説明

磁気記録媒体用ガラス基板の製造方法

【課題】複数のガラス基板の板厚測定結果に基いて複数のガラス基板をグループに分け、グループに分けた複数のガラス基板をグループ毎に一度に精密研磨する磁気記録媒体用ガラス基板の製造方法において、ガラス基板を工程から抜き取ることなく、ガラス基板の板厚を非接触で精度よく測定する。
【解決手段】複数のガラス基板10の板厚を測定する板厚測定工程と、板厚測定工程の測定結果に基いて複数のガラス基板10をグループに分け、グループに分けた複数のガラス基板10をグループ毎に一度に精密研磨する精密研磨工程とを含む磁気記録媒体用ガラス基板の製造方法であって、板厚測定工程では、ガラス基板10に板厚方向に所定の波長帯域を有する光Lを照射し、ガラス基板10の表面で板厚方向に反射した光aと裏面で板厚方向に反射した光bとの干渉光を受光し、受光した干渉光を波長毎に分析することにより、光Lを照射したガラス基板10の板厚を分光干渉によって測定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気記録媒体に用いるためのガラス基板の製造方法に関する。
【背景技術】
【0002】
例えば、ハードディスクドライブ(HDD)に内蔵されるハードディスク(HD)等の磁気記録媒体に用いるためのガラス基板は、ガラス素材を溶融するガラス溶融工程、溶融したガラス素材を金型でプレス成形することにより円盤状のガラス基板を作製するプレス成形工程、得られたガラス基板の中心に円孔を形成するコアリング工程、得られた環状のガラス基板の主面(記録面)を研削加工してガラス基板の厚み(板厚)や平坦度等を予備調整する第1ラッピング工程、ガラス基板の内周端面及び外周端面を研削加工してガラス基板の外径寸法や真円度等を微調整する端面研削工程、ガラス基板の内周端面及び外周端面を研磨して平滑化する端面研磨工程、ガラス基板の主面を再び研削加工してガラス基板の板厚や平坦度等を微調整する第2ラッピング工程、ガラス基板の主面を粗研磨して平滑化する第1ポリッシング工程(粗研磨工程)、ガラス基板の表面を強化する化学強化工程、ガラス基板の板厚を測定する板厚測定工程、ガラス基板の主面を精密研磨してさらに平滑化する第2ポリッシング工程(精密研磨工程)、ガラス基板を洗浄する最終洗浄工程、及び、ガラス基板の板厚や平坦度等を検査する検査工程等を経て製造される。
【0003】
なお、ガラス基板の主面と端面との間の角部の欠け(チッピング)等を抑制するために、例えば端面研削工程等において、ガラス基板の内周端面及び外周端面が面取り加工される場合がある(面取り加工で形成された面をチャンファ面という)。また、化学強化工程と板厚測定工程とは順序が逆でもよい。
【0004】
近年、HD等の磁気記録媒体は、高密度化に伴い、非常に高い平滑性(平坦性が良くかつ表面粗さが小さいこと)が求められている。そのため、磁気記録媒体用ガラス基板においても、非常に高い平滑性が求められている。最終的に得られるガラス基板の平滑性は第2ポリッシング工程で決定する。第2ポリッシング工程は、一般に、両面研磨装置を用いて行われる。両面研磨装置は、対向面が相互に平行で回転方向が相互に逆向きの円柱状の上定盤及び下定盤を備えている。各定盤の対向面にガラス基板の主面を研磨するための研磨パッドが貼り付けられている。ガラス基板が上下の定盤の研磨パッドで挟み付けられ、この状態で研磨パッドとガラス基板とが回転して面方向に相対移動することにより、ガラス基板の研磨が実行される。
【0005】
第2ポリッシング工程では、複数(例えば100枚等)のガラス基板を一度に研磨するのが通例である。その際、例えば研磨量(研磨代)が0.5〜2μm等に設定される。したがって、複数のガラス基板の板厚のバラツキがこの研磨量(0.5〜2μm)未満に納まっている必要がある。さもないと、複数のガラス基板のうち、板厚が相対的に厚いガラス基板のみが上下の研磨パッドで挟み付けられて研磨され、板厚が相対的に薄いガラス基板は上下の研磨パッドで挟み付けられずに研磨されないからである。第2ポリッシング工程で研磨がされなかった、あるいは十分でなかったガラス基板は、平滑性が不良となるので、ガラス基板の製造収率が低下してしまう。そのため、前述のように、第2ポリッシング工程の前に、複数のガラス基板の板厚を測定する板厚測定工程が行われる。そして、この板厚測定工程の測定結果に基いて、複数のガラス基板をランク分けし、複数のガラス基板の板厚のバラツキが第2ポリッシング工程の研磨量未満に納まっているガラス基板同士を同じグループ(例えば100枚等)に分けて、グループに分けた複数のガラス基板をグループ毎に一度に精密研磨する。
【0006】
したがって、板厚測定工程の測定精度が収率に大きく影響する。例えば第2ポリッシング工程の研磨量が1μmであれば、0.1μmのレベルでガラス基板の板厚を管理する必要がある。この板厚測定精度が低いと、グループの中に板厚が他よりも厚過ぎる又は薄過ぎるガラス基板が混じることになり、第2ポリッシング工程で十分に研磨されない平滑性不良のガラス基板ができてしまう。
【0007】
従来、ガラス基板の板厚は、例えばマイクロメータ等の接触式の測定器を用いて測定していた。しかし、測定レベルが10μm程度であり、近年の精密な板厚管理には対応できなくなった。また、測定のためにガラス基板を1枚1枚製造工程から抜き取らなければならず、ガラス基板が乾燥して不良品となる可能性もあった。さらに、メータのヘッドがガラス基板に接触するため、ガラス基板を傷付ける可能性もあった。
【0008】
特許文献1には、ガラス基板を水中に保持した状態で、ガラス基板の板厚を光を用いて非接触で測定する技術が開示されている。これによれば、板厚測定時のガラス基板の乾燥及び傷付けを回避することができる。しかし、この測定原理は、水槽に浸漬したガラス基板に発光部から斜めにレーザー光を照射し、ガラス基板の表面から斜めに反射した光と裏面から斜めに反射した光とを受光部で受光し、その受光位置の差に基き板厚を求めるものであるから、ガラス基板に対する光の照射角度及びガラス基板からの光の反射角度が測定結果に大きく影響する。そのため、機械的な要因で測定誤差が生じ易く、例えば受光部に配置された受光素子の配列が僅かでも乱れていると、それが増幅されて大きな誤差となって測定結果に表れてくる。したがって、近年の精密な板厚管理に対応するためには、なお測定精度が十分ではない。また、ガラス基板に対する光の照射角度を一定とするために、ガラス基板を製造工程から抜き取って水槽に固定しなければならず、すべてのガラス基板の板厚を測定していると生産性が大幅に低下するという不具合もある。さらに、特許文献1に開示されている板厚測定は、精密研磨の終了後に行われるものであり、板厚測定結果に基いて精密研磨を行うものではない。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2009−59427号公報(段落0013、0034〜0037、0041、0042)
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明の目的は、複数のガラス基板の板厚測定結果に基いて複数のガラス基板を一度に精密研磨する磁気記録媒体用ガラス基板の製造方法において、ガラス基板を製造工程から抜き取ることなく、ガラス基板の板厚を非接触で精度よく測定することである。
【課題を解決するための手段】
【0011】
本発明は、複数のガラス基板の板厚を測定する板厚測定工程と、板厚測定工程の測定結果に基いて複数のガラス基板をグループに分け、グループに分けた複数のガラス基板をグループ毎に一度に精密研磨する精密研磨工程とを含む磁気記録媒体用ガラス基板の製造方法であって、板厚測定工程では、ガラス基板に板厚方向に所定の波長帯域を有する光を照射し、ガラス基板の表面で板厚方向に反射した光と裏面で板厚方向に反射した光との干渉光を受光し、受光した干渉光を波長毎に分析することにより、光を照射したガラス基板の板厚を分光干渉によって測定することを特徴とする。
【0012】
この構成によれば、ガラス基板に板厚方向に光を照射し、ガラス基板の表面での板厚方向の反射光と裏面での板厚方向の反射光との干渉光を受光し、受光した干渉光に基いてガラス基板の板厚を分光干渉によって測定するので、ガラス基板に対する光の照射角度やガラス基板からの光の反射角度が測定結果に何等影響しない。そのため、機械的な要因で測定誤差が生じることがなく、近年の精密な板厚管理に十分対応し得るだけの精度でガラス基板の板厚を測定することができる。その結果、精密研磨工程ですべてのガラス基板が十分に精密研磨され、平滑性が良好となるので、ガラス基板の製造収率が低下することがない。また、板厚を測定するためにガラス基板を特定の場所へ移動させる必要がないから、ガラス基板を製造工程に置いたままで板厚を測定でき、ガラス基板が乾燥したり、生産性が低下することもない。また、ガラス基板の板厚を光を用いて非接触で測定するので、板厚測定時にガラス基板を傷付けることもない。
【0013】
本発明においては、板厚測定工程では、複数のガラス基板を積載したキャリアをガラス基板の板厚方向に移動させ、分光干渉の光学系の構成によって決定される板厚測定が可能な測定範囲に複数のガラス基板を順次移動させることにより、複数のガラス基板の板厚を連続的に順次測定することが好ましい。通常の生産作業を行いつつ板厚測定を行うので、板厚測定のために生産性が低下する問題がより一層確実に抑制されるからである。また、例えば、ガラス基板に光を照射する機器や、ガラス基板からの干渉光を受光する機器等をガラス基板の移動方向の下流側に配置しておけば、これらの機器を移動させなくても、板厚方向の移動によって近付いて来るガラス基板に対して板厚方向に光を照射し、板厚方向に反射してきた干渉光を受光して、ガラス基板を1枚1枚板厚測定できるという利点もある。
【0014】
本発明においては、精密研磨工程の前に、ガラス基板の表面を強化する化学強化工程が行われ、精密研磨工程では、ガラス基板の主面に化学強化層が残るように研磨することが好ましい。化学強化層によって、最終的に得られるガラス基板の耐衝撃性、耐振動性及び耐熱性等が向上するからである。また、精密研磨工程で研磨が十分でなかったガラス基板は、平滑性が不良となるのみならず、化学強化層の厚みが斑に残ることになる。そして、化学強化層には圧縮応力がかかっているから、そのような化学強化層が斑に残るとガラス基板に歪が生じるという問題が併発する。よって、精密研磨工程ですべてのガラス基板が十分に精密研磨されることにより、そのような歪の問題も併せて解消されるという利点もある。
【0015】
本発明においては、精密研磨工程の研磨量は、0.5〜1μmであることが好ましい。ガラス基板の板厚を精密に管理することができるので、精密研磨工程の研磨量をこの程度まで小さな値に設定することができるからである。
【0016】
本発明においては、板厚測定工程では、ガラス基板を液中に配置してガラス基板の板厚を測定することが好ましい。ガラス基板が乾燥して汚れが固着するのを防ぐことができるからである。
【発明の効果】
【0017】
本発明によれば、複数のガラス基板の板厚測定結果に基いて複数のガラス基板を一度に精密研磨する磁気記録媒体用ガラス基板の製造方法において、ガラス基板を製造工程から抜き取ることなく、ガラス基板の板厚を非接触で精度よく測定することが可能となる。そのため、精密研磨工程ですべてのガラス基板が十分に精密研磨されるので、ガラス基板の製造収率が低下することがない。そして、平滑性の高いガラス基板が得られるので、磁気記録媒体の高密度化に寄与することができる。
【図面の簡単な説明】
【0018】
【図1】本発明の実施形態に係る磁気記録媒体用ガラス基板の製造工程図である。
【図2】本発明の実施形態に係る磁気記録媒体用ガラス基板の断面斜視図である。
【図3】本発明の実施形態に係る板厚測定工程で行われるガラス基板の板厚測定の原理の説明図である。
【図4】本発明の実施形態に係る板厚測定工程が行われる具体的状況の説明図である。
【図5】本発明の実施形態に係る板厚測定工程が行われる別の具体的状況の説明図である。
【図6】本発明の実施形態に係る第2ポリッシング工程で用いられ得る両面研磨装置の主要部の構成を示す部分側面図である。
【図7】図6のA−A線に沿う矢視図である。
【発明を実施するための形態】
【0019】
以下、図面を参照しつつ、本発明の実施形態を説明する。図1は、本実施形態に係る磁気記録媒体用ガラス基板の製造工程図、図2は、本実施形態に係る磁気記録媒体用ガラス基板の断面斜視図である。
【0020】
本実施形態では、磁気記録媒体用ガラス基板10は、ガラス溶融工程(ステップS1)、プレス成形工程(ステップS2)、コアリング工程(ステップS3)、第1ラッピング工程(ステップS4)、端面研削工程(ステップS5)、端面研磨工程(ステップS6)、第2ラッピング工程(ステップS7)、第1ポリッシング工程(ステップS8)、化学強化工程(ステップS9)、板厚測定工程(ステップS10)、第2ポリッシング工程(ステップS11)、最終洗浄工程(ステップS12)、及び、検査工程(ステップS13)を経て製造される。
【0021】
ガラス溶融工程(S1)では、ガラス素材を溶融する。ガラス素材は、二酸化ケイ素(SiO)を主成分とするガラス組成物で構成される。ガラス組成物は、マグネシウム、カルシウム及び/又はセリウムを含んでも含まなくてもよい。代表的なガラス組成物は、例えば、SiO、Al、B、LiO、NaO、KO、MgO、CaO、BaO、SrO、ZnO等を含む。
【0022】
プレス成形工程(S2)では、溶融したガラス素材を金型に流し込んでプレス成形することにより円盤状のガラス基板を作製する。このときのガラス基板の大きさとしては、例えば、外径が2.5インチ、1.8インチ、1.0インチ、0.8インチ等、板厚が、2mm、1mm、0.63mm等である。
【0023】
コアリング工程(S3)では、得られたガラス基板の中心に例えばダイヤモンドコアドリルを用いて円孔を形成する。第1ラッピング工程(S4)では、得られた環状のガラス基板10の主面(記録面)11,12を研削加工してガラス基板10の板厚や平行度及び平坦度等を予備調整する。第1ラッピング工程の研削加工には、例えばダイヤモンドペレットが貼り付けられた研削板を備える両面研削装置が用いられる。
【0024】
端面研削工程(S5)では、ガラス基板10の内周端面13及び外周端面14を研削加工してガラス基板10の外径寸法や真円度等を微調整する。端面研削工程では、また、ガラス基板10の内周端面13及び外周端面14を例えばダイヤモンド砥石を用いて面取り加工し、チャンファ面16を形成する。内周端面13及び外周端面14において、チャンファ面16,16に挟まれた部分を側壁面15と呼ぶ。
【0025】
端面研磨工程(S6)では、ガラス基板10の内周端面13及び外周端面14を研磨して平滑化する。第2ラッピング工程(S7)では、ガラス基板10の主面11,12を再び研削加工してガラス基板10の板厚や平行度及び平坦度等を微調整する。第2ラッピング工程の研削加工には、例えばダイヤモンドペレットが貼り付けられた研削板を備える両面研削装置が用いられる。
【0026】
第1ポリッシング工程(粗研磨工程:S8)では、ガラス基板10の主面11,12を粗研磨して平滑化する。第1ポリッシング工程の研磨には、例えば研磨パッドとして発泡ウレタンパッドが貼り付けられた上下一対の定盤を備える両面研磨装置が用いられ、研磨液として酸化セリウムを砥粒として含む研磨液が用いられる。
【0027】
化学強化工程(S9)では、ガラス基板10の表面に化学強化層を形成する。例えば、ガラス基板10をナトリウムイオンやカリウムイオンの存在する溶液に浸漬することにより、ガラス基板10の表層に存在するリチウムイオンやナトリウムイオンが溶液中のナトリウムイオンやカリウムイオンと置換され、ガラス基板10の表層が化学強化層となる。化学強化層には圧縮応力がかかっている。このような化学強化層を形成することにより、最終的に得られるガラス基板10の耐衝撃性、耐振動性及び耐熱性等が向上する。
【0028】
板厚測定工程(S10)では、複数のガラス基板10の板厚を測定する。この測定結果に基いて、ガラス基板10をランク分けし、ガラス基板10の板厚のバラツキが次の第2ポリッシング工程の研磨量未満に納まっているガラス基板10同士を同じグループ(例えば1バッチ100枚等)に分ける。
【0029】
第2ポリッシング工程(精密研磨工程:S11)では、ガラス基板10の主面11,12を精密研磨してさらに平滑化する。第2ポリッシング工程の研磨には、例えば研磨パッドとしてポリウレタン製のスウェードパッドが貼り付けられた上下一対の定盤を備える両面研磨装置が用いられ、研磨液としてシリカ(コロイダルシリカ)を砥粒として含む研磨液が用いられる。この精密研磨は、板厚測定工程の測定結果に基いて分けられたグループ毎に一度に行う。第2ポリッシング工程の研磨量は、例えば、0.5〜1μmである。第2ポリッシング工程では、化学強化工程で形成された化学強化層がガラス基板10の主面11,12に残るように精密研磨を行う。
【0030】
最終洗浄工程(S12)では、ガラス基板10に付着している異物を、例えば、フィルタリングした純水、イオン交換水、超純水、酸性洗剤、中性洗剤、アルカリ性洗剤、有機溶剤、界面活性剤を含んだ各種洗浄剤等を用いて、洗浄し、除去する。
【0031】
検査工程(S13)では、最終的に得られたガラス基板10の板厚や平坦度等を検査する。そして、検査に合格したガラス基板10のみが、ハードディスク(HD)等の磁気記録媒体の製造に用いられ、主面11,12に磁気層が形成される。
【0032】
次に、本実施形態の特徴部分である板厚測定工程(S10)を詳しく説明する。図3は、本実施形態に係る板厚測定工程で行われるガラス基板10の板厚測定の原理の説明図である。ガラス基板10の製造ラインに分光ユニット20が備えられている。分光ユニット20は、光源と、分光器と、FFT処理部とを有する。
【0033】
光源は、SLD(Super Luminescent Diode:高輝度ダイオード)光源であり、広波長帯域の赤外光L、例えば、波長帯域が0.70〜1.0μm程度、中心波長が0.83μm程度の近赤外光を生成する。生成された赤外光Lは偏波保持ファイバ21を通り、センサヘッド22からガラス基板10に照射される。このとき、赤外光Lはガラス基板10に対して板厚方向に照射される。
【0034】
照射された赤外光Lは、一部がガラス基板10の表面で板厚方向に反射し、反射光aとなってセンサヘッド22に戻る。残りの一部がガラス基板10の裏面で板厚方向に反射し、反射光bとなってセンサヘッド22に戻る。2つの反射光a,bは波長毎に互いに干渉し合う。この干渉光が偏波保持ファイバ21を通り、分光ユニット20に戻る。つまり、干渉光が受光される。
【0035】
分光ユニット20に戻った干渉光は、分光器で波長毎に分析される。すなわち、回折格子で分光され、CCD(Charge Coupled Device)の受光波形から波長毎に光強度が検出され、光強度スペクトル分布が得られる。
【0036】
得られた光強度スペクトル分布は、FFT処理部でFFT(Fast Fourier Transform:高速フーリエ変換)処理等の波形解析が行われ、赤外光Lを照射したガラス基板10の板厚が分光干渉によって測定される。
【0037】
以上により、板厚測定工程において、複数のガラス基板10の板厚が測定される。
【0038】
以上のような、分光ユニット20、偏波保持ファイバ21及びセンサヘッド22を含む板厚測定装置としては、例えば、特開2009−270939号公報や特開2010−121977号公報に開示されるような、キーエンス社製の板厚測定装置(センサヘッド「SI−F80」、分光ユニット「SI−F80U」)を採用することができる。
【0039】
本実施形態では、前記板厚測定装置は、ガラス基板10の製造ラインにおいて、例えば、化学強化工程が行われる場所と、第2ポリッシング工程が行われる場所との間に備えられている。板厚の測定は、枚葉で1枚ずつ行ってもよいが、本実施形態では、図4に示すように、化学強化工程が完了した複数のガラス基板10…10を板厚測定用キャリアC1上に積載して順次板厚を測定することで、ハンドリング回数を減らし、効率のよい板厚測定を行う。
【0040】
SLD光源を用いた板厚測定装置は、分光干渉の光学系の構成によって、センサヘッド22から被測定物までの、板厚測定が可能な測定範囲(図4参照)が決定されるため、被測定物をその測定範囲内に設置する必要がある。一方、測定範囲外において、例えばセンサヘッド22と被測定物との間に他のガラス基板10が存在する場合でも、他のガラス基板10が光透過性に優れること、他のガラス基板10の表面が平滑性に優れ、光の散乱が少ないこと等を条件に、問題なく被測定物の板厚を測定することが可能である。
【0041】
これを利用して本実施形態では複数のガラス基板10を積載した板厚測定用キャリアC1を移動させることでセンサヘッド22からの距離で決定される板厚測定が可能な測定範囲に存在するガラス基板10を順次入れ替えることができるように構成している。このように構成することで、キャリアC1の移動と板厚測定を繰り返すことで多数のガラス基板10の板厚を効率よく測定することができる。ここではさらにガラス基板10が乾燥して汚れが固着するのを防ぐためにガラス基板10を液X中に配置し、液X中(液槽50)に浸漬して板厚を測定している。液X中での不純物の付着を抑制するために、浸漬する液Xは不純物が少ない純水が望ましく、またフィルターを通して循環させたり洗剤を含有させることも効果的である。図4に示す例は、ガラス基板10の工程間の保管中に板厚測定を行う例である。
【0042】
なお、板厚測定工程で測定される板厚の値としては、ガラス基板10の所定の1箇所のみを測定して得られた値でもよく、ガラス基板10の複数個所を測定して得られた値の平均値でもよい。複数個所を測定する場合には、測定されるガラス基板10を、板厚方向に平行な方向を軸として回転させたり、板厚方向に垂直な方向に移動させる機構を備えることで、効率よく複数個所を測定することができる。
【0043】
以上のようにして板厚測定工程(S10)で行われた複数のガラス基板10の板厚測定の結果に基いて、ガラス基板10をランク分けし、複数のガラス基板10の板厚のバラツキが次の第2ポリッシング工程の研磨量(本実施形態では0.5〜1μm)未満に納まっているガラス基板10同士を同じグループ(例えば1バッチ100枚等)に分ける。
【0044】
また、ガラス基板10の工程間の保管中に板厚測定を行う代わりに、図5に示すように、化学強化工程から第2ポリッシング工程へ向かうガラス基板10の搬送を自動化して工程間の自動搬送中に板厚測定を行ってもよい。化学強化工程を完了したガラス基板10を搬送用キャリアC2に複数積載して搬送し(移動させ)、センサヘッド22を例えば搬送方向の下流側に配置して、板厚方向の搬送によって近づいて来るガラス基板10の板厚を測定範囲内において順次測定することができる。
【0045】
次に、板厚測定工程の後に行われる第2ポリッシング工程(S11)を詳しく説明する。なお、本実施形態では、ポリッシング工程は、第1ポリッシング工程であれ、第2ポリッシング工程であれ、研磨パッドの種類や研磨液の種類を除いて、ほぼ同様である。
【0046】
図6は、本実施形態に係る第2ポリッシング工程で用いられ得る両面研磨装置の主要部の構成を示す部分側面図、図7は、図6のA−A線に沿う矢視図であって下定盤の平面図である。
【0047】
図6に示すように、両面研磨装置30は、上下一対の上定盤31及び下定盤32を備えている。各定盤31,32は円柱状(外径:約1000mm)であり、対向面が相互に平行で回転方向が相互に逆向きである。各定盤31,32の対向面にガラス基板の主面を研磨するための研磨パッド(本実施形態ではポリウレタン製のスウェードパッド)33,34が貼り付けられている。
【0048】
図7に示すように、下定盤32の研磨パッド34の上に、円盤状のキャリア37が複数(図例では4つ)設置されている。下定盤32の中央部にサンギヤ35が備えられ、下定盤32の周縁部にインターナルギヤ36が備えられている。キャリア37の周縁部にギヤ歯が形成されており、サンギヤ35及びインターナルギヤ36と噛み合っている。このような遊星歯車機構により、サンギヤ35が回転すると、キャリア37は自転しながらサンギヤ35の周囲を公転する。
【0049】
キャリア37には複数の円孔38…38が形成されており、各円孔38にガラス基板10が1つづつ遊嵌合される。上定盤31及び下定盤32が対接し合うことで、キャリア37…37及びガラス基板10…10が上下の研磨パッド33,34で挟み付けられ、この状態で各定盤31,32及び各キャリア37が回転することにより、研磨パッド33,34とガラス基板10とが面方向に相対移動する。このとき、研磨液(本実施形態ではコロイダルシリカ)が研磨パッド33,34とガラス基板10との間に供給され、ガラス基板10の研磨が実行される。
【0050】
本実施形態では、研磨パッド23,24は、第1ポリッシング工程(S8)では発泡ウレタンパッドが用いられ、第2ポリッシング工程(S11)ではポリウレタン製のスウェードパッドが用いられる。ただし、これに限定されるものではない。
【0051】
本実施形態では、研磨液は、砥粒(遊離砥粒)を含むスラリーである。砥粒としては、特に限定されず、従来一般にガラス研磨の分野で採用されているものを用いることができる。例えば、酸化セリウム、炭化ケイ素、シリカ(コロイダルシリカ)、ジルコニア、アルミナ等が好ましく用いられ得る。これらの中では、コストや得られる平滑度等の観点から、酸化セリウムがより好ましい。砥粒の粒径は、得られる平滑度等の観点から、平均粒子径が1〜100nmのものが好ましく、1〜80nmのものがより好ましく、1〜50nmのものがさらに好ましく、1〜20nmのものが特に好ましい。
【0052】
本実施形態では、研磨液は、第1ポリッシング工程(S8)では酸化セリウムを砥粒として含む研磨液が用いられ、第2ポリッシング工程(S11)ではシリカ(コロイダルシリカ)を砥粒として含む研磨液が用いられる。ただし、これに限定されるものではない。
【0053】
この第2ポリッシング工程(S11)では、板厚測定工程の測定結果に基いて分けられたグループ(例えば1バッチ100枚等)毎に精密研磨を行う。そのときの研磨量は、例えば、0.5〜1μmである。また、化学強化工程で形成された化学強化層がガラス基板10の主面11,12に残るように精密研磨が行われる。
【0054】
なお、本実施形態では、第1ポリッシング工程(S8)の後、化学強化工程、板厚測定工程、第2ポリッシング工程(S11)の順であったが、化学強化工程と板厚測定工程との順序を逆にして、第1ポリッシング工程(S8)の後、板厚測定工程、化学強化工程、第2ポリッシング工程(S11)の順でも構わない。化学強化してもガラス基板10の板厚は変化しないからである。
【0055】
以上、具体例を挙げて詳しく説明したように、本実施形態では、複数のガラス基板10の板厚を測定する板厚測定工程(S10)と、板厚測定工程の測定結果に基いて複数のガラス基板10をグループに分け、グループに分けた複数のガラス基板10をグループ毎に一度に精密研磨する第2ポリッシング工程(S11)とを含む磁気記録媒体用ガラス基板の製造方法が提供される。そして、板厚測定工程(S10)では、ガラス基板10に板厚方向に所定の波長帯域を有する光Lを照射し、ガラス基板10の表面で板厚方向に反射した光aと裏面で板厚方向に反射した光bとの干渉光を受光し、受光した干渉光を波長毎に分析することにより、光Lを照射したガラス基板10の板厚を求める。
【0056】
したがって、ガラス基板10に対する光Lの照射角度やガラス基板10からの光a,bの反射角度が測定結果に何等影響しない。そのため、機械的な要因で測定誤差が生じることがなく、近年の精密な板厚管理に十分対応し得るだけの精度でガラス基板10の板厚を測定することができる。その結果、第2ポリッシング工程(S11)ですべてのガラス基板10…10(例えば1バッチ100枚等)が十分に精密研磨され、平滑性が良好となるので、ガラス基板10の製造収率が低下することがない。また、板厚を測定するためにガラス基板10を特定の場所へ移動させる必要がないから、ガラス基板10を製造工程に置いたままで板厚を測定でき、ガラス基板10が乾燥したり、生産性が低下することもない。また、ガラス基板10の板厚を光Lを用いて非接触で測定するので、板厚測定時にガラス基板10を傷付けることもない。
【0057】
本実施形態では、板厚測定工程を、複数のガラス基板10…10を板厚方向に並べて板厚方向に移動しながら連続して行う(図4参照)。これにより、通常の生産作業における搬送キャリアからガラス基板を取り出すことなく板厚測定を行うので、板厚測定のために生産性が低下する問題がより一層確実に抑制される。板厚方向の搬送によって近付いて来るガラス基板10に対して板厚方向に赤外光Lを照射したり、板厚方向に反射してきた干渉光を受光することが可能にしているので、センサヘッド22を移動させなくても、ガラス基板10を1枚1枚板厚測定することができる。もっとも、これに限らず、状況に応じて、センサヘッド22のみを移動させて、あるいは、センサヘッド22とガラス基板10とを移動させて、板厚を測定してもよい。また、ガラス基板10のプロセス間の保管中に板厚測定を行う代わりに、化学強化工程から第2ポリッシング工程へ向かうガラス基板10の搬送を自動化して自動搬送中に板厚測定を行ってもよい(図5参照)。化学強化工程を完了したガラス基板10を搬送用キャリアC2に複数積載して移動させ、センサヘッド22を搬送方向の下流側に配置して、板厚方向の搬送によって近づいて来るガラス基板10の板厚を測定範囲内において順次測定することができる。
【0058】
本実施形態では、第2ポリッシング工程(S11)の前に、ガラス基板10の表面を強化する化学強化工程(S9)が行われ、第2ポリッシング工程では、ガラス基板10の主面11,12に化学強化層が残るように研磨する。これにより、最終的に得られるガラス基板10の耐衝撃性、耐振動性及び耐熱性等が化学強化層によって向上する。また、次のような利点もある。すなわち、第2ポリッシング工程で研磨が十分でなかったガラス基板10は、平滑性が不良となるのみならず、化学強化層の厚みが斑に残ることになる。そして、化学強化層には圧縮応力がかかっているから、そのような化学強化層が斑に残るとガラス基板10に歪が生じるという問題が併発する。ところが、本実施形態では、第2ポリッシング工程ですべてのガラス基板10…10が十分に精密研磨されるから、そのような歪の問題も併せて解消される。
【0059】
本実施形態では、第2ポリッシング工程の研磨量は、0.5〜1μmである。本実施形態では、ガラス基板10の板厚を精密に管理することができるので、第2ポリッシング工程の研磨量をこの程度まで小さな値に設定することが可能である。
【0060】
本実施形態では、板厚測定工程では、ガラス基板10を液X中に配置してガラス基板10の板厚を測定する(図4参照)。これにより、ガラス基板10が乾燥して汚れが固着するのを防ぐことができる。
【実施例】
【0061】
以下、実施例を通して、本発明をさらに詳しく説明するが、本発明はこの実施例により限定されるものではない。
【0062】
(ガラス基板の作製)
図1に示した製造工程に従い、下記の組成(質量%)のガラス素材を用いて、ガラス溶融工程(S1)〜検査工程(S13)を行い、外径が約65mm(2.5インチ)、内径(円孔の径)が約20mm、板厚が1mmの環状のアルミノシリケート製ガラス基板を作製した。チャンファ面は形成しなかった。
【0063】
(ガラス素材の組成)
・SiO:50〜70%
・Al:0.1〜20%
・B:0〜5%
ただし、SiO+Al+B=50〜85%、また、LiO+NaO+KO=0.1〜20%、また、MgO+CaO+BaO+SrO+ZnO=2〜20%である。
【0064】
(実施例)
実施例は、板厚測定工程(S10)を、図3に示した板厚測定装置(キーエンス社製のセンサヘッド「SI−F80」、分光ユニット「SI−F80U」)を用いて行った。また、第2ポリッシング工程(S11)を、図6及び図7に示した両面研磨装置30を用いて行った。1バッチ100枚でガラス基板を作製し、得られたガラス基板の平坦度の評価を行った。
【0065】
ガラス基板の平坦度の評価は、Phase Shift Technology社製の「OptiFlat」(光干渉式表面形状測定装置)を用いてTIRを求め、TIRが2μm以上のものを良品と判定し、良品率(収率)を求めた。ここで、TIRとは、ガラス基板の平坦度を表す指標であり、評価面の最小二乗平面から最高点までの距離と、最小二乗平面から最低点までの距離との合計の値である。なお、最高点及び最低点は、評価面上の半径25mmの位置における周方向1周分の測定値から得る。
【0066】
その結果、実施例では、平坦度の良品率は95%であった(20枚の抜き取り評価)。このことから、実施例は、平滑性の高いガラス基板が高収率で得られることが分かった。これは、第2ポリッシング工程の前のガラス基板の板厚測定精度が良好で、ガラス基板の板厚管理が精密に行われたためと考察される。
【0067】
(比較例1)
比較例1は、板厚測定工程(S10)を、特許文献1に開示されている板厚測定装置(キーエンス社製の「LK−G15」)を用いて行った他は、実施例と同様にして、ガラス基板を作製し、得られたガラス基板の平坦度の評価を行った。その結果、比較例1では、平坦度の良品率は65%であった(20枚の抜き取り評価)。このことから、比較例1は、平滑性の高いガラス基板の収率が実施例に比べて低いことが分かった。これは、第2ポリッシング工程の前のガラス基板の板厚測定精度が十分でなく、ガラス基板の板厚管理が精密に行われなかったためと考察される。
【0068】
(比較例2)
比較例2は、板厚測定工程(S10)を、マイクロメータを用いて行った他は、実施例と同様にして、ガラス基板を作製し、得られたガラス基板の平坦度の評価を行った。その結果、比較例2では、平坦度の良品率は25%であった(20枚の抜き取り評価)。このことから、比較例2は、平滑性の高いガラス基板の収率が極めて低いことが分かった。これは、第2ポリッシング工程の前のガラス基板の板厚測定精度が低く、精密なガラス基板の板厚管理に対応できなかったためと考察される。
【符号の説明】
【0069】
10 磁気記録媒体用ガラス基板
11,12 主面(記録面)
13 内周端面
14 外周端面
15 側壁面
16 チャンファ面
20 分光ユニット
21 偏波保持ファイバ
22 センサヘッド
30 両面研磨装置
31,32 定盤
33,34 研磨パッド
37 キャリア
50 液槽
C1 板厚測定用キャリア
C2 搬送用キャリア
L 赤外光
X 液
a,b 反射光

【特許請求の範囲】
【請求項1】
複数のガラス基板の板厚を測定する板厚測定工程と、板厚測定工程の測定結果に基いて複数のガラス基板をグループに分け、グループに分けた複数のガラス基板をグループ毎に一度に精密研磨する精密研磨工程とを含む磁気記録媒体用ガラス基板の製造方法であって、
板厚測定工程では、
ガラス基板に板厚方向に所定の波長帯域を有する光を照射し、
ガラス基板の表面で板厚方向に反射した光と裏面で板厚方向に反射した光との干渉光を受光し、
受光した干渉光を波長毎に分析することにより、
光を照射したガラス基板の板厚を分光干渉によって測定することを特徴とする磁気記録媒体用ガラス基板の製造方法。
【請求項2】
板厚測定工程では、
複数のガラス基板を積載したキャリアをガラス基板の板厚方向に移動させ、
分光干渉の光学系の構成によって決定される板厚測定が可能な測定範囲に複数のガラス基板を順次移動させることにより、
複数のガラス基板の板厚を連続的に順次測定することを特徴とする請求項1に記載の磁気記録媒体用ガラス基板の製造方法。
【請求項3】
精密研磨工程の前に、ガラス基板の表面を強化する化学強化工程が行われ、
精密研磨工程では、ガラス基板の主面に化学強化層が残るように研磨することを特徴とする請求項1又は2に記載の磁気記録媒体用ガラス基板の製造方法。
【請求項4】
精密研磨工程の研磨量は、0.5〜1μmであることを特徴とする請求項1から3のいずれか1項に記載の磁気記録媒体用ガラス基板の製造方法。
【請求項5】
板厚測定工程では、ガラス基板を液中に配置してガラス基板の板厚を測定することを特徴とする請求項1から4のいずれか1項に記載の磁気記録媒体用ガラス基板の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−142050(P2012−142050A)
【公開日】平成24年7月26日(2012.7.26)
【国際特許分類】
【出願番号】特願2010−293772(P2010−293772)
【出願日】平成22年12月28日(2010.12.28)
【出願人】(303000408)コニカミノルタアドバンストレイヤー株式会社 (3,255)
【Fターム(参考)】