説明

立体リソグラフィ装置用の照明システム

複数の発光ダイオード(LED)(34)であって、各LEDが、少なくとも一方が実質的に平坦である少なくとも1つの第1の発光面(36)および第2の面(37)を有する複数のLEDと、各LEDを個々に制御することができるように、それぞれのLEDに選択的に接続された複数の電気経路(56)と、実質的に平坦な平準化面(46、52)であって、LEDの2次元配列が平準化面に対して平行な平面に広がるように、各LEDの少なくとも1つの実質的に平坦な面(37、36)と平準化接触する平準化面とを備える照明システム(30)。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、立体リソグラフィの分野に関し、より具体的には立体リソグラフィ装置用の照明システムに関する。
【背景技術】
【0002】
3Dプリントとしても知られている立体リソグラフィは、部品を高精度で作製するためのラピッドプロトタイピング技術である。単純な実装においては、立体リソグラフィでは、液体の光硬化性フォトポリマー樹脂のタンクおよび1度に1つの層ずつ樹脂を硬化させるためのコンピュータ制御されたUVレーザを利用することができる。構築プロセスは、基本的に反復性である。作製される1スライスの部分に対応する各層に対して、レーザビームのスポットが、液体樹脂の表面のそれぞれの断面のパターンをトレースする。レーザ光線に露光すると、トレースされたパターンが硬化されるかまたは凝固されて下の層に付着する。一旦、1つの層が硬化されると、作製中の部分(フォトポリマー樹脂のタンクに沈められたエレベータの台上に静止し得る)は、その最上層が再び樹脂の表面のすぐ下に配置されて次の層の構築を可能するように、1つの層の厚さだけ低下されてよい。その部品が完成するまで、ステップのこのシーケンスが継続される。
【0003】
レーザを用いる代わりに、立体リソグラフィ装置に、フォトポリマー樹脂の選択的照明をもたらすための2次元配列LEDおよびレンズを備えた照明システムを取り付けてよい。全体としての照明システムは、加工物の位置に対して移動可能に配置されてよく、LEDは、互いに剛結合され、レンズに対しても剛結合されてよい。レンズは、LEDの発光面をフォトポリマー樹脂の表面上へ結像する働きをすることができる。好ましくは、一定数のLEDを備える配列が同数の結像スポットを生成することができるように、各LEDは、それ自体の共役像のスポットに関連づけられる。製作の期間中、照明システムは、フォトポリマー樹脂を保持するタンクに対して走査して移動されてよく、一方、個々のLEDは凝固される層の断面のパターンに従って樹脂の表面を照光するように選択的にオンとオフを切り換えられてよい。レーザと比べて、LED照明に基づく照明システムは比較的廉価である。また、この照明システムは、より高い生産速度で同等の高精度を与える。
【0004】
経済的なやり方で高信頼の照明システムを製造することは疑問視されていた。この主な理由は、加工物の非常に微細な細部さえ製作され得るように、フォトポリマー樹脂を高精度で照光することができる照明システムが、十分に画定された寸法ではっきり定められた位置に十分に明るい結像スポットを生成することができなければならないことである。光学システムは、より高い開口数によってLEDからより多くの光を集めることができるので、十分な明るさの要件は、より高い開口数を有する光学システムをもたらす。しかし、開口数が高いと、精密なLED位置に対する結像スポット寸法の高感度を伴うことがある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】欧州特許出願第07150447.6号
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の目的は、その設計により、高い開口数を有する光学システムと組み合わせて使用することができる経済的に製造可能なLED照明システムを提供することである。
【課題を解決するための手段】
【0007】
この目的のために、本発明は、複数の発光ダイオード(LED)であって、各LEDが、少なくとも一方が実質的に平坦である少なくとも1つの第1の発光面および第2の面を有する複数のLEDと、各LEDを個々に制御することができるように、それぞれのLEDに選択的に接続された複数の電気経路と、実質的に平坦な平準化面(levelling surface)であって、LEDの2次元配列がこの平準化面に対して平行な平面に広がるように、各LEDの少なくとも1つの実質的に平坦な面と平準化接触する平準化面とを備える、立体リソグラフィ装置で使用するのに適切な照明システムを提供する。
【0008】
z方向で所望の精度を達成するために、LEDは、実質的に平坦な平準化面と平準化接触する。用語「実質的に平坦な」は、約10μm未満、好ましくは5μm未満の面平坦度を有する面を指す。このような面平坦性の程度は、例えば光研磨によって達成することができる。平準化面は、例えば、機械的運搬台または支持体、あるいは以下で説明されるマルチレンズ配列によってもたらされ得る。1つの平準化面が、同一平面に広がる複数の別個の平準化面で構成され得ることに留意されたい。したがって、平準化面という用語は、必ずしも1つの連続的な面を意味するものと解釈されるべきではない。例えば、以下の図2およびその議論を参照されたい。
【0009】
xy平面、すなわち2次元LED配列の平面で十分な位置精度を達成するために、または同平面における位置精度を改善するために、本発明による照明システムは、ダイシングされてはいるがパッケージ化されていないLED、いわゆる裸ダイ(bare die)を使用して製造され得る。基本的な洞察は、共通の表面実装LEDがICパッケージに埋め込まれていて、同パッケージがピックアンドプレースロボットによって扱われるときに基準として働く、という事実に関するものである。ICパッケージの外部の寸法が、内側にパッケージ化されるLEDに対する所望の位置的な公差をかなり上回るので、ロボットが所望の精度で表面実装LEDを位置決めすることが不可能なことがある。しかし、ピックアンドプレースロボットは、ICパッケージの存在を不明瞭にすることなく裸ダイの精密な位置を求めることができ、したがって裸ダイを位置決めすることができる。例えばモノリシック配列を使用するのと比べて、ウェーハのダイシングが、ウェーハ材料の非常に効率的な使用を可能にし、したがって経済的生産プロセスに寄与する。ICパッケージを排除することは、実際のLEDとLEDが熱的に結合される支持体との間に熱絶縁障壁を配置することも意味する。したがって、LEDの動作温度がより低くなり、このことはLEDの寿命および光出力にとって有益である。
【0010】
本発明の一態様によれば、平準化面は、少なくとも1つの第1の層を備える実質的に剛体の支持体によってもたらされ、この層が平準化面をもたらし、また、この層は少なくとも150W/mKの熱伝導率を有する材料を含む。
【0011】
LEDが温度に対する光出力感度を示し、実際、過度の温度によって恒久的に劣化するという事実が知られている。LED配列の、期待寿命および同様に重要な光出力の均一性を増進するために、LEDが過度に、かつ/または不均等に加熱されないことを保証するように注意が払われる。この目的のために、LEDが熱的に結合される平準化面は、好ましくは、例えば銅またはアルミニウムなどの150W/mKを超える、大きな熱伝導率を有する材料を含むことができる。いくつかの実施形態では、支持体は複数の層を備えることができる。支持体は、例えば、平準化面をもたらす銅の比較的薄い層をのせたインバールのベースを備えてよい。150W/mKを超える熱伝導率を有する銅の層がLEDの第2の表面に接触してよく、LEDの熱を放出することが可能になる。銅の層が、熱を分散させてインバールのベースに伝達することになり、同ベースは、熱伝導率がより小さいが、より都合の良い(すなわち、より小さい)熱膨張係数を有する。インバールのベースが、LEDによるベースの均一または不均一な加熱よってLEDの相対位置が変化するのを制限することになる。一般に、いかなるこのようなベース層も、好ましくは5・10−6/K以下の線熱膨張係数を有する(すなわち1度の温度変化につき長さがわずかに増加する)。
【0012】
材料を選択する代わりに、あるいは材料を選択することに加えて、適切に熱を伝達することができる構造的特性を有する実質的に剛体の支持体が取り付けられてよい。支持体には、例えば使用中に冷却流体が通って循環する1つまたは複数の冷却チャンネルおよび/またはLEDで発生した熱を放散することができる冷却フィンが備わっていてよい。
【0013】
本発明の前述の特徴および利点ならびに他の特徴および利点は、本発明の特定の実施形態の以下の詳細な説明を、本発明を図示することを意味するものであり本発明を限定することを意味するものではない添付図面と一緒に解釈することにより、より十分に理解されよう。
【図面の簡単な説明】
【0014】
【図1】本発明による照明システムが使用され得る例示的立体リソグラフィ装置の概略断面図である。
【図2】本発明による照明システムの特定の実施形態の概略図である。
【図3】本発明による照明システムの特定の実施形態の概略図である。
【図4】本発明による照明システムの特定の実施形態の概略図である。
【図5A】さらなる実施形態の概略側面図である。
【図5B】さらなる実施形態の斜視図である。
【発明を実施するための形態】
【0015】
図面では、同一の参照番号は同等の要素を同定する。図面における諸要素のサイズ、形状、相対位置および角度は、必ずしも原寸に比例して描かれておらず、これらの要素のうちいくつかは、図面の読みやすさを向上するために便宜的に拡大して配置されることがある。さらに、描かれた特定の要素の形状は、特定の要素の実際の形状に関するいかなる情報も伝えるようには意図されておらず、図面における認識の容易さのためにのみ選択されていることがある。
【0016】
先ず図1を参照すると、これは、本発明による照明システムが実施され得る例示的立体リソグラフィ装置(SLA) 1の側断面である。SLA 1は、製品のプロトタイプまたはモデルなどの有形物体2の層方向式製作に使用され得る。SLA 1は、運搬プレート4、液体のリザーバ10、および照明システム30を備える。
【0017】
製作を通じて、有形物体2は運搬プレート4から懸垂され、物体2の最初に構築された層が運搬プレート4に固着し、また、あらゆる後続の層も間接的に固着する。運搬プレート4は、駆動機構(図示せず)によって方向6に移動可能であり、新規の層が構築される度に上方へ1層の厚さ分だけ移動される。
【0018】
液体のリザーバ10は、液体の光硬化性樹脂14で満たされている。液体のリザーバ10の底板12は、照明システム30によって発せられる光に対して光学的に透明であり、これは今後説明されることになる。底板12は、(部分的に)凝固される液体層16の片面に境界をつける構築形状としても機能する。一旦1つの層が構築されると、運搬プレート4が1層の厚さ分だけ上方へ移動され、最後に構築された層と底板12の間の空間が、前記液体層16を形成するように樹脂14で満たされることは明白であろう。
【0019】
SLA 1は、液体層16の所定の領域を選択的に照光するように適合された照明システム30も備える。照射の結果、有形物体2の固体層18が得られ、前記層18は、与えられた照明パターンに従って所定の形状を有する。照明システム30は、LED配列32ならびに2つのマルチレンズ配列40および42を備えた結像システムを含む。他の実施形態では、結像システムは、所望の構成次第で、別の数、例えば1つだけのマルチレンズ配列および/または他の要素を備えてよい。
【0020】
高い開口数、例えば0.3〜0.8の範囲、または0.8よりさらに高い開口数であると、LEDの位置のわずかな変化が、その共役像スポットの寸法に対して大きな影響を及ぼす可能性がある。一例として、対象となっている結像スポットが100μm程度の直径を有することがあり、それによって50μmの有効なスポット分離距離が影響を受ける可能性がある。LEDが、その理想的位置から(光学システムの光学軸に対して平行な方向へ)10μmのところに配置されたとすると、この乖離により、結像スポット直径の約30μmの増加がもたらされる可能性がある。明らかに、これはかなりの収差であり、事実上容認できないものである。光学システムの光学軸に対して垂直な方向における理想的位置からのLEDの乖離は、拡大されずに像を通過するだけであり得る。それでもなお、50μm以下の有効なスポット分離距離を意図するとき、10μmの乖離によってシステムの分解能がひどく損なわれる恐れがある。
【0021】
したがって、高い開口数を有する光学システムを使用するという願望は、とりわけ、LEDに対する相対的位置決めの公差に形を変える。図示のように、LEDに対して現在所望の位置的な公差は、x、yおよびz方向のそれぞれで10μm未満であり、ここでxy平面は2次元LED配列の平面であって、z方向はxy平面に対して垂直な方向へ延びる。このような精密位置決めは、(多層の)プリント回路基板上に実装される共通の表面実装LEDを使用して達成するのは不可能であると思われる。LEDの寸法公差は、前述の10μmを容易に上回る可能性があり、ピックアンドプレースロボットがそれらを所望の精度で位置決めするのが不可能になり、その一方で、個々のLEDに電気的接続をもたらす多層プリント回路基板は、特にLED配列によって必要とされる比較的大きな表面積にわたって平らにするのが困難である。それと対照的に、LEDのモノリシック配列、すなわち複数のLEDを備えた完全なウェーハ(部分)は、個々のLEDの位置精度が優れる代替形態を与える。これは、ウェーハ製造プロセス自体が正確さを保証するからである。しかし、配列の隣接したLED間の所望の分離距離が増加するとき、より貴重なウェーハ材料が基本的には浪費される。約1mm以上の一般的な分離距離でモノリシック配列を使用するコストは受け入れがたいほど高くなる。
【0022】
LEDの位置精度は、それ自体が原理問題であるが、さらなる設計要件が同様に満たされなければならない。これらの要件は、各LEDへの個々の電気経路を必要とする各LEDの個々の可制御性、および高温に対するLEDの好ましくない感応性によるLEDの速くかつ/または不均一な劣化を防止する優れた熱管理システムを含んでいる。
【0023】
LED配列32は、複数のLED 34を備える。LED 34は、LEDが、等距離で垂直に配向された行と列を構成し、各LEDがグリッドポイントを定義するように、好ましくはグリッド状の様式で2次元平面に配置される。LED 34のそれぞれが、液体のリザーバ10の底板12と向かい合う発光面36を有し、発光面36は、LED配列32の2次元平面に対して実質的に平行である。液体の樹脂層16の上に投影され得る、点灯したLEDの時間的に変化する2次元パターンを生成するために、配列32の個々のLED 34を制御する、すなわちオフと(所望の強度の)オンとを切り換えるように、コントローラ38が設けられてよい。
【0024】
実質的に平面状のマルチレンズ配列40、42が、LED 34の発光面36と選択的に硬化されることになる液体層16との間に配置される。配列40、42のそれぞれが、好ましくは各LED 34につき1つ、複数のレンズ44を備える。レンズ44は、好ましくは配列32のLED 34の配置と対応して配置されてよい。マルチレンズ配列40、42は平凸タイプでよく、したがってすべてのレンズ44の平面側を画定する1つの平面側46、および、各レンズ42につき1つの部分的に回転楕円面形の区分48の複数の凸面を有する。図1に示されるように、マルチレンズ配列40、42は相対して配向されてよい。マルチレンズ配列40、42は、点灯した各LED 34が液体層16の所定の領域に個別の共役スポットを生成するようなやり方で、点灯したLEDのパターンを液体層16上に結像するように適合された結像システムを一緒に形成する。マルチレンズ配列40、42は、ガラス、溶融石英およびプラスチックを含む様々な材料で作製され得る。
【0025】
照明システム30は、液体のリザーバ10の底板12の下に、液体のリザーバ10の底板12に対して平行な方向8に移動することができるように移動可能に配置されてよい。照明システム30の運動は、LED 34の点灯も制御する前述のコントローラ38によって制御されてよい。使用するとき、照明システム30は、システムの有効な分解能を高めるようなLED配列32の行および列の方向を有する角度で広がる方向へ直線的に移動されてよい。この技法は、この態様に関するさらなる情報のために参照によって本明細書に組み込まれている、本出願人の名前の同時係属出願である欧州特許出願第07150447.6号により詳細に説明されている。
【0026】
照明システム30の動作する状況が明確になったので、照明システム30の特定の実施形態を図解的により詳細に示す図2〜図4に注目する。
【0027】
図2は、本発明による照明システム30の実施形態の概略断面図である。図2は、既に図1に示されているLED 34およびマルチレンズ配列40、42に加えて支持体50および電気経路56を示す。
【0028】
図2の実施形態では裸ダイであるLED 34は、それらの第2の面37を介して支持体50と機械的接触し、かつ熱的接触している。支持体50は、プレートまたは適切な形状の物体でよく、アルミニウムまたは銅などの例えば150W/mKを超える、大きな熱伝導率を有する材料で部分的に作製されてよい。熱伝導率が良いと、支持体がヒートシンクとして働いて、LED 34の平均寿命を向上させ、かつLED 34の光出力の劣化を防止するためにLED 34から過度の熱を放出することができる。また、熱伝導率が良い支持体は、配列32にわたって不均一な光生成にもたらす可能性があるLED 34の互いに不均一な加熱を防止することができる。製造の期間中、支持体の頂面は、滑らかで実質的に平坦な平準化面52を得るために、例えば光学的に研磨される。研磨済みの平準化面52の面平坦度は、10μm未満、好ましくは5μm未満であり得る。研磨処理の後、支持体50の上面に溝が機械加工されてよい。図2の実施形態では、溝が電気経路56を収容し、溝の間のリブ54がLED 34の機械的支持体をもたらす。構築の方法により、リブ54は、すべてが同一平面に広がる実質的に平坦な頂面52を有する。したがって、すべてのリブ54が、一緒に、本説明の意味における「平準化面」と考えられ得る。LED 34の実質的に平坦な第2の面37は、接着剤の薄い層によって平準化面52に取り付けられてよい。接着剤は、好ましくは熱伝導性であり得る。必要に応じて、接着剤は、平準化面52とLED 34の第2の面37の間の正確な距離設定を支援するためにガラスまたはポリスチレンの球体などのスペーサも含むことができる。分離距離が正確であると、LED 34の位置的精度に貢献するばかりでなく、LEDと平準化面52の間の接着材層の厚さを正確に画定する。接着材層の厚さが層の熱抵抗にほぼ比例するので、配列のすべてのLED 34に対する接着材層の厚さの安定性は、LED 34の不均一な加熱および劣化を防止する機能である。
【0029】
電気経路56は、多層プリント回路基板(PCB)の形でもたらされ得る。多層PCBにより、LED 34の比較的コンパクトなパッキングのための実際的な要件である高密度の電気経路56が可能になる。例えば、一般に、平準化面52の1〜2mmごとにLED 34が備わっていてよく、一方、照明システム30は、すべてが個々に制御可能な何千ものLEDを備えることができる。前述のように、電気経路56は、リブ54の間の溝に少なくとも部分的に配置される。この構成により、LED 34がマルチレンズ配列40へ放射する光に対して経路56が障害物を形成するのが防止される。LED 34の電気経路56への電気的接続は、ワイヤボンディング58によって達成することができ、ワイヤボンディング58は、裸ダイのLEDの電気的接触パッドを電気経路56に選択的に接続することができる。
【0030】
図3は、照明システム30の第2の代替実施形態を示す。この実施形態では、高い熱伝導率を有するセラミック支持体50が使用される。熱の放出をさらに促進するために、冷却流体を通して循環させることができる、より多くのチャンネル60のうちの1つが、支持体50にさらに取り付けられてよい。図2の実施形態とは対照的に、図3に示されるセラミック支持体50は、単一の連続した平準化面52を有する。この平準化面52は、所望の面平坦度を達成するように研磨されている。製造を通じて、電気経路56を収容するための溝が支持体50に機械加工されることはない。その代わりに、電気経路56は、例えばスクリーン印刷によって平準化面52に与えられ得る厚膜層によってもたらされる。図3に概略的に示された層のスタックは、交互に導電層と非導電層に作製されてよい。ワイヤボンディング58は、裸ダイのLED 34の電気的接触パッドをそれぞれの導電層に選択的に接続するのに使用され得る。LED 34は、図2の実施形態のように、好ましくは、スペーサを備えた熱伝導性接着剤またはスペーサを備えない熱伝導性接着剤によって平準化面52に取り付けられてよい。
【0031】
図2および図3の実施形態では、支持体50は、LED 34の機械的支持体および熱的冷却をもたらす。電力の供給は、電気経路56が受け持つ。この状況は、3つの機能をすべて遂行するPCB上に表面実装LEDが単純に配置されるより従来的な機構と区別されるべきである。とりわけ、多層PCBは、通常、受け入れがたいほど大きなz公差を有するので、このような機構はLEDの正確な位置決めが不可能である。
【0032】
図4は、それにもかかわらず、支持体50の上面に設けられた多層PCB上にLED 34が配置された実施形態を示す。しかし、LED 34の正確なz方向の位置合わせは、PCBによってではなく、平準化面として働くマルチレンズ配列40の平面側46にLED 34を取り付けることによって達成される。このような構成を可能にするために、使用されるLED 34は、好ましくはいわゆる(裸ダイ)フリップチップである。LED 34の発光面36には電気的接触パッドがなく、したがって実質的に平坦である。一実施形態では、フリップチップLED 34の発光面36は、適切なz方向の位置合わせを達成するために、光学的に透明な接着剤を使用してマルチレンズ配列40の実質的に平坦な平面側46に付着されてよい。製造の期間中、LED 34は、最初にマルチレンズ配列40の平面側46に取り付けられてよく、次いで、何らかの接着剤がセットされてLED 34の相対位置が固定された後に、PCBの電気経路56に、例えば超音波はんだ付けまたは異方性の導電性接着剤を使用して接続される。代替実施形態では、LEDが、マルチレンズ配列に固着されなくてよい。LEDは、例えば、最初にPCBの電気経路56に接続され、それによってLED 34の第2の面37とPCBの頂面の間に可撓性接着剤が供給されてよい。続いて、マルチレンズ配列40は、LED 34をz方向に位置合わせするために、その平面側46がLED 34の発光面36にそっと押しつけられるように所定の位置に置かれてよい。LED 34がすべて適切に位置合わせされたとき、可撓性接着剤は、LEDの相対的配向を恒久的に固定するために硬化されてよい。第1の実施形態の利点は、LED 34が高い位置精度でマルチレンズ配列40に固定されることである。したがって、LED 34とマルチレンズ配列40の個別の位置合わせが不要であり、また、一方のマルチレンズ配列と他方の支持体および/またはPCBとの間の熱膨張係数の差が、もはやマルチレンズ配列に対するLEDの位置合わせ不良をもたらす恐れがない。
【0033】
図5Aおよび図5Bは、それぞれ、PCB 56を収容する溝55を有するが、溝55の間のリブ54がLED 34の機械的支持体をもたらすさらなる実施形態の概略側面図および斜視図を示す。複数のLED 34が面52上に設けられる得ることが示されており、LED 34は、溝55の中のPCB 56上に配置された電気的回路によってグループで制御される。このことは、各LEDが、LEDの相互距離に寸法設定された狭いリブ上に配置されず、そうでなければ冷却チャンネル60への熱伝導性が制限されることになるので、熱的利益をもたらす。
【0034】
PCB上の電気経路構造体56は、垂直の構成に積層されてよく、すなわち、PCBは、平準化面52に対して横方向の平面に広がる。このことは、続くLED 34の間で最小限に保たれ得る間隙距離を最適化する。
【0035】
このようにして、PCBの平面状の領域を拡大するのに溝55を使用することにより、LEDからIC 57へすべての電子的経路を設けるのに、単なる1層または2層のPCB構造体で十分である。
【0036】
また、溝55の中に駆動回路57を配置することにより、駆動回路のIC 57とLEDの間の距離を短縮することができる。好ましい実施形態では、図示のPCB構造体56は、さらに、平準化面56の平面に広がり、平準化面上に直接設けられたLED 34を収容するように開口59を有する。
【0037】
開口は、LEDに対するPCBの位置の公差が大きいように、実質的にLEDのサイズより大きくなる。PCB 56は可撓性タイプのPCBであり、少なくともIC 57を有する部分が溝55に入り、LED用の孔を有する部分が基板50上に水平に置かれるように折り重ねられる。
【0038】
本発明の例示的実施形態が添付図面を参照しながら説明されてきたが、本発明はこれらの実施形態に限定されないことを理解されたい。当業者によって、様々な変更または改良が、特許請求の範囲で定義された本発明の範囲または趣旨から逸脱することなく達成され得る。さらに、前述の照明システムの用途が立体リソグラフィの分野に限定されないことに留意されたい。この照明システムは、例えば印刷業の他の分野にも適用され得る。
【符号の説明】
【0039】
1 立体リソグラフィ装置(SLA)
2 有形物体
4 運搬プレート
6 運搬プレートの移動方向
8 照明システムの移動方向
10 液体のリザーバ
12 液体のリザーバの底板
14 光硬化性樹脂
16 液体層
18 有形物体2の固体層
30 照明システム
32 LED配列
34 LED
36 LEDの発光面
38 コントローラ
40 マルチレンズ配列
42 マルチレンズ配列
44 レンズ
46 レンズの平面側
48 レンズの凸面側
50 支持体
52 支持体の表面
54 リブ
56 電気経路
58 ワイヤボンディング
60 冷却チャンネル

【特許請求の範囲】
【請求項1】
複数の発光ダイオード(LED)(34)であって、各LEDが、少なくとも一方が実質的に平坦である少なくとも1つの第1の発光面(36)および第2の面(37)を有する複数のLEDと、
各LEDを個々に制御することができるように、それぞれの前記LEDに選択的に接続された複数の電気経路(56)と、
実質的に平坦な平準化面(46、52)であって、LEDの2次元配列が前記平準化面に対して平行な平面に広がるように、各LEDの少なくとも1つの実質的に平坦な面(37、36)と平準化接触する平準化面とを備える照明システム(30)。
【請求項2】
前記平準化面(46、52)が、少なくとも10μm、より好ましくは少なくとも5μmの面平坦度を有する請求項1に記載の照明システム。
【請求項3】
前記LED(34)が裸ダイである請求項1または2に記載の照明システム。
【請求項4】
各LED(34)の少なくとも1つの実質的に平坦な面が、接着剤によって前記平準化面(46、52)に接続される請求項1から3のいずれか一項に記載の照明システム。
【請求項5】
前記接着剤がスペーサを備え、前記スペーサがガラスまたはポリスチレンの球体を備える請求項4に記載の照明システム。
【請求項6】
前記平準化面(52)が実質的に剛体の支持体(50)によってもたらされる請求項1から5のいずれか一項に記載の照明システム。
【請求項7】
前記支持体(50)が、少なくとも1つの第1の層を備え、前記第1の層が前記平準化面(52)をもたらし、前記第1の層が少なくとも150W/mKの熱伝導率を有する材料を含む請求項6に記載の照明システム。
【請求項8】
前記支持体(50)が、5・10−6/K以下の線熱膨張係数を有する材料を含む第2の層を備える請求項7に記載の照明システム。
【請求項9】
前記電気経路(56)が前記LED(34)の間に少なくとも部分的に広がるように、前記LEDおよび前記電気経路の両方が、前記平準化面上に設けられ、それによって前記電気経路が厚膜技術、例えばスクリーン印刷によってもたらされる請求項6から8のいずれか一項に記載の照明システム。
【請求項10】
前記支持体(50)の表面に中間リブ(54)によって画定された溝が備わっており、前記溝に前記電気経路(56)が少なくとも部分的に埋め込まれており、前記LED(34)が、前記平準化面(52)をもたらす前記中間リブ(54)上に配置される請求項6から8のいずれか一項に記載の照明システム。
【請求項11】
前記電気経路(56)がプリント回路基板の形でもたらされる請求項10に記載の照明システム。
【請求項12】
前記LED(34)が、実質的に平坦な発光面(36)を有し、前記LEDのそれぞれの第2の面(37)上に電気的接続を有するフリップチップタイプであり、前記LEDの前記発光面(36)がマルチレンズ配列(40)の平面側と平準化接触するように、前記マルチレンズ配列の前記平面側(46)が前記平準化面(46)をもたらす請求項1から6のいずれか一項に記載の照明システム。
【請求項13】
前記LED(34)が前記LED(34)の第2の面(37)において接続される、前記電気経路(56)が、少なくとも部分的にプリント回路基板(50)の形でもたらされる請求項12に記載の照明システム。
【請求項14】
各LEDの前記発光面(36)が主として前記マルチレンズ配列(40)の1つのレンズ(44)と関連づけられるように、前記マルチレンズ配列(40)の前記レンズ(44)が、前記LED(34)の配置と対応して配置される請求項12または13に記載の照明システム。
【請求項15】
請求項1から14のいずれか一項に記載の照明システム(30)を備える立体リソグラフィ装置(1)。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate


【公表番号】特表2012−516539(P2012−516539A)
【公表日】平成24年7月19日(2012.7.19)
【国際特許分類】
【出願番号】特願2011−547842(P2011−547842)
【出願日】平成22年1月29日(2010.1.29)
【国際出願番号】PCT/NL2010/050043
【国際公開番号】WO2010/087708
【国際公開日】平成22年8月5日(2010.8.5)
【出願人】(511095850)ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト−ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー (16)
【Fターム(参考)】