説明

磁気記録媒体およびその製造方法

【課題】長期にわたり優れた電磁変換特性を有する磁気記録媒体を提供すること。
【解決手段】非磁性支持体上に非磁性粉末および結合剤を含む非磁性層と強磁性粉末および結合剤を含む磁性層とをこの順に有する磁気記録媒体。前記磁性層の結合剤は、塩化ビニル系共重合体、ポリウレタン樹脂およびポリイソシアネートの混合物であり、該ポリウレタン樹脂は、ガラス転移温度が90〜130℃の範囲であり80℃における貯蔵弾性率が2.5〜5.0GPaの範囲であり、前記非磁性層は、非磁性粉末および結合剤成分を含む放射線硬化性組成物を放射線硬化することによって得られた放射線硬化層であって、該結合剤成分は放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂を含み、かつ前記放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂は、いずれもガラス転移温度が30〜100℃の範囲である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気記録媒体およびその製造方法に関するものであり、詳しくは、優れた電磁変換特性を有する高密度記録用磁気記録媒体およびその製造方法に関するものである。
【背景技術】
【0002】
近年、磁気記録分野において、ミニコンピューター、パーソナルコンピューター、ワークステーションなどのオフィスコンピューターの普及に伴って、外部記憶媒体としてコンピューターデータを記録するための磁気テープ(いわゆるデータバックアップ用テープ)の研究が盛んに行われている。
【0003】
記録情報の多様化・高容量化に伴い、データバックアップ用テープとして高記録容量のものが商品化されている。テープの高記録容量化のためには、磁性層と磁気ヘッドとのスペーシングを減らす必要がある。例えば、磁性層の表面に大きな突起や凹みが存在すると、スペーシングロスによる出力低下が起こり、これがドロップアウト、エラーレートの悪化、S/N低下等の電磁変換特性を悪化させる原因となる。したがって高記録容量データバックアップ用テープの磁性層表面には、高い電磁変換特性を達成するために、きわめて平滑であることが求められる。例えば特許文献1に記載されているように、磁性層の表面平滑性を高める手段としては、磁性層の下層に位置する非磁性層を放射線硬化層とすることが知られている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特許第3698540号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記の通り磁性層の表面平滑性を高めることは、電磁変換特性を向上するための有効な手段である。しかし一方で、磁性層表面が平滑になるほど磁性層表面とヘッドとの間の摩擦係数は増大する。これにより繰り返し走行中に磁性層表面が削れると(塗膜破壊物の発生)、この塗膜破壊物がヘッド付着物発生の原因となって出力低下を引き起こす結果、長期にわたり優れた電磁変換特性を維持することが困難となる。
【0006】
そこで本発明の目的は、長期にわたり優れた電磁変換特性を有する磁気記録媒体を提供することにある。
【課題を解決するための手段】
【0007】
本願発明者らが、上記目的を達成するために鋭意検討を重ねた結果、ガラス転移温度が高く、かつ高温領域での貯蔵弾性率の高いポリウレタン樹脂を磁性層の結合剤成分として使用することが、上記の塗膜破壊物発生への対策となることが明らかとなった。この点について更に詳細に説明すると、ガラス転移温度が高い(高Tg)ポリウレタン樹脂を磁性層の結合剤成分として使用することにより塗膜強度を高め走行耐久性を改善することは、例えば特開2004−319001号公報等に提案されている。しかしながら、本願発明者らが検討した結果、単に高Tgポリウレタン樹脂を使用するのみでは、塗膜破壊への対策には不十分であった。そこで本願発明者らは、ポリウレタン樹脂の熱的特性を詳細に評価したところ、高温領域における貯蔵弾性率E’がTgと逆転する現象を見出し、単にTgが高いポリウレタン樹脂であっても高温領域における貯蔵弾性率E’が低いものでは、磁性層表面の削れ物を十分に抑制することができないとの結論を得るに至ったものである。この表面削れ物とTg、貯蔵弾性率との関係は以下のように説明することができる。ポリマーはTg以上の温度において貯蔵弾性率が大きく低下するために強度が低下する。磁気記録媒体用のポリウレタンはTgや溶解性などさまざまな目的から一般に複数種のモノマーを併用した多元系で構成されることが多いが、高Tg/低Tgのモノマーを併用した場合、高Tgモノマーの影響でTgは高くなるが、低Tgモノマーの影響でTgより低い温度から貯蔵弾性率が低下する。そのため、同程度のTgを示すものであっても、高温領域での貯蔵弾性率は同等の値とはならず、したがってTgとともに高温領域での貯蔵弾性率を併せて規定する必要がある。
しかし一方で、ガラス転移温度が高く、かつ高温での貯蔵弾性率の高い結合剤を使用して形成した磁性層は高温における変形性に乏しいため高い耐久性が得られる一方で十分な表面平滑性を得ることができず、依然として優れた電磁変換特性を得ることは困難であることが判明した。
そこで本願発明者らは、ガラス転移温度が高く、かつ高温での貯蔵弾性率の高い結合剤を含む磁性層において、表面平滑性を改善するための手段を見出すべく更に検討を重ねた。その結果、磁性層の下層に位置する非磁性層を低Tgの放射線硬化性樹脂から形成することによって、上記磁性層の表面平滑性を高めることができることを新たに見出した。この理由について、本願発明者らは以下のように推察している。
高密度記録用磁気記録媒体は、通常磁性層の下層に非磁性層を有している。非磁性層を低Tg結合剤から構成することによりカレンダー温度域において非磁性層の柔軟性を確保することができ、これによりカレンダー成形性が高まり結果として高Tgの磁性層を平滑化することができる。また、磁性層および非磁性層を有する磁気記録媒体では、両層の間での界面混合により界面変動が生じることが磁性層の表面平滑性低下の原因となる。この界面混合は、例えば逐次重層塗布方式による製造方法において、非磁性層上に磁性層形成用塗布液を塗布した際に磁性層形成用塗布液の溶剤に非磁性層の結合剤が溶解することによって発生する。上記の通り非磁性層を低Tg結合剤から構成することでカレンダー成形性を高めることができるが、一般に低Tg結合剤は高Tg結合剤と比較して結合剤間の相互作用が弱く、溶剤に溶解しやすい物性を有しているため界面混合を生じやすい。ここで非磁性層を放射線硬化層とすれば、非磁性層と磁性層との界面混合を抑制することができるため、低Tg結合剤から構成された非磁性層を有する磁気記録媒体において、界面変動による表面平滑性の低下を防ぐことができる。
本発明は、以上の知見に基づき完成された。
【0008】
即ち、上記目的は、下記手段によって達成された。
[1]非磁性支持体上に非磁性粉末および結合剤を含む非磁性層と強磁性粉末および結合剤を含む磁性層とをこの順に有する磁気記録媒体であって、
前記磁性層の結合剤は、塩化ビニル系共重合体、ポリウレタン樹脂およびポリイソシアネートの混合物であり、該ポリウレタン樹脂は、ガラス転移温度が90〜130℃の範囲であり80℃における貯蔵弾性率が2.5〜5.0GPaの範囲であり、
前記非磁性層は、非磁性粉末および結合剤成分を含む放射線硬化性組成物を放射線硬化することによって得られた放射線硬化層であって、該結合剤成分は放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂を含み、かつ
前記放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂は、いずれもガラス転移温度が30〜100℃の範囲であることを特徴とする磁気記録媒体。
[2]前記放射線硬化性塩化ビニル系共重合体は、下記一般式(1)で表される構造単位を含む放射線硬化性塩化ビニル系共重合体である[1]に記載の磁気記録媒体。
【化1】

[一般式(1)中、R1は水素原子またはメチル基を表し、L1は下記式(2)、式(3)または下記一般式(4)で表される二価の連結基を表す。]
【化2】

[一般式(4)中、R41は水素原子またはメチル基を表す。]
[3]前記放射線硬化性ポリウレタン樹脂は、下記一般式(2)で表されるスルホン酸塩(基)含有ポリオール化合物を原料として得られた放射線硬化性ポリウレタン樹脂である[1]または[2]に記載の磁気記録媒体。
【化3】

[一般式(2)中、Xは二価の連結基を表し、R101およびR102は、それぞれ独立に、少なくとも1つの水酸基を有する炭素数2以上のアルキル基または少なくとも1つの水酸基を有する炭素数8以上のアラルキル基を表し、M1は水素原子または陽イオンを表す。]
[4]前記磁性層の結合剤に含まれるポリウレタン樹脂は、ポリエステルポリウレタン樹脂である[1]〜[3]のいずれかに記載の磁気記録媒体。
[5]前記磁性層の結合剤は、塩化ビニル系共重合体100質量部に対して10〜100質量部のポリイソシアネートを含む[1]〜[4]のいずれかに記載の磁気記録媒体。
[6]前記磁性層は芳香族化合物およびカルボキシル基含有化合物からなる群から選ばれる分散剤を更に含有する[1]〜[5]のいずれかに記載の磁気記録媒体。
[7]前記強磁性粉末の平均粒子サイズは40nm以下であり、かつ前記分散剤は桂皮酸である[6]に記載の磁気記録媒体。
[8]前記磁性層は、強磁性粉末100質量部あたり1.5〜10質量部の前記分散剤を含む[6]または[7]に記載の磁気記録媒体。
[9][1]〜[8]のいずれかに記載の磁気記録媒体の製造方法であって、
前記放射線硬化性組成物の塗布および放射線硬化後、形成された放射線硬化層上に磁性層を形成し、次いで上記放射線硬化層のガラス転移温度以上のカレンダー温度でカレンダー処理を行うことを特徴とする、前記製造方法。
【発明の効果】
【0009】
本発明によれば、長期にわたり優れた電磁変換特性を発揮し得る高密度記録用磁気記録媒体を提供することができる。
【発明を実施するための形態】
【0010】
本発明は、非磁性支持体上に非磁性粉末および結合剤を含む非磁性層と強磁性粉末および結合剤を含む磁性層とをこの順に有する磁気記録媒体に関する。本発明の磁気記録媒体は、
(1)前記磁性層の結合剤は、塩化ビニル系共重合体、ポリウレタン樹脂およびポリイソシアネートの混合物であり、該ポリウレタン樹脂は、ガラス転移温度が90〜130℃の範囲であり80℃における貯蔵弾性率が2.5〜5.0GPaの範囲であり、
(2)前記非磁性層は、非磁性粉末および結合剤成分を含む放射線硬化性組成物を放射線硬化することによって得られた放射線硬化層であって、該結合剤成分は放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂を含み、かつ
(3)前記放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂は、いずれもガラス転移温度が30〜100℃の範囲である。
先に説明したように、本発明の磁気記録媒体は、上記(1)〜(3)を兼ね備えることにより、長期にわたり優れた電磁変換特性を発揮し得るものである。
以下、本発明の磁気記録媒体について、更に詳細に説明する。
【0011】
磁性層
(i)結合剤
本発明の磁気記録媒体は、磁性層の結合剤が塩化ビニル系共重合体、ポリウレタン樹脂およびポリイソシアネートの混合物である。これは塩化ビニル系樹脂単独では磁気記録媒体に求められる適度な柔軟性を得ることが困難であり、ポリウレタン樹脂単独では高密度記録化のために微粒子化された磁性体を使用する場合、これを良好に分散することは困難であるからである。そして本発明の磁気記録媒体では、磁性層に適度な柔軟性を付与するために使用するポリウレタン樹脂として、ガラス転移温度が90〜130℃の範囲であり80℃における貯蔵弾性率(以下、単に「貯蔵弾性率」ともいう)が2.5〜5.0GPaの範囲であるものを使用する。上記ポリウレタン樹脂のガラス転移温度が90℃以上かつ80℃における貯蔵弾性率が2.5GPa以上であることにより、走行中の磁性層表面の削れ(塗膜破壊物)によるヘッド汚れの発生を顕著に抑制することができる。他方、上記ポリウレタン樹脂のガラス転移温度が130℃超かつ80℃における貯蔵弾性率が5.0GPa超となると、ポリマーが剛直になりすぎて溶剤溶解性を確保することが困難となる。ヘッド汚れ発生の抑制と溶剤溶解性を両立する観点からは、上記ポリウレタン樹脂の80℃における貯蔵弾性率は2.5〜3.0GPaの範囲であることが好ましい。なお、本発明におけるガラス転移温度、貯蔵弾性率はいずれも、動的粘弾性測定により求められる値とする。具体的な測定方法については、後述の実施例の記載を参照できる。
なお、後述するように本発明では非磁性層を放射線硬化層とするが、磁性層は熱硬化、放射線硬化のいずれによって形成してもよい。熱硬化の場合は、生成するウレタン結合によって塗膜(磁性層)のTg、貯蔵弾性率が更に向上するためにより好ましい。即ち、磁性層において該混合物中でポリウレタン樹脂、塩化ビニル系共重合体、およびポリイソシアネートはお互いに反応して反応生成物を形成していてもよい。
【0012】
上記範囲内のガラス転移温度および貯蔵弾性率を有するポリウレタン樹脂は、公知の方法で合成可能であり、また市販品として入手可能なものもある。一般にポリエーテル成分を含まないポリウレタン樹脂、例えばポリエステルポリウレタン樹脂はガラス転移温度および高温での貯蔵弾性率が高く、本発明において磁性層に使用するポリウレタン樹脂として好ましい。そのようなポリウレタン樹脂については、例えば特許第3085408号明細書段落[0004]〜[0019]および特開2005−293769号公報段落[0012]〜[0025]、ならびにこれらの実施例を参照できる。
【0013】
本発明の磁気記録媒体の磁性層を構成する結合剤は、上記熱的特性を有するポリウレタン樹脂と、塩化ビニル系共重合体およびポリイソシアネートとの混合物である。表面削れ物の発生抑制と分散性を両立する観点から、上記ポリウレタン樹脂と塩化ビニル系共重合体との混合比は、ポリウレタン樹脂:塩化ビニル系樹脂=20:80〜60:40(質量比)の範囲とすることが好ましい。
【0014】
上記ポリウレタン樹脂と併用する塩化ビニル系共重合体としては、ポリウレタン樹脂によりもたらされる塗膜(磁性層)の特性を良好に維持し得るものを用いることが好ましい。この観点から好ましい塩化ビニル系共重合体としては、例えば特公平1−26627号公報に記載されているような、分子内にスルホン酸(塩)基、水酸基およびエポキシ基を含む塩化ビニル系共重合体を挙げることができる。分子内にスルホン酸(塩)基を有する塩化ビニル系共重合体は、磁性体の分散性をよりいっそう向上するうえでも好ましい。
【0015】
以上説明したポリウレタン樹脂および塩化ビニル系樹脂は、その数平均分子量(GPC法で測定されたポリスチレン換算値)は、例えば1,000〜200,000、好ましくは10,000〜100,000である。また、上記ポリウレタン樹脂および塩化ビニル系樹脂について、より優れた分散性と耐久性とを得るために、必要に応じ、−COOM、−SO3M、−OSO3M、−P=O(OM)2、−O−P=O(OM)2(以上につきMは水素原子、またはアルカリ金属塩基)、OH、NR2、N+3(Rは炭化水素基)、エポキシ基、SH、CN、などから選ばれる少なくとも一つ以上の極性基を共重合または付加反応で導入することもできる。このような極性基の量は、例えば10-1〜10-8モル/gとすることができ、好ましくは10-2〜10-6モル/gである。
【0016】
通常、磁性層成分には、塗膜強度を高めるために結合剤樹脂と架橋構造を形成可能な、いわゆる硬化剤(ないし架橋剤)と呼ばれる成分が含まれる。本発明において「結合剤」とは、このような硬化剤も含むものとする。そして本発明では、磁性層における上記硬化剤として、ポリイソシアネートを使用する。ポリウレタン樹脂、塩化ビニル系共重合体とともにポリイソシアネートを使用することにより、磁性層としての熱的特性を改善し表面削れ物の発生を抑制することができる。磁性層としてのガラス転移温度および80℃での貯蔵弾性率を制御する観点から好ましいポリイソシアネートの使用量は、塩化ビニル系共重合体100質量部に対して、10〜100質量部の範囲であり、更に好ましくは10〜60質量部の範囲である。また、磁性層の結合剤量は、硬化剤を含めて強磁性粉末100質量部に対し10〜25質量部とすることが好ましい。本発明において、磁性層を形成するために使用する結合剤(結合剤成分の混合物)のガラス転移温度および80℃での貯蔵弾性率は、走行中の磁性層表面の削れの抑制とカレンダー成形性を両立する観点から、ガラス転移温度が80〜130℃の範囲、80℃における貯蔵弾性率が1.5〜3.0GPaの範囲であることが好ましい。
【0017】
ポリイソシアネートとしては、トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、ナフチレン−1,5−ジイソシアネート、o−トルイジンジイソシアネート、イソホロンジイソシアネート、トリフェニルメタントリイソシアネート等のイソシアネート類、また、これらのイソシアネート類とポリアルコールとの生成物、また、イソシアネート類の縮合によって生成したポリイソシアネート等を使用することができる。硬化剤は、単独または硬化反応性の差を利用して二つまたはそれ以上の組合せで用いることができる。中でも3官能以上のポリイソシアネートは、3次元架橋することが可能であるためより好ましい。本発明において使用されるポリイソシアネートは、いずれも市販品として入手可能である。
【0018】
(ii)強磁性粉末
高密度記録化を達成するために、磁性層に含まれる強磁性粉末としては、平均粒子サイズが40nm以下の強磁性粉末を使用することが好ましい。上記平均粒子サイズは熱揺らぎがなく安定な磁化を得る観点から10nm以上であることが好ましい。磁化の安定性と高密度記録化を両立する観点から、上記平均粒子サイズは10〜35nmの範囲であることがより好ましい。
【0019】
上記強磁性粉末の平均粒子サイズは、以下の方法により測定することができる。
強磁性粉末を、日立製透過型電子顕微鏡H−9000型を用いて粒子を撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粒子写真を得る。粒子写真から目的の磁性体を選びデジタイザーで粉体の輪郭をトレースしカールツァイス製画像解析ソフトKS−400で粒子のサイズを測定する。500個の粒子のサイズを測定する。上記方法により測定される粒子サイズの平均値を強磁性粉末の平均粒子サイズとする。
【0020】
なお、本発明において、磁性体等の粉体のサイズ(以下、「粉体サイズ」と言う)は、(1)粉体の形状が針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粉体を構成する長軸の長さ、即ち長軸長で表され、(2)粉体の形状が板状乃至柱状(ただし、厚さ乃至高さが板面乃至底面の最大長径より小さい)場合は、その板面乃至底面の最大長径で表され、(3)粉体の形状が球形、多面体状、不特定形等であって、かつ形状から粉体を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
また、該粉体の平均粉体サイズは、上記粉体サイズの算術平均であり、500個の一次粒子について上記の如く測定を実施して求めたものである。一次粒子とは、凝集のない独立した粉体をいう。
【0021】
また、該粉体の平均針状比は、上記測定において粉体の短軸の長さ、即ち短軸長を測定し、各粉体の(長軸長/短軸長)の値の算術平均を指す。ここで、短軸長とは、上記粉体サイズの定義で(1)の場合は、粉体を構成する短軸の長さを、同じく(2)の場合は、厚さ乃至高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、粉体の形状が特定の場合、例えば、上記粉体サイズの定義(1)の場合は、平均粉体サイズを平均長軸長と言い、同定義(2)の場合は平均粉体サイズを平均板径と言い、(最大長径/厚さ乃至高さ)の算術平均を平均板状比という。同定義(3)の場合は平均粉体サイズを平均直径(平均粒径、平均粒子径ともいう)という。
【0022】
前記強磁性粉末としては、針状強磁性体、平板状磁性体、または球状もしくは楕円状磁性体を使用することができる。高密度記録化の観点から針状強磁性体のBET比表面積は、好ましくは40m2/g以上80m2/g以下、より好ましくは50m2/g以上70m2/g以下である。平板状磁性体については、BET比表面積は10m2/g以上200m2/g以下であることが好ましい。また、球状もしくは楕円状磁性体については、BET比表面積は30m2/g以上100m2/g以下であることが好ましく、より好ましくは50m2/g以上70m2/g以下である。
以上説明した各磁性体については、特開2009−96798号公報段落[0097]〜[0110]に詳細に記載されている。
【0023】
(iii)分散剤
磁性層に含まれる強磁性粉末として微粒子磁性体、中でも平均粒子サイズが40nm以下の超微粒子磁性体を使用する場合には、該微粒子磁性体の分散性を高めることで磁性層の表面平滑性をより向上するために、分散剤を使用することが好ましい。なお本発明における分散剤とは、これが存在しない場合と比べて磁性層における強磁性粉末の分散性を向上する作用を有する化合物をいうものとする。使用可能な分散剤としては、芳香族化合物およびカルボキシル基含有化合物が好ましく、より好ましくは特開2007−257713号公報に記載のフェニルホスホン酸等のリン系(リン含有)の芳香族化合物、特開昭63−42025号公報に記載の安息香酸等、特開平1−232530号公報に記載されている桂皮酸およびその誘導体等のカルボキシル基を含有する芳香族化合物を挙げることができる。中でも優れた分散性向上効果を発揮する点からは、フェニルホスホン酸および桂皮酸の使用が好ましい。ただしフェニルホスホン酸等のリン系化合物は分解物がヘッド付着物となる場合があるため、リン系化合物と同等以上の分散性向上効果を発揮するがヘッド付着物発生の原因とならない桂皮酸を使用することが最も好ましい。なお桂皮酸にはシス体とトランス体が存在する。本発明ではシス−桂皮酸もトランス−桂皮酸も使用可能であるが、入手容易性の点からはトランス−桂皮酸が好ましい。本発明の磁気記録媒体は、分散性向上の観点から、強磁性粉末100質量部あたり1.5質量部以上の分散剤を磁性層に含むことが好ましい。高密度記録化の観点からは強磁性粉末の充填率を高めることが望ましいため、添加剤の添加量はその効果を発揮し得る範囲で低減することが好ましい。上記観点から、磁性層における分散剤の含有量は、強磁性粉末100質量部あたり10質量部以下とすることが好ましい。強磁性粉末の分散性と充填率を両立する観点から、磁性層における桂皮酸の含有量は強磁性粉末100質量部あたり3〜10質量部とすることがより好ましい。
【0024】
磁性層塗布液の調製時、分散剤と、強磁性粉末、結合剤等の他の磁性層成分とは、同時に混合してもよく2つ以上の工程で分割して添加してもかまわない。例えば、分散剤、強磁性粉末および結合剤を同時に添加する方法、分散剤と強磁性粉末とを予め混合分散した後、結合剤と混合する方法、等の方法を取り得るが、本発明はいずれの方法を採用することもできる。
【0025】
(iv)添加剤
磁性層には、必要に応じて上記分散剤以外の添加剤を加えることができる。添加剤としては、研磨剤、潤滑剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤、溶剤などを挙げることができる。上記添加剤の具体例等の詳細については、例えば特開2009−96798号公報段落[0111]〜[0115]を参照できる。
【0026】
また、磁性層には、必要に応じてカーボンブラックを添加することができる。磁性層で使用可能なカーボンブラックとしては、ゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック等を挙げることができる。カーボンブラックの比表面積は好ましくは100〜500m2/g、より好ましくは150〜400m2/g、DBP吸油量は好ましくは20〜400ml/100g、より好ましくは30〜200ml/100gである。カーボンブラックの粒子径は、好ましくは5〜80nm、より好ましく10〜50nm、さらに好ましくは10〜40nmである。カーボンブラックのpHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/mlがそれぞれ好ましい。磁性層で使用できるカーボンブラックについては、例えば「カーボンブラック便覧」カーボンブラック協会編、を参考にすることができる。それらは市販品として入手可能である。
【0027】
本発明で使用されるこれらの添加剤は、磁性層、さらに後述する非磁性層でその種類、量を必要に応じて使い分けることができる。また本発明で用いられる添加剤のすべてまたはその一部は、磁性層または非磁性層用の塗布液の製造時のいずれの工程で添加してもよい。例えば、混練工程前に強磁性粉末と混合する場合、強磁性粉末と結合剤と溶剤による混練工程で添加する場合、分散工程で添加する場合、分散後に添加する場合、塗布直前に添加する場合などがある。
【0028】
非磁性層
本発明の磁気記録媒体は、非磁性粉末および結合剤成分を含む放射線硬化性組成物を放射線硬化することによって得られた放射線硬化層である非磁性層を有する。例えば、走行下にある非磁性支持体の表面に、非磁性層塗布液(放射線硬化性組成物)を所定の膜厚となるように塗布および放射線硬化して非磁性層(放射線硬化層)を形成し、次いでその上に、磁性層塗布液を所定の膜厚となるようにして塗布して磁性層を形成することにより、本発明の磁気記録媒体を得ることができる。一般に、下層の非磁性層用塗布液と上層の磁性層用塗布液とを逐次で重層塗布する場合には、磁性層塗布液に含まれる溶剤に非磁性層が一部溶解する場合がある。ここで非磁性層を放射線硬化性組成物から形成される放射線硬化層とすれば、放射線照射により非磁性層中で結合剤成分が重合・架橋し高分子量化が生じるため、磁性層塗布液に含まれる溶剤への溶解を抑制ないしは低減することができる。これにより上層に位置する磁性層の表面平滑性を高めることが可能となる。
【0029】
そして本発明では、上記放射線硬化性組成物に含まれる結合剤成分として、いずれもガラス転移温度が30〜100℃の範囲である放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂を使用する。上記ガラス転移温度が100℃以下であることにより、下層の柔軟性を高めることができるため下層のクッション性が高まることによりカレンダー成形性を高めることができる。本発明の磁気記録媒体では、前述のように走行中の磁性層表面の削れを抑制するために磁性層を上記構成とするが、これにより磁性層そのもののカレンダー成形性は低下することとなる。そこで本発明では、非磁性層に柔軟性を付与することにより、即ち上記の結合剤成分としてガラス転移温度が100℃以下のものを使用することにより、磁性層のカレンダー成形性の低下を補うことができる。ただし上記ガラス転移温度が30℃未満では、非磁性層の柔軟性が高すぎ走行安定性が低下するため、その下限値は30℃とする。走行安定性とカレンダー成形性を両立する観点からは、上記ガラス転移温度は55〜100℃であることが好ましい。
また、上記結合剤成分から形成される非磁性層のガラス転移温度は、走行安定性とカレンダー成形性を両立する観点から、30℃〜85℃の範囲であることが好ましく、60〜85℃の範囲であることがより好ましく、65〜85℃の範囲であることがよりいっそう好ましい。
【0030】
非磁性層の結合剤成分として使用される放射線硬化性塩化ビニル系共重合体、放射線硬化性ポリウレタン樹脂としては、上記範囲のガラス転移温度を有するものであればよく特に限定されるものではない。例えば、特開2004−352804号公報に記載の放射線硬化性塩化ビニル系共重合体およびポリウレタン樹脂を使用することができ、その詳細については同公報段落[0012]〜[0019]に記載およびその実施例を参照できる。
中でも、本発明において非磁性層の結合剤成分として好ましい放射線硬化性塩化ビニル系共重合体としては、下記一般式(1)で表される構造単位を含む放射線硬化性塩化ビニル系共重合体(以下、「共重合体A」という)を挙げることができ、放射線硬化性ポリウレタン樹脂としては、下記一般式(2)で表されるスルホン酸(塩)基含有ポリオール化合物を原料として得られた放射線硬化性ポリウレタン樹脂(以下、「ポリウレタン樹脂B」という)を挙げることができる。
以下、共重合体A、ポリウレタン樹脂Bについて説明する。
【0031】
(i)共重合体A
共重合体Aは、下記一般式(1)で表される構造単位を含むものである。
【0032】
【化4】

[一般式(1)中、R1は水素原子またはメチル基を表し、L1は下記式(2)、式(3)または下記一般式(4)で表される二価の連結基を表す。]
【化5】

[一般式(4)中、R41は水素原子またはメチル基を表す。]
【0033】
上記一般式(1)で表される構造単位を含む共重合体Aは、放射線照射による硬化性が高く、これが磁性層塗布液への非磁性層の溶解による磁性層の表面平滑性の低下を、より効果的に抑制することに寄与すると考えられる。この高い硬化性は、含有される放射線硬化性官能基の反応性が高いことと、その構造に適度な柔軟性が付与されていることによるものと考えられる。即ち、下記一般式(1)で表される構造中、丸枠線で囲んだ(メタ)アクリロイルオキシ基が放射線硬化性官能基の中でも特に高い反応性を有する基であることと、四角枠線で囲んだ主鎖との連結部分が架橋構造を形成するに足る適度な柔軟性を有することが、共重合体Aが放射線照射時に高い硬化性を示す理由であると推察している。これに対し、高い反応性を有する放射線硬化性官能基が導入された樹脂であっても、その構造が剛直であると放射線硬化性官能基同士が十分に近接することができず、結果的に架橋構造を形成することが困難となると考えられる。
【0034】
【化6】

[一般式(1)の詳細は後述する。]
【0035】
共重合体Aは、放射線照射により硬化反応(架橋反応)を起こし得る放射線硬化性官能基を有する塩化ビニル系共重合体であり、放射線硬化性官能基の少なくとも1つが、下記一般式(1)で表される構造単位に含まれる(メタ)アクリロイルオキシ基である。共重合体Aは、先に説明したように、高い反応性を有する(メタ)アクリロイルオキシ基が適度な柔軟性を有する連結部分を介して主鎖と結合していることにより、放射線照射時に高い硬化性を示すことができると推察される。
なお、本発明において、「(メタ)アクリロイルオキシ基」とは、メタクリロイルオキシ基とアクリロイルオキシ基とを含むものとし、「(メタ)アクリレート」とは、メタクリレートとアクリレートとを含むものとする。
また、共重合体Aは、放射線硬化性官能基として(メタ)アクリロイルオキシ基以外の基を含むこともできる。そのような放射線硬化性官能基としては、反応性の点から、ラジカル重合性の炭素−炭素二重結合基が好ましく、アクリル系二重結合基が更に好ましい。ここでアクリル系二重結合基とは、アクリル酸、アクリル酸エステル、アクリル酸アミド、メタクリル酸、メタクリル酸エステル、メタクリル酸アミド等の残基をいう。
【0036】
【化7】

【0037】
以下、一般式(1)について更に詳細に説明する。
【0038】
一般式(1)中、R1は水素原子またはメチル基を表す。R1が水素原子、メチル基のいずれであっても高い硬化性を得ることができるが、供給性の観点からは、R1はメチル基であることが好ましい。
【0039】
一般式(1)中、L1は下記式(2)、式(3)または下記一般式(4)で表される二価の連結基を表す。一般式(4)中、R41は水素原子またはメチル基を表し、供給性の観点から、R41は水素原子が好ましい。使用する系により異なるが、一般に、硬化性の観点からは、式(3)、一般式(4)で表される二価の連結基が好ましく、コストの点からは、式(2)、式(3)で表される二価の連結基が好ましい。
【0040】
【化8】

【0041】
共重合体Aは、放射線照射時の硬化性をよりいっそう高める観点から、一般式(1)で表される構造単位を、全重合単位を100モル%として1モル%以上含むことが好ましい。共重合体A中の一般式(1)で表される構造単位の含有率の上限は特に限定されるものではないが、例えば5モル%以下程度であっても十分にその効果を発揮し得る。共重合体Aは、一般式(1)で表される構造単位を全重合単位100モル%あたり、好ましくは1モル%以上50モル%以下含有することができる。共重合体Aは、一般式(1)で表される構造単位を上記含有率で含むことにより、よりいっそう高い硬化性を示すことができる。
【0042】
共重合体Aは塩化ビニル系共重合体であるため、一般式(1)で表される構造単位とともに塩化ビニル由来の構造単位(下記構造単位)を含む。
【0043】
【化9】

【0044】
共重合体A中の上記塩化ビニル由来の構造単位の含有率は特に限定されるものではないが、全重合単位を100モル%として50〜99モル%程度が好適である。
【0045】
共重合体Aは、下記一般式(5)で表される構造単位を含むこともできる。下記一般式(5)で表される構造単位を含むことは硬化性をよりいっそう高めるために有効である。また、下記一般式(5)で表される構造単位を含む共重合体は合成反応が容易であるため合成適性上も好ましい。
【0046】
【化10】

【0047】
以下、一般式(5)について説明する。
【0048】
一般式(5)中、R51およびR52は、それぞれ独立に水素原子またはメチル基を表す。R51およびR52が水素原子、メチル基のいずれであっても高い硬化性を得ることができるが、供給性の観点からは、R51、R52はメチル基であることが好ましい。また、一般式(5)中、L51は前記式(2)、式(3)または一般式(4)で表される二価の連結基を表す。
【0049】
一般式(5)中、L52は二価の連結基を表す。L52で表される二価の連結基としては、炭素数1〜25のアルキレン基またはアルキレンオキシ基が好ましく、炭素数1〜20のアルキレン基またはアルキレンオキシ基がさらに好ましく、メチレン基、エチレン基、プロピレン基、ブチレン基、エチレンオキシ基、ジエチレンオキシ基、トリエチレンオキシ基が特に好ましい。これらの基は置換基を有していてもよい。その場合、上記炭素数は該置換基を含まない部分の炭素数をいう。
【0050】
前記L52に含まれ得る置換基としては、炭素数1〜20のアルキル基が好ましく、なかでも、炭素数1〜15のアルキル基が好ましく、炭素数1〜10のアルキル基がさらに好ましく、炭素数1〜7のアルキル基が特に好ましい。前記置換基として具体的には、原料および合成適性等を考慮すると、メチル基、エチル基、分岐または直鎖のプロピル基、分岐または直鎖のブチル基、分岐または直鎖のペンチル基、分岐または直鎖のヘキシル基が最も好ましい。
【0051】
共重合体Aは、一般式(5)で表される構造単位を全重合単位100モル%あたり、例えば1モル%以上45モル%以下含有することができる。共重合体Aは、一般式(5)で表される構造単位を上記含有率で含むことにより、よりいっそう高い硬化性を示すことができる。
【0052】
共重合体Aは、環状エーテル構造を含有することもできる。環状エーテル構造を含有することは、共重合体合成時の安定性、種々の条件下での硬化性、を高めるうえで有効である。また、環状エーテル構造は、共重合体に極性基を導入するための官能基としても有効である。上記環状エーテル構造としては、オキシラン環、オキセタン環、テトラヒドロフラン環、テトラヒドロピラン環、クラウンエーテルが好ましく、オキシラン環、オキセタン環、テトラヒドロフラン環、テトラヒドロピラン環がより好ましく、オキシラン環、オキセタン環、テトラヒドロフラン環が特に好ましい。上記環状エーテル構造は、例えば共重合体の側鎖部分に含まれる。その好ましい態様の一例としては、下記一般式(8)で表される構造単位に、環状エーテル構造を含むものを挙げることができる。
【0053】
【化11】

【0054】
一般式(8)中、L8は二価の連結基を表し、例えば−CH2OCH2−等のオキシアルキレン基を表す。R8は環状エーテル構造を表し、その詳細は上述の通りである。
【0055】
共重合体Aは、硬化性向上の観点から、1分子あたり1〜100個の環状エーテル構造を含むことが好ましい。また、上記一般式(8)で表される構造単位の含有率としては、全重合単位100モル%あたり、例えば1モル%以上45モル%以下が好ましい。
【0056】
ところで、磁気記録媒体用結合剤には、磁性粉末、非磁性粉末等の分散性を高めるために極性基を導入することが広く行われている。したがって共重合体Aも、磁気記録媒体用結合剤としての適性の観点から、分散性向上のために極性基を有することが好ましい。極性基としては、例えば、ヒドロキシアルキル基、カルボン酸(塩)基、スルホン酸(塩)基、硫酸(塩)基、燐酸(塩)基等を挙げることができる。なお、本発明において「スルホン酸(塩)基」とは、下記一般式(A)中のaが0である置換基であり、スルホン酸基(−SO3H)と−SO3Na、−SO3Li、−SO3K等のスルホン酸塩基とを含むものとする。また、「硫酸(塩)基」とは、下記一般式(A)中のaが1である置換基であり、上記と同様に硫酸基と硫酸塩基とを含むものとする。カルボン酸(塩)基、燐酸(塩)基等についても同様である。
【0057】
【化12】

【0058】
上記一般式(A)中、Mは、水素原子または陽イオンを表し、*は結合位置を表す。aは0または1であり、上記の通りa=0の場合、一般式(A)で表される置換基はスルホン酸(塩)基であり、a=1の場合、一般式(A)で表される置換基は硫酸(塩)基である。
前記陽イオンは、無機陽イオンであっても、有機陽イオンであってもよい。前記陽イオンは、一般式(A)中の−(O)aSO3-を電気的に中和するものであり、1価の陽イオンに限定されず、2価以上の陽イオンとすることもできる。Mで表される陽イオンとしては1価の陽イオンが好ましい。なお、n価の陽イオンを使用する場合には、前記一般式(A)で表される置換基に対して、(1/n)モルの陽イオンを意味する。
【0059】
無機陽イオンとしては、特に制限はないが、アルカリ金属イオンまたはアルカリ土類金属イオンが好ましく、アルカリ金属イオンがより好ましく、Li+、Na+またはK+がさらに好ましい。
有機陽イオンとしては、アンモニウムイオン、第四級アンモニウムイオン、ピリジニウムイオン等を例示できる。
【0060】
前記Mは、水素原子、アルカリ金属イオン、第四級アンモニウムイオンまたはピリジニウムイオンであることが好ましく、水素原子、Li+、Na+、K+、テトラアルキルアンモニウムイオンまたはピリジニウムイオンであることがより好ましく、K+、テトラアルキルアンモニウムイオンまたはピリジニウムイオンであることが特に好ましい。
【0061】
硫酸(塩)基を含む共重合体Aの一態様としては、一般式(1)で表される構造単位に硫酸(塩)基が置換した、下記一般式(6)で表される構造単位を有するものを挙げることができる。
【0062】
【化13】

【0063】
一般式(6)中、Mは水素原子または陽イオンを表し、その詳細は一般式(A)中のMについて前記した通りである。
【0064】
一般式(6)中、R6は水素原子またはメチル基を表し、L6は前記式(2)、式(3)または一般式(4)で表される二価の連結基を表す。一般式(6)中のR6、L6の詳細は、一般式(1)中のR1、L1について述べた通りである。
【0065】
共重合体Aは、例えば、下記一般式(7)で表される構造単位中にスルホン酸(塩)基を含むことができる。
【0066】
【化14】

【0067】
一般式(7)中、R7は水素原子またはメチル基を表し、L7は二価の連結基を表し、分岐してもよい炭素数1〜7のアルキレン基を表すことが好ましい。該アルキレン基は、置換基を有することもできる。置換基の詳細は、L2に含まれ得る置換基について述べた通りである。
【0068】
一般式(7)中、Mは水素原子または陽イオンを表し、その詳細は一般式(A)中のMについて前記した通りである。
【0069】
但し、共重合体Aは、上記構造単位(6)または(7)を有するものに限定されるものではなく、任意の位置にスルホン酸(塩)基、硫酸(塩)基等の極性基を含むことができる。なお、共重合体Aの極性基含有量については後述する。
【0070】
次に、共重合体Aの合成方法について説明する。
【0071】
共重合体Aは、一般式(1)で表されるビニルモノマー由来の構造単位を含む塩化ビニル系共重合体であるため、少なくとも塩化ビニルモノマーおよび一般式(1)で表される構造単位を導入するためのビニル系モノマーを共重合することによって合成されるものである。共重合反応においては、例えば、前記一般式(5)〜(8)で表される構造単位を導入するためのモノマー等の他のモノマーを共重合させることもできる。合成反応の具体的態様としては、
(A−1)原料モノマーとして放射線硬化性官能基を有するモノマーを使用し、共重合反応を行う方法;
(A−2)塩化ビニル系共重合体の原料モノマーを放射線硬化性官能基含有化合物の存在下で共重合させる方法;
(A−3)塩化ビニル系共重合体の側鎖に高分子反応によって放射線硬化性官能基を導入する方法;
を挙げることができ、上記態様を必要に応じて組み合わせることにより、共重合体Aを得ることができる。
【0072】
上記いずれの態様についても、使用可能な原料モノマーとしては、以下のモノマーを挙げることができる。
塩化ビニル、塩化ビニリデン、置換基を有していてもよい(メタ)アクリル酸、
置換基を有していてもよいアルキル(メタ)アクリレート類、置換基を有していてもよいアリール(メタ)アクリレート類、置換基を有していてもよい(メタ)アクリルアミド類、(メタ)アクリロイルモルホリン類、ビニル基を有する芳香族炭化水素環類(各種スチレン類)、ビニル基を有するヘテロ芳香族環類(ビニルカルバゾール類)、無水マレイン酸、およびその誘導体、脂肪酸ビニルエステル類(各種アセトキシエチレン類)、各種ベンゾイルオキシエチレン類、置換基を有していてもよいアルキルアリルエーテル類、(メタ)アクリロニトリル、(メタ)クロトンニトリル、エチレン、ブタジエン、イタコン酸エステル類、
クロトン酸エステル類、ビニルピロリドン類。なお、上記において(メタ)アクリル酸とは、アクリル酸とメタクリル酸とを含む意味であり、他の「(メタ)」との語を含むものについても同様である。
【0073】
合成反応の容易性の点から好ましいモノマーとしては、以下のモノマーを挙げることができる。
塩化ビニル、塩化ビニリデン、置換基を有していてもよい(メタ)アクリル酸、
置換基を有していてもよい炭素数1〜25の(シクロ)アルキル(メタ)アクリレート、置換基を有していてもよい炭素数1〜25のアリール(メタ)アクリレート、(メタ)アクリルアミド、置換基を有していてもよい炭素数1〜25の2級または3級の(シクロ)アルキル(メタ)アクリルアミド、置換基を有していてもよい炭素数1〜25の2級または3級のアリール(メタ)アクリルアミド、置換基を有していてもよい炭素数1〜25の(メタ)アクリロイルモルホリン、 ビニル基を有する置換または無置換の炭素数1〜25の芳香族炭化水素環、ビニル基を有する置換または無置換の炭素数1〜25のヘテロ芳香族環、無水マレイン酸、置換または無置換の炭素数1〜25の部分エステル化マレイン酸、置換または無置換の炭素数1〜25の部分アミド化マレイン酸、 イタコン酸、置換基を有していてもよい炭素数1〜25のイタコン酸(シクロ)アルキルエステル、置換基を有していてもよい炭素数1〜25のイタコン酸アリールエステル、 クロトン酸、置換基を有していてもよい炭素数1〜25のクロトン酸(シクロ)アルキルエステル、置換基を有していてもよい炭素数1〜25のクロトン酸アリールエステル、置換基を有していてもよい炭素数1〜25のアセトキシエチレン類、置換基を有していてもよい炭素数1〜25のベンゾイルオキシエチレン類、置換基を有していてもよいアルキルアリルエーテル類、(メタ)アクリロニトリル、(メタ)クロトンニトリル、エチレン、ブタジエン、ビニルピロリドン。
【0074】
これらの中でも、より好ましいモノマーとしては、以下のモノマーが挙げられる。
塩化ビニル、塩化ビニリデン、(メタ)アクリル酸、置換基を有していてもよい炭素数1〜20の(シクロ)アルキル(メタ)アクリレート、置換基を有していてもよい炭素数1〜20のアリール(メタ)アクリレート、(メタ)アクリルアミド、置換基を有していてもよい炭素数1〜20の2級または3級の(シクロ)アルキル(メタ)アクリルアミド、置換基を有していてもよい炭素数1〜20の2級または3級のアリール(メタ)アクリルアミド、置換基を有していてもよい炭素数1〜20の(メタ)アクリロイルモルホリン、ビニル基を有する置換または無置換の炭素数1〜20の芳香族炭化水素環、ビニル基を有する置換または無置換の炭素数1〜20のヘテロ芳香族環、無水マレイン酸、置換または無置換の炭素数1〜20の部分エステル化マレイン酸、置換または無置換の炭素数1〜20の部分アミド化マレイン酸、イタコン酸、置換基を有していてもよい炭素数1〜20のイタコン酸(シクロ)アルキルエステル、置換基を有していてもよい炭素数1〜20のイタコン酸アリールエステル、クロトン酸、置換基を有していてもよい炭素数1〜20のクロトン酸(シクロ)アルキルエステル、置換基を有していてもよい炭素数1〜20のクロトン酸アリールエステル、 置換基を有していてもよい炭素数1〜20のアセトキシエチレン類、置換基を有していてもよい炭素数1〜20のベンゾイルオキシエチレン類、置換基を有していてもよい炭素数1〜20のアルキルアリルエーテル類、置換基を有していてもよい炭素数1〜20の(メタ)アクリロニトリル、(メタ)クロトンニトリル、エチレン、ブタジエン、ビニルピロリドン。
【0075】
上記の中でよりいっそう好ましいモノマーとしては、以下のモノマーが挙げられる。
(メタ)アクリル酸、置換基を有していてもよい、メチル(メタ)アクリレート、エチル(メタ)アクリレート、直鎖または分岐のプロピル(メタ)アクリレート、直鎖または分岐のブチル(メタ)アクリレート、直鎖または分岐のペンチル(メタ)アクリレート、ノルマルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ノルマルヘプチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノルマルオクチル(メタ)アクリレート、ノルマルデシル(メタ)アクリレート、ノルマルドデシル(メタ)アクリレート、置換基を有していてもよいアダマンチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ノルボルナンメチル(メタ)アクリレート、ノルボルネンメチル(メタ)アクリレート;置換基を有していてもよいベンジル(メタ)アクリレート、ナフチルメチル(メタ)アクリレート、アントラセンメチル(メタ)アクリレート、フェニルエチル(メタ)アクリレート;置換基を有していてもよいフェニル(メタ)アクリレート、ナフチル(メタ)アクリレート、(メタ)アクリルアミド、置換基を有していてもよい(ジ)メチル(メタ)アクリルアミド、(ジ)エチル(メタ)アクリルアミド、直鎖または分岐の(ジ)プロピル(メタ)アクリルアミド、直鎖または分岐の(ジ)ブチル(メタ)アクリルアミド、直鎖または分岐の(ジ)ペンチル(メタ)アクリルアミド、(ジ)ノルマルヘキシル(メタ)アクリルアミド、(ジ)シクロヘキシル(メタ)アクリルアミド、(ジ−)2−エチルヘキシル(メタ)アクリルアミド;置換基を有していてもよいアダマンチル(メタ)アクリルアミド、ノルアダマンチル(メタ)アクリルアミド;置換基を有していてもよいベンジル(メタ)アクリルアミド、ナフチルエチル(メタ)アクリルアミド、フェニルエチル(メタ)アクリルアミド;置換基を有していてもよい(ジ)フェニル(メタ)アクリルアミド、ナフチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ピペリジルアクリルアミド、ピロリジルアクリルアミド、(α−メチル−)スチレン、スチレンスルホン酸(塩)、クロロメチルスチレン、ビニルピリジン、ビニルイミダゾール、ビニルトリアゾール、無水マレイン酸、イタコン酸、クロトン酸、置換基を有していてもよい、メチルクロトネート、エチル(クロトネート、直鎖または分岐のプロピルクロトネート、直鎖または分岐のブチルクロトネート、直鎖または分岐のペンチルクロトネート、ノルマルヘキシルクロトネート、シクロヘキシルクロトネート、ノルマルヘプチルクロトネート、2−エチルヘキシルクロトネート、ノルマルオクチルクロトネート、ノルマルデシルクロトネート、ノルマルドデシルクロトネート;置換基を有していてもよいアダマンチルクロトネート、イソボルニルクロトネート、ノルボルナンメチルクロトネート、ノルボルネンメチルクロトネート;置換基を有していてもよいベンジルクロトネート、ナフチルメチルクロトネート、アントラセンメチルクロトネート、フェニルエチルクロトネート;置換基を有していてもよいフェニルクロトネート、ナフチルクロトネート、置換基を有していてもよいアセトキシエチレン、置換基を有していてもよいベンゾイルオキシエチレン、2−ヒドロキシエチルアリルエーテル、2−ヒドロキシプロピルアリルエーテル、3−ヒドロキシプロピルアリルエーテル、置換基を有していてもよいビニルカルバゾール、ビニルピロリドン、(メタ)アクリロニトリル、エチレン、ブタジエン、(メタ)クロトンニトリル。
【0076】
また、溶剤溶解性、塗布適性等の磁気記録媒体用途への適性の点からは、以下のモノマーを用いることが好ましい。
メチル(メタ)アクリレート、エチル(メタ)アクリレート、ノルマルプロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ノルマルブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec−ブチル(メタ)アクリレート、ノルマルペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、酢酸ビニル、ビニルアルコール、2−ヒドロキシエチル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、2−ヒドロキシエチルアリルエーテル、2−ヒドロキシプロピルアリルエーテル、3−ヒドロキシプロピルアリルエーテル、p−ビニルフェノール、マレイン酸、無水マレイン酸、アクリル酸、メタクリル酸、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、ホスホエチル(メタ)アクリレート、スルホエチル(メタ)アクリレート、p−スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸およびこれらのNa塩、K塩などの金属塩、アンモニウム塩、またはピリジン塩。
【0077】
また、使用可能な共重合モノマーとしては、上記モノマーに放射線硬化性官能基を導入したものを挙げることもできる。放射線硬化性官能基の詳細は、先に説明した通りである。
【0078】
前記共重合モノマーとしては、その他親水性を有するモノマーも好適に用いることができ、燐酸、燐酸エステル、4級アンモニウム塩、エチレンオキシ鎖、プロピレンオキシ鎖、スルホン酸、硫酸基、カルボン酸基およびその塩(例えば金属塩)、モルホリノエチル基等を含んだモノマー等も使用可能である。
【0079】
以上説明したモノマーが有し得る置換基としては、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、アシルオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アリールカルボニル基、アミノ基、ジアルキルアミノ基、アルキルアミノ基、ハロゲン原子、水酸基、カルボキシル基、シアノ基、フリル基、フルフリル基、オキセタン環、オキシラン環、フラン環、テトラヒドロフラン環、テトラヒドロフリル基、テトラヒドロフルフリル基、アルキルチオ基、トリメチルシリル基、トリフルオロメチル基、カルボキシル基、チエニル基、モルホリノ基、モルホリノカルボニル基、−OSO3H基、−SO3H基、燐酸、ホスホン酸、ホスフィン酸の部分構造をもつもの、等が挙げられる。
【0080】
前記置換基としては、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基、炭素数1〜20のアラルキル基、炭素数1〜20のアリール基、炭素数1〜20のアリールオキシ基、炭素数1〜20のアシルオキシ基、炭素数1〜20のアシル基、炭素数1〜20のアルコキシカルボニル基、炭素数1〜20のアリールオキシカルボニル基、炭素数1〜20のアリールカルボニル基、アミノ基、炭素数1〜20のジアルキルアミノ基、炭素数1〜20のアルキルアミノ基、ハロゲン原子、水酸基、カルボキシル基、シアノ基、フリル基、フルフリル基、オキセタン環、オキシラン環、フラン環、テトラヒドロフラン環、テトラヒドロフリル基、テトラヒドロフルフリル基、アルキルチオ基、トリメチルシリル基、トリフルオロメチル基、カルボキシル基、チエニル基、モルホリノ基、モルホリノカルボニル基、−OSO3H基、−SO3H基、燐酸、ホスホン酸、ホスフィン酸の部分構造をもつもの、ハロゲン原子、等が好ましい。
【0081】
これらの中でも前記置換基としては、炭素数1〜15のアルキル基、炭素数1〜15のアルコキシ基、炭素数1〜15のアラルキル基、炭素数1〜15のアリール基、炭素数1〜15のアリールオキシ基、炭素数1〜15のアシルオキシ基、炭素数1〜15のアシル基、炭素数1〜15のアルコキシカルボニル基、炭素数1〜15のアリールオキシカルボニル基、炭素数1〜15のアリールカルボニル基、アミノ基、炭素数1〜15のジアルキルアミノ基、炭素数1〜15のアルキルアミノ基、ハロゲン原子、水酸基、カルボキシル基、シアノ基、フリル基、フルフリル基、テトラヒドロフリル基、テトラヒドロフルフリル基、アルキルチオ基、トリメチルシリル基、トリフルオロメチル基、カルボキシル基、チエニル基、モルホリノ基、モルホリノカルボニル基、−OSO3H基、−SO3H基、燐酸、ホスホン酸、ホスフィン酸の部分構造をもつもの、ハロゲン原子、等がより好ましい。
【0082】
さらに、前記置換基としては、メチル基、エチル基、直鎖または分岐のプロピル基、直鎖または分岐のブチル基、直鎖または分岐のペンチル基、ノルマルヘキシル基、シクロヘキシル基、ノルマルヘプチル基、2−エチルヘキシル基、ノルマルオクチル基、ノルマルデシル基、ノルマルドデシル基、メチルオキシ基、エチルオキシ基、直鎖または分岐のプロピルオキシ基、直鎖または分岐のブチルオキシ基、直鎖または分岐のペンチルオキシ基、ノルマルヘキシルオキシ基、シクロヘキシルオキシ基、ノルマルヘプチルオキシ基、2−エチルヘキシルオキシ基、ノルマルオクチルオキシ基、ノルマルデシルオキシ基、ノルマルドデシルオキシ基、ベンジル基、フェネチル基、ナフチルメチル基、ナフチルエチル基、フェニル基、ナフチル基、フェニルオキシ基、ナフチルオキシ基、メチルカルボニルオキシ基、エチルカルボニルオキシ基、直鎖または分岐のプロピルカルボニルオキシ基、直鎖または分岐のブチルカルボニルオキシ基、直鎖または分岐のペンチルカルボニルオキシ基、ノルマルヘキシルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基、ノルマルヘプチルカルボニルオキシ基、2−エチルヘキシルカルボニルオキシ基、ノルマルオクチルカルボニルオキシ基、ノルマルデシルカルボニルオキシ基、ノルマルドデシルカルボニルオキシ基、メチルカルボニル基(アセチル基)、エチルカルボニル基、直鎖または分岐のプロピルカルボニル基、直鎖または分岐のブチルカルボニル基、直鎖または分岐のペンチルカルボニル基、ノルマルヘキシルカルボニル基、シクロヘキシルカルボニル基、ノルマルヘプチルカルボニル基、2−エチルヘキシルカルボニル基、ノルマルオクチルカルボニル基、ノルマルデシルカルボニル基、ノルマルドデシルカルボニル基、メチルオキシカルボニル基、エチルオキシカルボニル基、直鎖または分岐のプロピルオキシカルボニル基、直鎖または分岐のブチルオキシカルボニル基、直鎖または分岐のペンチルオキシカルボニル基、ノルマルヘキシルオキシカルボニル基、シクロヘキシルオキシカルボニル基、ノルマルヘプチルオキシカルボニル基、2−エチルヘキシルオキシカルボニル基、ノルマルオクチルオキシカルボニル基、ノルマルデシルオキシカルボニル基、ノルマルドデシルオキシカルボニル基、 ベンゾイル基、ナフチルカルボニル基;(ジ)メチルアミノ基、(ジ)エチルアミノ基、直鎖または分岐の(ジ)プロピルアミノ基、直鎖または分岐の(ジ)ブチルアミノ基、直鎖または分岐の(ジ)ペンチルアミノ基、(ジ)ノルマルヘキシルアミノ基、(ジ)シクロヘキシルアミノ基、(ジ)ノルマルヘプチルアミノ基、(ジ)2−エチルヘキシルアミノ基;フッ素原子、塩素原子、臭素原子、水酸基、カルボキシル基、シアノ基、フリル基、フルフリル基、テトラヒドロフリル基、テトラヒドロフルフリル基、アルキルチオ基、トリメチルシリル基、トリフルオロメチル基、カルボキシル基、チエニル基、モルホリノ基、モルホリノカルボニル基、−OSO3H基、−SO3H基、燐酸、ホスホン酸、ホスフィン酸の部分構造をもつもの、フッ素原子、塩素原子、臭素原子、等が特に好ましい。また、これらの置換基はさらに前記の置換基で置換されていてもよい。
【0083】
原料モノマーの種類および数は、少なくとも塩化ビニルおよび一般式(1)で表される構造単位を導入するためのビニル系モノマーの2種が使用される点以外、特に限定されるものではない。上記2種のモノマー以外に、例えば1〜12種のモノマーを併用することができ、1〜10種を併用することが好ましく、1〜8種を併用することがより好ましい。原料モノマーの混合割合は、所望の共重合体組成に応じて決定すればよいが、原料モノマー中の塩化ビニルモノマーの含有量が60質量%以上95質量%以下であれば良好な力学強度が得られると共に、溶剤溶解性が良好で、溶液粘度が好適であるため良好な分散性が得られるので好ましい。
【0084】
上記(A−2)、(A−3)の態様において放射線硬化性官能基の導入に使用する放射線硬化性官能基含有化合物としては、(メタ)アクリル酸、グリシジル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、2−イソシアナトエチル(メタ)アクリレート、2−メタクリロイルオキシエチルイソシアネート、2−(2−イソシアナートエチルオキシ)エチルメタクリレート、2−アクリロイルオキシエチルイソシアネート、1,1−ビス(アクリロイルオキシメチル)エチルイソシアネート等の炭素−炭素二重結合基を含有する化合物を挙げることができる。
【0085】
共重合体Aの合成方法としては、合成の簡便さ、コスト、原料入手性を考慮すると、高分子反応を用いて放射線硬化性官能基を導入する態様(A−3)が好ましい。この態様において使用される塩化ビニル系共重合体としては特に制限されないが、分子内に水酸基、1級または2級アミンのような活性水素基を持つ塩化ビニル系共重合体であれば、放射線硬化性官能基を含有するイソシアネート化合物と反応させることにより側鎖に放射線硬化性官能基を容易に導入できるため好ましい。そのような塩化ビニル系共重合体は、例えば上記共重合可能なモノマーを用いて公知の方法で合成可能である。
【0086】
また、共重合体Aは、前述のように、スルホン酸(塩)基、硫酸(塩)基等の極性基を含むこともできる。極性基は一種類のみ含まれていてもよく二種類以上含まれていてもよい。複数種の極性基を含むことにより、極性基を一種のみ含む場合に比べて、磁気記録媒体分野で利用されるシクロヘキサン等の溶媒に対する溶解性が向上することがあるので好ましい場合がある。上記極性基は、公知の方法による共重合または付加反応により共重合体Aに導入することができる。また、スルホン酸(塩)基含有塩化ビニル系共重合体は、公知の方法により塩交換を行い他のスルホン酸塩基含有塩化ビニル系共重合体とすることもでき、または公知の方法により塩を除去しスルホン酸含有塩化ビニル系共重合体とすることもできる。硫酸(塩)基含有塩化ビニル系共重合体についても同様である。
【0087】
共重合体Aを得るための合成反応および放射線硬化性官能基または極性基導入反応は、原料化合物を溶剤(反応溶媒)に溶解し、必要に応じて加熱、加圧、窒素置換等を行うことによって進行させることができる。上記反応のための反応温度、反応時間等の反応条件としては、一般的な反応条件を採用することができる。
【0088】
上記反応に使用可能な反応触媒としては、公知の反応触媒を使用することができ、例えばアミン触媒や有機スズ触媒、有機ビスマス触媒を例示できる。アミン触媒としては、ジエチレントリアミン、N−メチルモルホリン、及び、テトラメチルヘキサメチレンジアミン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドンを例示でき、有機スズ触媒としては、ジブチルスズジラウレート、ジオクチルスズジラウレート、ジブチルスズジデカネート、ジオクチルスズジデカネートを例示できる。有機ビスマス触媒としてはビスマストリス(2−エチルヘキサノエート)を例示できる。本発明において触媒としては、有機スズ触媒または有機ビスマス触媒を使用することが好ましい。
触媒の添加量は、反応に使用する原料化合物の全質量に対して例えば0.00001〜5質量部、好ましくは0.0001〜1質量部、さらに好ましくは0.00001〜0.1質量部である。
【0089】
反応溶媒としては、上記反応に通常使用される公知の溶剤から選択することができ、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸メチル、酢酸エチル、乳酸エチル等のエステル系溶媒、ジオキサン、テトラヒドロフランなどのエーテル系溶媒、トルエン、キシレン等の芳香族系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド系溶媒、ジメチルスルホキシド等のスルホキシド溶媒、塩化メチレン、クロロホルム、シクロヘキサンが挙げられる。
【0090】
合成反応後、必要に応じて公知の方法で精製等を行うことにより、共重合体Aを得ることができる。目的の共重合体が得られたことは、NMR等の公知の同定方法により確認することができる。または、合成反応を磁気記録媒体形成用塗布液に広く使用されているメチルエチルケトン、シクロヘキサンノンまたはこれらの混合溶媒を反応溶媒として使用することにより、合成後の反応液をそのまま、または任意に添加剤を添加することにより非磁性層形成用塗布液として使用することができる。
【0091】
次に、共重合体Aの各種物性について説明する。
【0092】
(a)平均分子量、分子量分布
共重合体Aは、質量平均分子量が1万以上50万以下(本発明において、「1万以上50万以下」を、「1万〜50万」とも記載することとする。以下、同様。)であることが好ましく、1万〜40万であることがより好ましく、1万〜30万であることがさらに好ましい。質量平均分子量が1万以上であれば、共重合体Aを結合剤として形成された塗布層の保存性が良好であり好ましい。また、質量平均分子量が50万以下であれば、良好な分散性が得られるので好ましい。
【0093】
共重合体Aの分子量分布(質量平均分子量Mw/数平均分子量Mn)は1.00〜5.50であることが好ましい。より好ましくは1.01〜5.40である。分子量分布が5.50以下であれば、組成分布が少なく、良好な分散性が得られるので好ましい。なお塩化ビニル系共重合体に放射線硬化性官能基および/または極性基を導入する反応の前後で、質量平均分子量および分子量分布(Mw/Mn)は、通常ほとんど変化しないか変化は大きくない。
【0094】
(b)ガラス転移温度
前述のように、共重合体Aのガラス転移温度(Tg)は、30℃〜100℃であり、55℃〜100℃であることが好ましい。
【0095】
(c)極性基含有量
共重合体Aは、前述のように極性基を含有することが好ましい。共重合体A中の極性基の含有量は、1.0mmol/kg〜3500mmol/kgであることが好ましく、1.0mmol/kg〜3000mmol/kgであることがより好ましく、1.0mmol/kg〜2500mmol/kgであることが更に好ましい。
極性基の含有量が1.0mmol/kg以上であれば、非磁性粉末等の粉末への十分な吸着力を得ることができ、分散性が良好であるので好ましい。また、3500mmol/kg以下であれば、溶剤への良好な溶解性が得られるので好ましい。前述のように極性基としては、一般式(A)で表されるスルホン酸(塩)基および硫酸(塩)基が好ましい。スルホン酸(塩)基および硫酸(塩)基からなる群から選ばれる極性基の含有量は、分散性と溶剤溶解性を両立する観点から10mmol/kg以上2000mmol/kg以下であることが好ましい。
【0096】
(d)水酸基含有量
共重合体Aには、水酸基(OH基)が含まれていてもよい。含まれるOH基の個数は1分子あたり1〜100000個が好ましく、1〜10000個がより好ましい。OH基の個数が上記範囲内であれば、溶剤への溶解性が向上するので分散性が良好となる。
【0097】
(e)放射線硬化性官能基含有量
共重合体Aは、一般式(1)で表される構造単位中に放射線硬化性官能基である(メタ)アクリロイルオキシ基を含有するものであり、その他にも各種放射線硬化性官能基を含有することもできる。それら放射線硬化性官能基の詳細は、先に説明した通りである。共重合体A中の放射線硬化性官能基の含有量は、1.0mmol/kg〜4000mmol/kgであることが好ましく、1.0mmol/kg〜3000mmol/kgであることがより好ましく、1.0mmol/kg〜2000mmol/kgであることがさらに好ましい。放射線硬化性官能基の含有量が1.0mmol/kgであれば、放射線硬化により高い強度を有する塗膜を形成できるので好ましい。また、放射線硬化性官能基の含有量が4000mmol/kg以下であれば、放射線硬化後にカレンダー処理をする場合でもカレンダー成形性が良好であり、電磁変換特性が良好な磁気記録媒体が得られるので好ましい。
【0098】
以下に、共重合体Aの具体例を示す。但し、本発明は下記具体例に限定されるものではない。以下において、各構造単位の右側に付した数値は、共重合体中の全重合単位に対する各構造単位のモル比率を表す。
【0099】
【化15】

【0100】
【化16】

【0101】
ポリウレタン樹脂B
ポリウレタン樹脂Bは、下記一般式(2)で表されるスルホン酸(塩)基含有ポリオール化合物を原料として得られたものである。
【0102】
【化17】

[一般式(2)中、Xは二価の連結基を表し、R101およびR102は、それぞれ独立に、少なくとも1つの水酸基を有する炭素数2以上のアルキル基または少なくとも1つの水酸基を有する炭素数8以上のアラルキル基を表し、M1は水素原子または陽イオンを表す。]
【0103】
通常のポリウレタン合成反応は有機溶媒中で行われるのに対し、スルホン酸(塩)基含有ポリオール化合物は一般的に有機溶媒に対する溶解性が低いため反応性に乏しく所望量のスルホン酸(塩)基が導入されたポリウレタン樹脂を得ることが困難である点が課題であった。これに対し上記スルホン酸(塩)基含有ポリオール化合物は、有機溶媒に対して高い溶解性を示すため、所望量のスルホン酸(塩)基が均一に導入されたポリウレタン樹脂を容易に得ることができる。したがってポリウレタン樹脂Bによれば、非磁性層中の粉末成分の分散性を高めることができ、これにより非磁性層の表面平滑性を高め、ひいてはその上層の磁性層の表面平滑性をよりいっそう高めることができる。
以下、ポリウレタン樹脂Bについて更に詳細に説明する。
【0104】
一般式(2)におけるXは、二価の連結基を表し、有機溶媒への溶解性の点から、炭素数2〜20であることが好ましく、また、二価の炭化水素基であることが好ましく、アルキレン基、アリーレン基、または、これらを2以上組み合わせた基であることがより好ましく、アルキレン基またはアリーレン基であることがさらに好ましく、エチレン基またはフェニレン基であることが特に好ましく、エチレン基であることが最も好ましい。
また、前記フェニレン基としては、o−フェニレン基、m−フェニレン基、および、p−フェニレン基を例示することができ、o−フェニレン基またはm−フェニレン基であることが好ましく、m−フェニレン基であることがより好ましい。
【0105】
前記アルキレン基の炭素数は、2以上20以下であることが好ましく、2以上4以下であることがより好ましく、2であることがさらに好ましい。また、前記アルキレン基は、直鎖状のアルキレン基であっても、分岐を有するアルキレン基であってもよいが、直鎖状のアルキレン基であることが好ましい。
【0106】
前記アリーレン基の炭素数は、6以上20以下であることが好ましく、6以上10以下であることがより好ましく、6であることがさらに好ましい。
【0107】
前記アルキレン基および前記アリーレン基は、下記に示す置換基を有していてもよいが、炭素原子および水素原子のみからなる基であることが好ましい。
前記アルキレン基が有していてもよい置換基としては、アリール基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルコキシ基、アリールオキシ基、および、アルキル基が例示できる。
前記アリーレン基が有していてもよい置換基としては、アルキル基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルコキシ基、アリールオキシ基、および、アリール基が例示できる。
【0108】
一般式(2)におけるR101およびR102はそれぞれ独立に、少なくとも1つの水酸基を有する炭素数2以上のアルキル基または少なくとも1つの水酸基を有する炭素数8以上のアラルキル基を表し、前記アルキル基およびアラルキル基は置換基を有していてもよい。
前記アルキル基およびアラルキル基が水酸基以外に有していてもよい置換基としては、アルコキシ基、アリールオキシ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、スルホニル基、および、シリル基が例示できる。これらの中でも、アルコキシ基またはアリールオキシ基であることが好ましく、炭素数1〜20のアルコキシ基または炭素数6〜20のアリールオキシ基であることがより好ましく、炭素数1〜4のアルコキシ基またはフェノキシ基であることがさらに好ましい。
また、前記アルキル基およびアラルキル基は、直鎖状であってもよく、分岐を有していてもよい。
【0109】
101およびR102における水酸基の数は、それぞれ1以上であり、1または2であることが好ましく、1であることが特に好ましい。すなわち、一般式(1)で表されるスルホン酸(塩)基含有ポリオール化合物は、スルホン酸ジオール化合物であることが特に好ましい。
【0110】
101およびR102におけるアルキル基の炭素数は、有機溶媒への溶解性、原料調達性、コスト等の観点から2以上であり、2〜22であることが好ましく、3〜22であることがより好ましく、4〜22であることがよりいっそう好ましく、4〜8であることがさらに好ましい。
【0111】
101およびR102におけるアラルキル基の炭素数は、有機溶媒への溶解性、原料調達性、コスト等の観点から8以上であり、8〜22であることが好ましく、8〜12であることがより好ましく、8であることがさらに好ましい。
また、R101およびR102におけるアラルキル基は、窒素原子のα位およびβ位が飽和炭化水素鎖であることが好ましい。また、その場合、窒素原子のβ位には水酸基を有していてもよい。
また、R101およびR102は、窒素原子のα位には水酸基を有しないことが好ましく、少なくとも窒素原子のβ位に水酸基を1つ有していることがより好ましく、窒素原子のβ位のみに水酸基を1つ有していることが特に好ましい。窒素原子のβ位に水酸基を有することにより合成が容易となり、また、有機溶媒への溶解性を更に高めることができる。
【0112】
また、R101およびR102はそれぞれ独立に、少なくとも1つの水酸基を有する炭素数2〜22のアルキル基、少なくとも1つの水酸基を有する炭素数8〜22のアラルキル基、少なくとも1つの水酸基を有する炭素数3〜22のアルコキシアルキル基、または、少なくとも1つの水酸基を有する炭素数9〜22のアリールオキシアルキル基であることが好ましく、少なくとも1つの水酸基を有する炭素数2〜20のアルキル基、少なくとも1つの水酸基を有する炭素数8〜20のアラルキル基、少なくとも1つの水酸基を有する炭素数3〜20のアルコキシアルキル基、または、少なくとも1つの水酸基を有する炭素数9〜20のアリールオキシアルキル基であることがより好ましい。
【0113】
前記少なくとも1つの水酸基を有する炭素数2以上のアルキル基として具体的には、2−ヒドロキシエチル基、2−ヒドロキシプロピル基、2−ヒドロキシブチル基、2−ヒドロキシペンチル基、2−ヒドロキシヘキシル基、2−ヒドロキシオクチル基、2−ヒドロキシ−3−メトキシプロピル基、2−ヒドロキシ−3−エトキシプロピル基、2−ヒドロキシ−3−ブトキシプロピル基、2−ヒドロキシ−3−フェノキシプロピル基、2−ヒドロキシ−3−メトキシ−ブチル基、2−ヒドロキシ−3−メトキシ−3−メチルブチル基、2,3−ジヒドロキシプロピル基、3−ヒドロキシプロピル基、3−ヒドロキシブチル基、および、4−ヒドロキシブチル基、1−メチル−2−ヒドロキシエチル基、1−エチル−2−ヒドロキシエチル基、1−プロピル−2−ヒドロキシエチル基、1−ブチル−2−ヒドロキシエチル基、1−ヘキシル−2−ヒドロキシエチル基、1−メトキシメチル−2−ヒドロキシエチル基、1−エトキシメチル−2−ヒドロキシエチル基、1−ブトキシメチル−2−ヒドロキシエチル基、1−フェノキシメチル−2−ヒドロキシエチル基、1−(1−メトキシエチル)−2−ヒドロキシエチル基、1−(1−メトキシ−1−メチルエチル)−2−ヒドロキシエチル基、1,3−ジヒドロキシ−2−プロピル基等が例示できる。この中でも、2−ヒドロキシブチル基、2−ヒドロキシ−3−メトキシプロピル基、2−ヒドロキシ−3−ブトキシプロピル基、および、2−ヒドロキシ−3−フェノキシプロピル基、1−メチル−2−ヒドロキシエチル基、1−メトキシメチル−2−ヒドロキシエチル基、1−ブトキシメチル−2−ヒドロキシエチル基、1−フェノキシエチル−2−ヒドロキシエチル基を好ましく例示できる。
【0114】
前記少なくとも1つの水酸基を有する炭素数8以上のアラルキル基として具体的には、2−ヒドロキシ−2−フェニルエチル基、2−ヒドロキシ−2−フェニルプロピル基、2−ヒドロキシ−3−フェニルプロピル基、2−ヒドロキシ−2−フェニルブチル基、2−ヒドロキシ−4−フェニルブチル基、2−ヒドロキシ−5−フェニルペンチル基、2−ヒドロキシ−2−(4−メトキシフェニル)エチル基、2−ヒドロキシ−2−(4−フェノキシフェニル)エチル基、2−ヒドロキシ−2−(3−メトキシフェニル)エチル基、2−ヒドロキシ−2−(4−クロロフェニル)エチル基、2−ヒドロキシ−2−(4−ヒドロキシフェニル)エチル基、2−ヒドロキシ−3−(4−メトキシフェニル)プロピル基、および、2−ヒドロキシ−3−(4−クロロフェニル)プロピル基、1−フェニル−2−ヒドロキシエチル基、1−メチル−1−フェニル−2−ヒドロキシエチル基、1−ベンジル−2−ヒドロキシエチル基、1−エチル−1−フェニル−2−ヒドロキシエチル基、1−フェネチル−2−ヒドロキシエチル基、1−フェニルプロピル−2−ヒドロキシエチル基、1−(4−メトキシフェニル)−2−ヒドロキシエチル基、1−(4−フェノキシフェニル)2−ヒドロキシ−エチル基、1−(3−メトキシフェニル)−2−ヒドロキシエチル基、1−(4−クロロフェニル)−2−ヒドロキシエチル基、1−(4−ヒドロキシフェニル)2−ヒドロキシエチル基、1−(4−メトキシフェニル)−3−ヒドロキシ−2−プロピル基等が例示できる。この中でも、2−ヒドロキシ−2−フェニルエチル基、1−フェニル−2−ヒドロキシフェニル基を好ましく例示できる。
【0115】
一般式(2)におけるM1は、水素原子または陽イオンを表す。
前記陽イオンは、無機陽イオンであっても、有機陽イオンであってもよい。前記陽イオンは、一般式(2)中の−SO3-を電気的に中和するものであり、1価の陽イオンに限定されず、2価以上の陽イオンとすることもできるが、1価の陽イオンが好ましい。なお、n価の陽イオンを使用する場合には、一般式(2)で表される化合物に対して、(1/n)モルの陽イオンを意味する。
【0116】
無機陽イオンとしては、特に制限はないが、アルカリ金属イオンまたはアルカリ土類金属イオンが好ましく例示でき、アルカリ金属イオンがより好ましく例示でき、Li+、Na+、K+、Rb+、またはCs+がさらに好ましく例示できる。
有機陽イオンとしては、アンモニウムイオン、第四級アンモニウムイオン、ピリジニウムイオン等を例示できる。
【0117】
前記M1は、水素原子またはアルカリ金属イオンであることが好ましく、水素原子、Li+、Na+またはK+であることがより好ましく、K+であることが特に好ましい。
【0118】
一般式(2)で表されるポリオール化合物は、有機溶媒への溶解性をさらに向上させるため、分子内に1以上の芳香環を有することもできる。
また、一般式(2)におけるR101とR102とは、同じであっても、異なっていてもよいが、合成上の容易性から、同じであることが好ましい。
一般式(2)におけるR101およびR102は、それぞれ、炭素数5以上の基であることが好ましい。また、一般式(2)におけるR101およびR102は、それぞれ、芳香環および/またはエーテル結合を有する基であることが好ましい。
【0119】
以上説明した一般式(2)で表されるポリオール化合物の詳細については、特開2009−96798号公報を参照できる。特に一般式(2)で表されるポリオール化合物の合成方法については、特開2009−96798号公報段落[0028]、[0029]および[0045]ならびに同公報の実施例を参照できる。また、一般式(2)で表されるポリオール化合物としては、特開2009−96798号公報記載の式(2)、式(3)で表される化合物を挙げることができる。その詳細は、同公報段落[0030]〜[0034]に記載されている。一般式(2)で表されるポリオール化合物の具体例としては、以下の上記特開2009−96798号公報記載の例示化合物(S−1)〜(S−74)および下記例示化合物(S−71)〜(S−74)を挙げることができる。なお、以下においてPhはフェニル基を表し、Etはエチル基を表す。
【0120】
【化18】

【0121】
【化19】

【0122】
【化20】

【0123】
【化21】

【0124】
【化22】

【0125】
【化23】

【0126】
【化24】

【0127】
【化25】

【0128】
【化26】

【0129】
また、ポリウレタン樹脂Bの合成原料としては、上記一般式(2)で表されるポリオール化合物とともに、ポリエステルポリオール、ポリエーテルポリオール、ポリエーテルエステルポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール、ダイマージオール等、一般にポリウレタン合成時に鎖延長剤として使用される公知のポリオール化合物を使用することもできる。併用するポリオール化合物については、特開2009−96798号公報段落[0056]〜[0065]を参照できる。また、下記式で表されるフルオレン誘導体アルコールも使用可能である。
【0130】
【化27】

[上記式において、R1はHまたはCH3を表し、R2はOHまたは−OCH2CH2OHを表し、2つ存在するR1、R2はそれぞれ同一であっても異なっていてもよい。]
【0131】
ポリウレタン樹脂Bは、イソシアネート化合物とポリオール化合物とのウレタン化反応により得ることができる。原料化合物を溶剤(重合溶媒)に溶解し、必要に応じて加熱、加圧、窒素置換等を行うことによりウレタン化反応を進行させることができる。ウレタン化反応のための反応温度、反応時間等の反応条件は、ウレタン化反応のための通常の反応条件を採用することができる。ウレタン化反応については、例えば、特開2009−96798号公報段落[0067]および[0068]、ならびに同公報の実施例を参照することもできる。
【0132】
イソシアネート化合物とは、イソシアネート基を有する化合物をいい、2官能以上の多官能イソシアネート化合物(以下、「ポリイソシアネート」という)が好ましい。ポリウレタン樹脂Bの合成原料として使用可能なポリイソシアネートとしては、特に限定されず公知のものを用いることができる。例えば、TDI(トリレンジイソシアネート)、MDI(ジフェニルメタンジイソシアネート)、p−フェニレンジイソシアネート、o−フェニレンジイソシアネート、m−フェニレンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネートなどのジイソシアネートを、1種または2種以上組み合わせて使用することもできる。
【0133】
ポリウレタン樹脂Bは放射線硬化性樹脂であるため、放射線硬化性官能基を含有する。含有される放射線硬化性官能基は、放射線照射により硬化反応(架橋反応)を起こし得るものであればよく特に限定されるものではないが、反応性の点から、ラジカル重合性の炭素−炭素二重結合基が好ましく、アクリル系二重結合基が更に好ましい。アクリル系二重結合基の中でも、反応性の点からは(メタ)アクリロイルオキシ基が好ましい。
【0134】
放射線硬化性官能基は、イソシアネート化合物とポリオール化合物のいずれか一方に含まれていればよく、両方に含まれていてもよい。原料の入手容易性、コスト面を考慮すると、ポリオール化合物として、放射線硬化性官能基を有するものを使用することが好ましい。
【0135】
放射線硬化性官能基を有するポリオール化合物としては、グリセリンモノアクリレート(グリセロールアクリレートとも呼ばれる)、グリセリンモノメタクリレート(グリセロールメタクリレートとも呼ばれる)(例えば日本油脂(株)製商品名ブレンマーGLM)、ビスフェノールA型エポキシアクリレート(例えば共栄社化学(株)製商品名エポキシエステル3000A)等の分子内にアクリル系二重結合を少なくとも1個有するジオールが好適である。これらジオールの中でも、硬化性の観点からは、下記化合物(グリセリンモノ(メタ)アクリレート)が好ましい。以下において、Rは水素原子またはメチル基である。
【0136】
【化28】

【0137】
次に、ポリウレタン樹脂Bの各種物性について説明する。
【0138】
(a)平均分子量
ポリウレタン樹脂Bは、質量平均分子量が1万〜50万であることが好ましく、1万〜40万であることがより好ましく、1万〜30万であることがさらに好ましい。質量平均分子量が1万以上であれば、ポリウレタン樹脂Bを結合剤として形成された塗布層の保存性が良好であり好ましい。また、質量平均分子量が50万以下であれば、良好な分散性が得られるので好ましい。
【0139】
例えば、グリコール由来のOH基とジイソシアネート由来のNCO基のモル比の微調整や反応触媒を用いることで質量平均分子量を所望の範囲に調整することができる。また、反応時の固形分濃度、反応温度、反応溶媒、反応時間等を調整することでも質量平均分子量を調整することができる。
【0140】
ポリウレタン樹脂Bの分子量分布(Mw/Mn)は1.00〜5.50であることが好ましい。より好ましくは1.01〜5.40である。分子量分布が5.50以下であれば、組成分布が少なく、良好な分散性が得られるので好ましい。
【0141】
(b)ウレタン基濃度
ポリウレタン樹脂Bのウレタン基濃度は2.0mmol/g〜5.0mmol/gであることが好ましく、2.1mmol/g〜4.5mmol/gであることがさらに好ましい。
ウレタン基濃度が2.0mmol/g以上であれば、ガラス転移温度(Tg)が高く良好な耐久性を有する塗膜を形成することができ、また、分散性も良好であり好ましい。また、ウレタン基濃度が5.0mmol/g以下であれば、良好な溶剤溶解性が得られ、ポリオール含有量の調整が可能であり、分子量のコントロールが容易であるので好ましい。
【0142】
(c)ガラス転移温度
前述のように、ポリウレタン樹脂Bのガラス転移温度(Tg)は、30℃〜100℃であり、55℃〜100℃であることが好ましい。
【0143】
(d)極性基含有量
ポリウレタン樹脂Bは、前述のようにスルホン酸(塩)基含有ポリオール化合物を原料として得られるものであるため、スルホン酸(塩)基を含有する。また、これに加えて他の極性基を含むこともできる。他の極性基としては、ヒドロキシアルキル基、カルボン酸(塩)基、硫酸(塩)基、燐酸(塩)基等を挙げることができ、−OSO3M’、−PO3M’2、−COOM’、−OHが好ましい。この中でも、−OSO3M’がさらに好ましい。M’は、水素原子または1価のカチオンを表す。1価のカチオンとしては、アルカリ金属またはアンモニウムを例示できる。ポリウレタン樹脂B中の極性基の含有量は、1.0mmol/kg〜3500mmol/kgであることが好ましく、1.0mmol/kg〜3000mmol/kgであることがより好ましく、1.0mmol/kg〜2500mmol/kgであることが更に好ましい。
極性基の含有量が1.0mmol/kg以上であれば、非磁性粉末への十分な吸着力を得ることができ、分散性が良好であり、また遊離のポリウレタン量を減量できるので好ましい。また、3500mmol/kg以下であれば、良好な溶剤への溶解性が得られるので好ましい。
【0144】
(e)水酸基含有量
ポリウレタン樹脂Bには、水酸基(OH基)が含まれていてもよい。含まれるOH基の個数は1分子あたり1〜100000個が好ましく、1〜10000個がより好ましい。OH基の個数が上記範囲内であれば、溶剤への溶解性が向上するので分散性が良好となる。
【0145】
(f)放射線硬化性官能基含有量
ポリウレタン樹脂Bが有する放射線官能基の詳細は、先に説明した通りである。その含有量は、1.0mmol/kg〜4000mmol/kgであることが好ましく、1.0mmol/kg〜3000mmol/kgであることがより好ましく、1.0mmol/kg〜2000mmol/kgであることがさらに好ましい。放射線硬化性官能基の含有量が1.0mmol/kg以上であれば、放射線硬化により高い強度を有する塗膜を形成できるので好ましい。また、放射線硬化性官能基の含有量が4000mmol/kg以下であれば、放射線硬化後にカレンダー処理をする場合でもカレンダー成形性が良好であり、電磁変換特性が良好な磁気記録媒体が得られるので好ましい。
【0146】
本発明の磁気記録媒体の非磁性層は、非磁性粉末とともに、放射線硬化性塩化ビニル系共重合体と放射線硬化性ポリウレタン樹脂を含む放射線硬化性組成物を放射線硬化することによって得られた放射線硬化層である。ここで放射線硬化性塩化ビニル系共重合体と放射線硬化性ポリウレタン樹脂とを併用する理由は、単独の樹脂では磁気記録媒体に求められる走行安定性と適度な柔軟性とを両立することが困難だからである。上記放射線硬化性組成物における放射線硬化性塩化ビニル系共重合体と放射線硬化性ポリウレタン樹脂との混合比は、塩化ビニル系共重合体100質量部に対してポリウレタン樹脂を50〜80質量部とすることが好ましい。
【0147】
前記放射線硬化性組成物の固形分濃度は特に限定されるものではないが、取り扱いの容易性の点から10〜80質量%程度がより好ましく、20〜60質量%程度が更に好ましい。前記放射線硬化性組成物は非磁性層を形成するために使用されるものであるため、上記結合剤成分とともに、少なくとも非磁性粉末を含有する。非磁性粉末は、無機物質でも有機物質でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物などが挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。
【0148】
具体的には二酸化チタン等のチタン酸化物、酸化セリウム、酸化スズ、酸化タングステン、ZnO、ZrO2、SiO2、Cr23、α化率90〜100%のα−アルミナ、β−アルミナ、γ−アルミナ、α−酸化鉄、ゲータイト、コランダム、窒化珪素、チタンカーバイト、酸化マグネシウム、窒化ホウ素、2硫化モリブデン、酸化銅、MgCO3、CaCO3、BaCO3、SrCO3、BaSO4、炭化珪素、炭化チタンなどが単独または2種類以上を組み合わせて使用される。好ましいものは、α−酸化鉄、酸化チタンである。
【0149】
非磁性粉末の形状は、針状、球状、多面体状、板状のいずれでもあってもよい。
非磁性粉末の結晶子サイズは、4nm〜1μmが好ましく、40〜100nmがさらに好ましい。結晶子サイズが4nm〜1μmの範囲であれば、分散が困難になることもなく、また好適な表面粗さを有するため好ましい。
これら非磁性粉末の平均粒径は、5nm〜2μmが好ましい。5nm〜2μmの範囲であれば、分散も良好で、かつ好適な表面粗さを有する非磁性層が形成できるため好ましい。ただし必要に応じて平均粒径の異なる非磁性粉末を組み合わせたり、単独の非磁性粉末でも粒径分布を広くしたりして同様の効果をもたせることもできる。とりわけ好ましい非磁性粉末の平均粒径は、10〜200nmである。本発明の磁気記録媒体に使用可能な非磁性粉末の詳細については、特開2009−96798号公報段落[0123]〜[0132]を参照できる。
【0150】
非磁性層には非磁性粉末と共に、カーボンブラックを混合し表面電気抵抗を下げ、光透過率を小さくすると共に、所望のμビッカース硬度を得ることができる。非磁性層のμビッカース硬度は、通常25〜60kg/mm2、好ましくはヘッド当りを調整するために、30〜50kg/mm2であり、薄膜硬度計(日本電気(株)製 HMA−400)を用いて、稜角80度、先端半径0.1μmのダイヤモンド製三角錐針を圧子先端に用いて測定することができる。光透過率は一般に波長900nm程度の赤外線の吸収が3%以下、たとえばVHS用磁気テープでは0.8%以下であることが規格化されている。このためにはゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック等を用いることができる。
【0151】
本発明において、非磁性層に用いられるカーボンブラックの比表面積は好ましくは100〜500m2/g、更に好ましくは150〜400m2/g、DBP吸油量は好ましくは20〜400ml/100g、更に好ましくは30〜200ml/100gである。カーボンブラックの粒子径は好ましくは5〜80nm、より好ましく10〜50nm、更に好ましくは10〜40nmである。カーボンブラックのpHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/mlがそれぞれ好ましい。非磁性層で使用できるカーボンブラックについては、例えば「カーボンブラック便覧」カーボンブラック協会編、を参考にすることができる。それらは市販品として入手可能である。
【0152】
また非磁性層には目的に応じて有機質粉末を添加することもできる。このような有機質粉末としては、例えば、アクリルスチレン系樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン系樹脂粉末、フタロシアニン系顔料が挙げられるが、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、ポリフッ化エチレン樹脂も使用することができる。その製法は、特開昭62−18564号公報、特開昭60−255827号公報に記されているようなものが使用できる。
【0153】
非磁性層の潤滑剤、分散剤等の各種添加剤、溶剤、分散方法その他は、磁性層のそれが適用できる。特に、添加剤の添加量、種類に関しては磁性層に関する公知技術が適用できる。
【0154】
前記放射線硬化性組成物は、前述の各種成分を混合することにより調製することができる。硬化反応のために照射する放射線として、例えば、電子線や紫外線を用いることができる。電子線を使用する場合は、重合開始剤が不要である点で好ましい。放射線照射は公知の方法で行うことができ、その詳細については、例えば特開2009−134838号公報段落[0021]〜[0023]等を参照できる。また、放射線硬化装置や放射線照射硬化の方法などについては、「UV・EB硬化技術」((株)総合技術センター発行)や「低エネルギー電子線照射の応用技術」(2000、(株)シーエムシー発行)などに記載されているような公知技術を用いることができる。中でも、放射線硬化層や非磁性支持体の成分の分解を起こすことなく十分な硬化性を得る観点から、硬化反応は放射線照射量5kGy以上100kGy以下にて行うことが好ましく、10kGy以上50kGy以下にて行うことがより好ましい。
【0155】
ところで、塗布型磁気記録媒体を量産する際には、塗布液を例えば半年以上もの長期にわたり保存することが行われるが、塩化ビニル系の結合剤は一般に安定性が低く、特に放射線硬化性塩化ビニル系樹脂を使用すると塗布液の安定性が著しく低下する現象が見られることがある。これは、保存中に放射線硬化性官能基が反応することにより分子量が変化することが原因と考えられる。
一方、放射線硬化性樹脂の合成反応は、通常、放射線硬化性官能基を保護するための重合禁止剤の存在下で行われる。そこで長期保存中に放射線硬化性官能基が反応することを抑制するため、上記重合禁止剤を増量することが考えられるが、単に重合禁止剤を増量するのみでは、放射線照射時の硬化性の低下を引き起こし強靭な塗膜を得ることが困難となるおそれがある。
これに対し、放射線硬化性塩化ビニル系共重合体はベンゾキノン化合物の存在下で保存することにより、硬化性を損なうことなく、長期間保存安定性を良好に維持することができることが明らかとなった。したがって本発明において非磁性層形成のために使用する放射線硬化性塩化ビニル系共重合体は、長期保存後に使用する場合にはベンゾキノン化合物を含む組成物中で保存することが好ましい。
【0156】
ベンゾキノン化合物とは、ベンゾキノン骨格を含む化合物であり、含まれるベンゾキノン骨格は、以下に示すo−ベンゾキノン骨格であってもp−ベンゾキノン骨格であってもよい。
【0157】
【化29】

【0158】
ベンゾキノン化合物としては、入手性の観点から、p−ベンゾキノン骨格を有する化合物が好ましい。ベンゾキノン化合物に含まれるベンゾキノン骨格は、無置換であっても置換基を有していてもよい。置換基としては、(置換基を有していてもよい)アルキル基、アルコキシル基、水酸基、ハロゲン原子、アリール基、シアノ基、ニトロ基、等の下記例示化合物に含まれる置換基等が挙げられる。また、ベンゾキノン化合物としてはベンゾキノン骨格を1つ有するものを使用してもよく2つ以上有するものを使用してもよい。好ましいベンゾキノン化合物としては、下記例示化合物を挙げることができる。
【0159】
【化30】


【0160】
上記例示化合物の中では、例示化合物(1)〜(22)、(25)〜(33)が好ましく、(1)〜(22)、(25)〜(28)、(30)、(32)、(33)がより好ましく、(1)〜(22)、(25)〜(28)、(30)、(32)の化合物が特に好ましい。
【0161】
放射線硬化性塩化ビニル系共重合体は、ベンゾキノン化合物を1種または2種以上含む組成物中で保存することが好ましい。この際のベンゾキノン化合物の含有量(複数種のベンゾキノン化合物を使用する場合にはそれらの合計量)は、長期保存安定性と硬化性を両立する観点から、共重合体(固形分)に対し、1ppm以上500000ppm以下が好ましく、1ppm以上400000ppm以下がより好ましく、100ppm以100000ppm以下が更に好ましい。
【0162】
放射線硬化性塩化ビニル系共重合体は、ベンゾキノン化合物とともに、フェノール化合物、ピペリジン−1−オキシル化合物、ニトロ化合物およびフェノチアジン化合物からなる群から選ばれる少なくとも一種の化合物を含む組成物中で保存することも好ましい。これら化合物の1種または2種以上を、好ましくは前述のベンゾキノン化合物と併用することにより、放射線硬化性塩化ビニル系共重合体の長期保存安定性を、その硬化性を損なうことなく良好に維持することができる。
以下、上記化合物について説明する。
【0163】
フェノール化合物としては、ヒドロキシフェニル基を有する化合物であれば特に限定されるものではない。ヒドロキシフェニル基は置換基を有していてもよい。置換基としては、アルキル基、アルコキシ基、水酸基等が挙げられる。また、前記フェノール化合物は、置換または無置換のヒドロキシベンゼン骨格を複数個有する(ポリフェノール系化合物)であることもできる。ポリフェノール系化合物としては、特に限定されないが、入手性、効果の観点からビスフェノールA、商品名イルガキュア1010(チバ・スペシャルティ・ケミカルズ社(Ciba Specialty Chemicals Corporation)製)等が好ましい。併用するフェノール化合物の好ましい例としては、p−メトキシフェノール、ハイドロキノン、ポリフェノール系化合物、2,6−ジ−t−ブチル−p−クレゾール等が挙げられる。フェノール化合物は一種単独で使用してもよく、二種以上のフェノール化合物を併用してもよい。
【0164】
本発明においてピペリジン−1−オキシル化合物とは、以下のピペリジン−1−オキシル骨格を有する化合物を意味する。
【0165】
【化31】

【0166】
ピペリジン−1−オキシル化合物としては、置換基を有するピペリジン−1−オキシル骨格を含むものでもよく、無置換のピペリジン−1−オキシル化合物でもよい。置換基としては、アルキル基、アルコキシ基、アミノ基、カルボキシル基、シアノ基、水酸基、イソチオシアネート基、置換基を有していてもよいアルキルカルボニルアミノ基、アリールカルボニルオキシ基、ピペリジン環炭素を含むカルボニル基等の下記例示化合物に含まれる置換基等が挙げられる。また、ピペリジン−1−オキシル化合物としてはピペリジン−1−オキシル骨格を1つ有するものを使用してもよく2つ以上有するものと使用してもよい。好ましいピペリジン−1−オキシル化合物としては、以下の例示化合物(1-a)〜(1-l)を挙げることができる。中でも例示化合物(1-f)、(1-j)、(1-l)、(1-b)、(1-k)が好ましく、(1-f)、(1-j)、(1-l)、(1-b)がより好ましく、(1-f)、(1-j)、(1-l)が更に好ましい。
【0167】
【化32】

【0168】
ニトロ化合物としては、R−NO2で表されるニトロ基を有する化合物であれば特に限定されるものではない。上記においてR部は、例えばアリール基(好ましくは炭素数6〜10のアリール基、例えばフェニル基)、アルキル基(好ましくは、炭素数1〜12のアルキル基、例えば、メチル基、エチル基、プロピル基、イソプロピル基、直鎖または分岐のブチル基、直鎖または分岐のアミル基、直鎖または分岐のヘキシル基、直鎖または分岐のヘプチル基、直鎖または分岐のオクチル基、直鎖または分岐のノニル基、直鎖または分岐のデシル基、直鎖または分岐のウンデシル基、直鎖または分岐のドデシル基であり、ヘテロ原子を含んでいてもよい)である。ニトロ化合物としては、入手性の観点から、ニトロベンゼン、ニトロメタン等が好ましい。
【0169】
フェノチアジン化合物とは、以下に示すフェノチアジン骨格を有する化合物を意味する。
【0170】
【化33】

【0171】
フェノチアジン化合物に含まれるフェノチアジン骨格は、無置換であっても置換基を有していてもよい。置換基としては、ハロゲン原子、置換基を有していてもよいアミノ基、アルコキシ基、アルキルチオ基、アシル基、アリールカルボニル基、トリハロメチル基等の下記例示化合物に含まれる置換基が挙げられる。
【0172】
フェノチアジン化合物としてはフェノチアジン骨格を1つ有するものを使用してもよく2つ以上有するものと使用してもよい。好ましいフェノチアジン化合物としては、下記例示化合物(4-a)〜(4-g)を挙げることができる。なかでも例示化合物(4-b)、(4-c)、(4-d)、(4-e)、(4-f)、(4-g)が好ましく、(4-b)、(4-c)、(4-d)、(4-e)、(4-f)がより好ましく、(4-c)、(4-d)、(4-e)、(4-f)がさらに好ましい。
【0173】
【化34】

【0174】
フェノール化合物、ピペリジン−1−オキシル化合物、ニトロ化合物およびフェノチアジン化合物の使用量(複数種の化合物を使用する場合にはそれらの合計量)は、長期保存安定性と硬化性を両立する観点から、放射線硬化性塩化ビニル系共重合体(固形分)に対し1ppm以上500000ppm以下とすることが好ましく、1ppm以上400000ppm以下とすることがより好ましく、1ppm以上300000ppm以下が更に好ましい。
【0175】
また、放射線硬化性ポリウレタン樹脂に対しては、フェノール化合物と、ピペリジン−1−オキシル化合物、ニトロ化合物、ベンゾキノン化合物およびフェノチアジン化合物からなる群から選ばれる少なくとも一種の化合物の2成分(以下において、フェノール化合物を「成分C」ともいい、ピペリジン−1−オキシル化合物、ニトロ化合物、ベンゾキノン化合物およびフェノチアジン化合物からなる群から選ばれる少なくとも一種の化合物を「成分D」ともいう)により、長期保存安定性を、その硬化性を損なうことなく良好に維持することができる。成分C、Dの詳細は先に説明した通りである。成分Cの使用量(複数種の化合物を使用する場合にはそれらの合計量)は、長期保存安定性と硬化性を両立する観点から、ポリウレタン樹脂に対し、1ppm以上500000ppm以下が好ましく、1ppm以上400000ppm以下がより好ましく、1ppm以上300000ppm以下が更に好ましく、500ppm以上100000ppm以下が特に好ましい。成分Dの使用量(複数種の化合物を使用する場合にはそれらの合計量)は、長期保存安定性と硬化性を両立する観点から、ポリウレタン樹脂の固形分に対し1ppm以上500000ppm以下が好ましく、1ppm以上400000ppm以下がより好ましく、1ppm以上300000ppm以下が更に好ましく、1ppm以上500ppm以下が特に好ましい。
【0176】
ベンゾキノン化合物等の上記化合物は、前記放射線硬化性組成物に添加することができ、または放射線硬化性塩化ビニル系共重合体または放射線硬化性ポリウレタン樹脂の原料化合物を含む組成物に同時または逐次添加してもよい。放射線硬化性塩化ビニル系共重合体、放射線硬化性ポリウレタン樹脂の合成反応、放射線硬化性官能基を導入する反応等の放射線硬化性官能基含有成分が存在する反応系においてベンゾキノン化合物等の上記化合物が存在することが好ましい。反応中に添加される化合物は、反応中に放射線硬化性官能基が反応することを抑制する役割を果たすとともに、放射線照射時の硬化性を損なわずに保存安定性を高める役割を果たすと考えられる。
以上説明した化合物は、公知の方法または前述の方法により合成することができる。また市販品として入手可能なものもある。
【0177】
非磁性支持体
本発明に用いることのできる非磁性支持体としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。
これらの支持体はあらかじめコロナ放電、プラズマ処理、易接着処理、熱処理などを行ってもよい。また、本発明に用いることのできる非磁性支持体の表面粗さはカットオフ値0.25mmにおいて中心平均粗さRa3〜10nmであることが好ましい。
【0178】
バックコート層
一般に、コンピュータデータ記録用の磁気テープは、ビデオテープ、オーディオテープに比較して繰り返し走行性が強く要求される。このような高い保存安定性を維持させるために、非磁性支持体の磁性層が設けられた面とは反対の面にバックコート層を設けることもできる。バックコート層用塗布液は、研磨剤、帯電防止剤などの粒子成分と結合剤とを有機溶媒に分散させることにより形成することができる。粒状成分として各種の無機顔料やカーボンブラック、またはポリマー粒子を使用することができる。また、結合剤としては、例えば、ニトロセルロース、フェノキシ樹脂、塩化ビニル系樹脂、ポリウレタン等の樹脂を単独またはこれらを混合して使用することができる。
【0179】
本発明の磁気記録媒体は、磁性層、非磁性層、任意に形成されるバックコート層に加えて、平滑化層、接着層等を有することもできる。それらについては、公知技術を適用することができる。
【0180】
層構成
本発明の磁気記録媒体において、非磁性支持体の好ましい厚さは3〜80μmである。また、上記バックコート層の厚さは、例えば0.1〜1.0μm、好ましくは0.2〜0.8μmである。
【0181】
磁性層の厚さは、用いる磁気ヘッドの飽和磁化量やヘッドギャップ長、記録信号の帯域により最適化されるものであるが、一般には0.01〜0.10μm以下であり、好ましくは0.02μm以上0.08μm以下であり、さらに好ましくは0.03〜0.08μmである。また、磁性層の厚さ変動率は±50%以内が好ましく、さらに好ましくは±40%以内である。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。
【0182】
非磁性層の厚さは、0.2〜3.0μmであることが好ましく、0.3〜2.5μmであることがより好ましく、0.4〜2.0μmであることがさらに好ましい。なお、本発明の磁気記録媒体の非磁性層は、実質的に非磁性であればその効果を発揮するものであり、例えば不純物として、あるいは意図的に少量の磁性体を含んでいても、本発明の効果を示すものであり、本発明の磁気記録媒体と実質的に同一の構成とみなすことができる。なお、実質的に同一とは、非磁性層の残留磁束密度が10mT(100G)以下または抗磁力が7.96kA/m(100 Oe)以下であることを示し、好ましくは残留磁束密度と抗磁力を持たないことを意味する。
【0183】
製造方法
磁性層、非磁性層、バックコート層等の各層を形成するための塗布液を製造する工程は、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程からなることが好ましい。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。本発明で用いられる強磁性粉末、非磁性粉末、結合剤、カーボンブラック、研磨剤、帯電防止剤、潤滑剤、分散剤、その他添加剤、溶剤などすべての原料はどの工程の最初または途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。各層形成用塗布液を調製するためには、従来の公知の製造技術を一部の工程として用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダなど強い混練力をもつものを使用することが好ましい。ニーダを用いる場合は、強磁性粉末または非磁性粉末100質量部に対して15〜500質量部の結合剤(但し、全結合剤の30質量%以上が好ましい)を使用して混練処理することが好ましい。これらの混練処理の詳細については特開平1−106338号公報、特開平1−79274号公報に記載されている。また、磁性層用塗布液および非磁性層用塗布液を分散させるには、ガラスビーズを用いることができる。ガラスビーズ以外には、高比重の分散メディアであるジルコニアビーズ、チタニアビーズ、スチールビーズが好適である。これら分散メディアの粒径と充填率は最適化して用いられる。分散機は公知のものを使用することができる。
【0184】
本発明の磁気記録媒体は、例えば、走行下にある非磁性支持体の表面に、非磁性層塗布液を所定の膜厚となるように塗布および放射線硬化して非磁性層(放射線硬化層)を形成し、次いでその上に、磁性層塗布液を所定の膜厚となるようにして塗布して磁性層を形成することにより製造することができる。ここで、複数の磁性層塗布液を逐次または同時に重層塗布することも可能である。
一般に、下層の非磁性層用塗布液と上層の磁性層用塗布液とを逐次で重層塗布する場合には、磁性層塗布液に含まれる溶剤に非磁性層が一部溶解する場合がある。ここで非磁性層を高い硬化性を有する放射線硬化性組成物から形成される放射線硬化層とすれば、放射線照射により非磁性層中で結合剤成分が重合・架橋し高分子量化が生じるため、磁性層塗布液に含まれる溶剤への溶解を抑制ないしは低減することができる。また、非磁性層の硬化性が高く磁性層との界面での混ざり合いを防止できることは、界面変動による磁性層表面平滑性低下を抑制するうえで有利である。この点から、本発明では非磁性層を放射線硬化層とするが、中でも、高い硬化性を有する前記した共重合体Aを使用することが有効である。
【0185】
上記磁性層塗布液または非磁性層塗布液を塗布する塗布機としては、エアードクターコート、ブレードコート、ロッドコート、押出しコート、エアナイフコート、スクイズコート、含浸コート、リバースロールコート、トランスファーロールコート、グラビヤコート、キスコート、キャストコート、スプレイコート、スピンコート等が利用できる。これらについては例えば(株)総合技術センター発行の「最新コーティング技術」(昭和58年5月31日)を参考にできる。放射線硬化層を形成する際には、塗布液を塗布して形成した塗布層を放射線照射によって放射線硬化させる。放射線照射処理の詳細は、前述の通りである。また、塗布工程後の媒体には、磁性層の配向処理、表面平滑化処理(カレンダー処理)、熱収縮低減のための熱処理等の各種の後処理を施すことができる。
それらの処理の詳細については、例えば特開2009−96798号公報段落[0146]〜[0148]を参照できる。先に説明したように、本発明によれば走行中の磁性層表面の削れの抑制と優れたカレンダー成形性を両立することができる。
優れたカレンダー成形性を有することの指標としては、WYKO社製光干渉式表面粗さ計HD−2000型を用いてカットオフ値0.25mmの条件で測定250μm×250μm面積において測定される磁性層表面の中心面平均表面粗さRaの変化量(低下量)ΔRaを用いることができ、本発明によれば、走行中の磁性層表面の削れを抑制したうえで、ΔRaが1.5nm以上、例えばΔRaが1.5〜3.0nmのカレンダー成形性を実現することができる。カレンダー処理条件については、上記特開2009−96798号公報に記載の通り、カレンダーロールの温度、即ちカレンダー温度は60〜100℃の範囲、好ましくは70〜100℃の範囲、特に好ましくは80〜100℃の範囲であり、圧力は100〜500kg/cmの範囲、好ましくは200〜450kg/cmの範囲であり、特に好ましくは300〜400kg/cmの範囲の条件が好ましい。また、カレンダー温度を非磁性層のガラス転移温度以上に設定すると、カレンダー処理時に非磁性層が柔軟になりクッション性がよりいっそう高まるため、カレンダー成形性を大きく高めることができ好ましい。カレンダー成形性を向上する観点から、カレンダー温度は、非磁性層のガラス転移温度Tg+5℃〜該Tg+30℃の範囲とすることがより好ましい。
その後、作製された磁気記録媒体原反を裁断機などを使用して所望の大きさに裁断して磁気記録媒体を得ることができる。
【0186】
以上説明した本発明の磁気記録媒体は、前述のようにカレンダー成形性を高めることにより高度な表面平滑性を有し得るものである。本発明の磁気記録媒体は、後述の実施例に示す測定条件により原子間力顕微鏡(AFM)によって測定される磁性層の中心面平均表面粗さRaとして、4nm以下、例えば2〜4nmの高い表面平滑性を実現することができる。
【0187】
更に本発明は、本発明の磁気記録媒体の製造方法に関する。本発明の磁気記録媒体の製造方法は、前記放射線硬化性組成物の塗布および放射線硬化後、形成された放射線硬化層上に磁性層を形成し、次いで上記放射線硬化層のガラス転移温度以上のカレンダー温度でカレンダー処理を行うものである。その詳細は、先に説明した通りである。本発明の製造方法によれば、表面削れ物の発生が抑制された磁性層を有する磁気記録媒体において、カレンダー処理により表面平滑性を格段に向上することができる。
【実施例】
【0188】
以下に本発明を実施例によりさらに具体的に説明する。ただし本発明は、実施例に示す態様に限定されるものではない。以下に示す「部」、「%」は、特に示さない限り質量部、質量%を示す。なお、以下に記載する1H NMRの測定には、400MHzのNMR(BRUKER社製AVANCEII−400)を使用した。
【0189】
<結合剤樹脂のガラス転移温度および80℃における貯蔵弾性率の測定方法>
下記実施例および比較例における結合剤樹脂のガラス転移温度Tgおよび80℃での貯蔵弾性率E’は、以下に記載の動的粘弾性測定によって求められた値である。
結合剤樹脂溶液を、メチルエチルケトン:シクロヘキサノンの比率が50:50(質量比)の溶液で希釈して固形分濃度が22質量%になるように調製する。その後、乾燥後の厚さが20μmになるようにアラミドベース上に塗布、乾燥させてクリア膜を得る。放射線硬化性樹脂を含むクリア膜は、酸素濃度200ppm以下の雰囲気で、40kGyの放射線を照射して硬化させる。その後、得られたクリア膜を、幅3.35mm、長さ5cmに切断し、動的粘弾性測定装置(TOYO BALDWIN製レオバイブロン、昇温速度2℃/分、測定周波数110Hz)で30〜140℃までの損失弾性率(E”)のピーク温度を結合剤樹脂のガラス転移温度(以下、「Tg1」と記載する)とし、併せて同測定において80℃における貯蔵弾性率E’を求める。
【0190】
<非磁性層のガラス転移温度の測定方法>
下記実施例および比較例における非磁性層のガラス転移温度は、以下に記載の動的粘弾性測定によって求められた値である。
対応する実施例、比較例と同様の方法で調製した非磁性層塗布液を、アラミドベース上に対応する実施例、比較例と同じ厚さで塗布、乾燥し同条件で硬化(加熱または放射線硬化)したシートを、幅12.65mm、長さ約10mmに切断した試料について、動的粘弾性測定装置(エスアイアイナノテクノロジー社製DMS6100)を用いて、昇温速度2℃/min、測定周波数は10Hzとして、測定温度範囲20〜200℃における損失正接(tanδ1)を測定する。これとは別に、使用したベース単体についても、上記と同様の方法で測定温度範囲20〜200℃における損失正接(tanδ2)を測定する。各温度における試料とベースフィルムのtanδの差分(tanδ1(T)−tanδ2(T)、Tは測定温度)を、20〜200℃の範囲で温度に対してプロットする。プロットから得られた極大値における温度を、非磁性層のガラス転移温度(以下、「Tg2」と記載する)とする。
【0191】
1.放射線硬化性塩化ビニル系共重合体の調製例および評価
【0192】
<調製例1−1>
(1)塩化ビニル系共重合体の重合
塩化ビニル:100部
アリルグリシジルエーテル:11.9部
2−ヒドロキシプロピルメタアクリレート:4.1部
アリル−2−ヒドロキシエチルエーテル:3.6部
ラウリル硫酸ソーダ:0.8部
水:117部
を仕込み、50℃で攪拌した。
その後、
過硫酸カリウム:0.6部
を仕込んで乳化重合を開始した。反応10時間後、重合器の圧力が2kg/cm2になった時点で冷却し、未反応塩化ビニルを回収した後、脱液、洗浄、乾燥して、共重合比(モル%)として、
塩化ビニル:93.0モル%
アリルグリシジルエーテル:4.0モル%
2−ヒドロキシプロピルメタアクリレート:1.0モル%
アリル−2−ヒドロキシエチルエーテル:1.0モル%
アリルグリシジルエーテルのエポキシ基が硫酸で開環した単位:1.0モル%
の塩化ビニル系共重合体(1)を得た。
【0193】
(2)放射線硬化性官能基の導入反応
2Lフラスコに、塩化ビニル系共重合体(1)の30%シクロヘキサノン溶液416g(固形分124.8g)を添加して攪拌速度210rpmで撹拌した。次いで、1,4−ベンゾキノン0.28g(2.60mol、20000ppm)を添加し撹拌溶解した。
次に、反応触媒としてジラウリン酸ジブチル錫0.125gを添加し、40〜50℃に昇温して撹拌した。次いで、放射線硬化性官能基導入成分として2−メタクリロイルオキシエチルイソシアネート(昭和電工社製MOI)13.75g(0.09mol)を30分かけて滴下し、滴下終了後、40℃で2時間攪拌した後、室温まで冷却して、放射線硬化性官能基(メタクリロイルオキシ基)含有塩化ビニル系共重合体(具体例化合物(1)、以下、「放射線硬化性塩化ビニル系共重合体d」と記載)を含有する樹脂溶液(放射線硬化性組成物)を得た。
上記放射線硬化性官能基(メタクリロイルオキシ基)含有塩化ビニル系共重合体の1H NMRデータおよびその帰属を以下に示す。
放射線硬化性官能基含有塩化ビニル系共重合体(具体例化合物(1)):1H-NMR (DMSO-d6) δ(ppm) = 6.2-6.0 (C=C二重結合のピーク), 5.8-5.6 (C=C二重結合のピーク), 4.6-4.2(br.,m), 4.2-4.0(m), 3.9-3.1(m), 3.1-3.0(br.,s), 2.7-2.65(br.,s), 2.60-2.0(m)、2.0-0.7(br.,m).
【0194】
以上の工程で得られた樹脂溶液の固形分は31.0%であった。上記樹脂溶液調製後1日以内に、この溶液に含まれる放射線硬化性基含有塩化ビニル系共重合体の質量平均分子量(Mw)および数平均分子量(Mn)を後述の方法で求めたところ、Mw=5.1万、Mn=2.9万であった。上記放射線硬化性官能基含有塩化ビニル系共重合体(具体例化合物(1))のガラス転移温度(Tg1)、硫酸塩基濃度およびメタクリロイルオキシ基濃度を後述の方法で測定したところ、Tg1=75℃、硫酸塩基濃度=70mmol/kg、メタクリロイルオキシ基濃度=340mmol/kgであった。
【0195】
<調製例1−2>
調製例1−1の放射線硬化性官能基の導入反応において、2−メタクリロイルオキシエチルイソシアネート13.75gの代わりに、2−アクリロイルオキシエチルイソシアネート(昭和電工製Karenz_AOI)12.51gを使用した点以外は、調製例1−1と同様の方法で放射線硬化性官能基含有塩化ビニル系共重合体(具体例化合物(3))樹脂溶液を得た。得られた放射線硬化性官能基含有塩化ビニル系共重合体の1H NMRデータおよびその帰属を以下に示す。
1H-NMR (DMSO-d6) δ(ppm) = 6.2-6.0 (C=C二重結合のピーク),5.8-5.6 (C=C二重結合のピーク), 4.6-4.2(br., m),4.2-4.0(br., m), 3.9-3.1(m), 3.1-3.0(br.,s)、2.7-2.65(br.,s)、2.60-2.0(m)、2.0-0.7(br.,m).
調製例1−1と同様に、平均分子量、Tg1、硫酸塩基濃度、放射線硬化性官能基濃度の測定を行ったところ、表1の結果が得られた。
【0196】
<調製例1−3>
調製例1−1の放射線硬化性官能基の導入反応において、2−メタクリロイルオキシエチルイソシアネート13.75gの代わりに、1,1−ビス(アクリロイルオキシメチル)エチルイソシアネート(昭和電工製Karenz_BEI)21.20gを使用した点以外は、調製例1−1と同様の方法で放射線硬化性官能基含有塩化ビニル系共重合体(具体例化合物(4))の樹脂溶液を得た。得られた放射線硬化性官能基含有塩化ビニル系共重合体の1H NMRデータおよびその帰属を以下に示す。
1H-NMR (DMSO-d6) δ(ppm) = 6.2-6.0 (C=C二重結合のピーク),5.8-5.6 (C=C二重結合のピーク), 4.6-4.2(br.,m), 4.2-4.0(br.,m), 3.9-3.1(m), 3.1-3.0(br.,s), 2.7-2.65(br.,s), 2.60-2.0(m), 2.0-0.7(br.,m).
調製例1−1と同様に、平均分子量、Tg1、硫酸塩基濃度、放射線硬化性官能基濃度の測定を行ったところ、表1の結果が得られた。
【0197】
<放射線硬化性塩化ビニル系共重合体の評価方法>
(1)平均分子量の測定
調製例の各樹脂溶液中に含まれる放射線硬化性官能基含有塩化ビニル系共重合体の平均分子量(Mw)を、0.3%の臭化リチウムを含有するDMF溶媒を用いてGPC(ゲルパーミエーションクロマトグラフィー)を使用し、標準ポリスチレン換算で求めた。
(2)硫酸(塩)基濃度
蛍光X線分析により硫黄(S)元素のピーク面積から硫黄元素量を定量し、放射線硬化性官能基含有塩化ビニル系共重合体1kgあたりの硫黄元素量に換算し、放射線硬化性官能基含有塩化ビニル系共重合体中の硫酸(塩)基濃度を求めた。
(3)共重合体中の放射線硬化性官能基含有量
NMRの積分比より算出した。
(4)ガラス転移温度
前述の方法によりTg1を測定した。
【0198】
【表1】

【0199】
<調製例1−4>
特開2004−352804号公報記載の放射線硬化性塩化ビニル系共重合体(以下、「放射線硬化性塩化ビニル系共重合体b」と記載)の合成
特開2004−352804号公報段落[0040]〜[0041]に記載の方法にしたがい、特開2004−352804号公報の調製例1の樹脂(放射線硬化性塩化ビニル系共重合体)を得た。調製例1−1と同様に、Tg1および放射線硬化性官能基濃度の測定を行ったところ、Tg1は70℃、放射線硬化性官能基濃度は1283 mmol/kgであった。
【0200】
<調製例1−5>
調製例1−1の放射線硬化性官能基の導入反応において、1,4−ベンゾキノンを添加しなかった点以外は調製例1−1と同様の方法で放射線硬化性官能基含有塩化ビニル系共重合体(具体例化合物(1))の樹脂溶液を得た。調製例1−1と同様に、平均分子量測定、Tg1測定、硫酸塩基濃度、放射線硬化性官能基濃度の測定を行ったところ、調製例1−1と同じ測定値が得られた。
【0201】
<樹脂溶液(放射線硬化性組成物)の評価方法>
(1)放射線硬化性の評価
調製例1〜1〜1−5で得られた各樹脂溶液を、固形分濃度約20%に希釈し試料溶液とした。この試料溶液をアラミドベース上にブレード(300μm)を用いて塗布し、室温で二週間乾燥し、塗布厚み30〜50μmの塗布膜を得た。
次いでこの塗布膜に電子線照射器を用いて、10kGyの強度で3回、計30kGyの電子線を照射した。
次いで、電子線を照射した膜を、テトラヒドロフラン(THF)100ml中に浸漬し、60℃2時間抽出した。抽出終了後、THF100mLで膜を洗浄し、真空乾燥で140℃3時間乾燥させた。次いで、抽出終了後の(乾燥させた膜の)残分の質量をゲル分の質量とし、(ゲル分/抽出前の塗布膜の質量)×100で算出される値をゲル分率として表2に示す。ゲル分率が高いほど塗膜強度が高く放射線硬化が良好に進行したことを示す。
(2)長期保存安定性の評価
調製例1〜1〜1−5で得られた樹脂溶液を23℃、密閉の条件で保存して、GPCにより得られる分子量に変化が現れるまでの日数を調べた。結果を表3に示す。
【0202】
【表2】

【0203】
【表3】

【0204】
<評価結果>
表2に示すように、調製例1−1〜1−3、1−5の樹脂溶液は、調製例1−4の樹脂溶液と比べて高い硬化性を示した。この結果から、一般式(1)で表される構造単位を有する放射線硬化性塩化ビニル系共重合体が高い硬化性を有することが確認できる。
また、表3に示す結果から、放射線硬化性塩化ビニル系共重合体をベンゾキノン化合物とともに含む樹脂溶液(調製例1−1〜1−3)は、優れた経時安定性を示し長期保存安定性が良好であることが確認できる。
通常、長期保存安定性を高めることが可能な成分を添加すると硬化性が低下するのに対し、調製例1−1〜1−3では表2に示すように、放射線照射して得られた硬化膜のゲル分率が高く硬化性も良好であったことから、放射線硬化性塩化ビニル系共重合体に対してベンゾキノン化合物を使用することにより、その硬化性を損なうことなく、保存安定性を高めることができることが示された。
【0205】
参考実験
通常、放射線硬化性樹脂の合成時には多官能(メタ)アクリレートモノマーが副生することが知られており、調製例1−1では、放射線硬化性塩化ビニル系共重合体dの合成時に、以下の2官能メタクリレートモノマー(以下、「メタクリレートモノマーA」と記載する。)が副生することが予想された。
【0206】
【化35】

【0207】
そこで以下の方法により、メタクリレートモノマーAの副生を確認した。
【0208】
(1)メタクリレートモノマーAの合成
2−メタクリロイルオキシエチルイソシアネート(昭和電工社製MOI)10gをアセトン100mlに溶解した。内温30〜50℃の範囲で、水100gを滴下し2時間攪拌した。酢酸エチル200gを添加し、10分攪拌を行い静置した後に水相を廃棄した。水100gを添加し、10分攪拌を行い静置後に水相を廃棄した。得られた有機相を外温40℃でエバポレーターを使い濃縮乾固させた。生成物のNMRデータおよびその帰属を以下に示す。
1H-NMR (400MHz, DMSO, 25℃): 6.12(2H, t), 6.05 (2H,s), 5.68 (2H, t), 4.05 (4H, t), 3.82 (4H, q) , 1.88(6H, s)ppm
【0209】
【化36】

【0210】
(2)メタクリレートモノマーA副生の確認
2−メタクリロイルオキシエチルイソシアネートのNMRデータにおいて、代表的なプロトンの帰属は以下の通りとなる。放射線硬化性塩化ビニル系共重合体d、メタクリレートモノマーA、2−メタクリロイルオキシエチルイソシアネートのNMRデータから明らかなように、6.12ppmのプロトンのピークはメタクリレートモノマーAのみが有するため、このピークが存在することによりメタクリレートモノマーAが副生していることを確認することができる。そこで調製例1−1で得た樹脂溶液の1H NMR測定を行ったところ、6.12ppmにプロトンのピークが確認された。この結果から、調製例1−1でメタクリレートモノマーAが副生したことが確認できる。なお、上記(1)で合成したメタクリレートモノマーAと積分値を比較することで、調製例1−1で得た樹脂溶液のメタクリレートモノマーAの含有量を求めたところ、7.18gであった。また、NMRデータにおいて、放射線硬化性塩化ビニル系共重合体dとメタクリレートモノマーAの積分値を比較することにより、2−メタクリロイルオキシエチルイソシアネートの放射線硬化性塩化ビニル系共重合体dに導入された量とメタクリレートモノマーAに導入された量の比率を求めたところ、前者:後者=47.8:52.2であり、未反応の2−メタクリロイルオキシエチルイソシアネートは検出されなかった。
以上の結果と仕込み量から、調製例1−1で得られた樹脂溶液中の放射線硬化性塩化ビニル系共重合体dの生成量は131.4gと算出される。
【0211】
【化37】

【0212】
上記と同様の方法で、調製例1−2および調製例1−3において副生するメタクリレートモノマーの同定と含有量の算出を行った。結果を以下に示す。
【0213】
【化38】

1H-NMR (400MHz, DMSO, 25℃): 6.42(2H, d), 6.13 (2H,dd), 5.76 (2H, d), 4.98(2H, br), 4.24 (4H, t), 3.50 (4H, q)
【0214】
【化39】

1H-NMR (400MHz, DMSO, 25℃): 6.43(4H, d), 6.13 (4H,dd), 5.87 (4H, d), 4.67(8H, s), 4.35 (2H, br), 1.42 (6H, s)
【0215】
調製例1−2で得られた樹脂溶液中の放射線硬化性官能基含有塩化ビニル系共重合体(具体例化合物(3))の生成量:130.7g、メタクリレートモノマーB副生量:5.9g
【0216】
調製例1−3で得られた樹脂溶液中の放射線硬化性官能基含有塩化ビニル系共重合体(具体例化合物(4))の生成量:134.9g、メタクリレートモノマーC副生量:10.1g
【0217】
上記の通り、調製例1−1においてメタクリレートモノマーAの副生が確認されたが、副生するメタクリレートモノマーの存在は、放射線硬化性組成物の放射線硬化性やガラス転移温度に大きな影響を及ぼすものではない。したがって、表1に示したガラス転移温度Tg1は、調製例1−1〜1−3で合成された放射線硬化性官能基含有塩化ビニル系共重合体のガラス転移温度と見なすことができる。この点を示すため、調製例1−1−1として、メタクリレートモノマーAを含まない樹脂溶液を以下の方法で調製した。
【0218】
(調製例1−1−1)
調製例1−1と同様の方法で樹脂溶液を得た。得られた樹脂溶液200gに内温50℃でアセトン200gを添加した。その後、内温45〜55℃の範囲でメタノール500gを滴下すると固形物が析出した。析出した固形物を濾過し、アセトン300gを添加し50℃で攪拌し完溶させた。内温45〜55℃の範囲でメタノール500gを滴下すると固形物が析出した。析出した固形物を濾過し、真空下30℃で24時間乾燥させた。
上記操作により得られた生成物の1H NMR測定を行ったところ、6.12ppmにはプロトンのピークが確認されなかった。この結果から、反応物から副生物であるメタクリレートモノマーAが上記操作により除去されたと判断することができる。
次いで、上記操作により得られた生成物の放射線硬化性およびガラス転移温度を、前述の方法により測定したところ、ゲル分率は84%、ガラス転移温度Tg1は75℃であり調製例1−1で得られた結果と同等であった。
以上の結果から、合成時に副生する多官能(メタ)アクリレートモノマーは放射線硬化性組成物の放射線硬化性やガラス転移温度に大きな影響を及ぼすものではなく、したがって樹脂溶液において測定されたガラス転移温度などの各種物性は、樹脂溶液に含まれる放射線硬化性樹脂の物性であると判断することができる。
【0219】
次に、調製例1−1で得た放射線硬化性塩化ビニル系共重合体dとメタアクリロイルオキシ基濃度が異なる放射線硬化性塩化ビニル共重合体d’、d”の合成例を示す。
【0220】
(調製例1−1−2)
放射線硬化性塩化ビニル系共重合体d’の合成
2−メタクリロイルオキシエチルイソシアネート滴下量を6.88g(0.04mol)に変更した点以外は調製例1−1と同様の方法で放射線硬化性塩化ビニル系共重合体d’を含有する樹脂溶液を得た。
得られた樹脂溶液について、上記方法によりメタアクリレートモノマーAの副生が確認された。樹脂溶液中の放射性硬化性官能基含有塩化ビニル共重合体d‘と副生したメタアクリレートモノマーAの含有量を上記方法により求めたところ、129.2gと2.51gであった。また、上記と同様の方法により、NMRデータから未反応の2−メタクリロイルオキシエチルイソシアネートが存在しないことを確認するとともに、2−メタクリロイルオキシエチルイソシアネートの放射線硬化性塩化ビニル系共重合体d’に導入された量とメタクリレートモノマーAに導入された量の比率を求めたところ、前者:後者=63.5:36.5であった。前述の方法で、放射線硬化性塩化ビニル系共重合体d’中のメタクリロイルオキシ基濃度およびガラス転移温度を求めたところ、メタクリロイルオキシ基濃度は230mmol/kg、ガラス転移温度は73℃であった。
【0221】
(調製例1−1−3)
放射線硬化性塩化ビニル系共重合体d”の合成
2−メタクリロイルオキシエチルイソシアネート滴下量を3.43g(0.02mol)に変更した点以外は実施例1と同様の方法で放射線硬化性塩化ビニル系共重合体d”を含有する樹脂溶液を得た。得られた樹脂溶液について、上記方法によりメタアクリレートモノマーAの副生が確認された。樹脂溶液中の放射性硬化性官能基含有塩化ビニル共重合体d‘’と副生したメタアクリレートモノマーAの含有量を上記方法により求めたところ、127.5gと0.78gであった。また、上記と同様の方法により、NMRデータから未反応の2−メタクリロイルオキシエチルイソシアネートが存在しないことを確認するとともに、2−メタクリロイルオキシエチルイソシアネートの放射線硬化性塩化ビニル系共重合体d”に導入された量とメタクリレートモノマーA中に導入された量の比率を求めたところ、前者:後者=77.4:22.6であった。前述の方法で、放射線硬化性塩化ビニル系共重合体d”中のメタクリロイルオキシ基濃度およびガラス転移温度を求めたところ、メタクリロイルオキシ基濃度は140mmol/kg、ガラス転移温度は75℃であった。
【0222】
また、調製例1−1〜1−3において、放射線硬化性官能基を導入する塩化ビニル系共重合体として、市販の塩化ビニル系共重合体(日本ゼオン製MR−104、カネカ製MR−104)を使用して得られた樹脂溶液について、ガラス転移温度等の各種物性を測定したところ、調製例1−1〜1−3と同様の物性が得られた。
【0223】
2.ポリウレタン樹脂溶液の調製例
【0224】
<調製例2−1(ポリウレタン樹脂の合成)>
温度計、攪拌機、ヴィグリュー管、リービッヒ冷却器を具備した反応容器にテレフタル酸ジメチルエステル190部、5−スルホイソフタル酸ジメチルエステル5.9部、プロピレングリコール152部、およびテトラブトキシチタン0.2部を仕込み200〜230℃で4時間エステル交換反応を行った。次いで10分かけて240℃まで昇温すると同時に徐々に減圧し30分間反応させ重合を終了しポリエステルポリオール1を得た。
得られたポリエステルポリオール1:100部をMEK(メチルエチルケトン):37部およびトルエン:37部に溶解し、MDI(4,4’−ジフェニルメタンジイソシアネート):12部、ネオペンチルグリコール1部を加え、触媒としてジブチルチンジラウレート:0.05部を添加し、80℃で5時間反応させた。次いで、MEK:94部、トルエン:94部で溶液を希釈し、ポリウレタン樹脂(以下、「ポリエステルポリウレタン樹脂a」と記載)(Mn=25000、SO3Na基濃度=87mmol/kg、ウレタン基濃度=約1.2mmol/g)を得た。
【0225】
<調製例2−2(放射線硬化性ポリウレタン樹脂の合成)>
(1)ポリエステル樹脂の合成
5−スルホイソフタル酸ジメチルナトリウム(東京化成製)159.7部、エステルグリコール(三菱化学製)275.2部、酢酸亜鉛2水和物(和光純薬製)2.4部を245℃で加熱した。得られてくる蒸留物をディーンスターク管を用いて蒸留留去しながら、6時間攪拌した。得られた固体を取り出し、以下の構造を有するポリエステルポリオール(以下、「ポリエステルポリオール2」と記載)を得た。得られたポリエステルポリオールの質量平均分子量および質量平均分子量/数平均分子量比(Mw/Mn)をTHF溶媒を用いて標準ポリスチレン換算で求めた。質量平均分子量は1000、Mw/Mn=1.85であった。
【0226】
【化40】

【0227】
(2)放射線硬化性ポリウレタン樹脂の合成
フラスコに、鎖延長剤として、4,4’−(プロパン−2,2−ジイル)ジフェノールのメチルオキシラン付加物(ADEKA社製BPX−1000、質量平均分子量1000)60.0部、グリセロールメタクリレート(日本油脂社製ブレンマーGLM)6.2部(濃度355.4mmol/kg)、およびジメチロールトリシクロデカン(OXEA社製TCDM)10.00部、極性基導入成分としてポリエステルポリオール2 3.50部、重合溶媒としてシクロヘキサノン159.4部、p−メトキシフェノール0.24部を添加した。次いで、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)35.7部を添加した。次いで、重合触媒としてジ−n−ブチルチンラウレート0.33部を添加し、80℃に昇温して5時間撹拌した。反応終了後シクロヘキサノン120.2部を添加し、ポリウレタン樹脂溶液を得た。ウレタン合成後、得られたポリウレタン樹脂溶液に、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル(4−OH−TEMPO)をポリウレタン固形分に対し50ppm添加した。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂(以下、「放射線硬化性ポリウレタン樹脂c」と記載)の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を前述の方法により測定したところ、Mw=4.8万、Mn=2.5万、スルホン酸(塩)基含有量60.7mmol/kgであった。また、GPCにて残存モノマーは確認されなかったため、放射線硬化性官能基含有量は、仕込み比率から336.0mmol/kgと算出される。
【0228】
<調製例2−3(放射線硬化性ポリウレタン樹脂の合成)>
【0229】
(1)スルホン酸塩基含有ジオール化合物の合成
フラスコに、蒸留水100ml、タウリン50g(0.400mol)、和光純薬製KOH 22.46g(純度87%)を添加し、内温を50℃に昇温して内容物を完全に溶解した。
次いで、内温を40℃に冷却し、ブチルグリシジルエーテル 140.4g(1.080mol)を30分かけて滴下した後、50℃に昇温して2時間攪拌した。溶液を室温まで冷却し、トルエン100ml添加して、分液し、トルエン層を廃棄した。次いで、シクロヘキサノン400ml添加し、110℃に昇温してディーンスタークで水を除去してスルホン酸塩基含有ジオール化合物の50%シクロヘキサノン溶液を得た。生成物の1H NMRデータを以下に示す。NMR分析結果から、生成物は特開2009−96798号公報記載の例示化合物(S−31)に加えて、同公報記載の例示化合物(S−64)等、その他の化合物も含む混合物であることが確認された。
1H NMR (CDCl3): δ(ppm) =4.5(br.), 3.95-3.80 (m), 3.50-3.30 (m),3.25-2.85 (m), 2.65-2.5 (m),2.45-2.35(m),1.6-1.50 (5重線), 1.40-1.30 (6重線),1.00-0.90 (3重線).
(2)放射線硬化性ポリウレタン樹脂の調製
フラスコに、鎖延長剤として、4,4’−(プロパン−2,2−ジイル)ジフェノールのメチルオキシラン付加物(ADEKA社製BPX−1000、質量平均分子量1000)57.50g、グリセロールメタクリレート(日本油脂社製ブレンマーGLM)6.50g(濃度355.44mmol/kg)、およびジメチロールトリシクロデカン(OXEA社製TCDM)10.50g、例示化合物(S−31)の50%シクロヘキサノン溶液6.80g、重合溶媒としてシクロヘキサノン104.26g、p−メトキシフェノール 0.240gを添加した。次いで、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)42.21gとシクロヘキサノン51.47gの溶液を15分かけて滴下した。次いで、重合触媒としてジ−n−ブチルチンラウレート0.361gを添加し、80℃に昇温して3時間撹拌した。反応終了後シクロヘキサノン121.28gを添加し、ポリウレタン樹脂溶液を得た。ウレタン合成後、得られたポリウレタン樹脂溶液に4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル(4−OH−TEMPO)をポリウレタン固形分に対し50ppm添加した。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂(以下、「放射線硬化性ポリウレタン樹脂e」と記載)の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を前述の方法により測定したところ、Mw=3.6万、Mn=2.4万、スルホン酸(塩)基含有量69.66mmol/kgであった。また、GPCにて残存モノマーは確認されなかったため、放射線硬化性官能基含有量は、仕込み比率から355.44mmol/kgと算出される。
【0230】
<調製例2−4(ポリウレタン樹脂の合成)>
フラスコに、前記ポリエステル1 14.0部、水素化ビスフェノールA 61.0部、アデカポリエーテルBPX−1000 60.0部、シクロヘキサノン296.4部、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)79.6部を添加した。次いで、ジ−n−ブチルチンラウレート0.21部を添加し、80℃に昇温して5時間撹拌した。反応終了後シクロヘキサノン197.5部を添加し、ポリウレタン樹脂溶液を得た。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂(以下、「ポリエーテルポリウレタン樹脂f」と記載)の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を前述の方法により測定したところ、Mw=7.0万、Mn=4.1万、スルホン酸(塩)基含有量65.2mmol/kgであった。
【0231】
<調製例2−5(放射線硬化性ポリウレタン樹脂の合成)>
フラスコに、鎖延長剤として、4,4’−(プロパン−2,2−ジイル)ジフェノールのメチルオキシラン付加物(ADEKA社製BPX−1000、質量平均分子量1000)70.50g、グリセロールメタクリレート(日本油脂社製ブレンマーGLM)6.50g(濃度355.44mmol/kg)、およびジメチロールトリシクロデカン(OXEA社製TCDM)3.90g、例示化合物(S−31)の50%シクロヘキサノン溶液6.80g、重合溶媒としてシクロヘキサノン116.41g、p−メトキシフェノール 0.240gを添加した。次いで、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)32.32gとシクロヘキサノン44.64gの溶液を15分かけて滴下した。次いで、重合触媒としてジ−n−ブチルチンラウレート0.361gを添加し、80℃に昇温して3時間撹拌した。反応終了後シクロヘキサノン121.29gを添加し、ポリウレタン樹脂溶液を得た。ウレタン合成後、得られたポリウレタン樹脂溶液に、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル(4−OH−TEMPO)をポリウレタン固形分に対し50ppm添加した。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂(以下、「放射線硬化性ポリウレタン樹脂h」と記載)の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を後述の方法により測定したところ、Mw=3.6万、Mn=2.4万、スルホン酸(塩)基含有量68.8mmol/kgであった。また、GPCにて残存モノマーは確認されなかったため、放射線硬化性官能基含有量は、仕込み比率から348mmol/kgと算出される。
【0232】
<調製例2−6(ポリウレタン樹脂の合成)>
(1)ポリエステル樹脂の合成
5−スルホイソフタル酸ジメチルナトリウム(東京化成製)11.1部、アジピン酸(東京化成製)100.0部、2,2−ジメチル−1,3−プロパンジオール79.4部、1,6−ヘキサンジオール29.4部、ジブチルスズオキシド(東京化成製)0.4部を245℃で加熱した。得られてくる蒸留物をディーンスターク管を用いて蒸留留去しながら、6時間攪拌し、以下の構造を有するポリエステルポリオール(以下、「ポリエステルポリオール3」と記載)を得た。得られたポリエステルポリオール3の質量平均分子量および質量平均分子量/数平均分子量比(Mw/Mn)をTHF溶媒を用いて標準ポリスチレン換算で求めた。質量平均分子量は2150、Mw/Mn=1.85であった。
【0233】
【化41】

【0234】
(2)ポリエステル樹脂の合成
アジピン酸(東京化成製)100.0部、2,2−ジメチル−1,3−プロパンジオール74.8部、1,6−ヘキサンジオール27.7部、ジブチルスズオキシド(東京化成製)0.4部を245℃で加熱した。得られてくる蒸留物をディーンスターク管を用いて蒸留留去しながら、6時間攪拌し、以下の構造を有するポリエステルポリオール4(以下、「ポリエステルポリオール4」と記載)を得た。得られたポリエステルポリオール4の質量平均分子量および質量平均分子量/数平均分子量比(Mw/Mn)をTHF溶媒を用いて標準ポリスチレン換算で求めた。質量平均分子量は2100、Mw/Mn=1.85であった。
【0235】
【化42】

【0236】
(3)ポリエステルポリウレタン樹脂の合成
フラスコに、ポリエステルポリオール3 50.0部、ポリエステルポリオール4 50.0部、2−エチル−ブチル−1,3−プロパンジオール100.0部、シクロヘキサノン501.4部、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)163.0部を添加した。次いで、ジ−n−ブチルチンラウレート0.72部を添加し、80℃に昇温して5時間撹拌した。反応終了後シクロヘキサノン331.5部を添加し、ポリエステルウレタン樹脂Aの溶液を得た。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂(以下、「ポリエステルポリウレタン樹脂g」と記載)の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を前述の方法により測定したところ、Mw=7.0万、Mn=4.1万、スルホン酸(塩)基含有量64.1mmol/kgであった。また、ウレタン基濃度は、3.8mmol/gであった。
【0237】
<調製例2−7(放射線硬化性ポリウレタン樹脂の合成)>
フラスコに、鎖延長剤として、4,4’−(プロパン−2,2−ジイル)ジフェノールのメチルオキシラン付加物(ADEKA社製BPX−1000、質量平均分子量1000)41.10g、グリセロールメタクリレート(日本油脂社製ブレンマーGLM)6.50g(濃度355.44mmol/kg)、およびジメチロールトリシクロデカン(OXEA社製TCDM)19.80g、ポリエステル1の50%シクロヘキサノン溶液6.80g、重合溶媒としてシクロヘキサノン97.36g、p−メトキシフェノール(0.240gを添加した。次いで、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)44.30gとシクロヘキサノン61.18gの溶液を15分かけて滴下した。次いで、重合触媒としてジ−n−ブチルチンラウレート0.361gを添加し、80℃に昇温して3時間撹拌した。反応終了後シクロヘキサノン120.41gを添加し、ポリウレタン樹脂溶液を得た。ウレタン合成後、得られたポリウレタン樹脂溶液に、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル(4−OH−TEMPO)をポリウレタン固形分に対し50ppm添加した。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂(以下、「放射線硬化性ポリウレタン樹脂i」と記載)の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を前述の方法により測定したところ、Mw=3.6万、Mn=2.4万、スルホン酸(塩)基含有量69.6mmol/kgであった。また、GPCにて残存モノマーは確認されなかったため、放射線硬化性官能基含有量は、仕込み比率から352mmol/kgと算出される。
【0238】
<調製例2−8(放射線硬化性ポリウレタン樹脂の合成)>
フラスコに、鎖延長剤として、4,4’−(プロパン−2,2−ジイル)ジフェノールのメチルオキシラン付加物(ADEKA社製BPX−1000、質量平均分子量1000)31.00g、グリセロールメタクリレート(日本油脂社製ブレンマーGLM)6.50g(濃度355.44mmol/kg)、およびジメチロールトリシクロデカン(OXEA社製TCDM)26.00g、ポリエステル1の50%シクロヘキサノン溶液6.80g、重合溶媒としてシクロヘキサノン92.39g、p−メトキシフェノール 0.240gを添加した。次いで、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)49.52gとシクロヘキサノン61.18gの溶液を15分かけて滴下した。次いで、重合触媒としてジ−n−ブチルチンラウレート0.361gを添加し、80℃に昇温して3時間撹拌した。反応終了後シクロヘキサノン121.81gを添加し、ポリウレタン樹脂溶液を得た。ウレタン合成後、得られたポリウレタン樹脂溶液に、成分Dとして4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル(4−OH−TEMPO)をポリウレタン固形分に対し50ppm添加した。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂(以下、「放射線硬化性ポリウレタン樹脂j」と記載)の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を前述の方法により測定したところ、Mw=3.6万、Mn=2.4万、スルホン酸(塩)基含有量68.9mmol/kgであった。また、GPCにて残存モノマーは確認されなかったため、放射線硬化性官能基含有量は、仕込み比率から349mmol/kgと算出される。
【0239】
3.磁気テープ作製、評価の実施例・比較例
【0240】
[実施例1]
(1)磁性層塗布液の調製
強磁性金属粉末:100部
組成 Fe/Co=100/25
Hc 195kA/m(≒2450Oe)
BET法による比表面積 65m2/g
表面Al23、SiO2、Y23処理
粒子サイズ(平均長軸長)35nm
針状比 5
σs 110A・m2/kg(≒110emu/g)
分散剤 トランス桂皮酸(東京化成製):5部
ポリ塩化ビニル系共重合体 MR104(日本ゼオン社製):10部
ポリエステルポリウレタン樹脂a:10部
メチルエチルケトン:150部
シクロヘキサノン:150部
α−Al23 モース硬度9(平均粒径0.1μm):15部
カーボンブラック(平均粒径0.08μm):0.5部
【0241】
上記の塗料について、各成分をオープンニ−ダで混練したのち、サンドミルを用いて分散させた。得られた分散液に
ブチルステアレート:1.5部
ステアリン酸:0.5部
メチルエチルケトン:50部
シクロヘキサノン:50部
トルエン:3部
ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041):5部
を加えさらに20分間撹拌混合した後、超音波処理し、1μmの平均孔径を有するフィルターを用いて濾過し、磁性層塗布液を調製した。
【0242】
(2)非磁性層塗布液の調製
非磁性粉体(αFe23 ヘマタイト):75部
長軸長 0.15μm
BET法による比表面積 52m2/g
pH 6
タップ密度 0.8
DBP吸油量 27〜38g/100g、
表面処理剤 Al23、SiO2
カーボンブラック:25部
平均一次粒子径 0.020μm
DBP吸油量 80ml/100g
pH 8.0
BET法による比表面積:250m2/g
揮発分:1.5%
放射線硬化性塩化ビニル共重合体b:12部
放射線硬化性ポリウレタン樹脂c:7.5部
メチルエチルケトン:150部
シクロヘキサノン:150部
【0243】
上記の塗料について、各成分をオープンニ−ダで混練したのち、サンドミルを用いて分散させた。
得られた分散液に
ブチルステアレート:1.5部
ステアリン酸:1部
メチルエチルケトン:50部
シクロヘキサノン:50部
を加え撹拌した後、1μmの平均孔径を有するフィルターを用いて濾過し、非磁性塗布液を調製した。
【0244】
(3)バックコート層塗布液の調製
カーボンブラック(平均粒径40nm):85部
カーボンブラック(平均粒径100nm):3部
ニトロセルロース:28部
ポリエステル樹脂(東洋紡製バイロン500):58部
銅フタロシアニン系分散剤:2.5部
ニッポラン2301(日本ポリウレタン工業社製):0.5部
メチルイソブチルケトン:0.3部
メチルエチルケトン:860部
トルエン:240部
をロールミルで予備混練した後サンドミルで分散し、
ポリエステル樹脂(東洋紡績株式会社製バイロン500)4部、
ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)14部、
α−Al23(住友化学社製)5部
を添加、攪拌濾過してバックコート層塗布液を調製した。
【0245】
(4)磁気記録媒体の作製
磁性層塗布面の中心線表面粗さが0.003μmで、厚さ5μmのポリエチレンナフタレート樹脂支持体上に、接着層としてスルホン酸含有ポリエステル樹脂を乾燥後の厚さが0.05μmになるようにコイルバーを用いて塗布した。
次いで、上記の非磁性層塗布液を、乾燥後の厚さが1.0μmになるように塗布し、ドライヤーによって十分に乾燥させた後、酸素濃度200ppm以下の雰囲気で、非磁性層塗布液の塗布層に40kGyの放射線を照射して非磁性層(放射線硬化層)を形成した。
さらにその直後にその上に磁性層の厚さが0.06μmになるように、磁性層塗布液を塗布し、0.4T(4000G)の磁力をもつソレノイドにより配向させ乾燥させた後、支持体の裏面に上記のバックコート層塗布液を乾燥後の厚さが0.5μmとなるように塗布した。塗布後のシートは、一部を表面性の評価に使用した。次いで、金属ロールから構成される7段のカレンダーで温度100℃にて分速80m/minで処理を行い、1/2インチ幅にスリットして磁気記録テープを作製した。
【0246】
[実施例2]
実施例1の非磁性層塗布液の調製において、放射線硬化性塩化ビニル共重合体bの代わりに放射線硬化性塩化ビニル共重合体dを、放射線硬化性ポリウレタン樹脂cの代わりに放射線硬化性ポリウレタン樹脂eを用いた以外は、実施例1と同様の方法で磁気テープを作製した。
【0247】
[実施例3]
実施例2の非磁性層塗布液の調製において、放射線硬化性ポリウレタン樹脂eを放射線硬化性ポリウレタン樹脂hに変更した以外は、実施例2と同様の方法で磁気テープを作製した。
【0248】
[実施例4]
実施例2の非磁性層塗布液の調製において、放射線硬化性ポリウレタン樹脂eを放射線硬化性ポリウレタン樹脂iに変更した以外は、実施例2と同様の方法で磁気テープを作製した。
【0249】
[実施例5]
実施例2の非磁性層塗布液の調製において、放射線硬化性ポリウレタン樹脂eを放射線硬化性ポリウレタン樹脂jに変更した以外は、実施例2と同様の方法で磁気テープを作製した。
【0250】
[比較例1]
(1)磁性層塗布液の調製
強磁性金属粉末:100部
組成 Fe/Co=100/25
Hc 195kA/m(≒2450Oe)
BET法による比表面積 65m2/g
表面Al23、SiO2、Y23処理
粒子サイズ(平均長軸長) 45nm
針状比 5
σs 110A・m2/kg(≒110emu/g)
分散剤 フェニルホスホン酸(東京化成製):5部
塩化ビニル共重合体k(日本ゼオン社製MR104):10部
ポリエステルポリウレタン樹脂a:10部
メチルエチルケトン:150部
シクロヘキサノン:150部
α−Al23 モース硬度9(平均粒径0.1μm):15部
カーボンブラック(平均粒径0.08μm):0.5部
【0251】
上記の塗料について、各成分をオープンニ−ダで混練したのち、サンドミルを用いて分散させた。得られた分散液に
ブチルステアレート:1.5部
ステアリン酸:0.5部
メチルエチルケトン:50部
シクロヘキサノン:50部
トルエン:3部
ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041):5部
を加えさらに20分間撹拌混合した後、超音波処理し、1μmの平均孔径を有するフィルターを用いて濾過し、磁性層塗布液を調製した。
【0252】
(2)非磁性層塗布液の調製
非磁性層塗布液の調製
非磁性粉体(αFe23 ヘマタイト):80部
長軸長 0.15μm
BET法による比表面積 52m2/g
pH 6
タップ密度 0.8
DBP吸油量 27〜38g/100g、
表面処理剤 Al23、SiO2
カーボンブラック:20部
平均一次粒子径 0.020μm
DBP吸油量 80ml/100g
pH 8.0
BET法による比表面積:250m2/g
揮発分:1.5%
塩化ビニル共重合体k(日本ゼオン製MR−104):15部
ポリエーテルポリウレタン樹脂f:10部
メチルエチルケトン:150部
シクロヘキサノン:150部
【0253】
上記の塗料について、各成分をオープンニ−ダで混練したのち、サンドミルを用いて分散させた。
得られた分散液に
ブチルステアレート:1.5部
ステアリン酸:1部
ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041):5部
メチルエチルケトン:50部
シクロヘキサノン:50部
を加え撹拌した後、1μmの平均孔径を有するフィルターを用いて濾過し、非磁性層塗布液を調製した。
【0254】
(3)磁気記録媒体の作製
磁性層塗布面の中心線表面粗さが0.003μmで、厚さ5μmのポリエチレンナフタレート樹脂支持体上に、接着層としてスルホン酸含有ポリエステル樹脂を乾燥後の厚さが0.05μmになるようにコイルバーを用いて塗布した。
次いで、上記の非磁性塗布液を乾燥後の厚さが1.0μmになるように、次いで上記の磁性層塗布液を乾燥後の厚さが0.06μmになるように同時重層塗布し、0.4T(4000G)の磁力をもつソレノイドにより配向させ乾燥させた後、支持体の裏面に実施例1と同様の方法で調製したバックコート層塗布液を、乾燥後の厚さが0.5μmとなるように塗布した。塗布後のシートは、一部を表面性の評価に使用した。次いで、金属ロールから構成される7段のカレンダーで温度100℃にて分速80m/minで処理を行った。その後、70℃、36時間熱処理を行い、1/2インチ幅にスリットして磁気記録テープを作製した。
【0255】
[比較例2]
磁性層塗布液の分散剤として、フェニルホスホン酸の代わりに4−tert−ブチルフェノール(東京化成製)を5.0部用いた以外は、比較例1と同様の方法で磁気記録テープを得た。
【0256】
[実施例6]
磁性層塗布液の分散剤として、トランス桂皮酸の代わりに比較例1で用いたフェニルホスホン酸5.0部用いた以外は、実施例1と同様の方法で磁気記録テープを得た。
【0257】
[比較例3]
磁性層塗布液の分散剤として、トランス桂皮酸の代わりに比較例2で用いた4−tert−ブチルフェノールを5.0部用いた以外は実施例1と同様の方法で調製した磁性層塗布液を用いた点以外は、比較例1と同様の方法で磁気記録テープを得た。
【0258】
[比較例4]
磁性層塗布液の分散剤として、4−tert−ブチルフェノールの代わりに実施例1で使用したトランス桂皮酸を5.0部用いた以外は、比較例3と同様の方法で磁気記録テープを得た。
【0259】
[実施例7]
磁性層塗布液の分散剤としてトランス桂皮酸の代わりに、安息香酸(東京化成製)を5.0部用いた以外は、実施例1と同様の方法で磁気記録テープを得た。
【0260】
[実施例8]
磁性層塗布液の調製において、強磁性金属粉末の代わりに、下記の六方晶バリウムフェライト粉末を用いた以外は、実施例1と同様の方法で磁気記録テープを作製した。
<六方晶バリウムフェライト粉末>
酸素を除く組成(モル比):Ba/Fe/Co/Zn=1/9/0.2/1
Hc:176kA/m(2200Oe)、平均板径:20nm、平均板状比:3
BET比表面積:65m2/g
σs:49A・m2/kg(49emu/g)
pH:7
【0261】
[実施例9]
磁性層塗布液の調製において、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)を2.5部(後述の実験6と同等の比率)に代えた以外は、実施例1と同様の方法で磁気記録テープを得た。
【0262】
[実施例10]
磁性層塗布液の調製において、ポリエステルポリウレタン樹脂aを6部、ポリ塩化ビニル系共重合体k(日本ゼオン社製MR104)を14部、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)を7部(後述の実験3と同等の比率)に代えた以外は、実施例1と同様の方法で磁気記録テープを得た。
【0263】
[比較例5]
磁性層塗布液の調製において、ポリエステルポリウレタン樹脂aの代わりに、ポリエステルポリウレタン樹脂gを用いた以外は、実施例1と同様の方法で磁気記録テープを得た。
【0264】
[比較例6]
磁性層塗布液の調製において、ポリエステルポリウレタン樹脂aを0部、ポリ塩化ビニル系共重合体k(日本ゼオン社製MR104)を20部、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)を0部(後述の実験10と同等の比率)に代えた以外は、実施例1と同様の方法で磁気記録テープを得た。
【0265】
[比較例7]
磁性層塗布液の調製において、ポリエステルウレタン系樹脂aを20部、ポリ塩化ビニル系共重合体k(日本ゼオン社製MR104)を0部、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)を0部(後述の実験9と同等の比率)に代えた。しかし、強磁性粉末の分散が進まず、磁気記録テープを作製することができなかった。
【0266】
[実施例11]
磁性層塗布液の調製において、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)を3.5部(後述の実験2と同等の比率)に代えた以外は、実施例5と同様の方法で磁気記録テープを得た。
【0267】
[実施例12]
磁性層塗布液の調製において、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)を10.5部(後述の実験4と同等の比率)に代えた以外は、実施例5と同様の方法で磁気記録テープを得た。
【0268】
[比較例8]
磁性層塗布液の調製において、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)を0部(後述の実験5と同等の比率)に代えた以外は、実施例1と同様の方法で磁気記録テープを得た。
【0269】
[実施例13]
磁性層塗布液の調製において、トランス桂皮酸の添加量を、5部から1.5部に減量した以外は、実施例1と同様の方法で磁気記録テープを得た。
【0270】
[実施例14]
磁性層塗布液の調製において、トランス桂皮酸の添加量を、5部から10部に増量した以外は、実施例1と同様の方法で磁気記録テープを得た。
【0271】
非磁性層のガラス転移温度Tg2
実施例、比較例の非磁性層のガラス転移温度Tg2を測定した。下記表4に、上記実施例および比較例の処方および作製方法の概要とともに、Tg2の測定値を示す。
【0272】
【表4】






【0273】
結合剤樹脂のガラス転移温度Tg1、80℃での貯蔵弾性率の測定
実施例、比較例において磁性層、非磁性層で使用した結合剤樹脂のガラス転移温度Tg1および80℃における貯蔵弾性率E’を、下記表5に示す。また、ポリエステルポリウレタン樹脂aの80℃における貯蔵弾性率E’は2.57GPaであった。
【0274】
【表5】

【0275】
評価方法
(i)磁性層塗布液の分散安定性
表6に示す実施例、比較例について、磁性層塗布液が完成した段階で、添加した分散剤の分散性向上効果を確認するために、塗布液の状態を観察した。具体的には、塗布液を10分間静置した後、以下の評価基準により塗布液の固まり具合を目視で観察した。
評価基準
○ 液体の状態を保持している
△ 粘度上昇の傾向が見られるが、液体の状態を保持している
× プリン状の固まりになる
【0276】
(ii)磁性層塗布液中における強磁性粉末の分散性の評価
表6に示す実施例、比較例について、磁性層塗布液中における強磁性粉末の分散性を評価するために、以下の方法で評価用磁性シートを作製した。
磁性層塗布面の中心線表面粗さが0.003μmで、厚さ5μmのポリエチレンナフタレート樹脂支持体上に、接着層としてスルホン酸含有ポリエステル樹脂を乾燥後の厚さが0.05μmになるようにコイルバーを用いて塗布した。
次いで、磁性層塗布液を、乾燥後の厚さが1.0μmになるように塗布し、0.4T(4000G)の磁力をもつソレノイドにより配向させ乾燥させた。次いで、金属ロールから構成される7段のカレンダーで温度100℃にて分速80m/minで処理を行い磁性シートを得た。
得られた磁性シートについて、試料振動磁力計(東英工業製VSM−P7)を用いて、強磁性粉末の配向方向に平行に外部磁場を印加したときの磁気特性を測定した。具体的には、外部磁場として797.7kA/m(10kOe)印加したときの磁化(飽和磁化)の値と、外部磁場がゼロの時の磁化(残留磁化)の比、すなわち角型比(SQ)を測定した。
SQは、強磁性体の分散性の指標として用いることができる。分散性が悪いとSQが低くなり、良いとSQが高くなる。SQの値はノイズに影響するので、1.0に近いほど好ましい。
強磁性金属粉末した磁気記録テープについては、SQが0.83以上で分散性が良好、六方晶バリウムフェライト粉末を使用した磁気テープについては、SQが0.65以上で分散性が良好と判断した。
【0277】
(iii)カレンダー成形性の評価
表6に示す実施例、比較例の磁気記録テープについて、7段のカレンダー処理をする前後で、磁性層表面の表面粗さを測定した。表面粗さは、WYKO社製光干渉式表面粗さ計HD−2000型(光干渉法)を用いて、カットオフ値0.25mmの条件で250μm×250μm面積における中心面平均表面粗さRa(Wyko−Ra)として測定した。カレンダー前後でRa差、すなわち下記式にて算出されるΔRaをカレンダー成形性の指標とした。
Wyko−ΔRa=(カレンダー処理前のWyko−Ra)−(カレンダー処理後のWyko−Ra)
ΔRaが負になるケースは、成形性があまりに悪すぎて、カレンダー処理により面荒れが起きたことを示す。なお、Wyko−Raは、下記のAFM−Raより比較的低周波数の表面粗さを表すため、面全体の表面粗さの指標として用いることができる。
これとは別に、上記(ii)で作製した磁気シートについても、カレンダー処理前後のWyko−Raを測定し、(Wyko−ΔRa)を求めた。
【0278】
(iv)磁気記録テープの表面粗さ評価
表6に示す実施例、比較例の磁気記録テープについて、原子間力顕微鏡AFM(Digital Instrument社製Nanoscope II)を用い、トンネル電流10nA、バイアス電流400mVで30μm×30μmの範囲を走査して表面粗さ(AFM−Ra)を求めた。なお、AFM−Raは、上記のWyko−Raより比較的高周波数の表面粗さを表し、この値は下記の電磁変換特性を左右するものである。
【0279】
(v)電磁変換特性(S/N比)
表6に示す実施例、比較例の磁気記録テープのS/N比を、ヘッドを固定した1/2インチ リニアシステムで測定した。ヘッド/テープの相対速度は10m/secとした。記録は飽和磁化1.4TのMIGヘッド(トラック幅18μm)を使い、記録電流は各テープの最適電流に設定した。再生ヘッドには素子厚み25nm、シールド間隔0.2μmの異方性型MRヘッド(A−MR)を用いた。
記録波長0.2μmの信号を記録し、再生信号をシバソク製スペクトラムアナライザーで周波数分析し、キャリア信号(波長0.2μm)の出力とスペクトル全域の積分ノイズとの比をS/N比とし、比較例1を0dBとした相対値で示した。
比較例1は、現在上市されているコンピュータバックアップ用磁気テープの標準的なS/N比を示す。次世代の高記録密度の要求に応えるためには、S/N比は、比較例1と比べて0.5dB以上、好ましくは1.5dB以上、より好ましくは2.0dB以上であることが望ましい。
【0280】
(vi)繰り返し摺動耐久性
ヘッドを固定した1/2インチ リニアシステムにて、キャリア信号(波長0.2μm)の出力をモニターしながら、表6に示す実施例、比較例の磁気記録テープを1パス800mとして繰返し10000パス走行させ、下記評価基準で最初のパスの出力を0dBとして、10000パス走行後の出力低下度(出力低下度A)を評価した。その後、更に5000パス走行させ、下記評価基準で最初のパスを0dBとして、15000パス走行後の出力低下度(出力低下度B)を評価した。ヘッド付着物が多いほど、出力が低下するため評価結果はヘッド付着物の指標として用いることができる。
(出力低下度A)
◎ 10000パス後の出力低下度が、−0.5dBより高い
○ 10000パス後の出力低下度が、−0.5dB〜−1.0dBより高い
△ 10000パス後の出力低下度が、−1.0〜−2.0dB
× 10000パス後の出力低下度が、−2.0dBより低い
(出力低下度B)
◎ 15000パス後の出力低下度が、−0.5dBより高い
○ 15000パス後の出力低下度が、−0.5dB〜−1.0dBより高い
△ 15000パス後の出力低下度が、−1.0〜−2.0dB
× 15000パス後の出力低下度が、−2.0dBより低い
さらに、15000パス走行後の磁気ヘッドを取り出し、走査型電子顕微鏡(日立製FE−SEM−S800)に内蔵されている蛍光X線分析を行い、リンに由来するピークの有無を確認した。
以上の結果を、下記表6に示す。
【0281】
【表6】

【0282】
評価結果
表6の結果から、先に説明したように本発明の磁気記録媒体が、下記(1)〜(3)を兼ね備えることにより、塗膜強度向上(塗膜破壊物発生抑制によるヘッド付着物の低減)と表面平滑性の改善を両立し、これにより長期にわたり優れた電磁変換特性を発揮し得るものであることが確認できる。
(1)磁性層の結合剤は、塩化ビニル系共重合体、ポリウレタン樹脂およびポリイソシアネートの混合物であり、該ポリウレタン樹脂は、ガラス転移温度が90〜130℃の範囲であり80℃における貯蔵弾性率が2.5〜5.0GPaの範囲である。
(2)非磁性層は、非磁性粉末および結合剤成分を含む放射線硬化性組成物を放射線硬化することによって得られた放射線硬化層であって、該結合剤成分は放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂を含む。
(3)前記放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂は、いずれもガラス転移温度が30〜100℃の範囲である。
【0283】
また、表6に示す結果から、桂皮酸を使用することで、リン系の汚れの発生なく平均粒子サイズ40nm以下の超微粒子磁性体を高度に分散できることも確認できる。これに対して、トランス桂皮酸の代わりにトランス桂皮酸メチル(東京化成製)5.0部もしくはベンゼンスルホン酸5.0部を用いるか、またはトランス桂皮酸を添加せずこれに代わる化合物も添加しなかった点以外は実施例8と同様の方法で磁性層塗布液を調製したところ、良好な分散性を得ることは困難であった。
以上の結果から、平均粒子サイズ40nm以下の超微粒子磁性体に対する分散剤としては、桂皮酸が特に好ましいことが示された。
【0284】
これとは別に、実施例3〜5の磁気テープについて、前述の方法でカレンダー成形性を評価した。対比のため、実施例2および比較例4とともに、結果を下記表7に示す。表7に示すように、実施例3〜5においても、表6に示す実施例と同様、カレンダー成形性は良好であった。
【0285】
【表7】

【0286】
磁性層結合剤混合比の検討
ポリエステルポリウレタン樹脂a、ポリ塩化ビニル系共重合体k(日本ゼオン製MR104)、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)の混合比の熱的物性に対する影響を、以下の実験により確認した。結果を表8に示す。
表8に示す割合で上記3成分を混合した混合物を、メチルエチルケトンとシクロヘキサノンの50:50(質量比)の混合液に22質量%になるように溶解した。その後、乾燥後の20μmになるようにアラミドベース上に塗布した。乾燥後、70℃で36時間熱硬化させてクリア膜を得た。得られたクリア膜を、幅3.35mm、長さ5cmに切断し、動的粘弾性測定装置(TOYO BALDWIN製レオバイブロン、昇温速度2℃/分、測定周波数110Hz)で、30〜140℃の温度範囲で測定を行い、80℃における貯蔵弾性率(E’)を求め、併せて同測定において、前述のTg2の測定と同様に損失弾性率(E”)のピークトップの温度としてガラス転移温度を求めた。
同様の方法で、前述の特開2004−319001号公報実施例に記載のポリウレタン樹脂Aのガラス転移温度と80℃における貯蔵弾性率(E’)を測定した結果(実験11)も、表8に示す。
【0287】
【表8】

【0288】
表8中、ポリウレタン樹脂を単独で使用した実験9に比べて、塩化ビニル系共重合体およびポリイソシアネート化合物を併用した実験2〜4、6、8において、Tg、E’とも改善されている。これに対し、ポリイソシアネートなしで行った実験1、5、7において、ポリウレタン樹脂を単独で使用した実験9と比べてTgおよび/またはE’が低下したことから、塩化ビニル系共重合体とポリイソシアネートを使用することによって初めて、磁性層としての熱的特性を改善できることがわかる。また、実験9と実験11の対比から、Tgが高いポリウレタン樹脂であっても本発明で満たすべきE’を示さないものがあり、したがってTgとともにE’を規定する必要があることが確認できる。
なお、比較例7で確認されたように、ポリウレタン単独では、超微粒子磁性体を分散することは困難である。
【0289】
4.放射線硬化性ポリウレタン樹脂溶液の調製例(参考例)
【0290】
<調製例3−1>
フラスコに、鎖延長剤として、4,4’−(プロパン−2,2−ジイル)ジフェノールのメチルオキシラン付加物(ADEKA社製BPX−1000、質量平均分子量1000)52.87g(濃度355.32mmol/kg)、グリセロールメタクリレート(日本油脂社製ブレンマーGLM)6.35gおよびジメチロールトリシクロデカン(OXEA社製TCDM)12.48g、極性基導入成分としてスルホン酸(塩)基含有ジオール化合物(例示化合物(S−72))1.70g、重合溶媒としてシクロヘキサノン101.36g、成分Cとしてp−メトキシフェノール0.232gを添加した。次いで、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)42.66gとシクロヘキサノン52.73gの溶液を15分かけて滴下した。次いで、重合触媒としてジ−n−ブチルチンラウレート0.348gを添加し、80℃に昇温して3時間撹拌した。反応終了後シクロヘキサノン116.69gを添加し、ポリウレタン樹脂溶液を得た。ウレタン合成後、得られたポリウレタン樹脂溶液に、成分Dとしてp−ベンゾキノンをポリウレタン固形分に対し100ppm添加した。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。上記ポリウレタン樹脂溶液調製後1日以内に、この溶液に含まれるポリウレタン樹脂の質量平均分子量(Mw)および数平均分子量(Mn)を後述の方法で求めたところ、、Mw=3.8万、Mn=2.4万であった。上記ポリウレタン樹脂のスルホン酸(塩)基含有量を後述の方法で測定したところ、69.55mmol/kgであった。また、GPCにて残存モノマーは確認されなかったため、放射線硬化性官能基含有量は、仕込み比率から355.32mmol/kgと算出される。
【0291】
<調製例3−2>
フラスコに、鎖延長剤として、4,4’−(プロパン−2,2−ジイル)ジフェノールのメチルオキシラン付加物(ADEKA社製BPX−1000、質量平均分子量1000)57.50g、グリセロールメタクリレート(日本油脂社製ブレンマーGLM)6.50g(濃度355.44mmol/kg)、およびジメチロールトリシクロデカン(OXEA社製TCDM)10.50g、極性基導入成分としてスルホン酸(塩)基含有ジオール化合物(例示化合物(S−31))3.40g、重合溶媒としてシクロヘキサノン107.66g、成分Cとしてp−メトキシフェノール0.240gを添加した。次いで、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)42.21gとシクロヘキサノン51.47gの溶液を15分かけて滴下した。次いで、重合触媒としてジ−n−ブチルチンラウレート0.361gを添加し、80℃に昇温して3時間撹拌した。反応終了後シクロヘキサノン121.28gを添加し、ポリウレタン樹脂溶液を得た。ウレタン合成後、得られたポリウレタン樹脂溶液に、成分Dとして4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル(4−OH−TEMPO)をポリウレタン固形分に対し50ppm添加した。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を後述の方法により測定したところ、Mw=3.6万、Mn=2.4万、スルホン酸(塩)基含有量69.66mmol/kgであった。また、GPCにて残存モノマーは確認されなかったため、放射線硬化性官能基含有量は、仕込み比率から355.44mmol/kgと算出される。
【0292】
<調製例3−3〜3−6>
使用するスルホン酸(塩)基含有ジオール化合物、成分Cおよび成分Dを表9に示すものに変更した点以外、調製例3−2と同様の方法でポリウレタン樹脂溶液を得た。調製例3−3〜3−6では、、GPCにて残存モノマーは確認されなかったため、放射線硬化性官能基含有量は、仕込み比率から355.32mmol/kgと算出される。また、調製例3−3〜3−6で得られたポリウレタン樹脂中の後述の方法で測定したスルホン酸(塩)基含有量は69.55mmol/kgであった。
【0293】
<調整例3−7>
ウレタン合成後、得られたポリウレタン樹脂溶液に、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル(4−OH−TEMPO)(成分D)を添加しなかった点以外、調製例3−2と同様の方法でポリウレタン樹脂溶液を得た。得られたポリウレタン樹脂溶液中のポリウレタン樹脂の質量平均分子量(Mw)を後述の方法で測定した結果を表9に示す。
【0294】
<調製例3−8>
ウレタン合成を、p−メトキシフェノール(成分C)に代えてベンゾキノン(成分D)の存在下で行い、ウレタン合成後に成分C、Dを添加しなかった点以外、調製例3−2と同様の方法でポリウレタン樹脂溶液を得た。得られたポリウレタン樹脂溶液中のポリウレタン樹脂の質量平均分子量(Mw)を後述の方法で測定した結果を表9に示す。
【0295】
<調製例3−9>
ベンゾキノン量を10倍に増量した点以外、調製例3−8と同様の方法でポリウレタン樹脂溶液を得た。得られたポリウレタン樹脂溶液中のポリウレタン樹脂の質量平均分子量(Mw)を後述の方法で測定した結果を表9に示す。
【0296】
評価方法
(1)保存安定性の評価
調製例で得られたポリウレタン樹脂溶液を53℃、密閉の条件で保存して、GPCにより得られる分子量に変化が現れるまでの日数を調べた。
(2)平均分子量の測定、スルホン酸(塩)基濃度、放射線硬化性評価
前述の放射線硬化性塩化ビニル系共重合体の評価と同様の方法で測定または評価を行った。
【0297】
【表9】

【0298】
評価結果
表9に示すように、成分Cのみ、または成分Dのみを使用した調製例3−7、3−8では硬化性は良好であったものの、調製例3−1〜3−6と比べ経時安定性が著しく低下した。成分Dを調製例3−8の10倍量に増量した調製例3−9では、経時安定性は高めることができたものの、放射線照射して得られた硬化膜のゾル分率が低かった。この結果から、保存安定性を高めようと成分Dのみを多量に添加すると、硬化性が損なわれることがわかる。
これに対し成分Cと成分Dとを併用した調製例3−1〜3−6では、ポリウレタン樹脂溶液は優れた経時安定性を示した。また、調製例3−9に示すように、通常長期保存安定性を高めるための成分を添加すると硬化性が低下するのに対し、調製例3−1〜3−6では放射線照射して得られた硬化膜のゾル分率が高く硬化性も良好であった。
以上の結果から、成分Cと成分Dとを併用することにより、放射線硬化性ポリウレタン樹脂の硬化性を損なうことなく、その保存安定性を高めることができることが示された。
【産業上の利用可能性】
【0299】
本発明の磁気記録媒体は、高密度記録用途に有用である。

【特許請求の範囲】
【請求項1】
非磁性支持体上に非磁性粉末および結合剤を含む非磁性層と強磁性粉末および結合剤を含む磁性層とをこの順に有する磁気記録媒体であって、
前記磁性層の結合剤は、塩化ビニル系共重合体、ポリウレタン樹脂およびポリイソシアネートの混合物であり、該ポリウレタン樹脂は、ガラス転移温度が90〜130℃の範囲であり80℃における貯蔵弾性率が2.5〜5.0GPaの範囲であり、
前記非磁性層は、非磁性粉末および結合剤成分を含む放射線硬化性組成物を放射線硬化することによって得られた放射線硬化層であって、該結合剤成分は放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂を含み、かつ
前記放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂は、いずれもガラス転移温度が30〜100℃の範囲であることを特徴とする磁気記録媒体。
【請求項2】
前記放射線硬化性塩化ビニル系共重合体は、下記一般式(1)で表される構造単位を含む放射線硬化性塩化ビニル系共重合体である請求項1に記載の磁気記録媒体。
【化1】

[一般式(1)中、R1は水素原子またはメチル基を表し、L1は下記式(2)、式(3)または下記一般式(4)で表される二価の連結基を表す。]
【化2】

[一般式(4)中、R41は水素原子またはメチル基を表す。]
【請求項3】
前記放射線硬化性ポリウレタン樹脂は、下記一般式(2)で表されるスルホン酸塩(基)含有ポリオール化合物を原料として得られた放射線硬化性ポリウレタン樹脂である請求項1または2に記載の磁気記録媒体。
【化3】

[一般式(2)中、Xは二価の連結基を表し、R101およびR102は、それぞれ独立に、少なくとも1つの水酸基を有する炭素数2以上のアルキル基または少なくとも1つの水酸基を有する炭素数8以上のアラルキル基を表し、M1は水素原子または陽イオンを表す。]
【請求項4】
前記磁性層の結合剤に含まれるポリウレタン樹脂は、ポリエステルポリウレタン樹脂である請求項1〜3のいずれか1項に記載の磁気記録媒体。
【請求項5】
前記磁性層の結合剤は、塩化ビニル系共重合体100質量部に対して10〜100質量部のポリイソシアネートを含む請求項1〜4のいずれか1項に記載の磁気記録媒体。
【請求項6】
前記磁性層は芳香族化合物およびカルボキシル基含有化合物からなる群から選ばれる分散剤を更に含有する請求項1〜5のいずれか1項に記載の磁気記録媒体。
【請求項7】
前記強磁性粉末の平均粒子サイズは40nm以下であり、かつ前記分散剤は桂皮酸である請求項6に記載の磁気記録媒体。
【請求項8】
前記磁性層は、強磁性粉末100質量部あたり1.5〜10質量部の前記分散剤を含む請求項6または7に記載の磁気記録媒体。
【請求項9】
請求項1〜8のいずれか1項に記載の磁気記録媒体の製造方法であって、
前記放射線硬化性組成物の塗布および放射線硬化後、形成された放射線硬化層上に磁性層を形成し、次いで上記放射線硬化層のガラス転移温度以上のカレンダー温度でカレンダー処理を行うことを特徴とする、前記製造方法。

【公開番号】特開2011−216179(P2011−216179A)
【公開日】平成23年10月27日(2011.10.27)
【国際特許分類】
【出願番号】特願2011−59997(P2011−59997)
【出願日】平成23年3月18日(2011.3.18)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】