説明

硬化性組成物および硬化物

【課題】(メタ)アクリロイル基を有する飽和炭化水素系重合体、(メタ)アクリル系モノマー、および重合開始剤を含有する硬化性組成物およびその硬化物に関し、低粘度の硬化性組成物、可とう性と耐透湿性を有する硬化物を提供する。
【解決手段】一般式(1):−Z−C(=O)−NH−R−O−C(=O)−C(R)=CH(1)(式中、Rは水素原子、または、置換あるいは非置換の炭素原子数1から20の炭化水素基、Rは2価の有機基、Zはヘテロ原子、NR(Rは、水素原子、または、置換あるいは非置換の炭素原子数1から20の炭化水素基)から選択される基である。)で表される置換基を分子内に平均1個以上有する飽和炭化水素系重合体(A)、特定の(メタ)アクリル系モノマー(B)、および重合開始剤(C)、を含有する硬化性組成物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、(メタ)アクリロイル基を有する飽和炭化水素系重合体、(メタ)アクリル系モノマー、および重合開始剤を含有する硬化性組成物およびその硬化物に関する。
【背景技術】
【0002】
有機発光素子や受光素子のように、熱や湿気への暴露により性能が低下することが懸念される電子材料を保護するための封止材として、例えば(特許文献1)のような光硬化性エポキシ接着剤が用いられている。しかし、エポキシ接着剤の硬化物は硬く、硬化時の残留圧力によるクラック発生や冷熱試験時の接着面での剥離など、信頼性に問題があった。エポキシ硬化物を柔軟化する方法もあるが、この場合は耐透湿性が低下するという問題があった。
【0003】
一方で、末端に反応性官能基を有する飽和炭化水素系重合体は、活性エネルギー線や熱によって優れた硬化性を示し、得られる硬化物は優れた可とう性、耐透湿性を示すことが知られている。例えば、(特許文献2)では、分子末端にカチオン反応性のエポキシ官能基を有する飽和炭化水素系重合体の製造方法および硬化性組成物が開示されている。この硬化物は耐透湿性と可とう性のバランスに優れているが、速硬化性に更なる改善の余地があった。
【0004】
また(特許文献3)および(特許文献4)では、分子末端にラジカル反応性の(メタ)アクリロイル官能基を有する炭化水素系重合体の製造方法および硬化性組成物が開示されている。これらの組成物は速硬化可能であるが、粘度が高いため、作業性のうえで更なる改善の余地があった。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2005―41925号公報
【特許文献2】WO2005/028537
【特許文献3】特開平2−088614号公報
【特許文献4】特開2001−31714号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、(メタ)アクリロイル基を有する飽和炭化水素系重合体、特定の(メタ)アクリル系モノマー、および重合開始剤を含有する硬化性組成物およびその硬化物に関し、低粘度の硬化性組成物、可とう性と耐透湿性を有する硬化物を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明者らは、前記の課題を解決するために鋭意検討した結果、以下のことを見出して本発明を完成させた。
【0008】
すなわち本発明は、
一般式(1):
−Z−C(=O)−NH−R−O−C(=O)−C(R)=CH (1)
(式中、Rは水素原子、または、置換あるいは非置換の炭素原子数1から20の炭化水素基、Rは2価の有機基、Zはヘテロ原子、NR(Rは、水素原子、または、置換あるいは非置換の炭素原子数1から20の炭化水素基)から選択される基である。)で表される置換基を分子内に平均1個以上有する飽和炭化水素系重合体(A)、
一般式(2)
−O−C(=O)−C(R)=CH (2)
(式中、Rは置換あるいは非置換の炭素原子数4から20の脂肪族および/または脂環式炭化水素基から選択される基、Rは水素原子、または、置換あるいは非置換の炭素原子数1から20の炭化水素基から選択される基である。)で表される(メタ)アクリロイル基を分子内に1個有する(メタ)アクリル系モノマー(B)、および重合開始剤(C)を含有する硬化性組成物に関する。
【0009】
飽和炭化水素系重合体(A)はイソブチレン系重合体であることが好ましい。
【0010】
一般式(1)のRは水素原子、またはメチル基であることが好ましく、水素原子であることがより好ましい。
【0011】
一般式(1)で表される置換基が飽和炭化水素系重合体(A)の末端のみに有することが好ましい。
【0012】
重合開始剤(C)は光によりラジカルを発生する光ラジカル開始剤であることが好ましい。
【0013】
飽和炭化水素系重合体(A)100重量部に対し、(メタ)アクリル系モノマー(B)が50〜200重量部、重合開始剤(C)が0.001〜10重量部含まれることが好ましい。
【0014】
飽和炭化水素系重合体(A)が、(A)と同様の主鎖骨格を有し、水酸基を末端に有する飽和炭化水素系重合体(a)と一般式(3):
O=C=N−R−O−C(=O)−C(R)=CH (3)
(式中、R、Rは前記と同じ。)で表されるイソシアネート系化合物(D)の反応により得られることが好ましい。
【0015】
飽和炭化水素系重合体(a)とイソシアネート系化合物(D)は、有機錫系化合物(E)を触媒として反応させることが好ましい。
【0016】
上記記載の硬化性組成物を硬化させることにより得られる硬化物に関する。
【発明の効果】
【0017】
本発明により、優れた可とう性と耐透湿性を有する硬化物が得られる。また硬化性組成物は低粘度であり、作業性の向上が望める。
【発明を実施するための形態】
【0018】
以下、本発明について詳しく説明する。
【0019】
<飽和炭化水素系重合体(A)>
本発明の飽和炭化水素系重合体(A)は、一般式(1):
−Z−C(=O)−NH−R−O−C(=O)−C(R)=CH (1)
(式中、Rは水素原子、または、置換あるいは非置換の炭素原子数1から20の炭化水素基、Rは2価の有機基、Zはヘテロ原子、NR(Rは、水素原子、または、置換あるいは非置換の炭素原子数1から20の炭化水素基)から選択される基である。)で表される置換基を分子内に平均1個以上有する。
【0020】
一般式(1)中のRは水素原子、または、置換あるいは非置換の炭素原子数1から20の炭化水素基を表す。ここで言う置換された炭化水素基とは、炭化水素基上の水素原子がヘテロ原子を有する基によって置換された基を言う。Rとしては、特に限定されず、例えば、水素原子;メチル基、エチル基などのアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などのアリール基;ベンジル基などのアラルキル基が挙げられる。これらの中では、原料の入手性から、水素原子またはメチル基、さらに飽和炭化水素系重合体(A)の反応性の高さから、水素原子がより好ましい。
【0021】
一般式(1)中のRは、特に限定されず、例えば、メチレン基、エチレン基、プロピレン基、ヘキシレン基などのアルキレン基;シクロブチレン基、シクロペンチレン基、シクロヘキシレン基などのシクロアルキレン基;フェニレン基、ベンジレン基などのアリーレン基;エーテル結合、エステル結合、アミノ結合、アミド結合などを含む2価の有機基などが挙げられる。これらの中では、導入の容易さから、エチレン基、ヘキシレン基が好ましく、エチレン基がより好ましい。
【0022】
一般式(1)中のZは、特に限定されず、例えば、酸素原子;硫黄原子;−NH−、−NCH−などのアミノ基が挙げられる。これらの中では、導入の容易さから、酸素原子、−NH−基が好ましく、酸素原子がより好ましい。
【0023】
飽和炭化水素系重合体(A)の主鎖は、芳香環以外の炭素−炭素不飽和結合を含有せず、その骨格は、(1)エチレン、プロピレン、1−ブテン、イソブチレンなどの炭素原子数2から6のオレフィン系化合物を主モノマーとして重合させる方法、(2)ブタジエン、イソプレンなどのジエン系化合物を単独重合させ、あるいは、前記オレフィン系化合物とを共重合させた後、水素を添加させる方法などにより得ることができる。このなかでも、イソブチレン系重合体や水添ポリブタジエン系重合体が、末端に官能基を導入し易いこと、分子量を制御し易いこと、さらに、末端官能基の数を多くすることができることなどから好ましく、イソブチレン系重合体がより好ましい。主鎖骨格が飽和炭化水素系重合体であるものは、耐熱性、耐候性、耐久性、および、耐透湿性に優れる特徴を有する。
【0024】
イソブチレン系重合体は、繰り返し単位のすべてがイソブチレン単位から形成されていても良いし、他の繰り返し単位との共重合体でも良いが、ゴム特性の面から、イソブチレンに由来する繰り返し単位を50重量%以上有するものが好ましく、80重量%以上有するものがより好ましく、90〜99重量%有するものが特に好ましい。
【0025】
飽和炭化水素系重合体(A)の(メタ)アクリロイル系置換基の数は、特に限定されないが、飽和炭化水素系重合体(A)同士が架橋するという点から、1分子あたり平均1個未満であると硬化性が低くなる傾向があるため、平均1個以上が好ましい。ただし、1分子あたり平均1個以上の(メタ)アクリロイル系置換基を有する飽和炭化水素系重合体(A)に対して、硬化物の硬度、柔軟性を調整するために、1分子あたり平均1個未満の(メタ)アクリロイル系置換基を有する飽和炭化水素系重合体を添加してもよい。また、(メタ)アクリロイル基は分子の側鎖、および/または、末端のいずれに存在していてもかまわないが、ゴム弾性の点から、分子の末端に存在することが好ましい。
【0026】
飽和炭化水素系重合体(A)の数平均分子量としては、500〜50,000が好ましく、2,000〜30,000がより好ましい。これより分子量が大きくなると作業性が低下する傾向があり、分子量が小さい場合は、主鎖骨格の特性を発現し難くなる傾向がある。
【0027】
飽和炭化水素系重合体(A)の合成法としては、特に限定されず、従来から報告されている各種重合方法が挙げられるが、特に、近年多くの報告がなされているリビング重合法が好ましい。このなかでも、飽和炭化水素系重合体、特に、イソブチレン系重合体の場合、Kennedyらによって見出されたイニファー重合(J.P.Kennedyら、J.Polymer Sci., Polymer Chem. Ed. 1997年、15巻、2843頁)を用いることにより容易に製造することが可能であり、分子量500〜100,000程度を、分子量分布1.5以下で重合でき、分子末端に各種官能基を導入できることが知られている。
【0028】
本発明の飽和炭化水素系重合体(A)は、飽和炭化水素系重合体(A)と同様の主鎖骨格を有し、水酸基、アミノ基、チオール基を末端に有する飽和炭化水素系重合体と一般式(3):
O=C=N−R−O−C(=O)−C(R)=CH (3)
(式中、R、Rは前記と同じ。)で表されるイソシアネート系化合物(D)を反応させて得ることが好ましく、水酸基を末端に有する飽和炭化水素系重合体(a)を用いることがより好ましい。
【0029】
飽和炭化水素系重合体(a)の主鎖は、例えば、上記のJ.P.Kennedyらの方法により得ることができる。飽和炭化水素系重合体(a)は、炭素−炭素単結合を形成するカチオン重合によって得られるハロゲン末端飽和炭化水素系重合体(イ)と、保護された水酸基、および、炭素−炭素二重結合を有する化合物(ロ)とを反応させ、水酸基を脱保護することにより得られる。
【0030】
ハロゲン末端飽和炭化水素系重合体(イ)は、一般式(4):
(A−X) (4)
(式中、Rは単環、または、複数の芳香環を含む1価から4価までの炭化水素基、Xは塩素原子または臭素原子、aは1から4の整数を表す。また、Aは一種、または、二種以上のカチオン重合性単量体の重合体であって、aが2以上の場合は同じでも異なっていても良い。)で表される。
【0031】
一般式(4)中におけるカチオン重合性単量体は、特に制限されないが、好ましい単量体として、例えば、イソブチレン、インデン、ピネン、スチレン、メトキシスチレン、クロルスチレンなどを挙げることができる。なかでも、前記の理由から、イソブチレンが好ましい。
【0032】
また、架橋反応によって硬化物を得る際に、充分な強度、耐候性、ゲル分率などを達成するためには、一般式(4)中のaが2、または、3であることが好ましい。
【0033】
保護された水酸基、および、炭素−炭素二重結合を有する化合物(ロ)は、一般式(5):
CH=C(R)−R−OG (5)
(式中、Rは水素原子、または、炭素原子数1から18の飽和炭化水素基、Rは炭素原子数1から30の炭化水素基、Gは水酸基の保護基を表す。)で表される。なお、一般式(5)中のRは、炭素原子数1から30の炭化水素基であって、0から5個の炭素−炭素二重結合、および/または、0から3個の芳香環を有することが好ましく、0から3個の−CH=CH−基を有することがより好ましい。
【0034】
一般式(5)の化合物としては、一般式(6):
CH=C(R)−(CH−{−CH=CH−(CH−OG (6)
(式中、Rは前記と同じ。Gは水酸基の保護基、nは0から5の整数を表す。b、および、cは1から30の整数であって、同じでも異なっていても良い。)で表される化合物であることがより好ましい。
【0035】
化合物(ロ)の保護基は、脱保護によって水酸基を与えるものであれば、特に限定されるものではないが、通常、炭素原子数が0から54の無機系置換基、または、有機系置換基である。また、温和な条件下で脱保護ができることが好ましく、好ましい保護基として、下記のものを挙げることができる。
【0036】
【化1】

(式中、R'、R''、R'''は水素原子、または、炭素原子数1から18の飽和または不飽和の炭化水素基を表わし、Rを複数含む基においては、同一であっても異なっていても良い。X’はCl、Br、Iから選ばれる官能基である。MはLi、Na、Kから選ばれる1価の金属、M'はMg、Ca、Sr、Baから選ばれる2価の金属、M''はB、Al、Gaから選ばれる3価の金属、M'''はTi、Zr、Hf、Si、Ge、Sn、Pbから選ばれる4価の金属を表わす。)
入手性や脱保護後の重合体と保護基成分の分離のし易さなどから、アルキル基、アシル基、RC(=O)−基(ただし、Rは炭素数1から10の飽和炭化水素基)、シリル基、金属アルコキシドが好ましく、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ホルミル基、アセチル基、プロピオニル基、ブチリル基、ベンゾイル基、トリメチルシリル基、トリフェニルシリル基がさらに好ましい。
【0037】
ハロゲン末端飽和炭化水素系重合体(イ)に反応させる基質である化合物(ロ)としては1置換、あるいは、1,1’−2置換の末端に保護した水酸基を有するオレフィンであれば、特に制限されるものではないが、反応性の高さから、一般式(5)においてGを水素としたときに、アリルアルコール、メタリルアルコール、3−ブテン−1−オール、3−メチル−3−ブテン−1−オール、4−ペンテン−1−オール、5−ヘキセン−1−オール、6−ヘプテン−1−オール、7−オクテン−1−オール、8−ノネン−1−オール、9−デセン−1−オール、および、10−ウンデセン−1−オール、2,5−ヘキサジエノール、2,6−ヘプタジエノール、3,6−ヘプタジエノール、2,7-オクタジエノール、3,7-オクタジエノール、4,7-オクタジエノール、2,8-ノナジエノール、3,8-ノナジエノール、4,8-ノナジエノール、5,8-ノナジエノール、2,9-デカジエノール、3,9-デカジエノール、4,9-デカジエノール、5,9-デカジエノール、または、6,9-デカジエノールから選ばれる化合物が好ましい。
【0038】
ハロゲン末端飽和炭化水素系重合体(イ)に化合物(ロ)を反応させる際に、触媒としてルイス酸を使用することができる。ルイス酸であれば、特に限定されないが、活性が高く、選択性が良好である点から、TiCl、AlCl、BCl、SnClが好ましい。
【0039】
ハロゲン末端飽和炭化水素系重合体(イ)の重合やハロゲン末端飽和炭化水素系重合体(イ)に化合物(ロ)を反応させる際に、溶剤として、ハロゲン化炭化水素、芳香族炭化水素、および、脂肪族炭化水素から選ばれる単独、または、混合溶剤を用いることができる。ポリマーの重合条件下での溶解性や反応性の点から、ハロゲン化炭化水素として、塩化メチレン、クロロホルム、1,1−ジクロロエタン、1,2−ジクロロエタン、n−プロピルクロライド、n−ブチルクロライドの中から選ばれる1種以上の成分であることが好ましい。同様の理由で、芳香族炭化水素はトルエンが好ましく、脂肪族炭化水素としては、ペンタン、n−ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサンの中から選ばれる1種以上の成分が好ましい。
【0040】
環境への悪影響が心配されるハロゲン化炭化水素を用いない場合の溶剤としては、例えば、トルエン、エチルシクロヘキサン、あるいは、これらの混合溶剤を用いることで、保護された水酸基を末端に有する飽和炭化水素系重合体の製造が容易に達成できる。
【0041】
脱保護反応は、保護基を水酸基に誘導する反応であれば、特に制限されないが、好ましい反応としては、加水分解反応、熱分解反応などが挙げられる。
【0042】
加水分解反応は、溶剤系、無溶剤系のどちらでも行うことができる。溶剤系の反応に用いる溶剤は、特に限定されないが、保護された水酸基を末端に有する飽和炭化水素系重合体を製造する溶剤を用いることが好ましい。加水分解を行う条件としては、酸性、塩基性条件のどちらでも可能であるが、加水分解反応の効率から、塩基性水溶液を用いて加水分解反応を行うことが好ましい。
【0043】
塩基性条件下での加水分解反応に用いる試薬としては、通常の加水分解反応に用いる有機、または、無機の塩基性化合物であれば、特に制限されないが、取り扱い易さなどの点から、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム、水酸化マグネシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸カルシウム、酢酸マグネシウム、tert−ブトキシカリウム、tert−ブトキシナトリウム、カリウムメトキシド、ナトリウムメトキシドなどが好ましい。
【0044】
加水分解反応では、触媒の添加を行うことによって、効率的に反応を進行させることができる。このような触媒としては、有機、および、無機の触媒のいずれでも可能であるが、反応性の点から、有機塩が好ましく、特に、4級アンモニウム塩が好ましい。代表的なアンモニウム塩としては、塩化トリエチルベンジルアンモニウム、塩化テトラメチルアンモニウム、臭化トリエチルベンジルアンモニウム、塩化トリオクチルメチルアンモニウム、塩化トリブチルベンジルアンモニウム、塩化トリメチルベンジルアンモニウム、塩化N−ラウリルピリジニウム、水酸化テトラ−n−ブチルアンモニウム、水酸化テトラメチルアンモニウム、水酸化トリメチルベンジルアンモニウム、臭化トリメチルフェニルアンモニウム、臭化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、臭化テトラ−n−ブチルアンモニウム、テトラブチルアンモニウムハイドロゲンサルフェート、N−ベンジルピコリニウムクロライド、ヨウ化テトラメチルアンモニウム、ヨウかテトラ-n-ブチルアンモニウム、N−ラウリル−4−ピコリニウムクロライド、N−ラウリルピコリニウムクロライドなどが挙げられる。
【0045】
一般式(4)で表されるイソシアネート系化合物(D)のR、Rとしては、一般式(1)中のR、Rと同様のことが言える。
【0046】
イソシアネート系化合物(B)としては、特に制限されないが、下記の化合物を挙げることができる。
【0047】
【化2】

【0048】
これらのなかでは、反応性や入手性の観点から、2−アクリロイルオキシエチルイソシアネート、2−メタクリロイルオキシイソシアネートが好ましく、2−アクリロイルオキシエチルイソシアネートがより好ましい。
【0049】
イソシアネート系化合物(D)の使用量としては、飽和炭化水素系重合体(a)の水酸基に対し、0.1〜5当量が好ましく、0.5〜1.5当量がより好ましく、当量であることがさらに好ましい。使用量がこれよりも多い場合は、経済的に不利であり、少ない場合は、得られる飽和炭化水素系重合体(A)の硬化性が低下する傾向がある。
【0050】
飽和炭化水素系重合体(a)とイソシアネート化合物(D)を反応させる際に、反応性を高める目的で、触媒を使用することができる。触媒としては、特に制限されないが、有機錫系化合物(E)、チタン系化合物、ジルコニウム系化合物、アミン系化合物を挙げることができる。具体的には、ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫フタレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(2−エチルヘキサノエート)、ジブチル錫ビス(メチルマレエート)、ジブチル錫ビス(エチルマレエート)、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ビス(オクチルマレエート)、ジブチル錫ビス(トリデシルマレエート)、ジブチル錫ビス(ベンジルマレエート)、ジブチル錫ジアセテート、ジオクチル錫ビス(エチルマレエート)、ジオクチル錫ビス(オクチルマレエート)、ジブチル錫ジメトキサイド、ジブチル錫ビス(ノニルフェノキサイド)、ジブテニル錫オキサイド、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジブチル錫ビス(エチルアセトアセトナート)、ジブチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物などの有機錫系化合物;テトラブチルチタネート、テトラプロピルチタネート、チタンテトラキス(アセチルアセトナート)、チタンジイソプロポキシビス(アセチルアセトナト)、チタンジイソプロポキシビス(エチルアセテート)などのチタン化合物;ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物;トリエチルアミン、トリアミルアミン、トリヘキシルアミン、トリオクチルアミンなどの脂肪族第三級アミン類;トリアリルアミン、オレイルアミンなどの脂肪族不飽和アミン類;アニリン、ラウリルアニリン、ステアリルアニリン、トリフェニルアミンなどの芳香族アミン類;ピリジン、2−アミノピリジン、2−(ジメチルアミノ)ピリジン、4−(ジメチルアミノピリジン)、2−ヒドロキシピリジン、イミダゾール、2−エチル−4−メチルイミダゾール、モルホリン、N−メチルモルホリン、ピペリジン、2−ピペリジンメタノール、2−(2−ピペリジノ)エタノール、ピペリドン、1,2−ジメチル−1,4,5,6−テトラヒドロピリミジン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7(DBU)、6−(ジブチルアミノ)−1,8−ジアザビシクロ(5,4,0)ウンデセン−7(DBA−DBU)、1,5−ジアザビシクロ(4,3,0)ノネン−5(DBN)、1,4−ジアザビシクロ(2,2,2)オクタン(DABCO)、アジリジンなどの含窒素複素環式化合物、および、その他のアミン類として、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、N−メチル−1,3−プロパンジアミン、N,N'−ジメチル−1,3−プロパンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ベンジルアミン、3−メトキシプロピルアミン、3−ラウリルオキシプロピルアミン、3−ジメチルアミノプロピルアミン、3−ジエチルアミノプロピルアミン、3−ジブチルアミノプロピルアミン、3−モルホリノプロピルアミン、2−(1−ピペラジニル)エチルアミン、キシリレンジアミンなどのアミン類;グアニジン、フェニルグアニジン、ジフェニルグアニジンなどのグアニジン類;ブチルビグアニド、1−o−トリルビグアニドや1−フェニルビグアニドなどのビグアニド類などを挙げることができる。これらのなかでは、反応性の観点から、有機錫系化合物が好ましく、ジブチル錫(メルカプト酸エステル)が特に好ましい。
【0051】
有機錫系化合物(E)の使用量としては、飽和炭化水素系重合体(a)に対して、10ppm〜500ppmが好ましく、25ppm〜100ppmがより好ましい。使用量がこれよりも多い場合は、副生成物が生じる可能性があり、これよりも少ない場合は、十分な効果が得られない可能性がある。
【0052】
飽和炭化水素系重合体(a)とイソシアネート化合物(D)を反応させる際に、溶剤を使用しても良いし、使用しなくても良い。溶剤を使用する場合は、飽和炭化水素系重合体(a)が溶解する溶剤が好ましい。溶剤としては、特に制限されないが、例えば、トルエン、ヘキサンなどが挙げられる。溶剤の使用量としては、攪拌のし易さなどの観点から、適宜、決定することができる。
【0053】
<(メタ)アクリル系モノマー(B)>
(メタ)アクリル系モノマー(B)の(メタ)アクリル系置換基の数は、硬化性組成物の低粘度化という点から、1分子あたり1個が好ましい。ただし、1分子あたり1個の(メタ)アクリル系置換基を有するモノマー(B)が含まれれば、硬化物の硬度、を調整するために、1分子あたり2個以上の(メタ)アクリル系置換基を有する(メタ)アクリル系モノマーが含まれても良い。
【0054】
(メタ)アクリル系モノマー(B)は、一般式(2)に挙げる(メタ)アクリロイル基を1個有するものが、飽和炭化水素系重合体(A)との相溶性の点で好ましい。
−O−C(=O)−C(R)=CH (2)
(式中、Rは置換あるいは非置換の炭素原子数4から20の脂肪族および/または脂環式炭化水素基から選択される基、Rは水素原子、または、置換あるいは非置換の炭素原子数1から20の炭化水素基から選択される基である。)
一般式(2)中のRは置換あるいは非置換の炭素原子数4から20の脂肪族および/または脂環式炭化水素基から選択される基を表す。ここで言う置換された炭化水素基とは、炭化水素基上の水素原子がヘテロ原子を有する基によって置換された基を言う。Rとしては、特に限定されず、例えば、水素原子;メチル基、エチル基などのアルキル基;シクロヘキシル基などのシクロアルキル基;フェニル基などのアリール基;ベンジル基などのアラルキル基が挙げられる。これらの中では、原料の入手性から、水素原子またはメチル基、さらに飽和炭化水素系重合体(A)の反応性の観点から、水素原子がより好ましい。
そのような(メタ)アクリル酸エステルモノマーとして、例えば(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert−ブチル、アクリル酸n−ペンチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸n−デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸n−ステアリル、(メタ)アクリル酸イソステアリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸トルイル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニルが挙げられる。中でもアクリル酸イソボルニルおよびアクリル酸ラウリルが、入手性、相溶性、組成物の低粘度化の点で好ましい。
【0055】
(メタ)アクリル系モノマーの混合量は、特に制限されないが、飽和炭化水素系重合体(A)100重量部に対し、30重量部から200重量部が好ましく、50部から150部がより好ましい。(メタ)アクリル系モノマーの添加量が30重量部を下回ると、組成物の粘度が高く作業性が悪くなる可能性があり、また、混合量が200重量部を上回ると可とう性、耐透湿性が悪化する可能性がある。なお、(メタ)アクリル酸エステルモノマーの混合物が使用される場合には、混合物の合計量が上記範囲内にあることが好ましい。
【0056】
<重合開始剤(C)>
重合開始剤(C)としては特に限定されないが、活性エネルギー線および/または熱によりラジカルを発生するラジカル開始剤、光アニオン開始剤、レドックス系開始剤などが挙げられる。これらの中では、入手性の点から、活性エネルギー線および/または熱によりラジカルを発生するラジカル開始剤が好ましく、なかでも、反応性の点から光ラジカル開始剤がより好ましい。
【0057】
光ラジカル開始剤としては、特に限定されないが、例えば、アセトフェノン、プロピオフェノン、ベンゾフェノン、キサントール、フルオレイン、ベンズアルデヒド、アンスラキノン、トリフェニルアミン、カルバゾール、3−メチルアセトフェノン、4−メチルアセトフェノン、3−ペンチルアセトフェノン、2,2−ジエトキシアセトフェノン、4−メトキシアセトフェン、3−ブロモアセトフェノン、4−アリルアセトフェノン、p−ジアセチルベンゼン、3−メトキシベンゾフェノン、4−メチルベンゾフェノン、4−クロロベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−クロロ−4’−ベンジルベンゾフェノン、3−クロロキサントーン、3,9−ジクロロキサントーン、3−クロロ−8−ノニルキサントーン、ベンゾイル、ベンゾインメチルエーテル、ベンゾインブチルエーテル、ビス(4−ジメチルアミノフェニル)ケトン、ベンジルメトキシケタール、2−クロロチオキサントーン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1などが挙げられる。これらの中でも、タック改善性があるという点で、フェニルケトン系化合物が好ましい。
【0058】
また、UV照射時の深部硬化性に優れるアシルホスフィンオキサイド系光重合開始剤も配合することができる。アシルホスフィンオキサイド系重合開始剤としては、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイド、ビス(2,6−ジメチルベンゾイル)−フェニルフォスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−イソブチルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−イソブチルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−フェニルフォスフィンオキサイドなどが挙げられ、好ましくは、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイドである。上記の光ラジカル開始剤は、単独で用いてもよく2種以上を混合して用いても良い。なかでも、反応性が高いことから、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイドが好ましい。
【0059】
本発明の硬化性組成物では、上記アシルホスフィンオキサイドおよびフェニルケトン系化合物を併用することもできる。
【0060】
熱ラジカル開始剤としては、特に限定されないが、例えば、アゾ系開始剤、過酸化物開始剤、過硫酸塩開始剤などが挙げられる。
【0061】
アゾ系開始剤としては、特に限定されないが、例えば、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス−2−メチルブチロニトリル、1,1−アゾビス(1−シクロヘキサンカルボニトリル)、2,2’−アゾビス(2−シクロプロピルプロピオニトリル)、2,2’−アゾビス(メチルイソブチレート)などが挙げられる。
【0062】
過酸化物開始剤としては、特に限定されないが、例えば、過酸化ベンゾイル、過酸化アセチル、過酸化ラウロイル、過酸化デカノイル、ジセチルパーオキシジカーボネート、ジ(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、t−ブチルパーオキシピバレート、t−ブチルパーオキシ−2−エチルヘキサノエート、過酸化ジクミルなどが挙げられる。
【0063】
過硫酸塩開始剤としては、特に限定されないが、例えば、過硫酸カリウム、過硫酸ナトリウム、および、過硫酸アンモニウムなどが挙げられる。
【0064】
熱ラジカル開始剤は、単独で用いても、2種以上を併用しても良い。上記の熱ラジカル開始剤の中では、取扱い易さの点から、アゾ系開始剤および過酸化物開始剤からなる群から選ばれるものが好ましい。また、反応性が高いことから、2,2’−アゾビス(メチルイソブチレ−ト)、過酸化ベンゾイル、t−ブチルパーオキシピバレート、および、ジ(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、並びに、これらの混合物がより好ましい。
【0065】
ラジカル開始剤の混合量は、その種類にかかわらず特に制限されないが、飽和炭化水素系重合体(A)100重量部に対し、0.001重量部から10重量部が好ましく、0.01重量部から3重量部がより好ましい。ラジカル開始剤の添加量がこの範囲を下回ると、十分な硬化性が得られない可能性が有り、また、混合量がこの範囲を上回ると硬化物に影響を及ぼす可能性がある。なお、ラジカル開始剤の混合物が使用される場合には、混合物の合計量が上記範囲内にあることが好ましい。
【0066】
光アニオン開始剤としては、特に限定されないが、カルバメート類、アミド類、アミン類、イミド類、オキシムエステル類、α−コバルト錯体類、イミダゾール類等が挙げられる。これらは単独で用いても、2種以上を併用してもよい。
【0067】
光アニオン開始剤の混合量は、飽和炭化水素系重合体(A)100重量部に対し、0.1重量部から10重量部が好ましく、0.3重量部から8重量部であることがさらに好ましい。
【0068】
レドックス開始剤としては、特に限定されないが、上記の過硫酸塩開始剤および亜硫酸水素ナトリウムのような還元剤との組み合わせ;有機過酸化物と第3級アミンに基づく系、例えば過酸化ベンゾイルとジメチルアニリンに基づく系;並びに有機ヒドロパーオキシドと遷移金属に基づく系、例えばクメンヒドロパーオキシドとコバルトナフテートに基づく系等が挙げられる。これらは単独で用いても、2種以上を併用してもよい。
【0069】
レドックス開始剤の混合量は、飽和炭化水素系重合体(A)100重量部に対し、0.01重量部から5重量部が好ましく、0.025重量部から2重量部が好ましい。
【0070】
<硬化性組成物>
本発明の硬化性組成物には、本発明の効果を損なわない範囲で、ラジカル捕捉剤、可塑剤、シランカップリング剤、充填剤、改質剤、他の樹脂成分等のその他の成分を含有することができる。
ここで言うラジカル捕捉剤とは、一般に、酸化防止剤、光安定剤と呼ばれるものなどを含む。
【0071】
酸化防止剤としては、特に限定されず、例えば、ヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系の酸化防止剤があげられ、これらの中でも、ヒンダードフェノール系酸化防止剤が好ましい。同様に、チヌビン622LD,チヌビン144,CHIMASSORB944LD,CHIMASSORB119FL(以上、いずれもBASF株式会社製);MARK LA−57,MARK LA−62,MARK LA−67,MARK LA−63,MARK LA−68(以上、いずれもADEKA(株)製);サノールLS−770,サノールLS−765,サノールLS−292,サノールLS−2626,サノールLS−1114,サノールLS−744(以上、いずれも三共(株)製)に示されたヒンダードアミン系光安定剤を使用することもできる。酸化防止剤の具体例は、特開平4−283259号公報や特開平9−194731号公報にも記載されている。酸化防止剤の使用量は、飽和炭化水素系重合体(A)100重量部に対して、0.1重量部から10重量部の範囲で使用するのが良く、さらに好ましくは、0.2重量部から5重量部である。使用量がこれよりも少ない場合は、十分な効果が得られない可能性が有り、使用量がこれよりも多い場合は、経済的に不利になるだけでなく、光ラジカル開始剤より発生したラジカルを酸化防止剤が補足し、硬化物の硬化不良が発生し、硬化物が良好な物性を発現しない可能性がある。
【0072】
光安定剤としては、ベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物などがあげられ、これらの中でも、ヒンダードアミン系化合物が好ましい。光安定剤の使用量は、飽和炭化水素系重合体(A)100重量部に対して、0.1重量部から10重量部の範囲で使用するのが好ましく、0.2重量部から5重量部がより好ましい。使用量がこれよりも少ない場合は、十分な効果が得られない可能性が有り、使用量がこれよりも多い場合は、経済的に不利になる可能性があるだけでなく、光ラジカル開始剤より発生したラジカルを酸化防止剤が補足し、硬化物の硬化不良が発生し、硬化物が良好な物性を発現しない可能性がある。光安定剤の具体例は特開平9−194731号公報にも示されている。
【0073】
可塑剤としては、ジブチルフタレート、ジヘプチルフタレート、ジ(2−エチルヘキシル)フタレート、ブチルベンジルフタレートなどのフタル酸エステル類;ジオクチルアジペート、ジオクチルセバケートなどの非芳香族二塩基酸エステル類;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエートなどのポリアルキレングリコールのエステル類;トリクレジルホスフェート、トリブチルホスフェートなどのリン酸エステル類;塩化パラフィン類;アルキルジフェニル、部分水添ターフェニルなどの炭化水素系油などを単独、または2種以上混合して使用することができるが、必ずしも必要とするものではない。なお、これら可塑剤は、飽和炭化水素系重合体製造時に配合することも可能である。可塑剤の使用量は、飽和炭化水素系重合体(A)100重量部に対して、5重量部から200重量部の範囲で使用するのが好ましく、10重量部から100重量部がより好ましい。使用量がこれよりも少ない場合は、十分な効果が得られない可能性が有り、使用量がこれよりも多い場合は、得られる硬化物の機械物性が低下する可能性がある。可塑剤の添加は、物性の調整、性状の調節などに有効である。
【0074】
シランカップリング剤とは、エポキシ基、カルボキシル基、メタクリロイル基、イソシアネート基等の反応性基を有するシラン化合物が挙げられる。具体的には、トリメトキシシリル安息香酸、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、γ−イソシアナトプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメチルシラン等が挙げられる。これらは、1種単独でも複数種を組み合わせて使用してもよい。本発明の樹脂組成物におけるシランカップリング剤成分の含有割合は、特に限定はないが、(A)成分、(B)成分、(C)成分の合計100重量部に対して、通常0.1〜20重量部であり、好ましくは0.3〜10重量部である。シランカップリング剤の添加は、接着性や耐水性の向上に有効である。
【0075】
充填剤としては、例えば、微粒子シリカ、ガラスビーズ、タルク、スチレン系ポリマー粒子、メタクリレート系ポリマー粒子、エチレン系ポリマー粒子、プロピレン系ポリマー粒子等が挙げられ、中でも無機充填剤が好ましく、特に微粒子シリカが好ましい。これらは、1種単独でも複数種を組み合わせて使用してもよい。充填剤成分の含有割合は、特に限定はないが、(A)成分、(B)成分、(C)成分の合計100重量部に対して、通常20〜150重量部であり、好ましくは50〜100重量部である。無機充填剤の添加により、高強度化、耐透湿性や接着性を向上させることができる。
【0076】
改質剤としては、例えば重合開始助剤、レベリング剤、濡れ性改良剤、界面活性剤等が挙げられる。これらは、1種単独でも複数種を組み合わせて使用してもよい。
【0077】
他の樹脂成分としては、例えばポリアミド、ポリウレタン、ポリブタジエン、ポリエーテル、ポリエステル、アクリル樹脂、シリコン樹脂、フッ素系樹脂等の樹脂成分が挙げられる。
【0078】
<硬化物>
本発明の硬化性組成物は、各成分を均一に混合することにより調製される。混合方法に特に限定は無いが、まず(C)成分の重合開始剤を除くその他の成分を十分に混合した後に、(C)成分の重合開始剤を混合することが、組成物の安定性の点で好ましい。混合する場合、装置は特に限定されないが、手攪拌、機械的攪拌装置、ロールミル等を用い適宜混合することにより調製される。
【0079】
本発明の硬化物は、活性エネルギー線、または熱によって硬化させることができる。
【0080】
活性エネルギー線により硬化させる場合、活性エネルギー線としては、光(UV)、または、電子線が挙げられ、活性エネルギー線源としては、特に限定されないが、使用する光重合開始剤の性質に応じて、例えば、高圧水銀灯、低圧水銀灯、電子線照射装置、ハロゲンランプ、発光ダイオード、半導体レーザー、メタルハライドなどがあげられる。
【0081】
その硬化温度は、0℃〜150℃が好ましく、5℃〜120℃がより好ましい。その他の開始剤として、レドックス系開始剤を併用する場合、その硬化温度は、−50℃〜250℃が好ましく、0℃〜180℃がより好ましい。
【0082】
熱により硬化させる場合、その硬化温度は、30℃〜200℃が好ましく、80℃〜180℃がより好ましい。
【0083】
硬化物を得る際に施す硬化性組成物の塗布としては、例えば、刷毛塗り、押し出し、吹きつけ、グラビア、キスロール、ディスペンサー及びエアーナイフによる、当該技術分野で公知の手法を、塗布する基材の特徴に合わせて適用できる。
【0084】
本発明の硬化性組成物を塗布する固体基材は、例えば紙、ポリオレフィンフィルム、ポリオレフィン被覆紙、箔、木材、厚紙及び綿などの柔軟なシート材料;例えばアルミニウム、銅、スチール及び銀などの金属材料;例えばガラス及び石などのケイ質材料、;並びに例えばポリオレフィン、ポリアミド、ポリエステル及びポリアクリレート等の合成ポリマー等が挙げられる。
【0085】
本発明の光硬化性組成物は、接着剤、塗料、シーリング剤組成物、防水剤、吹き付け剤、型取り用材料、注入型ゴム材料等として有用である。具体的には、UV硬化型材料・コーティング・インキ、液状ソルダーレジスト、液晶用レジスト、光ファイバーコーティング剤、UV・可視光硬化型接着剤、光ディスクコーティング剤、電子部品用封止剤等が挙げられる。中でも、耐透湿性と可とう性の求められる有機ELや電子ペーパーのような電子部品用封止剤として有用である。
【実施例】
【0086】
以下に、実施例に基づいて本発明をさらに詳細に説明するが、本発明はこれにより何ら制限を受けるものではない。
【0087】
下記実施例中、「数平均分子量」および「分子量分布(重量平均分子量と数平均分子量の比)」は、ゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算法により算出した。ただし、GPCシステムとしてWaters社製LC Module1を、GPCカラムとしてポリスチレン架橋ゲルを充填したもの(Shodex GPC K−804;昭和電工(株)製)、GPC溶媒としてクロロホルムを用いた。
【0088】
(合成例1)
5000mLのセパラブルフラスコに三方コック、熱電対、および、真空用シール付き撹拌機を装着し、窒素置換を行った。ここに、モレキュラーシーブス3Aによって脱水したトルエン592mL、エチルシクロヘキサン73.6mLを加え、さらに、1,4−ビス(1−クロル−1−メチルエチル)ベンゼン(5.56g,24.0mmol)、2−メチルピリジン(264mg,2.83mmol)を加えて−70℃に冷却した。冷却後、イソブチレンモノマー(120mL,1.44mol)を導入し、さらに、この温度で四塩化チタン(2.52mL、23.0mmol)を添加し重合を開始した。この際に約15℃昇温した。約60分で重合は終了した(これに伴い、反応系の発熱は観察されなくなった)。重合終了後、酢酸2,7−オクタジエニル(32.4g,193mmol)および四塩化チタン(39.8mL、386mmol)を添加した。5時間後に、80℃に加熱したイオン交換水1.5Lに反応混合物を導入し、20分間攪拌した。静置後、水層を除去し、1Lの2N水酸化ナトリウム水溶液、および、臭化テトラブチルアンモニウム10.0gを添加し、100℃にて12時間攪拌した。反応終了後、アルカリ水溶液を除去し、1Lのイオン交換水で3回水洗した後、有機層を単離した。これに、10Lのアセトンを加えてポリマーを再沈殿させ、低分子化合物を除去した。沈殿物をアセトン1Lで2回洗浄し、ヘキサン500mlに溶解した。溶液を1Lのなす型フラスコに移し、オイルバスによる加熱条件下(180℃)、減圧(1Torr以下)によって溶媒を留去し、目的とする水酸基を末端に有するイソブチレン系重合体(a)を得た(数平均分子量5600、分子量分布1.2)。重合体(a)の官能化率をH NMRを用いて算出した(Valian社製 Gemini−300、測定溶剤=四塩化炭素/重アセトン=4/1混合溶剤、定量方法=開始剤残基のシグナル(7.2ppm)を基準に、末端の水酸基に隣接するメチレンのシグナル(4.00ppm)を比較して定量化)。その結果、得られた重合体(a)の水酸基導入量は、1分子当たり1.2個であった。
【0089】
イソブチレン系重合体(a)10g、トルエン15mL、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシ2mgをフラスコに加え、90℃で2時間脱揮した。脱揮後、ジブチル錫ビス(メルカプト酸エステル)(日東化成(株)製ネオスタンU−360)0.44μL、2−アクリロイルオキシエチルイソシアネート(昭和電工(株)製カレンズAOI)0.41gを加え、90℃で2時間攪拌した。これにより、(メタ)アクリロイル系置換基を末端に有するイソブチレン系重合体(A)を得た(数平均分子量5600、分子量分布1.2)。重合体(A)の官能化率をH NMRを用いて算出した(Valian社製Gemini−300、測定溶剤=四塩化炭素/重アセトン=4/1混合溶剤、定量方法=開始剤残基のシグナル(7.2ppm)を基準に、末端の(メタ)アクリロイル系置換基に隣接するメチレンのシグナル(4.00ppm)を比較して定量化)。その結果、得られた重合体(A)の(メタ)アクリロイル系置換基導入量は、1分子当たり1.2個であった。
【0090】
(実施例1)
合成例1に記載の(メタ)アクリロイル系置換基を末端に有するイソブチレン系重合体100重量部をミニカップに加え、アクリル酸イソボルニル(大阪有機化学工業(株)製 IBXA)100重量部、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(BASF社製 DAROCURE1173)2.6重量部、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(BASF社製 IRGACURE819)1.3重量部を添加し、スパチュラにてよく攪拌することで、硬化性組成物を得た。
【0091】
得られた硬化性組成物を、離形材を塗布したガラス板上に厚さが0.1mmになるように別途塗布した。これらをフュージョンUVシステム製UV照射装置(機種:LIGHT HAMMER 6、光源:水銀灯ランプ、積算光量:3000mJ/cm)にて照射を行い、フィルム状の硬化物を得た。上記の操作により得られたフィルム状硬化物について、JIS Z 0208記載の湿分透過性試験を行った。また別のフィルム状硬化物を180度折り曲げることによる、フィルムの割れの有無を調べた。結果を表1に示す。
【0092】
(実施例2)
合成例1に記載の(メタ)アクリロイル系置換基を末端に有するイソブチレン系重合体100重量部をミニカップに加え、アクリル酸イソボルニル(大阪有機化学工業(株)製 IBXA)50重量部、アクリル酸ラウリル(共栄社化学工業(株)製 ライトアクリレートL−A)50重量部、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(BASF社製 DAROCURE1173)2.6重量部、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(BASF社製 IRGACURE819)1.3重量部を添加し、スパチュラにてよく攪拌することで、硬化性組成物を得た。
得られた硬化性組成物を(実施例1)と同様の方法で硬化し、硬化物を得て、評価を行った。結果を表1に示す。
【0093】
(実施例3)
合成例1に記載の(メタ)アクリロイル系置換基を末端に有するイソブチレン系重合体100重量部をミニカップに加え、アクリル酸ラウリル(共栄社化学工業(株)製 ライトアクリレートL−A)100重量部、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(BASF社製 DAROCURE1173)2.6重量部、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(BASF社製 IRGACURE819)1.3重量部を添加し、スパチュラにてよく攪拌することで、硬化性組成物を得た。
得られた硬化性組成物を(実施例1)と同様の方法で硬化し、硬化物を得て、評価を行った。結果を表1に示す。
【0094】
(比較例1)
合成例1に記載の(メタ)アクリロイル系置換基を末端に有するイソブチレン系重合体(A)100重量部をミニカップに加え、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(BASF社製 DAROCURE1173)2.6重量部、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(BASF社製 IRGACURE819)1.3重量部を添加し、スパチュラにてよく攪拌することで、硬化性組成物を得た。
得られた硬化性組成物を実施例1と同様の方法で硬化し、硬化物を得て、評価を行った。結果を表1に示す。
【0095】
(比較例2)
光硬化性エポキシ接着剤(ナガセケムテックス(株)製 XNR5516Z)を実施例1と同様の方法で硬化し、硬化物を得て、評価を行った。結果を表1に示す。
【0096】
(比較例3)
合成例1に記載の(メタ)アクリロイル系置換基を末端に有するイソブチレン系重合体100重量部をミニカップに加え、アクリル酸メチル(和光純薬工業(株)製)50重量部を添加し、スパチュラで攪拌した。これらの成分は相溶せず、相分離が起こった。
【0097】
【表1】

【0098】
実施例1と比較例1を比較すると、いずれの硬化物も優れた可とう性、耐透湿性を示すが、実施例1の硬化性組成物は低粘度であり、フィルム状硬化物作成時の塗布における作業性が良好であった。
【0099】
また実施例1と比較例2を比較すると、双方とも同程度の透湿性を示すが、比較例2は粘度が高く、またフィルム状硬化物を折り曲げたときに破断したのに対し、実施例1では粘度が小さく、フィルム状硬化物の破断は見られなかった。

【特許請求の範囲】
【請求項1】
一般式(1):
−Z−C(=O)−NH−R−O−C(=O)−C(R)=CH (1)
(式中、Rは水素原子、または、置換あるいは非置換の炭素原子数1から20の炭化水素基、Rは2価の有機基、Zはヘテロ原子、NR(Rは、水素原子、または、置換あるいは非置換の炭素原子数1から20の炭化水素基)から選択される基である。)で表される置換基を分子内に平均1個以上有する飽和炭化水素系重合体(A)、
一般式(2)
−O−C(=O)−C(R)=CH (2)
(式中、Rは置換あるいは非置換の炭素原子数4から20の脂肪族および/または脂環式炭化水素基から選択される基、Rは水素原子、または、置換あるいは非置換の炭素原子数1から20の炭化水素基から選択される基である。)で表される(メタ)アクリロイル基を分子内に1個有する(メタ)アクリル系モノマー(B)、
および重合開始剤(C)、
を含有する硬化性組成物。
【請求項2】
飽和炭化水素系重合体(A)がイソブチレン系重合体であることを特徴とする、請求項1に記載の硬化性組成物。
【請求項3】
一般式(1)のRが水素原子、またはメチル基であることを特徴とする、請求項1および2に記載の硬化性組成物。
【請求項4】
一般式(1)のRが水素原子であることを特徴とする、請求項1および2に記載の硬化性組成物。
【請求項5】
一般式(1)で表される置換基が飽和炭化水素系重合体(A)の末端のみに有することを特徴とする、請求項1〜4のいずれか1項に記載の硬化性組成物。
【請求項6】
重合開始剤(C)が光によりラジカルを発生する光ラジカル開始剤であることを特徴とする、請求項1〜5のいずれか1項に記載の硬化性組成物。
【請求項7】
飽和炭化水素系重合体(A)100重量部に対し、(メタ)アクリル系モノマー(B)が50〜200重量部、重合開始剤(C)が0.001〜10重量部含まれることを特徴とする、請求項1〜6のいずれか1項に記載の硬化性組成物。
【請求項8】
飽和炭化水素系重合体(A)が飽和炭化水素系重合体(A)と同様の主鎖骨格を有し、水酸基を末端に有する飽和炭化水素系重合体(a)と、一般式(4):
O=C=N−R−O−C(=O)−C(R)=CH (4)
(式中、Rは水素原子、または、置換あるいは非置換の炭素原子数1から20の炭化水素基、Rは2価の有機基である。)で表されるイソシアネート系化合物(D)を反応させることによって得られることを特徴とする請求項1〜7のいずれか1項に記載の硬化性組成物。
【請求項9】
飽和炭化水素系重合体(a)とイソシアネート系化合物(D)を、有機錫系化合物(E)を触媒として反応させることによって得られることを特徴とする請求項8に記載の硬化性組成物。
【請求項10】
請求項1から9のいずれか1項に記載の硬化性組成物を硬化させることにより得られる硬化物。

【公開番号】特開2012−102243(P2012−102243A)
【公開日】平成24年5月31日(2012.5.31)
【国際特許分類】
【出願番号】特願2010−252149(P2010−252149)
【出願日】平成22年11月10日(2010.11.10)
【出願人】(000000941)株式会社カネカ (3,932)
【Fターム(参考)】