげることもできる。
【0132】
光学的接触を確認する装置の第2の例示的な実施形態は、照明光源を使用しない。この場合、検出器の前にバンドパスフィルターを配置することにより、治療用光源からの光のみを検出するように検出器が構成される。この方法では、皮膚としっかり接触するまでは、治療用光源を出力の低いアイセーフモードで作動させることが好ましい。よって、皮膚とハンドピースの間が全く接触していない、または、上手く接触していない場合には、検出器の出力が比較的低い。しかし、光学系(たとえばサファイア素子)が皮膚と良好に接触していると、検出器の出力は比較的高い。よって、治療用光源は、検出器出力が予め設定した閾値を上回ったときにのみ出力する。
【0133】
簡単なメカニカルセンサーを皮膚/サファイアの接触を検出するのに使用することもできる。接触により押し込まれるバネ仕掛けのピンをレーザを有効にするのに用いることができる。サファイアの外周部付近に配置された複数のピンを用いて、サファイア前面部全体が皮膚と良好に接触していたことを保証できる。市販されているロードセルも接触センサーとして使用できる。
【0134】
典型的な皮膚表面温度は、30〜32℃の範囲であり、温度センサーを皮膚との接触を検出するのに使用することができる。装置が使用されている場所が標準的な23〜27℃の範囲であれば、センサーで測定された温度が適切な範囲内である場合に光源を有効にすることができる。あるいは、温度対時間の適切な傾きが測定されたときだけレーザを有効にし、測定された温度が望ましい範囲の外にあるときに無効にすることもできる。
【0135】
接触センサーの構造は、ヘンリー・ゼンジー(Henry Zenzie)により、2001年4月30日に出願され、発明の名称が「接触検出方法、および光学放射ハンドピース用装置("Contact Detecting Method and Apparatus for an Optical Radiation Handpiece")」である米国特許出願第09/847,043号に、より詳細に記載されており、その内容は、参照によりここに組み込まれる。
【0136】
図19から図23を参照すると、ハンドピース400は、組織の治療に役立つ、さらに別の機能を有する。たとえば、ハンドピース400は、窓部402の付近にフレーム438を有する。フレームの外側端部は50mm×50mmあり、幅が5mmであり、厚さが8mmである。フレームは、プラスチックから作られている。フレームと、ハンドピース400の前面部との間の接合は、気密となっている。本発明の実施形態では、フレーム438は、前面部にねじおよびシーラントを用いて取り付けられた別個の部品である。他の実施形態では、たとえば、射出成形プラスチックまたは他の材料として、フレームをハンドピースと一体の部分として形成することができる。
【0137】
ハンドピース400は、ポンプ444、接続管446および圧力スイッチ448をさらに備えている。
【0138】
ハンドピース400の動作中、フレーム438は、治療すべき組織領域がフレーム438で仕切られた領域内にくるように、組織に押し付けるように配置される。ポンプ444は、窓部402、フレームおよび組織によって仕切られた空間460から空気を接続管を介して吸い出す。よって、ポンプ444は、真空を作り、これにより、次に、組織が吸引された空間に引きこまれる。好ましくは、組織が引っ張られてハンドピース400の窓部402に押し付けられる。動作中、組織、フレーム438および窓部402によって仕切られている空間406の圧力は15Hgであり、真空を形成する。
【0139】
圧力スイッチ448は、ワイヤーを介してポンプ444に接続されている。圧力スイッチ448およびポンプ444の両方は、ベースユニットにあるコントローラ(不図示)に接続されており、このコントローラは、ハンドピース400のコネクタ437に取り付けられている導管コードを介して、圧力スイッチ448からの入力を受け、また、ポンプ444を制御する。動作中、圧力スイッチ448により、治療中に皮膚がハンドピース400と接触し続けることが保証される。好ましくは、組織の治療領域は、窓部402と接触し続けるが、窓部402と直接接触していないときでも治療されうる。組織とフレーム438との間が接触しなくなったり、接触が危うくなったりすると、空気が先ほど吸引された空間に入り、圧力を変化させる。圧力スイッチ448は、圧力の変化を検出し、ベースユニットにあるコントローラに信号を送って、コントローラにハンドピース400の動作を止めさせる。このようなことが生じると、ハンドピース400は、オペレータに警告を与え、皮膚とハンドピース400との間の接触が危うくなった、および/または、完全ではなくなったことをオペレータに知らせることができる。圧力スイッチ448は、接触が不完全であることを示す信号を送るように構成されている。警告は、限定はしないが、フラッシュ光、音、または、エラーコードもしくは他の情報の表示を含む、数多くの通知の1つ以上によってオペレータに伝えることができる。
【0140】
治療されている組織領域をハンドピース400の窓部402に引きつける(、または、近接させる)のに吸引を使用すると、治療中に組織とハンドピース400の間の良好な接触が維持されるなど、いくつかの利点があると考えられる。たとえば、ハンドピースが、オペレータが押して、治療中に組織とハンドピースとを接触させることに依存する場合、このシステムは、非一様に押される場合、および/または、ハンドピース400の窓部402全体が治療中に組織と完全に接触してないなど、最適に接触していない場合でも、オペレータが組織を取り扱うことができうる。
【0141】
接触させるために吸引を使用することには、組織と、組織内にある血管とを膨張させることにより皮膚への血流を増大させるという利点もありうる。治療している組織内での血流の増大は、皮膚を表面において冷却するのに役立つ。これは、治療中に組織を流れる余分な血液が、熱容量を追加し、血液が、治療を受けている人の循環システムを循環する際に、熱を組織から運び去るからである。
【0142】
ハンドピースは、組織の治療を向上させるためのさらに別の種類の刺激に提供するように、さらに組み合わせることができる。たとえば、顔面筋のような組織内の筋肉は、刺激して、治療中に筋肉の収縮を誘発することができる。図28を参照すると、ハンドピース400とともに使用することに適する窓アセンブリの代替実施形態500では、窓アセンブリ500が窓部504の付近にあるフレーム502を備えている。窓部504は、窓部402と構造が同様であり、交差した溝部506および508を有する。この実施形態において、窓部504は、取り付けられた、または、塗布されたマスクを有していないが、他の実施形態では、そのようなマスクを備えていてもよい。一組の接触センサー510が、フレーム502の対向する2つの側部に配置されている一方、一組の電気ピン(electrical pin)512がフレーム502の他の2つの側部に沿って設けられている。電気ピン512により、筋肉組織を電気的に刺激することができる。電流が電気ピン512を介して組織に加えられ、これにより、下にある筋肉が収縮する。
【0143】
同様に、治療中に組織を振動させることに備えて、圧電モータまたはDCモータを備えることもできる。このような付加的な機能は、組織の治療を向上させると思われる。
【0144】
本発明のいくつかの実施形態をここで説明し、図示したが、当業者は、ここに説明した機能を実行する、および/または、結果および/または利益を得るために、さまざまな他の手段および構造を容易に想像するであろうし、このような変形例および変更例は、本発明の範囲内であると思われる。
【0145】
たとえば、当業者には分かるであろうが、ベースユニットと互換性をもって使用可能なハンドピースについて実施形態を説明したが、多くの他の実施形態が可能である。たとえば、ベースユニットおよび1つ以上のハンドピースを単一の装置に単独のシステムとして組み込むことができる。さらに、ハンドピース以外の装置も可能である。たとえば、組織の深部を加熱するために、より長い治療パルスまたはより長い治療時間が必要な応用例の場合、動作中に保持する必要のない装置が都合よいであろう。したがって、組織のある領域を長時間治療使用とする装置は、圧力カフ、または、治療される人に配置、テープ留め、クリップ留め、ストラップ留め等をすることができる静止加熱パッドという形態に構成することができる。
【0146】
より一般的には、当業者には容易に分かるであろうが、本明細書に記載のパラメータ、寸法、材料および構成の全ては、例示を意味しており、具体的なパラメータ、寸法、材料および構成は、本発明が教示するところが用いられる具体的な応用例に依存する。当業者は、通常の実験以上を用いることなく、本明細書に記載の本発明の具体的な実施形態の多くの均等物を理解する、または、確認できるであろう。本発明は、ここに記載された個々の特徴、システム、材料および/または方法に向けられたものである。さらに、このような特徴、システム、材料および/または方法の2つ以上を任意に組み合わせたものも、これらの特徴、システム、材料および/または方法が相互に矛盾しなければ、本発明の範囲内に含まれる。
【0147】
〔実施の態様〕
(1)皮膚科学的装置において、
EMRを生成する光源および治療すべき組織に接触するプレートを有する光源アセンブリであって、動作中に前記光源からのEMRを伝達し、前記プレートに通すように構成された、光源アセンブリと、
前記光源を冷却する第1冷却機構と、
前記プレートを冷却する第2冷却機構と、
を備える、皮膚科学的装置。
(2)実施態様1に記載の皮膚科学的装置において、
前記第1冷却機構は、前記光源を冷却するために空気を送るように構成された送風機を有する、皮膚科学的装置。
(3)実施態様2に記載の皮膚科学的装置において、
前記第1冷却システムは、前記光源と熱的につながっているヒートシンクをさらに有し、
前記送風機は、動作中に、空気を前記ヒートシンク上に送り、前記ヒートシンク装置から熱を除去するように構成されている、皮膚科学的装置。
(4)実施態様3に記載の皮膚科学的装置において、
前記ヒートシンクは、複数の冷却用フィンを有する、皮膚科学的装置。
【0148】
(5)実施態様3に記載の皮膚科学的装置において、
前記ヒートシンクは、反射器によって前記光源に熱的に接続されており、
前記送風機は、前記光源、前記反射器、および前記ヒートシンクを冷却するように構成されている、皮膚科学的装置。
(6)実施態様1に記載の皮膚科学的装置において、
前記第1冷却機構を制御するコントロールユニット、
をさらに備えている、皮膚科学的装置。
(7)実施態様6に記載の皮膚科学的装置において、
前記コントロールユニットは、温度センサーと電気的につながっており、かつ、前記第1冷却機構と電気的につながっているコントローラをさらに備えており、
前記コントローラは、前記温度センサーから入力された情報に基づいて前記第1冷却機構を自動的に制御する、皮膚科学的装置。
(8)実施態様1に記載の皮膚科学的装置において、
前記第2冷却機構は、冷却剤を循環させるための循環システムを有する、皮膚科学的装置。
(9)実施態様8に記載の皮膚科学的装置において、
前記循環システムは、冷却装置を有する、皮膚科学的装置。
【0149】
(10)実施態様8に記載の皮膚科学的装置において、
前記循環システムは、冷却面を少なくとも約5℃に冷却するように構成されている、皮膚科学的装置。
(11)実施態様1に記載の皮膚科学的装置において、
前記第2冷却機構は、ポンプ、冷却用投入部、および、冷却用排出部を有し、前記冷却用投入部が投入用接続部において前記冷却面に接続されており、前記冷却用排出部が排出用接続部において前記冷却面に接続されており、
前記冷却機構は、動作中に、前記冷却用投入部を介して、冷却用流体を前記冷却面に供給し、加熱された冷却剤を前記冷却面から前記冷却用排出部を介して取り出して、前記冷却面を冷却するように構成されている、皮膚科学的装置。
(12)実施態様11に記載の皮膚科学的装置において、
前記第2冷却機構は、冷却装置をさらに有する、皮膚科学的装置。
(13)実施態様11に記載の皮膚科学的装置において、
前記第2冷却機構は、循環システムである、皮膚科学的装置。
(14)実施態様11に記載の皮膚科学的装置において、
前記冷却剤は、空気である、皮膚科学的装置。
(15)実施態様11に記載の皮膚科学的装置において、
前記冷却剤は、流体である、皮膚科学的装置。
【0150】
(16)実施態様1に記載の皮膚科学的装置において、
前記第2冷却機構は、前記組織の温度を監視する温度センサーをさらに備えている、皮膚科学的装置。
(17)実施態様1に記載の皮膚科学的装置において、
前記第2冷却機構を制御するコントロールユニット、
をさらに備えている、皮膚科学的装置。
(18)実施態様17に記載の皮膚科学的装置において、
前記コントロールユニットは、温度センサーと電気的につながっており、かつ、前記ポンプと電気的につながっているコントローラをさらに備え、
前記コントローラは、前記温度センサーから入力された情報に基づいて前記ポンプを自動的に制御するように構成されている、皮膚科学的装置。
(19)実施態様1に記載の皮膚科学的装置において、
EMRを生成するための前記光源は、ハロゲンランプを備えている、皮膚科学的装置。
(20)実施態様1に記載の皮膚科学的装置において、
前記皮膚科学的装置は、少なくとも一つの付随的システム構成要素を有し、
前記第1冷却機構は、前記少なくとも一つの付随的システム構成要素を冷却するように構成されている、皮膚科学的装置。
【0151】
(21)実施態様20に記載の皮膚科学的装置において、
前記少なくとも一つの付随的電気部品は、電極、反射器、光学素子、ヒートパイプ、および、熱交換器のうちの少なくとも1つを含む、皮膚科学的装置。
(22)EMRを生成する光源からのEMRを治療されている組織へ送るように構成された皮膚科学的治療装置の窓部において、
前記皮膚科学的治療装置から前記治療されている組織へEMRを通すように構成されたガラス部と、
前記ガラス部の一部を横切るように延びている少なくとも一つの冷却用導管部であって、前記導管部の面積が前記ガラス部の面積よりも実質的に小さい導管部と、
を備える、窓部。
(23)実施態様22に記載の窓部において、
前記ガラス部の周りに広がっていて、前記皮膚科学的治療装置に前記ガラス部を固定するフレームと、
前記第1導管部の第1端部と流体連通している第1冷却投入部と、
前記第1導管部の第2端部と流体連通している第1冷却排出部と、
をさらに備え、
前記窓部は、動作中に、前記冷却投入部を通り、前記第1導管部を通り、そして、前記第1導管部の前記第2端部から出ていく流体により冷却されるように構成されている、窓部。
【0152】
(24)実施態様22に記載の窓部において、
前記少なくとも一つの導管部は、前記ガラス部の表面に沿って延びている開口部分を有する溝部であり、
前記窓部は、光学面をさらに有し、前記光学面は、前記ガラス面の表面に接触しており、前記溝部が動作中は封じられて、流体が前記導管部を流れることができるように、かつ、前記流体が前記開口部分から流出するのを防止するようになっている、窓部。
(25)実施態様22に記載の窓部において、
前記窓部は、前記ガラス部および前記光学面の間に光学材料をさらに有し、
前記光学材料は、EMRの一部を前記皮膚科学的治療装置から治療されている組織へ通過させる、窓部。
(26)実施態様25に記載の窓部において、
前記光学材料は、誘電体膜である、窓部。
(27)少なくとも約0.5mmの深さにある組織を治療する皮膚科学的治療装置において、
EMR光源、および、前記光源から治療されている前記組織へとEMRを通すように構成された窓部、を収容しているハウジング、
を備え、
前記出力源は、少なくとも500Wを生成するように構成されており、
前記窓部は、5W/cm2未満の出力密度を生成するのに足りる大きさの面積を有する、皮膚科学的治療装置。
【0153】
(28)実施態様27に記載の皮膚科学的治療装置において、
前記出力源のパルス幅は、0.5秒以上である、皮膚科学的治療装置。
(29)実施態様27に記載の皮膚科学的治療装置において、
前記出力源のパルス幅は、0.5秒以上600秒以下である、皮膚科学的治療装置。
(30)実施態様27に記載の皮膚科学的治療装置において、
前記EMR光源は、少なくとも1000Wを生成するように構成されている、皮膚科学的治療装置。
(31)治療されている組織にEMRを送るように構成された皮膚科学的治療装置において、
EMRを放射するように構成された光源、および、前記光源によって放射されたEMRを前記組織へと通すように構成された治療用窓部、を収容しているハウジング、
を備え、
前記窓部は、600cm2より大きな組織接触表面積を有する、皮膚科学的治療装置。
(32)実施態様31に記載の皮膚科学的治療装置において、
前記窓部が、EMRを前記皮膚科学的治療装置から治療されている前記組織へと通すことができるように構成されたガラス部を有し、
少なくとも一つの冷却用導管部が、前記ガラス部の一部を横切って延びており、
前記導管部の面積は、前記ガラス部の面積より実質的に小さい、皮膚科学的治療装置。
【0154】
(33)EMRを生成するための光源から治療されている組織へとEMRを通すように構成された皮膚科学的治療装置の窓部において、
EMRを前記皮膚科学的治療装置から前記治療されている組織へと通過させるように構成されたガラス部と、
前記ガラス部の一部を横切るように延びている少なくとも一つの冷却用導管部と、
を備え、
前記導管部の面積は、前記ガラス部の面積よりも実質的に小さい、窓部。
(34)組織に治療を施すための装置において、
前記組織の近傍に配置されたときに、前記組織の対象治療領域を画定する冷却用プレートを有するハウジングと、
EMRを生成するための放射源であって、前記EMRが、照射されたときに前記冷却用プレートを通過する、放射源と、
前記冷却用プレートがいつ前記組織の近傍にあるかを示すeフィールドセンサーと、
を備える、装置。
(35)実施態様34に記載の装置において、
前記センサーの起動は、前記冷却プレートが前記組織に接触していることを示す、装置。
【0155】
(36)実施態様34に記載の装置において、
前記センサーは、eフィールドセンサー、容量センサー、抵抗センサー、圧力センサー、およびHフィールドセンサー(H-field sensor)のうちの1つである、装置。
(37)実施態様34に記載の装置において、
前記センサーは、電界における変化を検出するように構成されている、装置。
(38)実施態様37に記載の装置において、
前記センサーは、コントローラと電気的につながっており、
前記コントローラは、前記センサーから得られた情報に応じて信号を供給するように構成されており、
前記コントローラは、組織が近接していないことを前記センサーが検出したことに対応する第1の信号、および、第1の組織が近接していることを前記センサーが検出したことに対応する第2の信号、を出力するように構成されている、装置。
(39)実施態様38に記載の装置において、
前記コントローラは、第2の組織が前記センサーに近接していること前記センサーが検出したことに対応する第3の信号を出力するように構成されている、装置。
【0156】
(40)実施態様39に記載の装置において、
前記コントローラは、前記センサーからの入力に基づいて組織の種類を識別するように構成されており、
前記コントローラは、前記第1の種類の組織を検出したことに応じて第1の動作を命じるように構成されており、かつ、前記第2の種類の組織を検出したことに応じて第2の動作を命じるように構成されている、装置。
(41)実施態様40に記載の装置において、
前記第1の動作は、前記組織を治療することであり、
前記第2の動作は、前記組織を治療しないことである、装置。
(42)実施態様34に記載の装置において、
前記センサーは、前記ハウジングに取り付けられている、装置。
(43)実施態様34に記載の装置において、
前記センサーに動作可能に接続された出力装置、
をさらに備える、装置。
(44)実施態様34に記載の装置において、
前記センサーに動作可能に接続されたフィードバック機構、
をさらに備える、装置。
(45)実施態様44に記載の装置において、
前記フィードバック機構は、予め定められた冷却時間が経過するまで、前記放射源に出力をさせない、装置。
【0157】
(46)実施態様34に記載の装置において、
前記放射源を出力可能にする前に、予め設定された冷却時間を実行するためのコントロールユニット、
をさらに備える、装置。
(47)組織に治療を施すための装置において、
前記組織を冷却するための手段を有するハウジングであって、前記冷却するための手段が、前記組織の近傍に配置された場合に、前記組織の対象治療領域を画定する面を有する、ハウジングと、
EMRを生成するための手段であって、前記EMRが、照射中に前記面を通過する、手段と、
電界において組織を検出する手段と、
を備える、装置。
(48)実施態様47に記載の装置において、
前記検出するための手段は、前記冷却するための手段が前記接触フレームに接触したときに起動する、装置。
(49)実施態様47に記載の装置において、
前記検出するための手段の起動は、前記冷却のための手段が前記組織に接触したことを示す、装置。
【0158】
(50)組織の治療を施すための装置において、
前記組織の近傍に配置されたときに、前記組織の対象治療領域を画定する冷却プレートを有するハウジングと、
EMRを生成するための放射源であって、前記EMRは、照射されたときに前記冷却プレートを通過する、放射源と、
前記冷却プレートがいつ前記組織の近傍にあるかを示す接触センサーと、
前記ハウジングに動作可能に連結された接触フレームであって、延ばされた位置から、前記冷却プレートと接触する位置まで可動である、接触フレームと、
を備える、装置。
(51)実施態様50に記載の装置において、
前記冷却プレートが前記接触フレームの近傍にあるときに、前記センサーが起動する、装置。
(52)実施態様50に記載の装置において、
前記接触フレームは、EMRが通過できるように開口している内側部分を有する、装置。
(53)実施態様50に記載の装置において、
前記接触フレームに連結されたプッシュロッド、
をさらに備えている、装置。
(54)実施態様50に記載の装置において、
前記プッシュロッドは、前記センサーに動作可能に連結されており、
前記冷却プレートが前記接触フレームに接触したときに、前記プッシュロッドは、前記センサーを起動させる、装置。
【図面の簡単な説明】
【0159】
【図1】本発明の一実施形態の概略図であり、組織サンプルの近傍にあるところが示されている図である。
【図2】本発明の一実施形態による手持ち式皮膚科学的装置の一部の概略側面図である。
【図3】図2の手持ち式皮膚科学的装置の第2側面図である。
【図4】図2の手持ち式皮膚科学的装置の第3側面図である。
【図5】図2の手持ち式皮膚科学的装置の第4側面図である。
【図6】図2の手持ち式皮膚科学的装置の第5側面図である。
【図7】図2の手持ち式皮膚科学的装置の第6側面図である。
【図8】図2の手持ち式皮膚科学的装置の正面図である。
【図9】図2の手持ち式皮膚科学的装置のランプ、反射器および光学系の正面からの部分図である。
【図10】図2の手持ち式皮膚科学的装置の斜視図である。
【図11】図2の手持ち式皮膚科学的装置の第2斜視図である。
【図12】図2の手持ち式皮膚科学的装置の背面図である。
【図13】図2の手持ち式皮膚科学的装置の第2背面図である。
【図14】図2の手持ち式皮膚科学的装置の底面図である。
【図15】図2の手持ち式皮膚科学的装置のハウジング構造体および完全なユニットの側面図である。
【図16】本発明の一実施形態の動作を説明するフローチャートである。
【図17】治療する組織を予め冷却しない赤外線放射についての治療時間と加熱深さとの関係を示すグラフである。
【図18】治療時間と表面皮膚温度との関係を示すグラフである。
【図19】手持ち式皮膚科学的装置の代替実施形態の側面図である。
【図20】図19の手持ち式皮膚科学的装置の断面側面図である。
【図21】図19の手持ち式皮膚科学的装置で使用するための窓の概略上面図である。
【図22】図21の窓部の概略側面図である。
【図23】図19の手持ち式皮膚科学的装置の一部の実施形態の概略底面図である。
【図24A】図23の手持ち式皮膚科学的装置の一部の、動作中の概略側面図である。
【図24B】図23の手持ち式皮膚科学的装置の一部の、動作中の概略側面図である。
【図25】皮膚科学的装置の窓部についての代替実施形態の概略側面図である。
【図26】導波路の代替実施形態の概略側面図である。
【図27】図26の導波路の底面図である。
【図28】皮膚科学的装置の前面部の代替実施形態の底面図である。

【特許請求の範囲】
【請求項1】
皮膚科学的装置において、
EMRを生成する光源、および、治療すべき組織に接触するプレート、を有する光源アセンブリであって、動作中に前記光源からのEMRを伝達し、前記プレートに通すように構成された、光源アセンブリと、
前記光源を冷却する第1冷却機構と、
前記プレートを冷却する第2冷却機構と、
を備える、皮膚科学的装置。
【請求項2】
請求項1に記載の皮膚科学的装置において、
前記第1冷却機構は、前記光源を冷却するために空気を送るように構成された送風機を有する、皮膚科学的装置。
【請求項3】
請求項2に記載の皮膚科学的装置において、
前記第1冷却システムは、前記光源と熱的につながっているヒートシンクをさらに有し、
前記送風機は、動作中に、空気を前記ヒートシンク上に送り、前記ヒートシンク装置から熱を除去するように構成されている、皮膚科学的装置。
【請求項4】
請求項3に記載の皮膚科学的装置において、
前記ヒートシンクは、複数の冷却用フィンを有する、皮膚科学的装置。
【請求項5】
請求項3に記載の皮膚科学的装置において、
前記ヒートシンクは、反射器によって前記光源に熱的に接続されており、
前記送風機は、前記光源、前記反射器、および前記ヒートシンクを冷却するように構成されている、皮膚科学的装置。
【請求項6】
請求項1に記載の皮膚科学的装置において、
前記第1冷却機構を制御するコントロールユニット、
をさらに備えている、皮膚科学的装置。
【請求項7】
請求項6に記載の皮膚科学的装置において、
前記コントロールユニットは、温度センサーと電気的につながっており、かつ、前記第1冷却機構と電気的につながっているコントローラをさらに備えており、
前記コントローラは、前記温度センサーから入力された情報に基づいて前記第1冷却機構を自動的に制御する、皮膚科学的装置。
【請求項8】
請求項1に記載の皮膚科学的装置において、
前記第2冷却機構は、冷却剤を循環させるための循環システムを有する、皮膚科学的装置。
【請求項9】
請求項8に記載の皮膚科学的装置において、
前記循環システムは、冷却装置を有する、皮膚科学的装置。
【請求項10】
請求項8に記載の皮膚科学的装置において、
前記循環システムは、冷却面を少なくとも約5℃に冷却するように構成されている、皮膚科学的装置。
【請求項11】
請求項1に記載の皮膚科学的装置において、
前記第2冷却機構は、ポンプ、冷却用投入部、および、冷却用排出部を有し、前記冷却用投入部が投入用接続部において前記冷却面に接続されており、前記冷却用排出部が排出用接続部において前記冷却面に接続されており、
前記冷却機構は、動作中に、前記冷却用投入部を介して、冷却用流体を前記冷却面に供給し、加熱された冷却剤を前記冷却面から前記冷却用排出部を介して取り出して、前記冷却面を冷却するように構成されている、皮膚科学的装置。
【請求項12】
請求項11に記載の皮膚科学的装置において、
前記第2冷却機構は、冷却装置をさらに有する、皮膚科学的装置。
【請求項13】
請求項11に記載の皮膚科学的装置において、
前記第2冷却機構は、循環システムである、皮膚科学的装置。
【請求項14】
請求項11に記載の皮膚科学的装置において、
前記冷却剤は、空気である、皮膚科学的装置。
【請求項15】
請求項11に記載の皮膚科学的装置において、
前記冷却剤は、流体である、皮膚科学的装置。
【請求項16】
請求項1に記載の皮膚科学的装置において、
前記第2冷却機構は、前記組織の温度を監視する温度センサーをさらに備えている、皮膚科学的装置。
【請求項17】
請求項1に記載の皮膚科学的装置において、
前記第2冷却機構を制御するコントロールユニット、
をさらに備えている、皮膚科学的装置。
【請求項18】
請求項17に記載の皮膚科学的装置において、
前記コントロールユニットは、温度センサーと電気的につながっており、かつ、前記ポンプと電気的につながっているコントローラをさらに備え、
前記コントローラは、前記温度センサーから入力された情報に基づいて前記ポンプを自動的に制御するように構成されている、皮膚科学的装置。
【請求項19】
請求項1に記載の皮膚科学的装置において、
EMRを生成するための前記光源は、ハロゲンランプを備えている、皮膚科学的装置。
【請求項20】
請求項1に記載の皮膚科学的装置において、
前記皮膚科学的装置は、少なくとも一つの付随的システム構成要素を有し、
前記第1冷却機構は、前記少なくとも一つの付随的システム構成要素を冷却するように構成されている、皮膚科学的装置。
【請求項21】
請求項20に記載の皮膚科学的装置において、
前記少なくとも一つの付随的電気部品は、電極、反射器、光学素子、ヒートパイプ、および、熱交換器のうちの少なくとも1つを含む、皮膚科学的装置。
【請求項22】
EMRを生成する光源からのEMRを治療されている組織へ送るように構成された皮膚科学的治療装置の窓部において、
前記皮膚科学的治療装置から前記治療されている組織へEMRを通すように構成されたガラス部と、
前記ガラス部の一部を横切るように延びている少なくとも一つの冷却用導管部であって、前記導管部の面積が前記ガラス部の面積よりも実質的に小さい導管部と、
を備える、窓部。
【請求項23】
請求項22に記載の窓部において、
前記ガラス部の周りに広がっていて、前記皮膚科学的治療装置に前記ガラス部を固定するフレームと、
前記第1導管部の第1端部と流体連通している第1冷却投入部と、
前記第1導管部の第2端部と流体連通している第1冷却排出部と、
をさらに備え、
前記窓部は、動作中に、前記冷却投入部を通り、前記第1導管部を通り、そして、前記第1導管部の前記第2端部から出ていく流体により冷却されるように構成されている、窓部。
【請求項24】
請求項22に記載の窓部において、
前記少なくとも一つの導管部は、前記ガラス部の表面に沿って延びている開口部分を有する溝部であり、
前記窓部は、光学面をさらに有し、前記光学面は、前記ガラス面の表面に接触しており、前記溝部が動作中は封じられて、流体が前記導管部を流れることができるように、かつ、前記流体が前記開口部分から流出するのを防止するようになっている、窓部。
【請求項25】
請求項22に記載の窓部において、
前記窓部は、前記ガラス部および前記光学面の間に光学材料をさらに有し、
前記光学材料は、EMRの一部を前記皮膚科学的治療装置から治療されている組織へ通過させる、窓部。
【請求項26】
請求項25に記載の窓部において、
前記光学材料は、誘電体膜である、窓部。
【請求項27】
少なくとも約0.5mmの深さにある組織を治療する皮膚科学的治療装置において、
EMR光源、および、前記光源から治療されている前記組織へとEMRを通すように構成された窓部、を収容しているハウジング、
を備え、
前記出力源は、少なくとも500Wを生成するように構成されており、
前記窓部は、5W/cm2未満の出力密度を生成するのに足りる大きさの面積を有する、皮膚科学的治療装置。
【請求項28】
請求項27に記載の皮膚科学的治療装置において、
前記出力源のパルス幅は、0.5秒以上である、皮膚科学的治療装置。
【請求項29】
請求項27に記載の皮膚科学的治療装置において、
前記出力源のパルス幅は、0.5秒以上600秒以下である、皮膚科学的治療装置。
【請求項30】
請求項27に記載の皮膚科学的治療装置において、
前記EMR光源は、少なくとも1000Wを生成するように構成されている、皮膚科学的治療装置。
【請求項31】
治療されている組織にEMRを送るように構成された皮膚科学的治療装置において、
EMRを放射するように構成された光源、および、前記光源によって放射されたEMRを前記組織へと通すように構成された治療用窓部、を収容しているハウジング、
を備え、
前記窓部は、600cm2より大きな組織接触表面積を有する、皮膚科学的治療装置。
【請求項32】
請求項31に記載の皮膚科学的治療装置において、
前記窓部が、EMRを前記皮膚科学的治療装置から治療されている前記組織へと通すことができるように構成されたガラス部を有し、
少なくとも一つの冷却用導管部が、前記ガラス部の一部を横切って延びており、
前記導管部の面積は、前記ガラス部の面積より実質的に小さい、皮膚科学的治療装置。
【請求項33】
EMRを生成するための光源から治療されている組織へとEMRを通すように構成された皮膚科学的治療装置の窓部において、
EMRを前記皮膚科学的治療装置から前記治療されている組織へと通過させるように構成されたガラス部と、
前記ガラス部の一部を横切るように延びている少なくとも一つの冷却用導管部と、
を備え、
前記導管部の面積は、前記ガラス部の面積よりも実質的に小さい、窓部。
【請求項34】
組織に治療を施すための装置において、
前記組織の近傍に配置されたときに、前記組織の対象治療領域を画定する冷却用プレートを有するハウジングと、
EMRを生成するための放射源であって、前記EMRが、照射されたときに前記冷却用プレートを通過する、放射源と、
前記冷却用プレートがいつ前記組織の近傍にあるかを示すeフィールドセンサーと、
を備える、装置。
【請求項35】
請求項34に記載の装置において、
前記センサーの起動は、前記冷却プレートが前記組織に接触していることを示す、装置。
【請求項36】
請求項34に記載の装置において、
前記センサーは、eフィールドセンサー、容量センサー、抵抗センサー、圧力センサー、およびHフィールドセンサーのうちの1つである、装置。
【請求項37】
請求項34に記載の装置において、
前記センサーは、電界における変化を検出するように構成されている、装置。
【請求項38】
請求項37に記載の装置において、
前記センサーは、コントローラと電気的につながっており、
前記コントローラは、前記センサーから得られた情報に応じて信号を供給するように構成されており、
前記コントローラは、組織が近接していないことを前記センサーが検出したことに対応する第1の信号、および、第1の組織が近接していることを前記センサーが検出したことに対応する第2の信号、を出力するように構成されている、装置。
【請求項39】
請求項38に記載の装置において、
前記コントローラは、第2の組織が前記センサーに近接していること前記センサーが検出したことに対応する第3の信号を出力するように構成されている、装置。
【請求項40】
請求項39に記載の装置において、
前記コントローラは、前記センサーからの入力に基づいて組織の種類を識別するように構成されており、
前記コントローラは、前記第1の種類の組織を検出したことに応じて第1の動作を命じるように構成されており、かつ、前記第2の種類の組織を検出したことに応じて第2の動作を命じるように構成されている、装置。
【請求項41】
請求項40に記載の装置において、
前記第1の動作は、前記組織を治療することであり、
前記第2の動作は、前記組織を治療しないことである、装置。
【請求項42】
請求項34に記載の装置において、
前記センサーは、前記ハウジングに取り付けられている、装置。
【請求項43】
請求項34に記載の装置において、
前記センサーに動作可能に接続された出力装置、
をさらに備える、装置。
【請求項44】
請求項34に記載の装置において、
前記センサーに動作可能に接続されたフィードバック機構、
をさらに備える、装置。
【請求項45】
請求項44に記載の装置において、
前記フィードバック機構は、予め定められた冷却時間が経過するまで、前記放射源に出力をさせない、装置。
【請求項46】
請求項34に記載の装置において、
前記放射源を出力可能にする前に、予め設定された冷却時間を実行するためのコントロールユニット、
をさらに備える、装置。
【請求項47】
組織に治療を施すための装置において、
前記組織を冷却するための手段を有するハウジングであって、前記冷却するための手段が、前記組織の近傍に配置された場合に、前記組織の対象治療領域を画定する面を有する、ハウジングと、
EMRを生成するための手段であって、前記EMRが、照射中に前記面を通過する、手段と、
電界において組織を検出する手段と、
を備える、装置。
【請求項48】
請求項47に記載の装置において、
前記検出するための手段は、前記冷却するための手段が前記接触フレームに接触したときに起動する、装置。
【請求項49】
請求項47に記載の装置において、
前記検出するための手段の起動は、前記冷却のための手段が前記組織に接触したことを示す、装置。
【請求項50】
組織の治療を施すための装置において、
前記組織の近傍に配置されたときに、前記組織の対象治療領域を画定する冷却プレートを有するハウジングと、
EMRを生成するための放射源であって、前記EMRは、照射されたときに前記冷却プレートを通過する、放射源と、
前記冷却プレートがいつ前記組織の近傍にあるかを示す接触センサーと、
前記ハウジングに動作可能に連結された接触フレームであって、延ばされた位置から、前記冷却プレートと接触する位置まで可動である、接触フレームと、
を備える、装置。
【請求項51】
請求項50に記載の装置において、
前記冷却プレートが前記接触フレームの近傍にあるときに、前記センサーが起動する、装置。
【請求項52】
請求項50に記載の装置において、
前記接触フレームは、EMRが通過できるように開口している内側部分を有する、装置。
【請求項53】
請求項50に記載の装置において、
前記接触フレームに連結されたプッシュロッド、
をさらに備えている、装置。
【請求項54】
請求項50に記載の装置において、
前記プッシュロッドは、前記センサーに動作可能に連結されており、
前記冷却プレートが前記接触フレームに接触したときに、前記プッシュロッドは、前記センサーを起動させる、装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24A】
image rotate

【図24B】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate


【公表番号】特表2008−529746(P2008−529746A)
【公表日】平成20年8月7日(2008.8.7)
【国際特許分類】
【出願番号】特願2007−556367(P2007−556367)
【出願日】平成18年2月17日(2006.2.17)
【国際出願番号】PCT/US2006/005848
【国際公開番号】WO2006/089227
【国際公開日】平成18年8月24日(2006.8.24)
【出願人】(504464748)パロマー・メディカル・テクノロジーズ・インコーポレイテッド (10)
【氏名又は名称原語表記】PALOMAR MEDICAL TECHNOLOGIES,INC.
【住所又は居所原語表記】82 Cambridge Street,Burlington,MA 01803,U.S.A.
【Fターム(参考)】