説明

磁気共鳴イメージング装置用傾斜磁場コイル、これを用いた磁気共鳴イメージング装置、及び製造方法

【課題】 磁気共鳴イメージング装置における傾斜磁場コイルにおいて、渦電流の発生を抑制できる、精度の良いコイルを提供すること。
【解決手段】 本発明の磁気共鳴イメージング装置用傾斜磁場コイルは、互いに直交する3軸の方向に第1の傾斜磁場を発生する第1のコイル導体と、第1のコイル導体の外側において第1の傾斜磁場を打ち消すように作用する第2の傾斜磁場を発生する第2のコイル導体とを備え、第1のコイル導体或いは第2のコイル導体が、3次元直交座標軸の何れか1つ以上の座標軸に対して非対称に配置されていることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気共鳴イメージング(以下、「MRI」という)装置に用いる傾斜磁場コイルに関し、特に、MRI装置本体又は傾斜磁場コイル自身に発生させる渦電流を抑えることが可能な構造に関する。
【背景技術】
【0002】
MRI装置は、被検者、特に人体の組織を構成する原子核スピンが発生するNMR信号を計測し、その頭部、腹部、四肢等の形態や機能を2次元的に或いは3次元的に画像化する装置である。撮影においては、NMR信号には、傾斜磁場によって異なる位相エンコードが付与されるとともに周波数エンコードされて、時系列データとして計測される。計測されたNMR信号は、2次元又は3次元フーリエ変換されることにより画像に再構成される。
【0003】
このようなMRI装置において、傾斜磁場コイルによって傾斜磁場を発生させる。傾斜磁場コイルは、例えば、垂直方向の磁場を発生させることのできる円盤状のコイルや、水平方向の磁場を発生させることのできることの円筒状のコイルがある。そして通常、傾斜磁場コイルは、均一な磁場を発生する静磁場発生磁石(永久磁石や超電導磁石)に接近して設置される。
【0004】
このような構成において、傾斜磁場が時間変化する際に、超電導磁石の熱シールド板やヘリウム容器、外壁等の導体に渦電流が生じる。渦電流による磁場は、被検者の配置される空間において、傾斜磁場コイルが発生する磁場を空間的、時間的に変化させるため、画質の質や局所的なスペクトルの性能が劣化してしまう。
【0005】
この問題を解決するため、アクティブシールド型傾斜磁場コイルが開発されている(例えば、特許文献1参照)。このアクティブシールド型傾斜磁場コイルは、被検者の配置される空間に傾斜磁場を発生するコイル(メインコイル)20a、20b、20cと、その外側にメインコイルが発生する磁場を遮断するためのコイル(シールドコイル)21a、21bを配置するものである。これにより渦電流が発生する静磁場発生磁石の導体の位置で、メインコイルとシールドコイルの発生する磁場の和がほぼ零となるので、渦電流の発生を抑制することができる。また、特許文献2には、渦電流を抑制しつつ、高速な勾配磁場スイッチング特性を有する傾斜磁場コイルのコイルパターン設計法が開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】米国特許第4737716号公報
【特許文献2】特開平8-84716号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記方法により、アクティブシールド型傾斜磁場コイルの導体上での渦電流の発生要因をある程度排除することができるが、X、Y、Zの各軸方向の傾斜磁場を発生させるコイルにおいて、コイルパターン同士を電気的に接続する配線や渡り線等が必要となる。これらの導体が発生する磁場は本来不要であり、且つシールドコイルで遮断することができないため、渦電流の発生要因と成り得た。また、傾斜磁場コイルを製造する際に製作誤差が生じるが、その製作誤差に因って、傾斜磁場コイル近傍の静磁場発生磁石の導体上でメインコイルとシールドコイルの発生する磁場がキャンセルされずに、渦電流が発生してしまう場合があった。
【0008】
本発明の目的は、静磁場発生磁石の導体における渦電流の発生と、コイル製造時の製作誤差による渦電流の発生と、を抑制可能であり、精度の良い傾斜磁場を発生させることのできる傾斜磁場コイル及びこれを備えたMRI装置を提供することである。
【課題を解決するための手段】
【0009】
上記目的を達成するために、本発明は、メインコイル(第1のコイル導体)或いはシールドコイル(第2のコイル導体)を、3次元直交座標軸の何れか1つ以上の座標軸に対して非対称に配置する。
【0010】
具体的には、本発明の磁気共鳴イメージング装置用傾斜磁場コイルは、互いに直交する3軸の方向に第1の傾斜磁場を発生する第1のコイル導体と、第1のコイル導体の外側において第1の傾斜磁場を打ち消すように作用する第2の傾斜磁場を発生する第2のコイル導体とを備え、第1のコイル導体或いは第2のコイル導体が、3次元直交座標軸の何れか1つ以上の座標軸に対して非対称に配置されていることを特徴とする。本発明のMRI装置は、このような傾斜磁場コイルを備える。
【0011】
また、本発明の磁気共鳴イメージング装置用傾斜磁場コイルの製造方法は、第2のコイル導体に接近して導体板を設置するステップと、第1のコイル導体及び第2のコイル導体に電流を印加し、導体板に発生する渦電流に因る磁場を計測するステップと、渦電流の発生が抑制されるように、第1のコイル導体或いは第2のコイル導体を平行移動又は回転移動させるステップと、第1のコイル導体及び第2のコイル導体をモールドするステップと、を有してなることを特徴とする。
【発明の効果】
【0012】
本発明の傾斜磁場コイル及びこれを用いたMRI装置によれば、静磁場発生磁石の導体における渦電流の発生と、コイル製造時の製作誤差による渦電流の発生と、を抑制可能であり、精度の良い傾斜磁場を発生させることのできる。
【図面の簡単な説明】
【0013】
【図1】本発明に係わるMRI装置の一実施例の全体構成を示すブロック図。
【図2】垂直磁場方式の傾斜磁場コイルの概念図。
【図3】水平磁場方式の傾斜磁場コイルの概念図。
【図4】メインコイルが楕円筒形状である水平磁場方式の傾斜磁場コイルの概念図。
【図5】垂直磁場方式の傾斜磁場コイルにおけるXメインコイルの概念図。
【図6】水平磁場方式の傾斜磁場コイルにおけるXメインコイルの概念図。
【図7】本発明の実施例1を説明するフローチャート。
【図8】本発明の実施例1による製造方法の状態をY方向から見た図。
【図9】本発明の実施例1による製造方法の状態をZ方向から見た図。
【図10】本発明の実施例1におけるXメインコイルを回転させた一実施例を示す図。
【図11】図9の部分拡大断面図。
【図12】図10の部分拡大断面図。
【図13】傾斜磁場コイルの印加電流と測定磁場の例を示す図。
【図14】本発明の実施例1における測定磁場と基準磁場の例を示す図。
【図15】本発明の実施例2を説明するフローチャート。
【図16】本発明の実施例2におけるXメインコイルの回転移動による磁場特性の例を示す図。
【図17】本発明の実施例3による製造方法の状態をZ方向から見た図。
【図18】本発明の実施例3による製造方法の状態をY方向から見た図。
【図19】本発明の実施例3におけるXメインコイルを回転させた一実施例を示す図。
【図20】本発明の実施例4による製造方法の状態をZ方向から見た図。
【発明を実施するための形態】
【0014】
以下、添付図面に従って本発明のMRI装置の好ましい実施形態について詳説する。なお、本発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
【0015】
最初に、本発明に係るMRI装置の一例の全体概要を図1に基づいて説明する。図1は、本発明に係るMRI装置の一実施例の全体構成を示すブロック図である。このMRI装置は、NMR現象を利用して被検者の断層画像を得るもので、図1に示すように、MRI装置は静磁場発生系2と、傾斜磁場発生系3と、シーケンサ4と、送信系5と、受信系6と、計算機7とを備えて構成される。
【0016】
静磁場発生系2は、垂直磁場方式であれば、被検者1の周りの空間にその体軸と直交する方向に、水平磁場方式であれば、体軸方向に均一な静磁場を発生させるもので、被検者1の周りに永久磁石方式、常電導方式あるいは超電導方式の静磁場発生磁石を有して成る。
【0017】
傾斜磁場発生系3は、MRI装置の座標系(静止座標系)であるX、Y、Zの3軸方向に傾斜磁場を印加する傾斜磁場コイル8と、それぞれの傾斜磁場コイルを駆動する傾斜磁場電源9とから成り、後述のシ−ケンサ4からの命令に従ってそれぞれのコイルの傾斜磁場電源9を駆動することにより、X、Y、Zの3軸方向に傾斜磁場Gx、Gy、Gzを印加する。撮影時には、スライス面(撮影断面)に直交する方向にスライス方向傾斜磁場パルスを印加して被検者1に対するスライス面を設定し、そのスライス面に直交して且つ互いに直交する残りの2つの方向に位相エンコード方向傾斜磁場パルスと周波数エンコード方向傾斜磁場パルスを印加して、エコー信号にそれぞれの方向の位置情報をエンコードする。
【0018】
シーケンサ4は、高周波磁場パルス(以下、「RFパルス」という)と傾斜磁場パルスをある所定のパルスシーケンスで繰り返し印加する制御手段で、計算機7の制御で動作し、被検者1の断層画像のデータ収集に必要な種々の命令を送信系5、傾斜磁場発生系3、および受信系6に送る。
【0019】
送信系5は、被検者1の生体組織を構成する原子の原子核スピンに核磁気共鳴を起こさせるために、被検者1にRFパルスを照射するもので、変調器10と高周波発振器11と高周波増幅器12と送信側の高周波コイル(送信コイル)13aとから成る。高周波発振器11から出力されたRFパルスをシーケンサ4からの指令によるタイミングで変調器10により振幅変調し、この振幅変調されたRFパルスを高周波増幅器12で増幅した後に、被検者1に近接して配置された高周波コイル13aに供給することにより、RFパルスが被検者1に照射される。
【0020】
受信系6は、被検者1の生体組織を構成する原子核スピンの核磁気共鳴により放出されるエコー信号(NMR信号)を検出するもので、受信側の高周波コイル(受信コイル)13bと信号増幅器14と直交位相検波器15と、A/D変換器16とから成る。送信側の高周波コイル13aから照射された電磁波によって誘起された被検者1の応答のNMR信号が被検者1に近接して配置された高周波コイル13bで検出され、信号増幅器14で増幅された後、シーケンサ4からの指令によるタイミングで直交位相検波器15により直交する二系統の信号に分割され、それぞれがA/D変換器16でディジタル量に変換されて、計算機7に送られる。
【0021】
計算機7は、各種データ処理と処理結果の表示及び保存等を行うもので、ディスプレイ17、記憶装置18、操作装置19と接続されている。受信系6からのデータが計算機7に入力されると、計算機7が信号処理、画像再構成等の処理を実行し、その結果である被検者1の断層画像を、CRT等から成るディスプレイ17に表示すると共に、光ディスク、磁気ディスク等の記憶装置18に記録する。操作装置19は、MRI装置の各種制御情報や計算機7で行う処理の制御情報を入力するもので、トラックボール又はマウス、及び、キーボード等から成る。この操作装置19はディスプレイ17に近接して配置され、操作者がディスプレイ17を見ながら操作装置19を通してインタラクティブにMRI装置の各種処理を制御する。
【0022】
なお、図1において、送信側の高周波コイル13aと傾斜磁場コイル8は、被検者1が挿入される静磁場発生系2の静磁場空間内に、垂直磁場方式であれば被検者1に対向して、水平磁場方式であれば被検者1を取り囲むようにして設置されている。また、受信側の高周波コイル13bは、被検者1に対向して、或いは取り囲むように設置されている。
【0023】
現在MRI装置の撮像対象核種は、臨床で普及しているものとしては、被検者の主たる構成物質である水素原子核(プロトン)である。プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態または、機能を2次元もしくは3次元的に撮像する。
【0024】
図2は垂直磁場方式のアクティブシールド型傾斜磁場コイル、図3及び図4は水平磁場方式のアクティブシールド型傾斜磁場コイルの例である。これらの傾斜磁場コイルはメインコイルユニット20a、20b、20c及びシールドコイルユニット21a、21bから成り、樹脂22によってモールドされている。
【0025】
図3はメインコイルユニット20b及びシールドコイルユニット21bが両方とも円筒形状である水平磁場方式の傾斜磁場コイルの例である。図4はメインコイルユニット20cが楕円筒形状である水平磁場方式の傾斜磁場コイルの例である。即ち、図4のメインコイルユニット20cは、そのY方向(横臥した被検者1の上下方向)の径とX方向(横臥した被検者1の左右方向)の径を異ならせた構造であり、例えば、短径(Y方向)を図3のメインコイルユニット20bの半径と同寸法にし、長径(X方向)を図3のメインコイルユニット20bの半径よりも大きくした構造とすることができる。これによって図4の傾斜磁場コイルの開口部の断面積は、図3よりも大きくなり、中に入る被検者は空間を広く感じることができる。また、図4では、シールドコイルユニット21bは、図3と同じ半径を持つ円筒状としている。このため、傾斜磁場コイルの周囲に設置する静磁場発生磁石の形状を変更する必要はない。
【0026】
メインコイルユニット20a、20b、20cは、X、Y、Zの3軸方向に傾斜磁場を発生する3種類の導体コイルから成る。
【0027】
垂直磁場方式傾斜磁場コイルのXメインコイルとYメインコイルは、図5に示すように平面上に渦巻き状になった2つの部分から成っている。この2つの部分は、XメインコイルはY軸に対して対称に、YメインコイルはX軸に対して対称に配置されている。そして、2つの部分は導電性の渡り線23a等を用いて電気的に接続されている。また、Zメインコイルは、図示しないが、平面上に渦巻き状になった1つのコイルから成っている。
【0028】
水平磁場方式傾斜磁場コイルのXメインコイルとYメインコイルは、図6に示すように4つの部分から成っている。なお、図中のθは円周方向を表す。これら4つの部分は、X=0平面(YZ平面)とZ=0平面(XY平面)とに対して対称に配置されている。そして、2つずつが導電性の渡り線23b等を用いて電気的に接続されている。YメインコイルはXメインコイルに対し円周方向に90度回転して配置され、Y=0平面(XZ平面)とZ=0平面(XY平面)とに対して対称である。また、Zメインコイルは、図示しないが、ソレノイド型で2つの部分より構成されている。垂直磁場方式、水平磁場方式どちらも、これら3種類のコイル間は絶縁板によって電気的に絶縁されている。
【0029】
シールドコイルユニット21a、21bは、メインコイルユニット20a、20b、20cと同様にX、Y、Zの3軸方向に傾斜磁場を発生する3種類のコイルから成り、メインコイルの発生する傾斜磁場を傾斜磁場コイルの外側の空間において打ち消すように作用する傾斜磁場を発生するものである。各シールドコイルは、図5或いは図6に示すコイル導体パターンと類似した構成になっている。垂直磁場方式、水平磁場方式どちらも、これら3種類のコイル間は絶縁板によって電気的に絶縁されている。さらに、X、Y、Zの各メインコイルとシールドコイル間は導体配線を用いて電気的に接続されている。
【実施例1】
【0030】
次に、本発明の傾斜磁場コイル及びこれを用いたMRI装置の実施例1について、実施例1は、垂直磁場方式のMRI装置用傾斜磁場コイルの構造及びその製造方法に関する。具体的には、メインコイル(第1のコイル導体)とシールドコイル(第2のコイル導体)が共に円盤状であり、3次元直交座標軸の何れか1つ以上の座標軸に対して非対称に配置される。以下、図7〜図14を用いて本実施例を詳細に説明する。
【0031】
図8は、垂直磁場方式の傾斜磁場コイルを製造する実施例1の状態をY方向から見た図である。
【0032】
図9は、図8をZ方向から見た図である。
【0033】
メインコイルユニット20aは、Xメインコイル24a、Yメインコイル25a、Zメインコイル26aの間にそれぞれ絶縁板30aを挟み、3種類のコイルが電気的に絶縁された構造であり、円盤状の形状を有する。
【0034】
シールドコイルユニット21aは、Zシールドコイル27a、Xシールドコイル28a、Yシールドコイル29aの間にそれぞれ絶縁板30aを挟み、3種類のコイルが電気的に絶縁された構造である。
【0035】
図8に示すように、メインコイルユニット20aとシールドコイルユニット21aは、シールドコイルユニット21aに接近して導体板31aを設置し、非導電性の間隔調整スペーサ32aを介して積層し、位置固定用ピン33aで固定する。このとき、各メインコイル24a〜26aとシールドコイル27a〜29aは全てX軸とY軸の座標軸に一致するように積層する。即ち、6種類のコイルは全て、X、Y軸の座標軸に対して対称に配置されている。
【0036】
メインコイル24a〜26aとシールドコイル27a〜29aは、図5に示す渡り線23aや、図8に示す接続部34a等によって各軸のコイル同士が繋がれており、通電可能な状態になっている。これらのメインコイルとシールドコイルは電流源に接続されており、電流を印加することでメインコイル及びシールドコイルから磁場が発生する。さらに、メインコイルユニット20aの上方、好ましくは50〜200mmの位置の磁場測定点35aにおいて、サーチコイル等を用いて磁場を測定できるようになっている。
【0037】
図9に示すように、絶縁板30aには座標軸と一致するようなX軸とY軸を示すマーク36a、36bがある。また、メインコイル24a〜26aとシールドコイル27a〜29aと絶縁板30aには、位置固定用ピン33aの径よりも大きな径の穴38が空いており、その隙間分だけコイルをXY平面上に動かすことが可能となっている。位置固定用ピン33aと穴38は、X軸とY軸に対して対称な位置にあるのが好ましい。
【0038】
図11は、図9の部分Aを拡大した断面図である。Xメインコイル24aと接続部34aが、固定用ネジ39によって固定されている。固定用ネジ39を通すための穴が、Xメインコイル24aと接続部34aに空いているが、その穴の経はXメインコイル24aの方が接続部34aよりも大きくなっており、その隙間分だけコイルをXY平面上に動かすことが可能となっている。Xメインコイル24aと接続部34aのネジ穴の中心と、固定用ネジ39の中心軸は一致している。
【0039】
続いて、実施例1の垂直磁場方式の傾斜磁場コイルを製造する具体的なステップについて、図7のフローチャートを用いて説明する。
【0040】
ステップS101では、前述のようにメインコイルユニット20aとシールドコイルユニット21aとを、図8に示す様にZ軸方向に積層する。
【0041】
ステップS102では、図8に示す磁場計測点35aにおける渦電流による磁場を計算し、これを基準磁場とする。基準磁場は、図13に示すように、電流立下り3〜5msでの磁場Be、若しくは磁場Beを磁場の定常値Bmで除したBe/Bmである正規化磁場とするのが好ましい。ただし、基準磁場の定義はこれに限定されない。
【0042】
ステップS103では、メインコイルとシールドコイルに図13のような周期的な電流を印加し、導体平板31aに生じた渦電流の磁場或いは正規化磁場をサーチコイル等によって数点測定し、これを測定磁場とする。図14は、Xメインコイル24aとXシールドコイル27aに電流を印加したときの、基準磁場と測定磁場の波形例である。
【0043】
ステップS104では、基準磁場と測定磁場の差分を計算し、これを誤差磁場とする。
【0044】
ステップS105では、誤差磁場が十分小さいか否かを判定する。誤差磁場が十分小さいと判断したときは“Yes”となり、ステップS107に進む。“No”であれば、ステップS106に進む。
【0045】
ステップS106では、電流を印加した軸のメインコイル24a〜26a或いはシールドコイル27a〜29aを平行移動或いは回転移動させる。尚、移動はメインコイルユニット20a、シールドコイルユニット21aのいずれか一方を他方に対して行ってもよい。移動後は、再びステップS103に戻り、ステップS105で“Yes”になるまで繰り返す。
【0046】
図10と図12は、図9と図11に示すステップS101の状態から、Xメインコイル24aを回転移動させたときの形態例である。移動によって、Xメインコイル24aは座標軸に対して非対称な配置となっている。非対称な配置になっていることは、例えば、図10に示すように、X軸、Y軸のマーク36a、36bに対してXメインコイル24aが線対称な配置になっていないことや、図12に示すように、Xメインコイル24aと配線部34aのネジ穴の中心が一致していない状態になっていることから分かる。上記では、Xメインコイル24aを回転移動させた場合について述べたが、平行移動させた場合であっても、また、Xメインコイル24a以外のコイル25a〜29aを移動させた場合も、同様に座標軸に対して非対称な配置となる。
【0047】
ステップS107では、X、Y、Zすべての軸のコイルの移動調整作業が終わったか判定する。移動作業がすべて終了した場合はステップS108へ進み、他のコイルの調整が必要であればステップS103に戻る。
【0048】
ステップS108では、メインコイルユニット20aとシールドコイルユニット21aを樹脂22でモールドする。これにより、図2に示すような垂直磁場方式の傾斜磁場コイルが完成する。
【0049】
本実施例の傾斜磁場コイル及びこれを用いたMRI装置によれば、垂直磁場方式の傾斜磁場コイルにおけるメインコイルとシールドコイルの位置関係を、製造するコイル毎に、静磁場発生磁石の導体における渦電流の発生と、コイル製造時の製作誤差による渦電流の発生と、を抑制可能な構造とすることができる。具体的には、メインコイルとシールドコイルの位置関係が、3次元直交座標軸の何れか1つ以上の座標軸に対して非対称となるように配置されることになる。その結果、精度の良い傾斜磁場を発生させることのできる傾斜磁場コイルを構成することができる。
【実施例2】
【0050】
次に、本発明の傾斜磁場コイル及びこれを用いたMRI装置の実施例2について説明する。実施例2の実施例1と異なる点は、コイルを平行移動或いは回転移動させる際、予め移動させる量を計算によって求め、その計算量に従ってコイルの移動を行う点である。本実施例は、前述の垂直磁場方式の傾斜磁場コイル、或いは、後述する水平磁場方式の傾斜磁場コイルの何れも実施可能である。以下、実施例1と異なる箇所のみを図15のフローチャートと図16を用いて説明し、同じ箇所の説明は省略する。
【0051】
ステップS201では、メインコイル24a〜26a、或いはシールドコイル27a〜29aを、それぞれ各座標軸(X軸、Y軸)方向に単位距離だけ平行移動、或いは座標原点を中心に単位角度だけ回転移動させたときの、磁場或いは正規化磁場の変化量を、実測或いは計算により求める。これは、例えば、正規の位置から平行移動、或いは座標原点を中心に回転させたときの正規化磁場の値と、正規の位置に配置したときの正規化磁場の値、との差を、移動した距離或いは角度で割ることで求められる。図16は、Xメインコイル24aを単位角度だけ回転移動させたときの正規化磁場の変化量の一例である。本ステップは、同じ型のコイルを複数個製造するのであれば、最初の一度だけ行えばよい。
【0052】
ステップS202では、ステップS104で求めた各測定点での誤差磁場の二乗和が、最も小さくなるような平行移動距離或いは回転移動角度の最適値を、ステップS201で求めた平行移動或いは回転移動の移動量を用いて計算により求める。最適量を求める際は、上記方法以外にも、座標に応じた重みを乗じる等、適当な評価関数を定め、それを最小化する手法をとっても構わない。
【0053】
ステップS203では、ステップS202で求めた最適値に従って、コイルを平行移動或いは回転移動させる。移動後はステップS103に戻り、ステップS105で“Yes”となるまで繰り返す。
【0054】
実施例2の傾斜磁場コイル及びこれを用いたMRI装置によれば、コイルを移動させる際に最適移動量を計算してから移動させるので、試行錯誤してコイルを動かす手間が無くなり、少ない時間でコイルを製造することが可能である。さらに、計算により移動量を求めるため、実施例1の場合よりもさらに精度良く、渦電流の影響を最小限に抑えることが可能になる。
【実施例3】
【0055】
次に、本発明の傾斜磁場コイル及びこれを用いたMRI装置の実施例3について説明する。実施例3は、水平磁場方式のMRI装置用傾斜磁場コイルの構造及びその製造方法に関する。即ち、メインコイルとシールドコイル共に円筒形状を有する傾斜磁場コイルの構造及びその製造方法に関する。以下、図17〜図19を用いて本実施例を説明する。
【0056】
図17は、実施例3における水平磁場方式の傾斜磁場コイルの製造時の状態を、Z方向から見た図であり、図18は、Y方向から見た図である。但し、導体板31bは表示していない。
【0057】
メインコイルユニット20bは、Xメインコイル24b、Yメインコイル25b、Zメインコイル26bの間にそれぞれ絶縁板30bを挟み、3種類のコイルが電気的に絶縁された構造である。
【0058】
シールドコイルユニット21bは、Zシールドコイル27b、Xシールドコイル28b、Yシールドコイル29bの間にそれぞれ絶縁板30bを挟み、3種類のコイルが電気的に絶縁された構造である。
【0059】
図17に示すように、メインコイルユニット20bとシールドコイルユニット21bは、シールドコイルユニット21bに接近して導体板31bを設置し、非導電性の間隔調整スペーサ32bを介して積層し、位置固定用ピン33bで固定する。このとき、各メインコイル24b〜26bとシールドコイル27b〜29bは全てX軸とY軸とZ軸の座標軸に一致するように積層する。即ち、6種類のコイルは全て座標軸に対称に配置されている。
【0060】
メインコイル24b〜26bとシールドコイル27b〜29bは、図6に示す渡り線23bや、図17に示す接続部34b等によって各軸のコイル同士が繋がれており、通電可能な状態になっている。これらのメインコイルとシールドコイルは電流源に接続されており、電流を印加することでメインコイル及びシールドコイルから磁場が発生する。さらに、メインコイルユニット20bの内側数点の磁場測定点35bにおいて磁場を測定できるようになっている。
【0061】
図18に示すように、絶縁板30bには、座標軸と一致するような、X=0平面(YZ平面)とY=0平面(XZ平面)とZ=0平面(XY平面)を示すマーク37a、37b、37cがある。また、メインコイル24b〜26bとシールドコイル27b〜29bと絶縁板30bには、位置固定用ピン33bの径よりも大きな径の穴38が空いており、その隙間分だけコイルを円周上或いはZ軸上に沿って動かすことが可能となっている。位置固定用ピン33bと穴38は、X軸とY軸とZ軸に対して対称な位置にあるのが好ましい。
【0062】
続いて、実施例3の水平磁場方式の傾斜磁場コイルを製造する具体的なステップについて説明する。フローチャートは、実施例2の説明で用いた図15と同様である。以下では、実施例2と異なる箇所についてのみ説明する。
【0063】
ステップS101では、メインコイルユニット20bとシールドコイルユニット21bを積層する。
【0064】
ステップS102では、磁場計測点35bにおける渦電流による磁場或いは正規化磁場を計算し、これを基準磁場とする。
【0065】
ステップS201では、メインコイル24b〜26b或いはシールドコイル27b〜29bを、それぞれZ軸方向に単位距離だけ平行移動、或いは円周方向(θ方向)に回転移動させたときの、磁場計測点35bにおける磁場或いは正規化磁場の変化量を実測或いは計算により求める。本ステップは、同じ型のコイルを複数個製造するのであれば、最初の一度だけ行えばよい。
【0066】
ステップS103では、コイルに電流を印加し、導体板31bに生じた渦電流による磁場或いは正規化磁場をサーチコイル等によって数点測定し、これを測定磁場とする。
【0067】
ステップS203では、電流を印加した軸のメインコイル24b〜26b或いはシールドコイル27b〜29bを、ステップS202で求めた移動量に従って平行移動或いは回転移動させる。尚、移動はメインコイルユニット20b、シールドコイルユニット21bに対して行ってもよい。移動後は、再びステップS103に戻り、ステップS105で“Yes”になるまで繰り返す。
【0068】
図19は、図18に示すステップS101の状態から、Xシールドコイル27bを円周方向に回転移動させたときの形態例である。移動によって、Xシールドコイル27bは座標軸に対して非対称な配置となっている。非対称な配置になっていることは、例えば、X=0平面(YZ平面)、Y=0平面(XZ平面)、Z=0平面(XY平面)のマーク37a、37b、37cに対して、Xシールドコイル27bが線対称な配置になっていないこと等から分かる(図19の例は、円筒の両端で周方向の回転量が異なる「ねじれ回転」を示す)。上記では、Xシールドコイル27bを回転移動させた場合について述べたが、平行移動させた場合であっても、また、Xシールドコイル27b以外のコイル24b〜26b及び28b、29bを移動させた場合であっても、同様に座標軸に対して非対称な配置となる。
【0069】
ステップS108では、メインコイルユニット20bとシールドコイルユニット21bを樹脂22でモールドする。これにより、図3に示すような水平磁場方式の傾斜磁場コイルが完成する。
【0070】
以上では、フローチャートは図15に従った説明を行ったが、実施例1の図7に示すフローチャートに従った方法でもよい。
【0071】
実施例3の傾斜磁場コイル及びこれを用いたMRI装置によれば、実施例1と実施例2で述べた垂直磁場方式の傾斜磁場コイルだけに限定せず、水平磁場方式の傾斜磁場コイルにおいても、渦電流の発生を最小限に抑制した、精度の良いコイルを製造することが可能となる。
【実施例4】
【0072】
次に、本発明の傾斜磁場コイル及びこれを用いたMRI装置の実施例4について説明する。実施例4は、図4に示すようなメインコイルが楕円筒形状であることを特徴とする水平磁場方式の傾斜磁場コイルの構造及びその製造方法に関する。以下、図20を用いて本実施例を詳細に説明する。
【0073】
図3ではメインコイルユニット20b及びシールドコイルユニット21bは両方とも円筒形状であった。一方、図4では、メインコイルユニット20cは、そのY方向(横臥した被検者1の上下方向)の径とX方向(横臥した被検者1の左右方向)の径を異ならせた構造であり、例えば、短径(Y軸方向)は、図3のメインコイルユニット20bの半径と同寸法にし、長径(X軸方向)はそれよりも大きくした構造とすることができる。これによって図4の傾斜磁場コイルの開口部の断面積は、図3よりも大きくなり、中に入る被検者は空間を広く感じることができる。また、図4では、シールドコイルユニット21bは、図3と同じ半径を持つ円筒状としている。このため、傾斜磁場コイルの周囲に設置する静磁場発生磁石の形状を変更する必要はない。
【0074】
図20は、実施例4におけるメインコイルが楕円筒形状である水平磁場方式の傾斜磁場コイルの製造時の状態をZ方向から見た図である。メインコイルユニット21cは楕円筒形状、シールドユニット21cは実施例3と同じ円筒形状である。
【0075】
実施例3と同様に、メインコイルユニット20cは、Xメインコイル24c、Yメインコイル25c、Zメインコイル26cの間にそれぞれ絶縁板30cを挟み、3種類のコイルが電気的に絶縁された構造である。
【0076】
シールドコイルユニット21bは、実施例3と同じ構造である。
図20に示すように、メインコイルユニット20cとシールドコイルユニット21bは、シールドコイルユニット21bに接近して導体板31bを設置し、非導電性の間隔調整スペーサ32cを介して積層し、位置固定用ピン33cにて固定する。このとき、各メインコイル24c〜26cとシールドコイル27b〜29bは全てX軸とY軸の座標軸が一致するように積層する。即ち、6種類のコイルは全て座標軸に対称に配置されている。
【0077】
続いて、実施例4の水平磁場方式を製造する具体的なステップについて説明する。フローチャートは図15と同様である。以下では、実施例3と異なる箇所についてのみ説明する。
【0078】
ステップS101では、メインコイルユニット20cとシールドコイルユニット21bを積層する。
【0079】
ステップS102では、磁場計測点35cにおける渦電流による磁場或いは正規化磁場を計算し、これを基準磁場とする。
【0080】
ステップS201では、メインコイル24c〜26cをZ軸方向に単位距離だけ平行移動させたとき、或いは、シールドコイル27b〜29bをZ軸方向に単位距離だけ平行移動、或いは円周方向(θ方向)に回転移動させたときの、磁場計測点35cにおける磁場或いは正規化磁場の変化率を、実測或いは計算により求める(どのように計算するのか?参考文献は?)。本ステップは、同じ型のコイルを複数個製造するのであれば、最初に一度だけ行えばよい。
【0081】
ステップS203では、電流を印加した軸のメインコイル24c〜26cとシールドコイル27b〜29bのいずれか片方或いは両方を、ステップS202で求めた移動量に従って平行移動或いは回転移動させる。尚、移動はメインコイルユニット20c、シールドコイルユニット21bに対して行ってもよい。移動後は、再びステップS103に戻り、ステップS105で“Yes”になるまで繰り返す。
【0082】
ステップS108では、メインコイルユニット20cとシールドコイルユニット21bを樹脂22でモールドする。これにより、図4に示すようなシールドコイルが楕円筒形状である水平磁場方式の傾斜磁場コイルが完成する。
【0083】
以上では、フローチャートは図15に従った説明を行ったが、図7に示すフローチャートに従った方法でもよい。
【0084】
実施例4によれば、メインコイルが楕円筒形状の水平磁場方式の傾斜磁場コイルにおいても、渦電流の発生を抑制した、精度の良いコイルを製造することが可能となる。また、メインコイルが円筒形状のコイルよりも開口部が広く、被検者に与える閉塞感を軽減できる。
【0085】
以上、本発明の実施例を述べたが、本発明はこれらに限定されるものではない。
【符号の説明】
【0086】
1 被検者、2 静磁場発生系、3 傾斜磁場発生系、4 シーケンサ、5 送信系、6 受信系、7 計算機、8 傾斜磁場コイル、9 傾斜磁場電源、10 変調器、11 高周波発振器、12 高周波増幅器、13a 高周波コイル(送信コイル)、13b 高周波コイル(受信コイル)、14 信号増幅器、15 直交位相検波器、16 A/D変換器、17 ディスプレイ、18 記憶装置、19 操作装置、20a、20b、20c メインコイルユニット、21a、21b シールドコイルユニット、22 樹脂、23a、23b 渡り線、24a、24b、24c Xメインコイル、25a、25b、25c Yメインコイル、26a、26b、26c Zメインコイル、27a、27b Xシールドコイル、28a、28b Yシールドコイル、29a、29b Zシールドコイル、30a、30b 絶縁板、31a、31b 導体板、32a、32b、32c 間隔調整スペーサ、33a、33b、33c 位置固定用ピン、34a、34b、34c 接続部、35a、35b、35c 磁場測定点、36a X軸のマーク、36b Y軸のマーク、37a X=0平面(YZ平面)のマーク、37b Y=0平面(XZ平面)のマーク、37c Z=0平面(XY平面)のマーク、38 穴、39 固定用ネジ

【特許請求の範囲】
【請求項1】
互いに直交する3軸の方向に第1の傾斜磁場を発生する第1のコイル導体と、
前記第1のコイル導体の外側において前記第1の傾斜磁場を打ち消すように作用する第2の傾斜磁場を発生する第2のコイル導体と
を備え、
前記第1のコイル導体或いは前記第2のコイル導体が、3次元直交座標軸の何れか1つ以上の座標軸に対して非対称に配置されていることを特徴とする磁気共鳴イメージング装置用傾斜磁場コイル。
【請求項2】
請求項1記載の磁気共鳴イメージング装置用傾斜磁場コイルにおいて、
前記第1のコイル導体と前記第2のコイル導体とが円盤形状であることを特徴とする磁気共鳴イメージング装置用傾斜磁場コイル。
【請求項3】
請求項1記載の磁気共鳴イメージング装置用傾斜磁場コイルにおいて、
前記第1のコイル導体が円筒形状であることを特徴とする磁気共鳴イメージング装置用傾斜磁場コイル。
【請求項4】
請求項1記載の磁気共鳴イメージング装置用傾斜磁場コイルにおいて、
前記第1のコイル導体が楕円筒形状であることを特徴とする磁気共鳴イメージング装置用傾斜磁場コイル。
【請求項5】
請求項1乃至4のいずれか一項に記載の磁気共鳴イメージング装置用傾斜磁場コイルにおいて、
前記第1のコイル導体と前記第2のコイル導体とを接続する接続部のねじ穴の径は、該ねじ穴を貫通する固定ねじの径よりも大きいことを特徴とする磁気共鳴イメージング装置用傾斜磁場コイル。
【請求項6】
請求項1乃至5のいずれか一項に記載の磁気共鳴イメージング装置用傾斜磁場コイルを備えた磁気共鳴イメージング装置。
【請求項7】
互いに直交する3軸の方向に第1の傾斜磁場を発生する第1のコイル導体と、
前記第1のコイル導体の外側において前記第1の傾斜磁場を打ち消すように作用する第2の傾斜磁場を発生する第2のコイル導体とを備えた傾斜磁場コイルの製造方法であって、
前記第2のコイル導体に接近して導体板を設置するステップと、
前記第1のコイル導体及び前記第2のコイル導体に電流を印加し、前記導体板に発生する渦電流に因る磁場を計測するステップと、
前記渦電流の発生が抑制されるように、前記第1のコイル導体或いは前記第2のコイル導体を平行移動又は回転移動させるステップと、
前記第1のコイル導体及び前記第2のコイル導体をモールドするステップと、
を有してなることを特徴とする磁気共鳴イメージング装置用傾斜磁場コイルの製造方法。
【請求項8】
請求項7記載の磁気共鳴イメージング装置用傾斜磁場コイルの製造方法であって、前記第1のコイル導体或いは前記第2のコイル導体の平行移動・回転移動させるステップは、
前記第1のコイル導体或いは前記第2のコイル導体の平行移動量或いは回転移動量を計算によって求め、
前記求めた平行移動量或いは回転移動量に従って、前記第1のコイル導体或いは前記第2のコイル導体を移動させることを特徴とする磁気共鳴イメージング装置用傾斜磁場コイルの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate


【公開番号】特開2011−115415(P2011−115415A)
【公開日】平成23年6月16日(2011.6.16)
【国際特許分類】
【出願番号】特願2009−276122(P2009−276122)
【出願日】平成21年12月4日(2009.12.4)
【出願人】(000153498)株式会社日立メディコ (1,613)
【Fターム(参考)】